tree.c 116 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, you can access it online at
  16. * http://www.gnu.org/licenses/gpl-2.0.html.
  17. *
  18. * Copyright IBM Corporation, 2008
  19. *
  20. * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21. * Manfred Spraul <manfred@colorfullife.com>
  22. * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23. *
  24. * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25. * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26. *
  27. * For detailed explanation of Read-Copy Update mechanism see -
  28. * Documentation/RCU
  29. */
  30. #include <linux/types.h>
  31. #include <linux/kernel.h>
  32. #include <linux/init.h>
  33. #include <linux/spinlock.h>
  34. #include <linux/smp.h>
  35. #include <linux/rcupdate.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/sched.h>
  38. #include <linux/nmi.h>
  39. #include <linux/atomic.h>
  40. #include <linux/bitops.h>
  41. #include <linux/export.h>
  42. #include <linux/completion.h>
  43. #include <linux/moduleparam.h>
  44. #include <linux/module.h>
  45. #include <linux/percpu.h>
  46. #include <linux/notifier.h>
  47. #include <linux/cpu.h>
  48. #include <linux/mutex.h>
  49. #include <linux/time.h>
  50. #include <linux/kernel_stat.h>
  51. #include <linux/wait.h>
  52. #include <linux/kthread.h>
  53. #include <linux/prefetch.h>
  54. #include <linux/delay.h>
  55. #include <linux/stop_machine.h>
  56. #include <linux/random.h>
  57. #include <linux/ftrace_event.h>
  58. #include <linux/suspend.h>
  59. #include "tree.h"
  60. #include "rcu.h"
  61. MODULE_ALIAS("rcutree");
  62. #ifdef MODULE_PARAM_PREFIX
  63. #undef MODULE_PARAM_PREFIX
  64. #endif
  65. #define MODULE_PARAM_PREFIX "rcutree."
  66. /* Data structures. */
  67. static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
  68. static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
  69. /*
  70. * In order to export the rcu_state name to the tracing tools, it
  71. * needs to be added in the __tracepoint_string section.
  72. * This requires defining a separate variable tp_<sname>_varname
  73. * that points to the string being used, and this will allow
  74. * the tracing userspace tools to be able to decipher the string
  75. * address to the matching string.
  76. */
  77. #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  78. static char sname##_varname[] = #sname; \
  79. static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
  80. struct rcu_state sname##_state = { \
  81. .level = { &sname##_state.node[0] }, \
  82. .call = cr, \
  83. .fqs_state = RCU_GP_IDLE, \
  84. .gpnum = 0UL - 300UL, \
  85. .completed = 0UL - 300UL, \
  86. .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
  87. .orphan_nxttail = &sname##_state.orphan_nxtlist, \
  88. .orphan_donetail = &sname##_state.orphan_donelist, \
  89. .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
  90. .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
  91. .name = sname##_varname, \
  92. .abbr = sabbr, \
  93. }; \
  94. DEFINE_PER_CPU(struct rcu_data, sname##_data)
  95. RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
  96. RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
  97. static struct rcu_state *rcu_state_p;
  98. LIST_HEAD(rcu_struct_flavors);
  99. /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
  100. static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
  101. module_param(rcu_fanout_leaf, int, 0444);
  102. int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
  103. static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
  104. NUM_RCU_LVL_0,
  105. NUM_RCU_LVL_1,
  106. NUM_RCU_LVL_2,
  107. NUM_RCU_LVL_3,
  108. NUM_RCU_LVL_4,
  109. };
  110. int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
  111. /*
  112. * The rcu_scheduler_active variable transitions from zero to one just
  113. * before the first task is spawned. So when this variable is zero, RCU
  114. * can assume that there is but one task, allowing RCU to (for example)
  115. * optimize synchronize_sched() to a simple barrier(). When this variable
  116. * is one, RCU must actually do all the hard work required to detect real
  117. * grace periods. This variable is also used to suppress boot-time false
  118. * positives from lockdep-RCU error checking.
  119. */
  120. int rcu_scheduler_active __read_mostly;
  121. EXPORT_SYMBOL_GPL(rcu_scheduler_active);
  122. /*
  123. * The rcu_scheduler_fully_active variable transitions from zero to one
  124. * during the early_initcall() processing, which is after the scheduler
  125. * is capable of creating new tasks. So RCU processing (for example,
  126. * creating tasks for RCU priority boosting) must be delayed until after
  127. * rcu_scheduler_fully_active transitions from zero to one. We also
  128. * currently delay invocation of any RCU callbacks until after this point.
  129. *
  130. * It might later prove better for people registering RCU callbacks during
  131. * early boot to take responsibility for these callbacks, but one step at
  132. * a time.
  133. */
  134. static int rcu_scheduler_fully_active __read_mostly;
  135. #ifdef CONFIG_RCU_BOOST
  136. /*
  137. * Control variables for per-CPU and per-rcu_node kthreads. These
  138. * handle all flavors of RCU.
  139. */
  140. static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
  141. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
  142. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
  143. DEFINE_PER_CPU(char, rcu_cpu_has_work);
  144. #endif /* #ifdef CONFIG_RCU_BOOST */
  145. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
  146. static void invoke_rcu_core(void);
  147. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
  148. /*
  149. * Track the rcutorture test sequence number and the update version
  150. * number within a given test. The rcutorture_testseq is incremented
  151. * on every rcutorture module load and unload, so has an odd value
  152. * when a test is running. The rcutorture_vernum is set to zero
  153. * when rcutorture starts and is incremented on each rcutorture update.
  154. * These variables enable correlating rcutorture output with the
  155. * RCU tracing information.
  156. */
  157. unsigned long rcutorture_testseq;
  158. unsigned long rcutorture_vernum;
  159. /*
  160. * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
  161. * permit this function to be invoked without holding the root rcu_node
  162. * structure's ->lock, but of course results can be subject to change.
  163. */
  164. static int rcu_gp_in_progress(struct rcu_state *rsp)
  165. {
  166. return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
  167. }
  168. /*
  169. * Note a quiescent state. Because we do not need to know
  170. * how many quiescent states passed, just if there was at least
  171. * one since the start of the grace period, this just sets a flag.
  172. * The caller must have disabled preemption.
  173. */
  174. void rcu_sched_qs(int cpu)
  175. {
  176. struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
  177. if (rdp->passed_quiesce == 0)
  178. trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
  179. rdp->passed_quiesce = 1;
  180. }
  181. void rcu_bh_qs(int cpu)
  182. {
  183. struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
  184. if (rdp->passed_quiesce == 0)
  185. trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
  186. rdp->passed_quiesce = 1;
  187. }
  188. static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
  189. static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
  190. .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
  191. .dynticks = ATOMIC_INIT(1),
  192. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  193. .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
  194. .dynticks_idle = ATOMIC_INIT(1),
  195. #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  196. };
  197. /*
  198. * Let the RCU core know that this CPU has gone through the scheduler,
  199. * which is a quiescent state. This is called when the need for a
  200. * quiescent state is urgent, so we burn an atomic operation and full
  201. * memory barriers to let the RCU core know about it, regardless of what
  202. * this CPU might (or might not) do in the near future.
  203. *
  204. * We inform the RCU core by emulating a zero-duration dyntick-idle
  205. * period, which we in turn do by incrementing the ->dynticks counter
  206. * by two.
  207. */
  208. static void rcu_momentary_dyntick_idle(void)
  209. {
  210. unsigned long flags;
  211. struct rcu_data *rdp;
  212. struct rcu_dynticks *rdtp;
  213. int resched_mask;
  214. struct rcu_state *rsp;
  215. local_irq_save(flags);
  216. /*
  217. * Yes, we can lose flag-setting operations. This is OK, because
  218. * the flag will be set again after some delay.
  219. */
  220. resched_mask = raw_cpu_read(rcu_sched_qs_mask);
  221. raw_cpu_write(rcu_sched_qs_mask, 0);
  222. /* Find the flavor that needs a quiescent state. */
  223. for_each_rcu_flavor(rsp) {
  224. rdp = raw_cpu_ptr(rsp->rda);
  225. if (!(resched_mask & rsp->flavor_mask))
  226. continue;
  227. smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
  228. if (ACCESS_ONCE(rdp->mynode->completed) !=
  229. ACCESS_ONCE(rdp->cond_resched_completed))
  230. continue;
  231. /*
  232. * Pretend to be momentarily idle for the quiescent state.
  233. * This allows the grace-period kthread to record the
  234. * quiescent state, with no need for this CPU to do anything
  235. * further.
  236. */
  237. rdtp = this_cpu_ptr(&rcu_dynticks);
  238. smp_mb__before_atomic(); /* Earlier stuff before QS. */
  239. atomic_add(2, &rdtp->dynticks); /* QS. */
  240. smp_mb__after_atomic(); /* Later stuff after QS. */
  241. break;
  242. }
  243. local_irq_restore(flags);
  244. }
  245. /*
  246. * Note a context switch. This is a quiescent state for RCU-sched,
  247. * and requires special handling for preemptible RCU.
  248. * The caller must have disabled preemption.
  249. */
  250. void rcu_note_context_switch(int cpu)
  251. {
  252. trace_rcu_utilization(TPS("Start context switch"));
  253. rcu_sched_qs(cpu);
  254. rcu_preempt_note_context_switch(cpu);
  255. if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
  256. rcu_momentary_dyntick_idle();
  257. trace_rcu_utilization(TPS("End context switch"));
  258. }
  259. EXPORT_SYMBOL_GPL(rcu_note_context_switch);
  260. static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
  261. static long qhimark = 10000; /* If this many pending, ignore blimit. */
  262. static long qlowmark = 100; /* Once only this many pending, use blimit. */
  263. module_param(blimit, long, 0444);
  264. module_param(qhimark, long, 0444);
  265. module_param(qlowmark, long, 0444);
  266. static ulong jiffies_till_first_fqs = ULONG_MAX;
  267. static ulong jiffies_till_next_fqs = ULONG_MAX;
  268. module_param(jiffies_till_first_fqs, ulong, 0644);
  269. module_param(jiffies_till_next_fqs, ulong, 0644);
  270. /*
  271. * How long the grace period must be before we start recruiting
  272. * quiescent-state help from rcu_note_context_switch().
  273. */
  274. static ulong jiffies_till_sched_qs = HZ / 20;
  275. module_param(jiffies_till_sched_qs, ulong, 0644);
  276. static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
  277. struct rcu_data *rdp);
  278. static void force_qs_rnp(struct rcu_state *rsp,
  279. int (*f)(struct rcu_data *rsp, bool *isidle,
  280. unsigned long *maxj),
  281. bool *isidle, unsigned long *maxj);
  282. static void force_quiescent_state(struct rcu_state *rsp);
  283. static int rcu_pending(int cpu);
  284. /*
  285. * Return the number of RCU-sched batches processed thus far for debug & stats.
  286. */
  287. long rcu_batches_completed_sched(void)
  288. {
  289. return rcu_sched_state.completed;
  290. }
  291. EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
  292. /*
  293. * Return the number of RCU BH batches processed thus far for debug & stats.
  294. */
  295. long rcu_batches_completed_bh(void)
  296. {
  297. return rcu_bh_state.completed;
  298. }
  299. EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
  300. /*
  301. * Force a quiescent state.
  302. */
  303. void rcu_force_quiescent_state(void)
  304. {
  305. force_quiescent_state(rcu_state_p);
  306. }
  307. EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
  308. /*
  309. * Force a quiescent state for RCU BH.
  310. */
  311. void rcu_bh_force_quiescent_state(void)
  312. {
  313. force_quiescent_state(&rcu_bh_state);
  314. }
  315. EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
  316. /*
  317. * Show the state of the grace-period kthreads.
  318. */
  319. void show_rcu_gp_kthreads(void)
  320. {
  321. struct rcu_state *rsp;
  322. for_each_rcu_flavor(rsp) {
  323. pr_info("%s: wait state: %d ->state: %#lx\n",
  324. rsp->name, rsp->gp_state, rsp->gp_kthread->state);
  325. /* sched_show_task(rsp->gp_kthread); */
  326. }
  327. }
  328. EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
  329. /*
  330. * Record the number of times rcutorture tests have been initiated and
  331. * terminated. This information allows the debugfs tracing stats to be
  332. * correlated to the rcutorture messages, even when the rcutorture module
  333. * is being repeatedly loaded and unloaded. In other words, we cannot
  334. * store this state in rcutorture itself.
  335. */
  336. void rcutorture_record_test_transition(void)
  337. {
  338. rcutorture_testseq++;
  339. rcutorture_vernum = 0;
  340. }
  341. EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
  342. /*
  343. * Send along grace-period-related data for rcutorture diagnostics.
  344. */
  345. void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
  346. unsigned long *gpnum, unsigned long *completed)
  347. {
  348. struct rcu_state *rsp = NULL;
  349. switch (test_type) {
  350. case RCU_FLAVOR:
  351. rsp = rcu_state_p;
  352. break;
  353. case RCU_BH_FLAVOR:
  354. rsp = &rcu_bh_state;
  355. break;
  356. case RCU_SCHED_FLAVOR:
  357. rsp = &rcu_sched_state;
  358. break;
  359. default:
  360. break;
  361. }
  362. if (rsp != NULL) {
  363. *flags = ACCESS_ONCE(rsp->gp_flags);
  364. *gpnum = ACCESS_ONCE(rsp->gpnum);
  365. *completed = ACCESS_ONCE(rsp->completed);
  366. return;
  367. }
  368. *flags = 0;
  369. *gpnum = 0;
  370. *completed = 0;
  371. }
  372. EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
  373. /*
  374. * Record the number of writer passes through the current rcutorture test.
  375. * This is also used to correlate debugfs tracing stats with the rcutorture
  376. * messages.
  377. */
  378. void rcutorture_record_progress(unsigned long vernum)
  379. {
  380. rcutorture_vernum++;
  381. }
  382. EXPORT_SYMBOL_GPL(rcutorture_record_progress);
  383. /*
  384. * Force a quiescent state for RCU-sched.
  385. */
  386. void rcu_sched_force_quiescent_state(void)
  387. {
  388. force_quiescent_state(&rcu_sched_state);
  389. }
  390. EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
  391. /*
  392. * Does the CPU have callbacks ready to be invoked?
  393. */
  394. static int
  395. cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
  396. {
  397. return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
  398. rdp->nxttail[RCU_DONE_TAIL] != NULL;
  399. }
  400. /*
  401. * Return the root node of the specified rcu_state structure.
  402. */
  403. static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
  404. {
  405. return &rsp->node[0];
  406. }
  407. /*
  408. * Is there any need for future grace periods?
  409. * Interrupts must be disabled. If the caller does not hold the root
  410. * rnp_node structure's ->lock, the results are advisory only.
  411. */
  412. static int rcu_future_needs_gp(struct rcu_state *rsp)
  413. {
  414. struct rcu_node *rnp = rcu_get_root(rsp);
  415. int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
  416. int *fp = &rnp->need_future_gp[idx];
  417. return ACCESS_ONCE(*fp);
  418. }
  419. /*
  420. * Does the current CPU require a not-yet-started grace period?
  421. * The caller must have disabled interrupts to prevent races with
  422. * normal callback registry.
  423. */
  424. static int
  425. cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
  426. {
  427. int i;
  428. if (rcu_gp_in_progress(rsp))
  429. return 0; /* No, a grace period is already in progress. */
  430. if (rcu_future_needs_gp(rsp))
  431. return 1; /* Yes, a no-CBs CPU needs one. */
  432. if (!rdp->nxttail[RCU_NEXT_TAIL])
  433. return 0; /* No, this is a no-CBs (or offline) CPU. */
  434. if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
  435. return 1; /* Yes, this CPU has newly registered callbacks. */
  436. for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
  437. if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
  438. ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
  439. rdp->nxtcompleted[i]))
  440. return 1; /* Yes, CBs for future grace period. */
  441. return 0; /* No grace period needed. */
  442. }
  443. /*
  444. * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
  445. *
  446. * If the new value of the ->dynticks_nesting counter now is zero,
  447. * we really have entered idle, and must do the appropriate accounting.
  448. * The caller must have disabled interrupts.
  449. */
  450. static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
  451. bool user)
  452. {
  453. struct rcu_state *rsp;
  454. struct rcu_data *rdp;
  455. trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
  456. if (!user && !is_idle_task(current)) {
  457. struct task_struct *idle __maybe_unused =
  458. idle_task(smp_processor_id());
  459. trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
  460. ftrace_dump(DUMP_ORIG);
  461. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  462. current->pid, current->comm,
  463. idle->pid, idle->comm); /* must be idle task! */
  464. }
  465. for_each_rcu_flavor(rsp) {
  466. rdp = this_cpu_ptr(rsp->rda);
  467. do_nocb_deferred_wakeup(rdp);
  468. }
  469. rcu_prepare_for_idle(smp_processor_id());
  470. /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
  471. smp_mb__before_atomic(); /* See above. */
  472. atomic_inc(&rdtp->dynticks);
  473. smp_mb__after_atomic(); /* Force ordering with next sojourn. */
  474. WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
  475. /*
  476. * It is illegal to enter an extended quiescent state while
  477. * in an RCU read-side critical section.
  478. */
  479. rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
  480. "Illegal idle entry in RCU read-side critical section.");
  481. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
  482. "Illegal idle entry in RCU-bh read-side critical section.");
  483. rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
  484. "Illegal idle entry in RCU-sched read-side critical section.");
  485. }
  486. /*
  487. * Enter an RCU extended quiescent state, which can be either the
  488. * idle loop or adaptive-tickless usermode execution.
  489. */
  490. static void rcu_eqs_enter(bool user)
  491. {
  492. long long oldval;
  493. struct rcu_dynticks *rdtp;
  494. rdtp = this_cpu_ptr(&rcu_dynticks);
  495. oldval = rdtp->dynticks_nesting;
  496. WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
  497. if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
  498. rdtp->dynticks_nesting = 0;
  499. rcu_eqs_enter_common(rdtp, oldval, user);
  500. } else {
  501. rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
  502. }
  503. }
  504. /**
  505. * rcu_idle_enter - inform RCU that current CPU is entering idle
  506. *
  507. * Enter idle mode, in other words, -leave- the mode in which RCU
  508. * read-side critical sections can occur. (Though RCU read-side
  509. * critical sections can occur in irq handlers in idle, a possibility
  510. * handled by irq_enter() and irq_exit().)
  511. *
  512. * We crowbar the ->dynticks_nesting field to zero to allow for
  513. * the possibility of usermode upcalls having messed up our count
  514. * of interrupt nesting level during the prior busy period.
  515. */
  516. void rcu_idle_enter(void)
  517. {
  518. unsigned long flags;
  519. local_irq_save(flags);
  520. rcu_eqs_enter(false);
  521. rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
  522. local_irq_restore(flags);
  523. }
  524. EXPORT_SYMBOL_GPL(rcu_idle_enter);
  525. #ifdef CONFIG_RCU_USER_QS
  526. /**
  527. * rcu_user_enter - inform RCU that we are resuming userspace.
  528. *
  529. * Enter RCU idle mode right before resuming userspace. No use of RCU
  530. * is permitted between this call and rcu_user_exit(). This way the
  531. * CPU doesn't need to maintain the tick for RCU maintenance purposes
  532. * when the CPU runs in userspace.
  533. */
  534. void rcu_user_enter(void)
  535. {
  536. rcu_eqs_enter(1);
  537. }
  538. #endif /* CONFIG_RCU_USER_QS */
  539. /**
  540. * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
  541. *
  542. * Exit from an interrupt handler, which might possibly result in entering
  543. * idle mode, in other words, leaving the mode in which read-side critical
  544. * sections can occur.
  545. *
  546. * This code assumes that the idle loop never does anything that might
  547. * result in unbalanced calls to irq_enter() and irq_exit(). If your
  548. * architecture violates this assumption, RCU will give you what you
  549. * deserve, good and hard. But very infrequently and irreproducibly.
  550. *
  551. * Use things like work queues to work around this limitation.
  552. *
  553. * You have been warned.
  554. */
  555. void rcu_irq_exit(void)
  556. {
  557. unsigned long flags;
  558. long long oldval;
  559. struct rcu_dynticks *rdtp;
  560. local_irq_save(flags);
  561. rdtp = this_cpu_ptr(&rcu_dynticks);
  562. oldval = rdtp->dynticks_nesting;
  563. rdtp->dynticks_nesting--;
  564. WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
  565. if (rdtp->dynticks_nesting)
  566. trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
  567. else
  568. rcu_eqs_enter_common(rdtp, oldval, true);
  569. rcu_sysidle_enter(rdtp, 1);
  570. local_irq_restore(flags);
  571. }
  572. /*
  573. * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
  574. *
  575. * If the new value of the ->dynticks_nesting counter was previously zero,
  576. * we really have exited idle, and must do the appropriate accounting.
  577. * The caller must have disabled interrupts.
  578. */
  579. static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
  580. int user)
  581. {
  582. smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
  583. atomic_inc(&rdtp->dynticks);
  584. /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
  585. smp_mb__after_atomic(); /* See above. */
  586. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
  587. rcu_cleanup_after_idle(smp_processor_id());
  588. trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
  589. if (!user && !is_idle_task(current)) {
  590. struct task_struct *idle __maybe_unused =
  591. idle_task(smp_processor_id());
  592. trace_rcu_dyntick(TPS("Error on exit: not idle task"),
  593. oldval, rdtp->dynticks_nesting);
  594. ftrace_dump(DUMP_ORIG);
  595. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  596. current->pid, current->comm,
  597. idle->pid, idle->comm); /* must be idle task! */
  598. }
  599. }
  600. /*
  601. * Exit an RCU extended quiescent state, which can be either the
  602. * idle loop or adaptive-tickless usermode execution.
  603. */
  604. static void rcu_eqs_exit(bool user)
  605. {
  606. struct rcu_dynticks *rdtp;
  607. long long oldval;
  608. rdtp = this_cpu_ptr(&rcu_dynticks);
  609. oldval = rdtp->dynticks_nesting;
  610. WARN_ON_ONCE(oldval < 0);
  611. if (oldval & DYNTICK_TASK_NEST_MASK) {
  612. rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
  613. } else {
  614. rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  615. rcu_eqs_exit_common(rdtp, oldval, user);
  616. }
  617. }
  618. /**
  619. * rcu_idle_exit - inform RCU that current CPU is leaving idle
  620. *
  621. * Exit idle mode, in other words, -enter- the mode in which RCU
  622. * read-side critical sections can occur.
  623. *
  624. * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
  625. * allow for the possibility of usermode upcalls messing up our count
  626. * of interrupt nesting level during the busy period that is just
  627. * now starting.
  628. */
  629. void rcu_idle_exit(void)
  630. {
  631. unsigned long flags;
  632. local_irq_save(flags);
  633. rcu_eqs_exit(false);
  634. rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
  635. local_irq_restore(flags);
  636. }
  637. EXPORT_SYMBOL_GPL(rcu_idle_exit);
  638. #ifdef CONFIG_RCU_USER_QS
  639. /**
  640. * rcu_user_exit - inform RCU that we are exiting userspace.
  641. *
  642. * Exit RCU idle mode while entering the kernel because it can
  643. * run a RCU read side critical section anytime.
  644. */
  645. void rcu_user_exit(void)
  646. {
  647. rcu_eqs_exit(1);
  648. }
  649. #endif /* CONFIG_RCU_USER_QS */
  650. /**
  651. * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
  652. *
  653. * Enter an interrupt handler, which might possibly result in exiting
  654. * idle mode, in other words, entering the mode in which read-side critical
  655. * sections can occur.
  656. *
  657. * Note that the Linux kernel is fully capable of entering an interrupt
  658. * handler that it never exits, for example when doing upcalls to
  659. * user mode! This code assumes that the idle loop never does upcalls to
  660. * user mode. If your architecture does do upcalls from the idle loop (or
  661. * does anything else that results in unbalanced calls to the irq_enter()
  662. * and irq_exit() functions), RCU will give you what you deserve, good
  663. * and hard. But very infrequently and irreproducibly.
  664. *
  665. * Use things like work queues to work around this limitation.
  666. *
  667. * You have been warned.
  668. */
  669. void rcu_irq_enter(void)
  670. {
  671. unsigned long flags;
  672. struct rcu_dynticks *rdtp;
  673. long long oldval;
  674. local_irq_save(flags);
  675. rdtp = this_cpu_ptr(&rcu_dynticks);
  676. oldval = rdtp->dynticks_nesting;
  677. rdtp->dynticks_nesting++;
  678. WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
  679. if (oldval)
  680. trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
  681. else
  682. rcu_eqs_exit_common(rdtp, oldval, true);
  683. rcu_sysidle_exit(rdtp, 1);
  684. local_irq_restore(flags);
  685. }
  686. /**
  687. * rcu_nmi_enter - inform RCU of entry to NMI context
  688. *
  689. * If the CPU was idle with dynamic ticks active, and there is no
  690. * irq handler running, this updates rdtp->dynticks_nmi to let the
  691. * RCU grace-period handling know that the CPU is active.
  692. */
  693. void rcu_nmi_enter(void)
  694. {
  695. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  696. if (rdtp->dynticks_nmi_nesting == 0 &&
  697. (atomic_read(&rdtp->dynticks) & 0x1))
  698. return;
  699. rdtp->dynticks_nmi_nesting++;
  700. smp_mb__before_atomic(); /* Force delay from prior write. */
  701. atomic_inc(&rdtp->dynticks);
  702. /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
  703. smp_mb__after_atomic(); /* See above. */
  704. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
  705. }
  706. /**
  707. * rcu_nmi_exit - inform RCU of exit from NMI context
  708. *
  709. * If the CPU was idle with dynamic ticks active, and there is no
  710. * irq handler running, this updates rdtp->dynticks_nmi to let the
  711. * RCU grace-period handling know that the CPU is no longer active.
  712. */
  713. void rcu_nmi_exit(void)
  714. {
  715. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  716. if (rdtp->dynticks_nmi_nesting == 0 ||
  717. --rdtp->dynticks_nmi_nesting != 0)
  718. return;
  719. /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
  720. smp_mb__before_atomic(); /* See above. */
  721. atomic_inc(&rdtp->dynticks);
  722. smp_mb__after_atomic(); /* Force delay to next write. */
  723. WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
  724. }
  725. /**
  726. * __rcu_is_watching - are RCU read-side critical sections safe?
  727. *
  728. * Return true if RCU is watching the running CPU, which means that
  729. * this CPU can safely enter RCU read-side critical sections. Unlike
  730. * rcu_is_watching(), the caller of __rcu_is_watching() must have at
  731. * least disabled preemption.
  732. */
  733. bool notrace __rcu_is_watching(void)
  734. {
  735. return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
  736. }
  737. /**
  738. * rcu_is_watching - see if RCU thinks that the current CPU is idle
  739. *
  740. * If the current CPU is in its idle loop and is neither in an interrupt
  741. * or NMI handler, return true.
  742. */
  743. bool notrace rcu_is_watching(void)
  744. {
  745. int ret;
  746. preempt_disable();
  747. ret = __rcu_is_watching();
  748. preempt_enable();
  749. return ret;
  750. }
  751. EXPORT_SYMBOL_GPL(rcu_is_watching);
  752. #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
  753. /*
  754. * Is the current CPU online? Disable preemption to avoid false positives
  755. * that could otherwise happen due to the current CPU number being sampled,
  756. * this task being preempted, its old CPU being taken offline, resuming
  757. * on some other CPU, then determining that its old CPU is now offline.
  758. * It is OK to use RCU on an offline processor during initial boot, hence
  759. * the check for rcu_scheduler_fully_active. Note also that it is OK
  760. * for a CPU coming online to use RCU for one jiffy prior to marking itself
  761. * online in the cpu_online_mask. Similarly, it is OK for a CPU going
  762. * offline to continue to use RCU for one jiffy after marking itself
  763. * offline in the cpu_online_mask. This leniency is necessary given the
  764. * non-atomic nature of the online and offline processing, for example,
  765. * the fact that a CPU enters the scheduler after completing the CPU_DYING
  766. * notifiers.
  767. *
  768. * This is also why RCU internally marks CPUs online during the
  769. * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
  770. *
  771. * Disable checking if in an NMI handler because we cannot safely report
  772. * errors from NMI handlers anyway.
  773. */
  774. bool rcu_lockdep_current_cpu_online(void)
  775. {
  776. struct rcu_data *rdp;
  777. struct rcu_node *rnp;
  778. bool ret;
  779. if (in_nmi())
  780. return true;
  781. preempt_disable();
  782. rdp = this_cpu_ptr(&rcu_sched_data);
  783. rnp = rdp->mynode;
  784. ret = (rdp->grpmask & rnp->qsmaskinit) ||
  785. !rcu_scheduler_fully_active;
  786. preempt_enable();
  787. return ret;
  788. }
  789. EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
  790. #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
  791. /**
  792. * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
  793. *
  794. * If the current CPU is idle or running at a first-level (not nested)
  795. * interrupt from idle, return true. The caller must have at least
  796. * disabled preemption.
  797. */
  798. static int rcu_is_cpu_rrupt_from_idle(void)
  799. {
  800. return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
  801. }
  802. /*
  803. * Snapshot the specified CPU's dynticks counter so that we can later
  804. * credit them with an implicit quiescent state. Return 1 if this CPU
  805. * is in dynticks idle mode, which is an extended quiescent state.
  806. */
  807. static int dyntick_save_progress_counter(struct rcu_data *rdp,
  808. bool *isidle, unsigned long *maxj)
  809. {
  810. rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
  811. rcu_sysidle_check_cpu(rdp, isidle, maxj);
  812. if ((rdp->dynticks_snap & 0x1) == 0) {
  813. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
  814. return 1;
  815. } else {
  816. return 0;
  817. }
  818. }
  819. /*
  820. * This function really isn't for public consumption, but RCU is special in
  821. * that context switches can allow the state machine to make progress.
  822. */
  823. extern void resched_cpu(int cpu);
  824. /*
  825. * Return true if the specified CPU has passed through a quiescent
  826. * state by virtue of being in or having passed through an dynticks
  827. * idle state since the last call to dyntick_save_progress_counter()
  828. * for this same CPU, or by virtue of having been offline.
  829. */
  830. static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
  831. bool *isidle, unsigned long *maxj)
  832. {
  833. unsigned int curr;
  834. int *rcrmp;
  835. unsigned int snap;
  836. curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
  837. snap = (unsigned int)rdp->dynticks_snap;
  838. /*
  839. * If the CPU passed through or entered a dynticks idle phase with
  840. * no active irq/NMI handlers, then we can safely pretend that the CPU
  841. * already acknowledged the request to pass through a quiescent
  842. * state. Either way, that CPU cannot possibly be in an RCU
  843. * read-side critical section that started before the beginning
  844. * of the current RCU grace period.
  845. */
  846. if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
  847. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
  848. rdp->dynticks_fqs++;
  849. return 1;
  850. }
  851. /*
  852. * Check for the CPU being offline, but only if the grace period
  853. * is old enough. We don't need to worry about the CPU changing
  854. * state: If we see it offline even once, it has been through a
  855. * quiescent state.
  856. *
  857. * The reason for insisting that the grace period be at least
  858. * one jiffy old is that CPUs that are not quite online and that
  859. * have just gone offline can still execute RCU read-side critical
  860. * sections.
  861. */
  862. if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
  863. return 0; /* Grace period is not old enough. */
  864. barrier();
  865. if (cpu_is_offline(rdp->cpu)) {
  866. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
  867. rdp->offline_fqs++;
  868. return 1;
  869. }
  870. /*
  871. * A CPU running for an extended time within the kernel can
  872. * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
  873. * even context-switching back and forth between a pair of
  874. * in-kernel CPU-bound tasks cannot advance grace periods.
  875. * So if the grace period is old enough, make the CPU pay attention.
  876. * Note that the unsynchronized assignments to the per-CPU
  877. * rcu_sched_qs_mask variable are safe. Yes, setting of
  878. * bits can be lost, but they will be set again on the next
  879. * force-quiescent-state pass. So lost bit sets do not result
  880. * in incorrect behavior, merely in a grace period lasting
  881. * a few jiffies longer than it might otherwise. Because
  882. * there are at most four threads involved, and because the
  883. * updates are only once every few jiffies, the probability of
  884. * lossage (and thus of slight grace-period extension) is
  885. * quite low.
  886. *
  887. * Note that if the jiffies_till_sched_qs boot/sysfs parameter
  888. * is set too high, we override with half of the RCU CPU stall
  889. * warning delay.
  890. */
  891. rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
  892. if (ULONG_CMP_GE(jiffies,
  893. rdp->rsp->gp_start + jiffies_till_sched_qs) ||
  894. ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
  895. if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
  896. ACCESS_ONCE(rdp->cond_resched_completed) =
  897. ACCESS_ONCE(rdp->mynode->completed);
  898. smp_mb(); /* ->cond_resched_completed before *rcrmp. */
  899. ACCESS_ONCE(*rcrmp) =
  900. ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
  901. resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
  902. rdp->rsp->jiffies_resched += 5; /* Enable beating. */
  903. } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
  904. /* Time to beat on that CPU again! */
  905. resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
  906. rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
  907. }
  908. }
  909. return 0;
  910. }
  911. static void record_gp_stall_check_time(struct rcu_state *rsp)
  912. {
  913. unsigned long j = jiffies;
  914. unsigned long j1;
  915. rsp->gp_start = j;
  916. smp_wmb(); /* Record start time before stall time. */
  917. j1 = rcu_jiffies_till_stall_check();
  918. ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
  919. rsp->jiffies_resched = j + j1 / 2;
  920. }
  921. /*
  922. * Dump stacks of all tasks running on stalled CPUs.
  923. */
  924. static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
  925. {
  926. int cpu;
  927. unsigned long flags;
  928. struct rcu_node *rnp;
  929. rcu_for_each_leaf_node(rsp, rnp) {
  930. raw_spin_lock_irqsave(&rnp->lock, flags);
  931. if (rnp->qsmask != 0) {
  932. for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
  933. if (rnp->qsmask & (1UL << cpu))
  934. dump_cpu_task(rnp->grplo + cpu);
  935. }
  936. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  937. }
  938. }
  939. static void print_other_cpu_stall(struct rcu_state *rsp)
  940. {
  941. int cpu;
  942. long delta;
  943. unsigned long flags;
  944. int ndetected = 0;
  945. struct rcu_node *rnp = rcu_get_root(rsp);
  946. long totqlen = 0;
  947. /* Only let one CPU complain about others per time interval. */
  948. raw_spin_lock_irqsave(&rnp->lock, flags);
  949. delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
  950. if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
  951. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  952. return;
  953. }
  954. ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
  955. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  956. /*
  957. * OK, time to rat on our buddy...
  958. * See Documentation/RCU/stallwarn.txt for info on how to debug
  959. * RCU CPU stall warnings.
  960. */
  961. pr_err("INFO: %s detected stalls on CPUs/tasks:",
  962. rsp->name);
  963. print_cpu_stall_info_begin();
  964. rcu_for_each_leaf_node(rsp, rnp) {
  965. raw_spin_lock_irqsave(&rnp->lock, flags);
  966. ndetected += rcu_print_task_stall(rnp);
  967. if (rnp->qsmask != 0) {
  968. for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
  969. if (rnp->qsmask & (1UL << cpu)) {
  970. print_cpu_stall_info(rsp,
  971. rnp->grplo + cpu);
  972. ndetected++;
  973. }
  974. }
  975. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  976. }
  977. /*
  978. * Now rat on any tasks that got kicked up to the root rcu_node
  979. * due to CPU offlining.
  980. */
  981. rnp = rcu_get_root(rsp);
  982. raw_spin_lock_irqsave(&rnp->lock, flags);
  983. ndetected += rcu_print_task_stall(rnp);
  984. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  985. print_cpu_stall_info_end();
  986. for_each_possible_cpu(cpu)
  987. totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
  988. pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
  989. smp_processor_id(), (long)(jiffies - rsp->gp_start),
  990. (long)rsp->gpnum, (long)rsp->completed, totqlen);
  991. if (ndetected == 0)
  992. pr_err("INFO: Stall ended before state dump start\n");
  993. else
  994. rcu_dump_cpu_stacks(rsp);
  995. /* Complain about tasks blocking the grace period. */
  996. rcu_print_detail_task_stall(rsp);
  997. force_quiescent_state(rsp); /* Kick them all. */
  998. }
  999. static void print_cpu_stall(struct rcu_state *rsp)
  1000. {
  1001. int cpu;
  1002. unsigned long flags;
  1003. struct rcu_node *rnp = rcu_get_root(rsp);
  1004. long totqlen = 0;
  1005. /*
  1006. * OK, time to rat on ourselves...
  1007. * See Documentation/RCU/stallwarn.txt for info on how to debug
  1008. * RCU CPU stall warnings.
  1009. */
  1010. pr_err("INFO: %s self-detected stall on CPU", rsp->name);
  1011. print_cpu_stall_info_begin();
  1012. print_cpu_stall_info(rsp, smp_processor_id());
  1013. print_cpu_stall_info_end();
  1014. for_each_possible_cpu(cpu)
  1015. totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
  1016. pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
  1017. jiffies - rsp->gp_start,
  1018. (long)rsp->gpnum, (long)rsp->completed, totqlen);
  1019. rcu_dump_cpu_stacks(rsp);
  1020. raw_spin_lock_irqsave(&rnp->lock, flags);
  1021. if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
  1022. ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
  1023. 3 * rcu_jiffies_till_stall_check() + 3;
  1024. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1025. /*
  1026. * Attempt to revive the RCU machinery by forcing a context switch.
  1027. *
  1028. * A context switch would normally allow the RCU state machine to make
  1029. * progress and it could be we're stuck in kernel space without context
  1030. * switches for an entirely unreasonable amount of time.
  1031. */
  1032. resched_cpu(smp_processor_id());
  1033. }
  1034. static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
  1035. {
  1036. unsigned long completed;
  1037. unsigned long gpnum;
  1038. unsigned long gps;
  1039. unsigned long j;
  1040. unsigned long js;
  1041. struct rcu_node *rnp;
  1042. if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
  1043. return;
  1044. j = jiffies;
  1045. /*
  1046. * Lots of memory barriers to reject false positives.
  1047. *
  1048. * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
  1049. * then rsp->gp_start, and finally rsp->completed. These values
  1050. * are updated in the opposite order with memory barriers (or
  1051. * equivalent) during grace-period initialization and cleanup.
  1052. * Now, a false positive can occur if we get an new value of
  1053. * rsp->gp_start and a old value of rsp->jiffies_stall. But given
  1054. * the memory barriers, the only way that this can happen is if one
  1055. * grace period ends and another starts between these two fetches.
  1056. * Detect this by comparing rsp->completed with the previous fetch
  1057. * from rsp->gpnum.
  1058. *
  1059. * Given this check, comparisons of jiffies, rsp->jiffies_stall,
  1060. * and rsp->gp_start suffice to forestall false positives.
  1061. */
  1062. gpnum = ACCESS_ONCE(rsp->gpnum);
  1063. smp_rmb(); /* Pick up ->gpnum first... */
  1064. js = ACCESS_ONCE(rsp->jiffies_stall);
  1065. smp_rmb(); /* ...then ->jiffies_stall before the rest... */
  1066. gps = ACCESS_ONCE(rsp->gp_start);
  1067. smp_rmb(); /* ...and finally ->gp_start before ->completed. */
  1068. completed = ACCESS_ONCE(rsp->completed);
  1069. if (ULONG_CMP_GE(completed, gpnum) ||
  1070. ULONG_CMP_LT(j, js) ||
  1071. ULONG_CMP_GE(gps, js))
  1072. return; /* No stall or GP completed since entering function. */
  1073. rnp = rdp->mynode;
  1074. if (rcu_gp_in_progress(rsp) &&
  1075. (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
  1076. /* We haven't checked in, so go dump stack. */
  1077. print_cpu_stall(rsp);
  1078. } else if (rcu_gp_in_progress(rsp) &&
  1079. ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
  1080. /* They had a few time units to dump stack, so complain. */
  1081. print_other_cpu_stall(rsp);
  1082. }
  1083. }
  1084. /**
  1085. * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
  1086. *
  1087. * Set the stall-warning timeout way off into the future, thus preventing
  1088. * any RCU CPU stall-warning messages from appearing in the current set of
  1089. * RCU grace periods.
  1090. *
  1091. * The caller must disable hard irqs.
  1092. */
  1093. void rcu_cpu_stall_reset(void)
  1094. {
  1095. struct rcu_state *rsp;
  1096. for_each_rcu_flavor(rsp)
  1097. ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
  1098. }
  1099. /*
  1100. * Initialize the specified rcu_data structure's callback list to empty.
  1101. */
  1102. static void init_callback_list(struct rcu_data *rdp)
  1103. {
  1104. int i;
  1105. if (init_nocb_callback_list(rdp))
  1106. return;
  1107. rdp->nxtlist = NULL;
  1108. for (i = 0; i < RCU_NEXT_SIZE; i++)
  1109. rdp->nxttail[i] = &rdp->nxtlist;
  1110. }
  1111. /*
  1112. * Determine the value that ->completed will have at the end of the
  1113. * next subsequent grace period. This is used to tag callbacks so that
  1114. * a CPU can invoke callbacks in a timely fashion even if that CPU has
  1115. * been dyntick-idle for an extended period with callbacks under the
  1116. * influence of RCU_FAST_NO_HZ.
  1117. *
  1118. * The caller must hold rnp->lock with interrupts disabled.
  1119. */
  1120. static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
  1121. struct rcu_node *rnp)
  1122. {
  1123. /*
  1124. * If RCU is idle, we just wait for the next grace period.
  1125. * But we can only be sure that RCU is idle if we are looking
  1126. * at the root rcu_node structure -- otherwise, a new grace
  1127. * period might have started, but just not yet gotten around
  1128. * to initializing the current non-root rcu_node structure.
  1129. */
  1130. if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
  1131. return rnp->completed + 1;
  1132. /*
  1133. * Otherwise, wait for a possible partial grace period and
  1134. * then the subsequent full grace period.
  1135. */
  1136. return rnp->completed + 2;
  1137. }
  1138. /*
  1139. * Trace-event helper function for rcu_start_future_gp() and
  1140. * rcu_nocb_wait_gp().
  1141. */
  1142. static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
  1143. unsigned long c, const char *s)
  1144. {
  1145. trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
  1146. rnp->completed, c, rnp->level,
  1147. rnp->grplo, rnp->grphi, s);
  1148. }
  1149. /*
  1150. * Start some future grace period, as needed to handle newly arrived
  1151. * callbacks. The required future grace periods are recorded in each
  1152. * rcu_node structure's ->need_future_gp field. Returns true if there
  1153. * is reason to awaken the grace-period kthread.
  1154. *
  1155. * The caller must hold the specified rcu_node structure's ->lock.
  1156. */
  1157. static bool __maybe_unused
  1158. rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
  1159. unsigned long *c_out)
  1160. {
  1161. unsigned long c;
  1162. int i;
  1163. bool ret = false;
  1164. struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
  1165. /*
  1166. * Pick up grace-period number for new callbacks. If this
  1167. * grace period is already marked as needed, return to the caller.
  1168. */
  1169. c = rcu_cbs_completed(rdp->rsp, rnp);
  1170. trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
  1171. if (rnp->need_future_gp[c & 0x1]) {
  1172. trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
  1173. goto out;
  1174. }
  1175. /*
  1176. * If either this rcu_node structure or the root rcu_node structure
  1177. * believe that a grace period is in progress, then we must wait
  1178. * for the one following, which is in "c". Because our request
  1179. * will be noticed at the end of the current grace period, we don't
  1180. * need to explicitly start one. We only do the lockless check
  1181. * of rnp_root's fields if the current rcu_node structure thinks
  1182. * there is no grace period in flight, and because we hold rnp->lock,
  1183. * the only possible change is when rnp_root's two fields are
  1184. * equal, in which case rnp_root->gpnum might be concurrently
  1185. * incremented. But that is OK, as it will just result in our
  1186. * doing some extra useless work.
  1187. */
  1188. if (rnp->gpnum != rnp->completed ||
  1189. ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
  1190. rnp->need_future_gp[c & 0x1]++;
  1191. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
  1192. goto out;
  1193. }
  1194. /*
  1195. * There might be no grace period in progress. If we don't already
  1196. * hold it, acquire the root rcu_node structure's lock in order to
  1197. * start one (if needed).
  1198. */
  1199. if (rnp != rnp_root) {
  1200. raw_spin_lock(&rnp_root->lock);
  1201. smp_mb__after_unlock_lock();
  1202. }
  1203. /*
  1204. * Get a new grace-period number. If there really is no grace
  1205. * period in progress, it will be smaller than the one we obtained
  1206. * earlier. Adjust callbacks as needed. Note that even no-CBs
  1207. * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
  1208. */
  1209. c = rcu_cbs_completed(rdp->rsp, rnp_root);
  1210. for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
  1211. if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
  1212. rdp->nxtcompleted[i] = c;
  1213. /*
  1214. * If the needed for the required grace period is already
  1215. * recorded, trace and leave.
  1216. */
  1217. if (rnp_root->need_future_gp[c & 0x1]) {
  1218. trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
  1219. goto unlock_out;
  1220. }
  1221. /* Record the need for the future grace period. */
  1222. rnp_root->need_future_gp[c & 0x1]++;
  1223. /* If a grace period is not already in progress, start one. */
  1224. if (rnp_root->gpnum != rnp_root->completed) {
  1225. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
  1226. } else {
  1227. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
  1228. ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
  1229. }
  1230. unlock_out:
  1231. if (rnp != rnp_root)
  1232. raw_spin_unlock(&rnp_root->lock);
  1233. out:
  1234. if (c_out != NULL)
  1235. *c_out = c;
  1236. return ret;
  1237. }
  1238. /*
  1239. * Clean up any old requests for the just-ended grace period. Also return
  1240. * whether any additional grace periods have been requested. Also invoke
  1241. * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
  1242. * waiting for this grace period to complete.
  1243. */
  1244. static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  1245. {
  1246. int c = rnp->completed;
  1247. int needmore;
  1248. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  1249. rcu_nocb_gp_cleanup(rsp, rnp);
  1250. rnp->need_future_gp[c & 0x1] = 0;
  1251. needmore = rnp->need_future_gp[(c + 1) & 0x1];
  1252. trace_rcu_future_gp(rnp, rdp, c,
  1253. needmore ? TPS("CleanupMore") : TPS("Cleanup"));
  1254. return needmore;
  1255. }
  1256. /*
  1257. * Awaken the grace-period kthread for the specified flavor of RCU.
  1258. * Don't do a self-awaken, and don't bother awakening when there is
  1259. * nothing for the grace-period kthread to do (as in several CPUs
  1260. * raced to awaken, and we lost), and finally don't try to awaken
  1261. * a kthread that has not yet been created.
  1262. */
  1263. static void rcu_gp_kthread_wake(struct rcu_state *rsp)
  1264. {
  1265. if (current == rsp->gp_kthread ||
  1266. !ACCESS_ONCE(rsp->gp_flags) ||
  1267. !rsp->gp_kthread)
  1268. return;
  1269. wake_up(&rsp->gp_wq);
  1270. }
  1271. /*
  1272. * If there is room, assign a ->completed number to any callbacks on
  1273. * this CPU that have not already been assigned. Also accelerate any
  1274. * callbacks that were previously assigned a ->completed number that has
  1275. * since proven to be too conservative, which can happen if callbacks get
  1276. * assigned a ->completed number while RCU is idle, but with reference to
  1277. * a non-root rcu_node structure. This function is idempotent, so it does
  1278. * not hurt to call it repeatedly. Returns an flag saying that we should
  1279. * awaken the RCU grace-period kthread.
  1280. *
  1281. * The caller must hold rnp->lock with interrupts disabled.
  1282. */
  1283. static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  1284. struct rcu_data *rdp)
  1285. {
  1286. unsigned long c;
  1287. int i;
  1288. bool ret;
  1289. /* If the CPU has no callbacks, nothing to do. */
  1290. if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
  1291. return false;
  1292. /*
  1293. * Starting from the sublist containing the callbacks most
  1294. * recently assigned a ->completed number and working down, find the
  1295. * first sublist that is not assignable to an upcoming grace period.
  1296. * Such a sublist has something in it (first two tests) and has
  1297. * a ->completed number assigned that will complete sooner than
  1298. * the ->completed number for newly arrived callbacks (last test).
  1299. *
  1300. * The key point is that any later sublist can be assigned the
  1301. * same ->completed number as the newly arrived callbacks, which
  1302. * means that the callbacks in any of these later sublist can be
  1303. * grouped into a single sublist, whether or not they have already
  1304. * been assigned a ->completed number.
  1305. */
  1306. c = rcu_cbs_completed(rsp, rnp);
  1307. for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
  1308. if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
  1309. !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
  1310. break;
  1311. /*
  1312. * If there are no sublist for unassigned callbacks, leave.
  1313. * At the same time, advance "i" one sublist, so that "i" will
  1314. * index into the sublist where all the remaining callbacks should
  1315. * be grouped into.
  1316. */
  1317. if (++i >= RCU_NEXT_TAIL)
  1318. return false;
  1319. /*
  1320. * Assign all subsequent callbacks' ->completed number to the next
  1321. * full grace period and group them all in the sublist initially
  1322. * indexed by "i".
  1323. */
  1324. for (; i <= RCU_NEXT_TAIL; i++) {
  1325. rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
  1326. rdp->nxtcompleted[i] = c;
  1327. }
  1328. /* Record any needed additional grace periods. */
  1329. ret = rcu_start_future_gp(rnp, rdp, NULL);
  1330. /* Trace depending on how much we were able to accelerate. */
  1331. if (!*rdp->nxttail[RCU_WAIT_TAIL])
  1332. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
  1333. else
  1334. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
  1335. return ret;
  1336. }
  1337. /*
  1338. * Move any callbacks whose grace period has completed to the
  1339. * RCU_DONE_TAIL sublist, then compact the remaining sublists and
  1340. * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
  1341. * sublist. This function is idempotent, so it does not hurt to
  1342. * invoke it repeatedly. As long as it is not invoked -too- often...
  1343. * Returns true if the RCU grace-period kthread needs to be awakened.
  1344. *
  1345. * The caller must hold rnp->lock with interrupts disabled.
  1346. */
  1347. static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  1348. struct rcu_data *rdp)
  1349. {
  1350. int i, j;
  1351. /* If the CPU has no callbacks, nothing to do. */
  1352. if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
  1353. return false;
  1354. /*
  1355. * Find all callbacks whose ->completed numbers indicate that they
  1356. * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
  1357. */
  1358. for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
  1359. if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
  1360. break;
  1361. rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
  1362. }
  1363. /* Clean up any sublist tail pointers that were misordered above. */
  1364. for (j = RCU_WAIT_TAIL; j < i; j++)
  1365. rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
  1366. /* Copy down callbacks to fill in empty sublists. */
  1367. for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
  1368. if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
  1369. break;
  1370. rdp->nxttail[j] = rdp->nxttail[i];
  1371. rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
  1372. }
  1373. /* Classify any remaining callbacks. */
  1374. return rcu_accelerate_cbs(rsp, rnp, rdp);
  1375. }
  1376. /*
  1377. * Update CPU-local rcu_data state to record the beginnings and ends of
  1378. * grace periods. The caller must hold the ->lock of the leaf rcu_node
  1379. * structure corresponding to the current CPU, and must have irqs disabled.
  1380. * Returns true if the grace-period kthread needs to be awakened.
  1381. */
  1382. static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
  1383. struct rcu_data *rdp)
  1384. {
  1385. bool ret;
  1386. /* Handle the ends of any preceding grace periods first. */
  1387. if (rdp->completed == rnp->completed) {
  1388. /* No grace period end, so just accelerate recent callbacks. */
  1389. ret = rcu_accelerate_cbs(rsp, rnp, rdp);
  1390. } else {
  1391. /* Advance callbacks. */
  1392. ret = rcu_advance_cbs(rsp, rnp, rdp);
  1393. /* Remember that we saw this grace-period completion. */
  1394. rdp->completed = rnp->completed;
  1395. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
  1396. }
  1397. if (rdp->gpnum != rnp->gpnum) {
  1398. /*
  1399. * If the current grace period is waiting for this CPU,
  1400. * set up to detect a quiescent state, otherwise don't
  1401. * go looking for one.
  1402. */
  1403. rdp->gpnum = rnp->gpnum;
  1404. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
  1405. rdp->passed_quiesce = 0;
  1406. rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
  1407. zero_cpu_stall_ticks(rdp);
  1408. }
  1409. return ret;
  1410. }
  1411. static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
  1412. {
  1413. unsigned long flags;
  1414. bool needwake;
  1415. struct rcu_node *rnp;
  1416. local_irq_save(flags);
  1417. rnp = rdp->mynode;
  1418. if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
  1419. rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
  1420. !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
  1421. local_irq_restore(flags);
  1422. return;
  1423. }
  1424. smp_mb__after_unlock_lock();
  1425. needwake = __note_gp_changes(rsp, rnp, rdp);
  1426. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1427. if (needwake)
  1428. rcu_gp_kthread_wake(rsp);
  1429. }
  1430. /*
  1431. * Initialize a new grace period. Return 0 if no grace period required.
  1432. */
  1433. static int rcu_gp_init(struct rcu_state *rsp)
  1434. {
  1435. struct rcu_data *rdp;
  1436. struct rcu_node *rnp = rcu_get_root(rsp);
  1437. rcu_bind_gp_kthread();
  1438. raw_spin_lock_irq(&rnp->lock);
  1439. smp_mb__after_unlock_lock();
  1440. if (!ACCESS_ONCE(rsp->gp_flags)) {
  1441. /* Spurious wakeup, tell caller to go back to sleep. */
  1442. raw_spin_unlock_irq(&rnp->lock);
  1443. return 0;
  1444. }
  1445. ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
  1446. if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
  1447. /*
  1448. * Grace period already in progress, don't start another.
  1449. * Not supposed to be able to happen.
  1450. */
  1451. raw_spin_unlock_irq(&rnp->lock);
  1452. return 0;
  1453. }
  1454. /* Advance to a new grace period and initialize state. */
  1455. record_gp_stall_check_time(rsp);
  1456. /* Record GP times before starting GP, hence smp_store_release(). */
  1457. smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
  1458. trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
  1459. raw_spin_unlock_irq(&rnp->lock);
  1460. /* Exclude any concurrent CPU-hotplug operations. */
  1461. mutex_lock(&rsp->onoff_mutex);
  1462. smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
  1463. /*
  1464. * Set the quiescent-state-needed bits in all the rcu_node
  1465. * structures for all currently online CPUs in breadth-first order,
  1466. * starting from the root rcu_node structure, relying on the layout
  1467. * of the tree within the rsp->node[] array. Note that other CPUs
  1468. * will access only the leaves of the hierarchy, thus seeing that no
  1469. * grace period is in progress, at least until the corresponding
  1470. * leaf node has been initialized. In addition, we have excluded
  1471. * CPU-hotplug operations.
  1472. *
  1473. * The grace period cannot complete until the initialization
  1474. * process finishes, because this kthread handles both.
  1475. */
  1476. rcu_for_each_node_breadth_first(rsp, rnp) {
  1477. raw_spin_lock_irq(&rnp->lock);
  1478. smp_mb__after_unlock_lock();
  1479. rdp = this_cpu_ptr(rsp->rda);
  1480. rcu_preempt_check_blocked_tasks(rnp);
  1481. rnp->qsmask = rnp->qsmaskinit;
  1482. ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
  1483. WARN_ON_ONCE(rnp->completed != rsp->completed);
  1484. ACCESS_ONCE(rnp->completed) = rsp->completed;
  1485. if (rnp == rdp->mynode)
  1486. (void)__note_gp_changes(rsp, rnp, rdp);
  1487. rcu_preempt_boost_start_gp(rnp);
  1488. trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
  1489. rnp->level, rnp->grplo,
  1490. rnp->grphi, rnp->qsmask);
  1491. raw_spin_unlock_irq(&rnp->lock);
  1492. cond_resched();
  1493. }
  1494. mutex_unlock(&rsp->onoff_mutex);
  1495. return 1;
  1496. }
  1497. /*
  1498. * Do one round of quiescent-state forcing.
  1499. */
  1500. static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
  1501. {
  1502. int fqs_state = fqs_state_in;
  1503. bool isidle = false;
  1504. unsigned long maxj;
  1505. struct rcu_node *rnp = rcu_get_root(rsp);
  1506. rsp->n_force_qs++;
  1507. if (fqs_state == RCU_SAVE_DYNTICK) {
  1508. /* Collect dyntick-idle snapshots. */
  1509. if (is_sysidle_rcu_state(rsp)) {
  1510. isidle = 1;
  1511. maxj = jiffies - ULONG_MAX / 4;
  1512. }
  1513. force_qs_rnp(rsp, dyntick_save_progress_counter,
  1514. &isidle, &maxj);
  1515. rcu_sysidle_report_gp(rsp, isidle, maxj);
  1516. fqs_state = RCU_FORCE_QS;
  1517. } else {
  1518. /* Handle dyntick-idle and offline CPUs. */
  1519. isidle = 0;
  1520. force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
  1521. }
  1522. /* Clear flag to prevent immediate re-entry. */
  1523. if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  1524. raw_spin_lock_irq(&rnp->lock);
  1525. smp_mb__after_unlock_lock();
  1526. ACCESS_ONCE(rsp->gp_flags) &= ~RCU_GP_FLAG_FQS;
  1527. raw_spin_unlock_irq(&rnp->lock);
  1528. }
  1529. return fqs_state;
  1530. }
  1531. /*
  1532. * Clean up after the old grace period.
  1533. */
  1534. static void rcu_gp_cleanup(struct rcu_state *rsp)
  1535. {
  1536. unsigned long gp_duration;
  1537. bool needgp = false;
  1538. int nocb = 0;
  1539. struct rcu_data *rdp;
  1540. struct rcu_node *rnp = rcu_get_root(rsp);
  1541. raw_spin_lock_irq(&rnp->lock);
  1542. smp_mb__after_unlock_lock();
  1543. gp_duration = jiffies - rsp->gp_start;
  1544. if (gp_duration > rsp->gp_max)
  1545. rsp->gp_max = gp_duration;
  1546. /*
  1547. * We know the grace period is complete, but to everyone else
  1548. * it appears to still be ongoing. But it is also the case
  1549. * that to everyone else it looks like there is nothing that
  1550. * they can do to advance the grace period. It is therefore
  1551. * safe for us to drop the lock in order to mark the grace
  1552. * period as completed in all of the rcu_node structures.
  1553. */
  1554. raw_spin_unlock_irq(&rnp->lock);
  1555. /*
  1556. * Propagate new ->completed value to rcu_node structures so
  1557. * that other CPUs don't have to wait until the start of the next
  1558. * grace period to process their callbacks. This also avoids
  1559. * some nasty RCU grace-period initialization races by forcing
  1560. * the end of the current grace period to be completely recorded in
  1561. * all of the rcu_node structures before the beginning of the next
  1562. * grace period is recorded in any of the rcu_node structures.
  1563. */
  1564. rcu_for_each_node_breadth_first(rsp, rnp) {
  1565. raw_spin_lock_irq(&rnp->lock);
  1566. smp_mb__after_unlock_lock();
  1567. ACCESS_ONCE(rnp->completed) = rsp->gpnum;
  1568. rdp = this_cpu_ptr(rsp->rda);
  1569. if (rnp == rdp->mynode)
  1570. needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
  1571. /* smp_mb() provided by prior unlock-lock pair. */
  1572. nocb += rcu_future_gp_cleanup(rsp, rnp);
  1573. raw_spin_unlock_irq(&rnp->lock);
  1574. cond_resched();
  1575. }
  1576. rnp = rcu_get_root(rsp);
  1577. raw_spin_lock_irq(&rnp->lock);
  1578. smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
  1579. rcu_nocb_gp_set(rnp, nocb);
  1580. /* Declare grace period done. */
  1581. ACCESS_ONCE(rsp->completed) = rsp->gpnum;
  1582. trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
  1583. rsp->fqs_state = RCU_GP_IDLE;
  1584. rdp = this_cpu_ptr(rsp->rda);
  1585. /* Advance CBs to reduce false positives below. */
  1586. needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
  1587. if (needgp || cpu_needs_another_gp(rsp, rdp)) {
  1588. ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
  1589. trace_rcu_grace_period(rsp->name,
  1590. ACCESS_ONCE(rsp->gpnum),
  1591. TPS("newreq"));
  1592. }
  1593. raw_spin_unlock_irq(&rnp->lock);
  1594. }
  1595. /*
  1596. * Body of kthread that handles grace periods.
  1597. */
  1598. static int __noreturn rcu_gp_kthread(void *arg)
  1599. {
  1600. int fqs_state;
  1601. int gf;
  1602. unsigned long j;
  1603. int ret;
  1604. struct rcu_state *rsp = arg;
  1605. struct rcu_node *rnp = rcu_get_root(rsp);
  1606. for (;;) {
  1607. /* Handle grace-period start. */
  1608. for (;;) {
  1609. trace_rcu_grace_period(rsp->name,
  1610. ACCESS_ONCE(rsp->gpnum),
  1611. TPS("reqwait"));
  1612. rsp->gp_state = RCU_GP_WAIT_GPS;
  1613. wait_event_interruptible(rsp->gp_wq,
  1614. ACCESS_ONCE(rsp->gp_flags) &
  1615. RCU_GP_FLAG_INIT);
  1616. /* Locking provides needed memory barrier. */
  1617. if (rcu_gp_init(rsp))
  1618. break;
  1619. cond_resched();
  1620. flush_signals(current);
  1621. trace_rcu_grace_period(rsp->name,
  1622. ACCESS_ONCE(rsp->gpnum),
  1623. TPS("reqwaitsig"));
  1624. }
  1625. /* Handle quiescent-state forcing. */
  1626. fqs_state = RCU_SAVE_DYNTICK;
  1627. j = jiffies_till_first_fqs;
  1628. if (j > HZ) {
  1629. j = HZ;
  1630. jiffies_till_first_fqs = HZ;
  1631. }
  1632. ret = 0;
  1633. for (;;) {
  1634. if (!ret)
  1635. rsp->jiffies_force_qs = jiffies + j;
  1636. trace_rcu_grace_period(rsp->name,
  1637. ACCESS_ONCE(rsp->gpnum),
  1638. TPS("fqswait"));
  1639. rsp->gp_state = RCU_GP_WAIT_FQS;
  1640. ret = wait_event_interruptible_timeout(rsp->gp_wq,
  1641. ((gf = ACCESS_ONCE(rsp->gp_flags)) &
  1642. RCU_GP_FLAG_FQS) ||
  1643. (!ACCESS_ONCE(rnp->qsmask) &&
  1644. !rcu_preempt_blocked_readers_cgp(rnp)),
  1645. j);
  1646. /* Locking provides needed memory barriers. */
  1647. /* If grace period done, leave loop. */
  1648. if (!ACCESS_ONCE(rnp->qsmask) &&
  1649. !rcu_preempt_blocked_readers_cgp(rnp))
  1650. break;
  1651. /* If time for quiescent-state forcing, do it. */
  1652. if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
  1653. (gf & RCU_GP_FLAG_FQS)) {
  1654. trace_rcu_grace_period(rsp->name,
  1655. ACCESS_ONCE(rsp->gpnum),
  1656. TPS("fqsstart"));
  1657. fqs_state = rcu_gp_fqs(rsp, fqs_state);
  1658. trace_rcu_grace_period(rsp->name,
  1659. ACCESS_ONCE(rsp->gpnum),
  1660. TPS("fqsend"));
  1661. cond_resched();
  1662. } else {
  1663. /* Deal with stray signal. */
  1664. cond_resched();
  1665. flush_signals(current);
  1666. trace_rcu_grace_period(rsp->name,
  1667. ACCESS_ONCE(rsp->gpnum),
  1668. TPS("fqswaitsig"));
  1669. }
  1670. j = jiffies_till_next_fqs;
  1671. if (j > HZ) {
  1672. j = HZ;
  1673. jiffies_till_next_fqs = HZ;
  1674. } else if (j < 1) {
  1675. j = 1;
  1676. jiffies_till_next_fqs = 1;
  1677. }
  1678. }
  1679. /* Handle grace-period end. */
  1680. rcu_gp_cleanup(rsp);
  1681. }
  1682. }
  1683. /*
  1684. * Start a new RCU grace period if warranted, re-initializing the hierarchy
  1685. * in preparation for detecting the next grace period. The caller must hold
  1686. * the root node's ->lock and hard irqs must be disabled.
  1687. *
  1688. * Note that it is legal for a dying CPU (which is marked as offline) to
  1689. * invoke this function. This can happen when the dying CPU reports its
  1690. * quiescent state.
  1691. *
  1692. * Returns true if the grace-period kthread must be awakened.
  1693. */
  1694. static bool
  1695. rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
  1696. struct rcu_data *rdp)
  1697. {
  1698. if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
  1699. /*
  1700. * Either we have not yet spawned the grace-period
  1701. * task, this CPU does not need another grace period,
  1702. * or a grace period is already in progress.
  1703. * Either way, don't start a new grace period.
  1704. */
  1705. return false;
  1706. }
  1707. ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
  1708. trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
  1709. TPS("newreq"));
  1710. /*
  1711. * We can't do wakeups while holding the rnp->lock, as that
  1712. * could cause possible deadlocks with the rq->lock. Defer
  1713. * the wakeup to our caller.
  1714. */
  1715. return true;
  1716. }
  1717. /*
  1718. * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
  1719. * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
  1720. * is invoked indirectly from rcu_advance_cbs(), which would result in
  1721. * endless recursion -- or would do so if it wasn't for the self-deadlock
  1722. * that is encountered beforehand.
  1723. *
  1724. * Returns true if the grace-period kthread needs to be awakened.
  1725. */
  1726. static bool rcu_start_gp(struct rcu_state *rsp)
  1727. {
  1728. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  1729. struct rcu_node *rnp = rcu_get_root(rsp);
  1730. bool ret = false;
  1731. /*
  1732. * If there is no grace period in progress right now, any
  1733. * callbacks we have up to this point will be satisfied by the
  1734. * next grace period. Also, advancing the callbacks reduces the
  1735. * probability of false positives from cpu_needs_another_gp()
  1736. * resulting in pointless grace periods. So, advance callbacks
  1737. * then start the grace period!
  1738. */
  1739. ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
  1740. ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
  1741. return ret;
  1742. }
  1743. /*
  1744. * Report a full set of quiescent states to the specified rcu_state
  1745. * data structure. This involves cleaning up after the prior grace
  1746. * period and letting rcu_start_gp() start up the next grace period
  1747. * if one is needed. Note that the caller must hold rnp->lock, which
  1748. * is released before return.
  1749. */
  1750. static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
  1751. __releases(rcu_get_root(rsp)->lock)
  1752. {
  1753. WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
  1754. raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
  1755. wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
  1756. }
  1757. /*
  1758. * Similar to rcu_report_qs_rdp(), for which it is a helper function.
  1759. * Allows quiescent states for a group of CPUs to be reported at one go
  1760. * to the specified rcu_node structure, though all the CPUs in the group
  1761. * must be represented by the same rcu_node structure (which need not be
  1762. * a leaf rcu_node structure, though it often will be). That structure's
  1763. * lock must be held upon entry, and it is released before return.
  1764. */
  1765. static void
  1766. rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
  1767. struct rcu_node *rnp, unsigned long flags)
  1768. __releases(rnp->lock)
  1769. {
  1770. struct rcu_node *rnp_c;
  1771. /* Walk up the rcu_node hierarchy. */
  1772. for (;;) {
  1773. if (!(rnp->qsmask & mask)) {
  1774. /* Our bit has already been cleared, so done. */
  1775. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1776. return;
  1777. }
  1778. rnp->qsmask &= ~mask;
  1779. trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
  1780. mask, rnp->qsmask, rnp->level,
  1781. rnp->grplo, rnp->grphi,
  1782. !!rnp->gp_tasks);
  1783. if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  1784. /* Other bits still set at this level, so done. */
  1785. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1786. return;
  1787. }
  1788. mask = rnp->grpmask;
  1789. if (rnp->parent == NULL) {
  1790. /* No more levels. Exit loop holding root lock. */
  1791. break;
  1792. }
  1793. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1794. rnp_c = rnp;
  1795. rnp = rnp->parent;
  1796. raw_spin_lock_irqsave(&rnp->lock, flags);
  1797. smp_mb__after_unlock_lock();
  1798. WARN_ON_ONCE(rnp_c->qsmask);
  1799. }
  1800. /*
  1801. * Get here if we are the last CPU to pass through a quiescent
  1802. * state for this grace period. Invoke rcu_report_qs_rsp()
  1803. * to clean up and start the next grace period if one is needed.
  1804. */
  1805. rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
  1806. }
  1807. /*
  1808. * Record a quiescent state for the specified CPU to that CPU's rcu_data
  1809. * structure. This must be either called from the specified CPU, or
  1810. * called when the specified CPU is known to be offline (and when it is
  1811. * also known that no other CPU is concurrently trying to help the offline
  1812. * CPU). The lastcomp argument is used to make sure we are still in the
  1813. * grace period of interest. We don't want to end the current grace period
  1814. * based on quiescent states detected in an earlier grace period!
  1815. */
  1816. static void
  1817. rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
  1818. {
  1819. unsigned long flags;
  1820. unsigned long mask;
  1821. bool needwake;
  1822. struct rcu_node *rnp;
  1823. rnp = rdp->mynode;
  1824. raw_spin_lock_irqsave(&rnp->lock, flags);
  1825. smp_mb__after_unlock_lock();
  1826. if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
  1827. rnp->completed == rnp->gpnum) {
  1828. /*
  1829. * The grace period in which this quiescent state was
  1830. * recorded has ended, so don't report it upwards.
  1831. * We will instead need a new quiescent state that lies
  1832. * within the current grace period.
  1833. */
  1834. rdp->passed_quiesce = 0; /* need qs for new gp. */
  1835. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1836. return;
  1837. }
  1838. mask = rdp->grpmask;
  1839. if ((rnp->qsmask & mask) == 0) {
  1840. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1841. } else {
  1842. rdp->qs_pending = 0;
  1843. /*
  1844. * This GP can't end until cpu checks in, so all of our
  1845. * callbacks can be processed during the next GP.
  1846. */
  1847. needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
  1848. rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
  1849. if (needwake)
  1850. rcu_gp_kthread_wake(rsp);
  1851. }
  1852. }
  1853. /*
  1854. * Check to see if there is a new grace period of which this CPU
  1855. * is not yet aware, and if so, set up local rcu_data state for it.
  1856. * Otherwise, see if this CPU has just passed through its first
  1857. * quiescent state for this grace period, and record that fact if so.
  1858. */
  1859. static void
  1860. rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
  1861. {
  1862. /* Check for grace-period ends and beginnings. */
  1863. note_gp_changes(rsp, rdp);
  1864. /*
  1865. * Does this CPU still need to do its part for current grace period?
  1866. * If no, return and let the other CPUs do their part as well.
  1867. */
  1868. if (!rdp->qs_pending)
  1869. return;
  1870. /*
  1871. * Was there a quiescent state since the beginning of the grace
  1872. * period? If no, then exit and wait for the next call.
  1873. */
  1874. if (!rdp->passed_quiesce)
  1875. return;
  1876. /*
  1877. * Tell RCU we are done (but rcu_report_qs_rdp() will be the
  1878. * judge of that).
  1879. */
  1880. rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
  1881. }
  1882. #ifdef CONFIG_HOTPLUG_CPU
  1883. /*
  1884. * Send the specified CPU's RCU callbacks to the orphanage. The
  1885. * specified CPU must be offline, and the caller must hold the
  1886. * ->orphan_lock.
  1887. */
  1888. static void
  1889. rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
  1890. struct rcu_node *rnp, struct rcu_data *rdp)
  1891. {
  1892. /* No-CBs CPUs do not have orphanable callbacks. */
  1893. if (rcu_is_nocb_cpu(rdp->cpu))
  1894. return;
  1895. /*
  1896. * Orphan the callbacks. First adjust the counts. This is safe
  1897. * because _rcu_barrier() excludes CPU-hotplug operations, so it
  1898. * cannot be running now. Thus no memory barrier is required.
  1899. */
  1900. if (rdp->nxtlist != NULL) {
  1901. rsp->qlen_lazy += rdp->qlen_lazy;
  1902. rsp->qlen += rdp->qlen;
  1903. rdp->n_cbs_orphaned += rdp->qlen;
  1904. rdp->qlen_lazy = 0;
  1905. ACCESS_ONCE(rdp->qlen) = 0;
  1906. }
  1907. /*
  1908. * Next, move those callbacks still needing a grace period to
  1909. * the orphanage, where some other CPU will pick them up.
  1910. * Some of the callbacks might have gone partway through a grace
  1911. * period, but that is too bad. They get to start over because we
  1912. * cannot assume that grace periods are synchronized across CPUs.
  1913. * We don't bother updating the ->nxttail[] array yet, instead
  1914. * we just reset the whole thing later on.
  1915. */
  1916. if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
  1917. *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
  1918. rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
  1919. *rdp->nxttail[RCU_DONE_TAIL] = NULL;
  1920. }
  1921. /*
  1922. * Then move the ready-to-invoke callbacks to the orphanage,
  1923. * where some other CPU will pick them up. These will not be
  1924. * required to pass though another grace period: They are done.
  1925. */
  1926. if (rdp->nxtlist != NULL) {
  1927. *rsp->orphan_donetail = rdp->nxtlist;
  1928. rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
  1929. }
  1930. /* Finally, initialize the rcu_data structure's list to empty. */
  1931. init_callback_list(rdp);
  1932. }
  1933. /*
  1934. * Adopt the RCU callbacks from the specified rcu_state structure's
  1935. * orphanage. The caller must hold the ->orphan_lock.
  1936. */
  1937. static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
  1938. {
  1939. int i;
  1940. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  1941. /* No-CBs CPUs are handled specially. */
  1942. if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
  1943. return;
  1944. /* Do the accounting first. */
  1945. rdp->qlen_lazy += rsp->qlen_lazy;
  1946. rdp->qlen += rsp->qlen;
  1947. rdp->n_cbs_adopted += rsp->qlen;
  1948. if (rsp->qlen_lazy != rsp->qlen)
  1949. rcu_idle_count_callbacks_posted();
  1950. rsp->qlen_lazy = 0;
  1951. rsp->qlen = 0;
  1952. /*
  1953. * We do not need a memory barrier here because the only way we
  1954. * can get here if there is an rcu_barrier() in flight is if
  1955. * we are the task doing the rcu_barrier().
  1956. */
  1957. /* First adopt the ready-to-invoke callbacks. */
  1958. if (rsp->orphan_donelist != NULL) {
  1959. *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
  1960. *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
  1961. for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
  1962. if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
  1963. rdp->nxttail[i] = rsp->orphan_donetail;
  1964. rsp->orphan_donelist = NULL;
  1965. rsp->orphan_donetail = &rsp->orphan_donelist;
  1966. }
  1967. /* And then adopt the callbacks that still need a grace period. */
  1968. if (rsp->orphan_nxtlist != NULL) {
  1969. *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
  1970. rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
  1971. rsp->orphan_nxtlist = NULL;
  1972. rsp->orphan_nxttail = &rsp->orphan_nxtlist;
  1973. }
  1974. }
  1975. /*
  1976. * Trace the fact that this CPU is going offline.
  1977. */
  1978. static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
  1979. {
  1980. RCU_TRACE(unsigned long mask);
  1981. RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
  1982. RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
  1983. RCU_TRACE(mask = rdp->grpmask);
  1984. trace_rcu_grace_period(rsp->name,
  1985. rnp->gpnum + 1 - !!(rnp->qsmask & mask),
  1986. TPS("cpuofl"));
  1987. }
  1988. /*
  1989. * The CPU has been completely removed, and some other CPU is reporting
  1990. * this fact from process context. Do the remainder of the cleanup,
  1991. * including orphaning the outgoing CPU's RCU callbacks, and also
  1992. * adopting them. There can only be one CPU hotplug operation at a time,
  1993. * so no other CPU can be attempting to update rcu_cpu_kthread_task.
  1994. */
  1995. static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
  1996. {
  1997. unsigned long flags;
  1998. unsigned long mask;
  1999. int need_report = 0;
  2000. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  2001. struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
  2002. /* Adjust any no-longer-needed kthreads. */
  2003. rcu_boost_kthread_setaffinity(rnp, -1);
  2004. /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
  2005. /* Exclude any attempts to start a new grace period. */
  2006. mutex_lock(&rsp->onoff_mutex);
  2007. raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
  2008. /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
  2009. rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
  2010. rcu_adopt_orphan_cbs(rsp, flags);
  2011. /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
  2012. mask = rdp->grpmask; /* rnp->grplo is constant. */
  2013. do {
  2014. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  2015. smp_mb__after_unlock_lock();
  2016. rnp->qsmaskinit &= ~mask;
  2017. if (rnp->qsmaskinit != 0) {
  2018. if (rnp != rdp->mynode)
  2019. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  2020. break;
  2021. }
  2022. if (rnp == rdp->mynode)
  2023. need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
  2024. else
  2025. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  2026. mask = rnp->grpmask;
  2027. rnp = rnp->parent;
  2028. } while (rnp != NULL);
  2029. /*
  2030. * We still hold the leaf rcu_node structure lock here, and
  2031. * irqs are still disabled. The reason for this subterfuge is
  2032. * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
  2033. * held leads to deadlock.
  2034. */
  2035. raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
  2036. rnp = rdp->mynode;
  2037. if (need_report & RCU_OFL_TASKS_NORM_GP)
  2038. rcu_report_unblock_qs_rnp(rnp, flags);
  2039. else
  2040. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2041. if (need_report & RCU_OFL_TASKS_EXP_GP)
  2042. rcu_report_exp_rnp(rsp, rnp, true);
  2043. WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
  2044. "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
  2045. cpu, rdp->qlen, rdp->nxtlist);
  2046. init_callback_list(rdp);
  2047. /* Disallow further callbacks on this CPU. */
  2048. rdp->nxttail[RCU_NEXT_TAIL] = NULL;
  2049. mutex_unlock(&rsp->onoff_mutex);
  2050. }
  2051. #else /* #ifdef CONFIG_HOTPLUG_CPU */
  2052. static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
  2053. {
  2054. }
  2055. static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
  2056. {
  2057. }
  2058. #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
  2059. /*
  2060. * Invoke any RCU callbacks that have made it to the end of their grace
  2061. * period. Thottle as specified by rdp->blimit.
  2062. */
  2063. static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
  2064. {
  2065. unsigned long flags;
  2066. struct rcu_head *next, *list, **tail;
  2067. long bl, count, count_lazy;
  2068. int i;
  2069. /* If no callbacks are ready, just return. */
  2070. if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
  2071. trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
  2072. trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
  2073. need_resched(), is_idle_task(current),
  2074. rcu_is_callbacks_kthread());
  2075. return;
  2076. }
  2077. /*
  2078. * Extract the list of ready callbacks, disabling to prevent
  2079. * races with call_rcu() from interrupt handlers.
  2080. */
  2081. local_irq_save(flags);
  2082. WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
  2083. bl = rdp->blimit;
  2084. trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
  2085. list = rdp->nxtlist;
  2086. rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
  2087. *rdp->nxttail[RCU_DONE_TAIL] = NULL;
  2088. tail = rdp->nxttail[RCU_DONE_TAIL];
  2089. for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
  2090. if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
  2091. rdp->nxttail[i] = &rdp->nxtlist;
  2092. local_irq_restore(flags);
  2093. /* Invoke callbacks. */
  2094. count = count_lazy = 0;
  2095. while (list) {
  2096. next = list->next;
  2097. prefetch(next);
  2098. debug_rcu_head_unqueue(list);
  2099. if (__rcu_reclaim(rsp->name, list))
  2100. count_lazy++;
  2101. list = next;
  2102. /* Stop only if limit reached and CPU has something to do. */
  2103. if (++count >= bl &&
  2104. (need_resched() ||
  2105. (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
  2106. break;
  2107. }
  2108. local_irq_save(flags);
  2109. trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
  2110. is_idle_task(current),
  2111. rcu_is_callbacks_kthread());
  2112. /* Update count, and requeue any remaining callbacks. */
  2113. if (list != NULL) {
  2114. *tail = rdp->nxtlist;
  2115. rdp->nxtlist = list;
  2116. for (i = 0; i < RCU_NEXT_SIZE; i++)
  2117. if (&rdp->nxtlist == rdp->nxttail[i])
  2118. rdp->nxttail[i] = tail;
  2119. else
  2120. break;
  2121. }
  2122. smp_mb(); /* List handling before counting for rcu_barrier(). */
  2123. rdp->qlen_lazy -= count_lazy;
  2124. ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
  2125. rdp->n_cbs_invoked += count;
  2126. /* Reinstate batch limit if we have worked down the excess. */
  2127. if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
  2128. rdp->blimit = blimit;
  2129. /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
  2130. if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
  2131. rdp->qlen_last_fqs_check = 0;
  2132. rdp->n_force_qs_snap = rsp->n_force_qs;
  2133. } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
  2134. rdp->qlen_last_fqs_check = rdp->qlen;
  2135. WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
  2136. local_irq_restore(flags);
  2137. /* Re-invoke RCU core processing if there are callbacks remaining. */
  2138. if (cpu_has_callbacks_ready_to_invoke(rdp))
  2139. invoke_rcu_core();
  2140. }
  2141. /*
  2142. * Check to see if this CPU is in a non-context-switch quiescent state
  2143. * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
  2144. * Also schedule RCU core processing.
  2145. *
  2146. * This function must be called from hardirq context. It is normally
  2147. * invoked from the scheduling-clock interrupt. If rcu_pending returns
  2148. * false, there is no point in invoking rcu_check_callbacks().
  2149. */
  2150. void rcu_check_callbacks(int cpu, int user)
  2151. {
  2152. trace_rcu_utilization(TPS("Start scheduler-tick"));
  2153. increment_cpu_stall_ticks();
  2154. if (user || rcu_is_cpu_rrupt_from_idle()) {
  2155. /*
  2156. * Get here if this CPU took its interrupt from user
  2157. * mode or from the idle loop, and if this is not a
  2158. * nested interrupt. In this case, the CPU is in
  2159. * a quiescent state, so note it.
  2160. *
  2161. * No memory barrier is required here because both
  2162. * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
  2163. * variables that other CPUs neither access nor modify,
  2164. * at least not while the corresponding CPU is online.
  2165. */
  2166. rcu_sched_qs(cpu);
  2167. rcu_bh_qs(cpu);
  2168. } else if (!in_softirq()) {
  2169. /*
  2170. * Get here if this CPU did not take its interrupt from
  2171. * softirq, in other words, if it is not interrupting
  2172. * a rcu_bh read-side critical section. This is an _bh
  2173. * critical section, so note it.
  2174. */
  2175. rcu_bh_qs(cpu);
  2176. }
  2177. rcu_preempt_check_callbacks(cpu);
  2178. if (rcu_pending(cpu))
  2179. invoke_rcu_core();
  2180. if (user)
  2181. rcu_note_voluntary_context_switch(current);
  2182. trace_rcu_utilization(TPS("End scheduler-tick"));
  2183. }
  2184. /*
  2185. * Scan the leaf rcu_node structures, processing dyntick state for any that
  2186. * have not yet encountered a quiescent state, using the function specified.
  2187. * Also initiate boosting for any threads blocked on the root rcu_node.
  2188. *
  2189. * The caller must have suppressed start of new grace periods.
  2190. */
  2191. static void force_qs_rnp(struct rcu_state *rsp,
  2192. int (*f)(struct rcu_data *rsp, bool *isidle,
  2193. unsigned long *maxj),
  2194. bool *isidle, unsigned long *maxj)
  2195. {
  2196. unsigned long bit;
  2197. int cpu;
  2198. unsigned long flags;
  2199. unsigned long mask;
  2200. struct rcu_node *rnp;
  2201. rcu_for_each_leaf_node(rsp, rnp) {
  2202. cond_resched();
  2203. mask = 0;
  2204. raw_spin_lock_irqsave(&rnp->lock, flags);
  2205. smp_mb__after_unlock_lock();
  2206. if (!rcu_gp_in_progress(rsp)) {
  2207. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2208. return;
  2209. }
  2210. if (rnp->qsmask == 0) {
  2211. rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
  2212. continue;
  2213. }
  2214. cpu = rnp->grplo;
  2215. bit = 1;
  2216. for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
  2217. if ((rnp->qsmask & bit) != 0) {
  2218. if ((rnp->qsmaskinit & bit) != 0)
  2219. *isidle = 0;
  2220. if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
  2221. mask |= bit;
  2222. }
  2223. }
  2224. if (mask != 0) {
  2225. /* rcu_report_qs_rnp() releases rnp->lock. */
  2226. rcu_report_qs_rnp(mask, rsp, rnp, flags);
  2227. continue;
  2228. }
  2229. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2230. }
  2231. rnp = rcu_get_root(rsp);
  2232. if (rnp->qsmask == 0) {
  2233. raw_spin_lock_irqsave(&rnp->lock, flags);
  2234. smp_mb__after_unlock_lock();
  2235. rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
  2236. }
  2237. }
  2238. /*
  2239. * Force quiescent states on reluctant CPUs, and also detect which
  2240. * CPUs are in dyntick-idle mode.
  2241. */
  2242. static void force_quiescent_state(struct rcu_state *rsp)
  2243. {
  2244. unsigned long flags;
  2245. bool ret;
  2246. struct rcu_node *rnp;
  2247. struct rcu_node *rnp_old = NULL;
  2248. /* Funnel through hierarchy to reduce memory contention. */
  2249. rnp = __this_cpu_read(rsp->rda->mynode);
  2250. for (; rnp != NULL; rnp = rnp->parent) {
  2251. ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
  2252. !raw_spin_trylock(&rnp->fqslock);
  2253. if (rnp_old != NULL)
  2254. raw_spin_unlock(&rnp_old->fqslock);
  2255. if (ret) {
  2256. rsp->n_force_qs_lh++;
  2257. return;
  2258. }
  2259. rnp_old = rnp;
  2260. }
  2261. /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
  2262. /* Reached the root of the rcu_node tree, acquire lock. */
  2263. raw_spin_lock_irqsave(&rnp_old->lock, flags);
  2264. smp_mb__after_unlock_lock();
  2265. raw_spin_unlock(&rnp_old->fqslock);
  2266. if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  2267. rsp->n_force_qs_lh++;
  2268. raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
  2269. return; /* Someone beat us to it. */
  2270. }
  2271. ACCESS_ONCE(rsp->gp_flags) |= RCU_GP_FLAG_FQS;
  2272. raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
  2273. wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
  2274. }
  2275. /*
  2276. * This does the RCU core processing work for the specified rcu_state
  2277. * and rcu_data structures. This may be called only from the CPU to
  2278. * whom the rdp belongs.
  2279. */
  2280. static void
  2281. __rcu_process_callbacks(struct rcu_state *rsp)
  2282. {
  2283. unsigned long flags;
  2284. bool needwake;
  2285. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  2286. WARN_ON_ONCE(rdp->beenonline == 0);
  2287. /* Update RCU state based on any recent quiescent states. */
  2288. rcu_check_quiescent_state(rsp, rdp);
  2289. /* Does this CPU require a not-yet-started grace period? */
  2290. local_irq_save(flags);
  2291. if (cpu_needs_another_gp(rsp, rdp)) {
  2292. raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
  2293. needwake = rcu_start_gp(rsp);
  2294. raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
  2295. if (needwake)
  2296. rcu_gp_kthread_wake(rsp);
  2297. } else {
  2298. local_irq_restore(flags);
  2299. }
  2300. /* If there are callbacks ready, invoke them. */
  2301. if (cpu_has_callbacks_ready_to_invoke(rdp))
  2302. invoke_rcu_callbacks(rsp, rdp);
  2303. /* Do any needed deferred wakeups of rcuo kthreads. */
  2304. do_nocb_deferred_wakeup(rdp);
  2305. }
  2306. /*
  2307. * Do RCU core processing for the current CPU.
  2308. */
  2309. static void rcu_process_callbacks(struct softirq_action *unused)
  2310. {
  2311. struct rcu_state *rsp;
  2312. if (cpu_is_offline(smp_processor_id()))
  2313. return;
  2314. trace_rcu_utilization(TPS("Start RCU core"));
  2315. for_each_rcu_flavor(rsp)
  2316. __rcu_process_callbacks(rsp);
  2317. trace_rcu_utilization(TPS("End RCU core"));
  2318. }
  2319. /*
  2320. * Schedule RCU callback invocation. If the specified type of RCU
  2321. * does not support RCU priority boosting, just do a direct call,
  2322. * otherwise wake up the per-CPU kernel kthread. Note that because we
  2323. * are running on the current CPU with interrupts disabled, the
  2324. * rcu_cpu_kthread_task cannot disappear out from under us.
  2325. */
  2326. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
  2327. {
  2328. if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
  2329. return;
  2330. if (likely(!rsp->boost)) {
  2331. rcu_do_batch(rsp, rdp);
  2332. return;
  2333. }
  2334. invoke_rcu_callbacks_kthread();
  2335. }
  2336. static void invoke_rcu_core(void)
  2337. {
  2338. if (cpu_online(smp_processor_id()))
  2339. raise_softirq(RCU_SOFTIRQ);
  2340. }
  2341. /*
  2342. * Handle any core-RCU processing required by a call_rcu() invocation.
  2343. */
  2344. static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
  2345. struct rcu_head *head, unsigned long flags)
  2346. {
  2347. bool needwake;
  2348. /*
  2349. * If called from an extended quiescent state, invoke the RCU
  2350. * core in order to force a re-evaluation of RCU's idleness.
  2351. */
  2352. if (!rcu_is_watching() && cpu_online(smp_processor_id()))
  2353. invoke_rcu_core();
  2354. /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
  2355. if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
  2356. return;
  2357. /*
  2358. * Force the grace period if too many callbacks or too long waiting.
  2359. * Enforce hysteresis, and don't invoke force_quiescent_state()
  2360. * if some other CPU has recently done so. Also, don't bother
  2361. * invoking force_quiescent_state() if the newly enqueued callback
  2362. * is the only one waiting for a grace period to complete.
  2363. */
  2364. if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
  2365. /* Are we ignoring a completed grace period? */
  2366. note_gp_changes(rsp, rdp);
  2367. /* Start a new grace period if one not already started. */
  2368. if (!rcu_gp_in_progress(rsp)) {
  2369. struct rcu_node *rnp_root = rcu_get_root(rsp);
  2370. raw_spin_lock(&rnp_root->lock);
  2371. smp_mb__after_unlock_lock();
  2372. needwake = rcu_start_gp(rsp);
  2373. raw_spin_unlock(&rnp_root->lock);
  2374. if (needwake)
  2375. rcu_gp_kthread_wake(rsp);
  2376. } else {
  2377. /* Give the grace period a kick. */
  2378. rdp->blimit = LONG_MAX;
  2379. if (rsp->n_force_qs == rdp->n_force_qs_snap &&
  2380. *rdp->nxttail[RCU_DONE_TAIL] != head)
  2381. force_quiescent_state(rsp);
  2382. rdp->n_force_qs_snap = rsp->n_force_qs;
  2383. rdp->qlen_last_fqs_check = rdp->qlen;
  2384. }
  2385. }
  2386. }
  2387. /*
  2388. * RCU callback function to leak a callback.
  2389. */
  2390. static void rcu_leak_callback(struct rcu_head *rhp)
  2391. {
  2392. }
  2393. /*
  2394. * Helper function for call_rcu() and friends. The cpu argument will
  2395. * normally be -1, indicating "currently running CPU". It may specify
  2396. * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
  2397. * is expected to specify a CPU.
  2398. */
  2399. static void
  2400. __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
  2401. struct rcu_state *rsp, int cpu, bool lazy)
  2402. {
  2403. unsigned long flags;
  2404. struct rcu_data *rdp;
  2405. WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
  2406. if (debug_rcu_head_queue(head)) {
  2407. /* Probable double call_rcu(), so leak the callback. */
  2408. ACCESS_ONCE(head->func) = rcu_leak_callback;
  2409. WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
  2410. return;
  2411. }
  2412. head->func = func;
  2413. head->next = NULL;
  2414. /*
  2415. * Opportunistically note grace-period endings and beginnings.
  2416. * Note that we might see a beginning right after we see an
  2417. * end, but never vice versa, since this CPU has to pass through
  2418. * a quiescent state betweentimes.
  2419. */
  2420. local_irq_save(flags);
  2421. rdp = this_cpu_ptr(rsp->rda);
  2422. /* Add the callback to our list. */
  2423. if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
  2424. int offline;
  2425. if (cpu != -1)
  2426. rdp = per_cpu_ptr(rsp->rda, cpu);
  2427. offline = !__call_rcu_nocb(rdp, head, lazy, flags);
  2428. WARN_ON_ONCE(offline);
  2429. /* _call_rcu() is illegal on offline CPU; leak the callback. */
  2430. local_irq_restore(flags);
  2431. return;
  2432. }
  2433. ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
  2434. if (lazy)
  2435. rdp->qlen_lazy++;
  2436. else
  2437. rcu_idle_count_callbacks_posted();
  2438. smp_mb(); /* Count before adding callback for rcu_barrier(). */
  2439. *rdp->nxttail[RCU_NEXT_TAIL] = head;
  2440. rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
  2441. if (__is_kfree_rcu_offset((unsigned long)func))
  2442. trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
  2443. rdp->qlen_lazy, rdp->qlen);
  2444. else
  2445. trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
  2446. /* Go handle any RCU core processing required. */
  2447. __call_rcu_core(rsp, rdp, head, flags);
  2448. local_irq_restore(flags);
  2449. }
  2450. /*
  2451. * Queue an RCU-sched callback for invocation after a grace period.
  2452. */
  2453. void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
  2454. {
  2455. __call_rcu(head, func, &rcu_sched_state, -1, 0);
  2456. }
  2457. EXPORT_SYMBOL_GPL(call_rcu_sched);
  2458. /*
  2459. * Queue an RCU callback for invocation after a quicker grace period.
  2460. */
  2461. void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
  2462. {
  2463. __call_rcu(head, func, &rcu_bh_state, -1, 0);
  2464. }
  2465. EXPORT_SYMBOL_GPL(call_rcu_bh);
  2466. /*
  2467. * Queue an RCU callback for lazy invocation after a grace period.
  2468. * This will likely be later named something like "call_rcu_lazy()",
  2469. * but this change will require some way of tagging the lazy RCU
  2470. * callbacks in the list of pending callbacks. Until then, this
  2471. * function may only be called from __kfree_rcu().
  2472. */
  2473. void kfree_call_rcu(struct rcu_head *head,
  2474. void (*func)(struct rcu_head *rcu))
  2475. {
  2476. __call_rcu(head, func, rcu_state_p, -1, 1);
  2477. }
  2478. EXPORT_SYMBOL_GPL(kfree_call_rcu);
  2479. /*
  2480. * Because a context switch is a grace period for RCU-sched and RCU-bh,
  2481. * any blocking grace-period wait automatically implies a grace period
  2482. * if there is only one CPU online at any point time during execution
  2483. * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
  2484. * occasionally incorrectly indicate that there are multiple CPUs online
  2485. * when there was in fact only one the whole time, as this just adds
  2486. * some overhead: RCU still operates correctly.
  2487. */
  2488. static inline int rcu_blocking_is_gp(void)
  2489. {
  2490. int ret;
  2491. might_sleep(); /* Check for RCU read-side critical section. */
  2492. preempt_disable();
  2493. ret = num_online_cpus() <= 1;
  2494. preempt_enable();
  2495. return ret;
  2496. }
  2497. /**
  2498. * synchronize_sched - wait until an rcu-sched grace period has elapsed.
  2499. *
  2500. * Control will return to the caller some time after a full rcu-sched
  2501. * grace period has elapsed, in other words after all currently executing
  2502. * rcu-sched read-side critical sections have completed. These read-side
  2503. * critical sections are delimited by rcu_read_lock_sched() and
  2504. * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
  2505. * local_irq_disable(), and so on may be used in place of
  2506. * rcu_read_lock_sched().
  2507. *
  2508. * This means that all preempt_disable code sequences, including NMI and
  2509. * non-threaded hardware-interrupt handlers, in progress on entry will
  2510. * have completed before this primitive returns. However, this does not
  2511. * guarantee that softirq handlers will have completed, since in some
  2512. * kernels, these handlers can run in process context, and can block.
  2513. *
  2514. * Note that this guarantee implies further memory-ordering guarantees.
  2515. * On systems with more than one CPU, when synchronize_sched() returns,
  2516. * each CPU is guaranteed to have executed a full memory barrier since the
  2517. * end of its last RCU-sched read-side critical section whose beginning
  2518. * preceded the call to synchronize_sched(). In addition, each CPU having
  2519. * an RCU read-side critical section that extends beyond the return from
  2520. * synchronize_sched() is guaranteed to have executed a full memory barrier
  2521. * after the beginning of synchronize_sched() and before the beginning of
  2522. * that RCU read-side critical section. Note that these guarantees include
  2523. * CPUs that are offline, idle, or executing in user mode, as well as CPUs
  2524. * that are executing in the kernel.
  2525. *
  2526. * Furthermore, if CPU A invoked synchronize_sched(), which returned
  2527. * to its caller on CPU B, then both CPU A and CPU B are guaranteed
  2528. * to have executed a full memory barrier during the execution of
  2529. * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
  2530. * again only if the system has more than one CPU).
  2531. *
  2532. * This primitive provides the guarantees made by the (now removed)
  2533. * synchronize_kernel() API. In contrast, synchronize_rcu() only
  2534. * guarantees that rcu_read_lock() sections will have completed.
  2535. * In "classic RCU", these two guarantees happen to be one and
  2536. * the same, but can differ in realtime RCU implementations.
  2537. */
  2538. void synchronize_sched(void)
  2539. {
  2540. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
  2541. !lock_is_held(&rcu_lock_map) &&
  2542. !lock_is_held(&rcu_sched_lock_map),
  2543. "Illegal synchronize_sched() in RCU-sched read-side critical section");
  2544. if (rcu_blocking_is_gp())
  2545. return;
  2546. if (rcu_expedited)
  2547. synchronize_sched_expedited();
  2548. else
  2549. wait_rcu_gp(call_rcu_sched);
  2550. }
  2551. EXPORT_SYMBOL_GPL(synchronize_sched);
  2552. /**
  2553. * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
  2554. *
  2555. * Control will return to the caller some time after a full rcu_bh grace
  2556. * period has elapsed, in other words after all currently executing rcu_bh
  2557. * read-side critical sections have completed. RCU read-side critical
  2558. * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
  2559. * and may be nested.
  2560. *
  2561. * See the description of synchronize_sched() for more detailed information
  2562. * on memory ordering guarantees.
  2563. */
  2564. void synchronize_rcu_bh(void)
  2565. {
  2566. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
  2567. !lock_is_held(&rcu_lock_map) &&
  2568. !lock_is_held(&rcu_sched_lock_map),
  2569. "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
  2570. if (rcu_blocking_is_gp())
  2571. return;
  2572. if (rcu_expedited)
  2573. synchronize_rcu_bh_expedited();
  2574. else
  2575. wait_rcu_gp(call_rcu_bh);
  2576. }
  2577. EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
  2578. /**
  2579. * get_state_synchronize_rcu - Snapshot current RCU state
  2580. *
  2581. * Returns a cookie that is used by a later call to cond_synchronize_rcu()
  2582. * to determine whether or not a full grace period has elapsed in the
  2583. * meantime.
  2584. */
  2585. unsigned long get_state_synchronize_rcu(void)
  2586. {
  2587. /*
  2588. * Any prior manipulation of RCU-protected data must happen
  2589. * before the load from ->gpnum.
  2590. */
  2591. smp_mb(); /* ^^^ */
  2592. /*
  2593. * Make sure this load happens before the purportedly
  2594. * time-consuming work between get_state_synchronize_rcu()
  2595. * and cond_synchronize_rcu().
  2596. */
  2597. return smp_load_acquire(&rcu_state_p->gpnum);
  2598. }
  2599. EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
  2600. /**
  2601. * cond_synchronize_rcu - Conditionally wait for an RCU grace period
  2602. *
  2603. * @oldstate: return value from earlier call to get_state_synchronize_rcu()
  2604. *
  2605. * If a full RCU grace period has elapsed since the earlier call to
  2606. * get_state_synchronize_rcu(), just return. Otherwise, invoke
  2607. * synchronize_rcu() to wait for a full grace period.
  2608. *
  2609. * Yes, this function does not take counter wrap into account. But
  2610. * counter wrap is harmless. If the counter wraps, we have waited for
  2611. * more than 2 billion grace periods (and way more on a 64-bit system!),
  2612. * so waiting for one additional grace period should be just fine.
  2613. */
  2614. void cond_synchronize_rcu(unsigned long oldstate)
  2615. {
  2616. unsigned long newstate;
  2617. /*
  2618. * Ensure that this load happens before any RCU-destructive
  2619. * actions the caller might carry out after we return.
  2620. */
  2621. newstate = smp_load_acquire(&rcu_state_p->completed);
  2622. if (ULONG_CMP_GE(oldstate, newstate))
  2623. synchronize_rcu();
  2624. }
  2625. EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
  2626. static int synchronize_sched_expedited_cpu_stop(void *data)
  2627. {
  2628. /*
  2629. * There must be a full memory barrier on each affected CPU
  2630. * between the time that try_stop_cpus() is called and the
  2631. * time that it returns.
  2632. *
  2633. * In the current initial implementation of cpu_stop, the
  2634. * above condition is already met when the control reaches
  2635. * this point and the following smp_mb() is not strictly
  2636. * necessary. Do smp_mb() anyway for documentation and
  2637. * robustness against future implementation changes.
  2638. */
  2639. smp_mb(); /* See above comment block. */
  2640. return 0;
  2641. }
  2642. /**
  2643. * synchronize_sched_expedited - Brute-force RCU-sched grace period
  2644. *
  2645. * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
  2646. * approach to force the grace period to end quickly. This consumes
  2647. * significant time on all CPUs and is unfriendly to real-time workloads,
  2648. * so is thus not recommended for any sort of common-case code. In fact,
  2649. * if you are using synchronize_sched_expedited() in a loop, please
  2650. * restructure your code to batch your updates, and then use a single
  2651. * synchronize_sched() instead.
  2652. *
  2653. * Note that it is illegal to call this function while holding any lock
  2654. * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
  2655. * to call this function from a CPU-hotplug notifier. Failing to observe
  2656. * these restriction will result in deadlock.
  2657. *
  2658. * This implementation can be thought of as an application of ticket
  2659. * locking to RCU, with sync_sched_expedited_started and
  2660. * sync_sched_expedited_done taking on the roles of the halves
  2661. * of the ticket-lock word. Each task atomically increments
  2662. * sync_sched_expedited_started upon entry, snapshotting the old value,
  2663. * then attempts to stop all the CPUs. If this succeeds, then each
  2664. * CPU will have executed a context switch, resulting in an RCU-sched
  2665. * grace period. We are then done, so we use atomic_cmpxchg() to
  2666. * update sync_sched_expedited_done to match our snapshot -- but
  2667. * only if someone else has not already advanced past our snapshot.
  2668. *
  2669. * On the other hand, if try_stop_cpus() fails, we check the value
  2670. * of sync_sched_expedited_done. If it has advanced past our
  2671. * initial snapshot, then someone else must have forced a grace period
  2672. * some time after we took our snapshot. In this case, our work is
  2673. * done for us, and we can simply return. Otherwise, we try again,
  2674. * but keep our initial snapshot for purposes of checking for someone
  2675. * doing our work for us.
  2676. *
  2677. * If we fail too many times in a row, we fall back to synchronize_sched().
  2678. */
  2679. void synchronize_sched_expedited(void)
  2680. {
  2681. long firstsnap, s, snap;
  2682. int trycount = 0;
  2683. struct rcu_state *rsp = &rcu_sched_state;
  2684. /*
  2685. * If we are in danger of counter wrap, just do synchronize_sched().
  2686. * By allowing sync_sched_expedited_started to advance no more than
  2687. * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
  2688. * that more than 3.5 billion CPUs would be required to force a
  2689. * counter wrap on a 32-bit system. Quite a few more CPUs would of
  2690. * course be required on a 64-bit system.
  2691. */
  2692. if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
  2693. (ulong)atomic_long_read(&rsp->expedited_done) +
  2694. ULONG_MAX / 8)) {
  2695. synchronize_sched();
  2696. atomic_long_inc(&rsp->expedited_wrap);
  2697. return;
  2698. }
  2699. /*
  2700. * Take a ticket. Note that atomic_inc_return() implies a
  2701. * full memory barrier.
  2702. */
  2703. snap = atomic_long_inc_return(&rsp->expedited_start);
  2704. firstsnap = snap;
  2705. get_online_cpus();
  2706. WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
  2707. /*
  2708. * Each pass through the following loop attempts to force a
  2709. * context switch on each CPU.
  2710. */
  2711. while (try_stop_cpus(cpu_online_mask,
  2712. synchronize_sched_expedited_cpu_stop,
  2713. NULL) == -EAGAIN) {
  2714. put_online_cpus();
  2715. atomic_long_inc(&rsp->expedited_tryfail);
  2716. /* Check to see if someone else did our work for us. */
  2717. s = atomic_long_read(&rsp->expedited_done);
  2718. if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
  2719. /* ensure test happens before caller kfree */
  2720. smp_mb__before_atomic(); /* ^^^ */
  2721. atomic_long_inc(&rsp->expedited_workdone1);
  2722. return;
  2723. }
  2724. /* No joy, try again later. Or just synchronize_sched(). */
  2725. if (trycount++ < 10) {
  2726. udelay(trycount * num_online_cpus());
  2727. } else {
  2728. wait_rcu_gp(call_rcu_sched);
  2729. atomic_long_inc(&rsp->expedited_normal);
  2730. return;
  2731. }
  2732. /* Recheck to see if someone else did our work for us. */
  2733. s = atomic_long_read(&rsp->expedited_done);
  2734. if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
  2735. /* ensure test happens before caller kfree */
  2736. smp_mb__before_atomic(); /* ^^^ */
  2737. atomic_long_inc(&rsp->expedited_workdone2);
  2738. return;
  2739. }
  2740. /*
  2741. * Refetching sync_sched_expedited_started allows later
  2742. * callers to piggyback on our grace period. We retry
  2743. * after they started, so our grace period works for them,
  2744. * and they started after our first try, so their grace
  2745. * period works for us.
  2746. */
  2747. get_online_cpus();
  2748. snap = atomic_long_read(&rsp->expedited_start);
  2749. smp_mb(); /* ensure read is before try_stop_cpus(). */
  2750. }
  2751. atomic_long_inc(&rsp->expedited_stoppedcpus);
  2752. /*
  2753. * Everyone up to our most recent fetch is covered by our grace
  2754. * period. Update the counter, but only if our work is still
  2755. * relevant -- which it won't be if someone who started later
  2756. * than we did already did their update.
  2757. */
  2758. do {
  2759. atomic_long_inc(&rsp->expedited_done_tries);
  2760. s = atomic_long_read(&rsp->expedited_done);
  2761. if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
  2762. /* ensure test happens before caller kfree */
  2763. smp_mb__before_atomic(); /* ^^^ */
  2764. atomic_long_inc(&rsp->expedited_done_lost);
  2765. break;
  2766. }
  2767. } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
  2768. atomic_long_inc(&rsp->expedited_done_exit);
  2769. put_online_cpus();
  2770. }
  2771. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  2772. /*
  2773. * Check to see if there is any immediate RCU-related work to be done
  2774. * by the current CPU, for the specified type of RCU, returning 1 if so.
  2775. * The checks are in order of increasing expense: checks that can be
  2776. * carried out against CPU-local state are performed first. However,
  2777. * we must check for CPU stalls first, else we might not get a chance.
  2778. */
  2779. static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
  2780. {
  2781. struct rcu_node *rnp = rdp->mynode;
  2782. rdp->n_rcu_pending++;
  2783. /* Check for CPU stalls, if enabled. */
  2784. check_cpu_stall(rsp, rdp);
  2785. /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
  2786. if (rcu_nohz_full_cpu(rsp))
  2787. return 0;
  2788. /* Is the RCU core waiting for a quiescent state from this CPU? */
  2789. if (rcu_scheduler_fully_active &&
  2790. rdp->qs_pending && !rdp->passed_quiesce) {
  2791. rdp->n_rp_qs_pending++;
  2792. } else if (rdp->qs_pending && rdp->passed_quiesce) {
  2793. rdp->n_rp_report_qs++;
  2794. return 1;
  2795. }
  2796. /* Does this CPU have callbacks ready to invoke? */
  2797. if (cpu_has_callbacks_ready_to_invoke(rdp)) {
  2798. rdp->n_rp_cb_ready++;
  2799. return 1;
  2800. }
  2801. /* Has RCU gone idle with this CPU needing another grace period? */
  2802. if (cpu_needs_another_gp(rsp, rdp)) {
  2803. rdp->n_rp_cpu_needs_gp++;
  2804. return 1;
  2805. }
  2806. /* Has another RCU grace period completed? */
  2807. if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
  2808. rdp->n_rp_gp_completed++;
  2809. return 1;
  2810. }
  2811. /* Has a new RCU grace period started? */
  2812. if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
  2813. rdp->n_rp_gp_started++;
  2814. return 1;
  2815. }
  2816. /* Does this CPU need a deferred NOCB wakeup? */
  2817. if (rcu_nocb_need_deferred_wakeup(rdp)) {
  2818. rdp->n_rp_nocb_defer_wakeup++;
  2819. return 1;
  2820. }
  2821. /* nothing to do */
  2822. rdp->n_rp_need_nothing++;
  2823. return 0;
  2824. }
  2825. /*
  2826. * Check to see if there is any immediate RCU-related work to be done
  2827. * by the current CPU, returning 1 if so. This function is part of the
  2828. * RCU implementation; it is -not- an exported member of the RCU API.
  2829. */
  2830. static int rcu_pending(int cpu)
  2831. {
  2832. struct rcu_state *rsp;
  2833. for_each_rcu_flavor(rsp)
  2834. if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
  2835. return 1;
  2836. return 0;
  2837. }
  2838. /*
  2839. * Return true if the specified CPU has any callback. If all_lazy is
  2840. * non-NULL, store an indication of whether all callbacks are lazy.
  2841. * (If there are no callbacks, all of them are deemed to be lazy.)
  2842. */
  2843. static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
  2844. {
  2845. bool al = true;
  2846. bool hc = false;
  2847. struct rcu_data *rdp;
  2848. struct rcu_state *rsp;
  2849. for_each_rcu_flavor(rsp) {
  2850. rdp = per_cpu_ptr(rsp->rda, cpu);
  2851. if (!rdp->nxtlist)
  2852. continue;
  2853. hc = true;
  2854. if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
  2855. al = false;
  2856. break;
  2857. }
  2858. }
  2859. if (all_lazy)
  2860. *all_lazy = al;
  2861. return hc;
  2862. }
  2863. /*
  2864. * Helper function for _rcu_barrier() tracing. If tracing is disabled,
  2865. * the compiler is expected to optimize this away.
  2866. */
  2867. static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
  2868. int cpu, unsigned long done)
  2869. {
  2870. trace_rcu_barrier(rsp->name, s, cpu,
  2871. atomic_read(&rsp->barrier_cpu_count), done);
  2872. }
  2873. /*
  2874. * RCU callback function for _rcu_barrier(). If we are last, wake
  2875. * up the task executing _rcu_barrier().
  2876. */
  2877. static void rcu_barrier_callback(struct rcu_head *rhp)
  2878. {
  2879. struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
  2880. struct rcu_state *rsp = rdp->rsp;
  2881. if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
  2882. _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
  2883. complete(&rsp->barrier_completion);
  2884. } else {
  2885. _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
  2886. }
  2887. }
  2888. /*
  2889. * Called with preemption disabled, and from cross-cpu IRQ context.
  2890. */
  2891. static void rcu_barrier_func(void *type)
  2892. {
  2893. struct rcu_state *rsp = type;
  2894. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  2895. _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
  2896. atomic_inc(&rsp->barrier_cpu_count);
  2897. rsp->call(&rdp->barrier_head, rcu_barrier_callback);
  2898. }
  2899. /*
  2900. * Orchestrate the specified type of RCU barrier, waiting for all
  2901. * RCU callbacks of the specified type to complete.
  2902. */
  2903. static void _rcu_barrier(struct rcu_state *rsp)
  2904. {
  2905. int cpu;
  2906. struct rcu_data *rdp;
  2907. unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
  2908. unsigned long snap_done;
  2909. _rcu_barrier_trace(rsp, "Begin", -1, snap);
  2910. /* Take mutex to serialize concurrent rcu_barrier() requests. */
  2911. mutex_lock(&rsp->barrier_mutex);
  2912. /*
  2913. * Ensure that all prior references, including to ->n_barrier_done,
  2914. * are ordered before the _rcu_barrier() machinery.
  2915. */
  2916. smp_mb(); /* See above block comment. */
  2917. /*
  2918. * Recheck ->n_barrier_done to see if others did our work for us.
  2919. * This means checking ->n_barrier_done for an even-to-odd-to-even
  2920. * transition. The "if" expression below therefore rounds the old
  2921. * value up to the next even number and adds two before comparing.
  2922. */
  2923. snap_done = rsp->n_barrier_done;
  2924. _rcu_barrier_trace(rsp, "Check", -1, snap_done);
  2925. /*
  2926. * If the value in snap is odd, we needed to wait for the current
  2927. * rcu_barrier() to complete, then wait for the next one, in other
  2928. * words, we need the value of snap_done to be three larger than
  2929. * the value of snap. On the other hand, if the value in snap is
  2930. * even, we only had to wait for the next rcu_barrier() to complete,
  2931. * in other words, we need the value of snap_done to be only two
  2932. * greater than the value of snap. The "(snap + 3) & ~0x1" computes
  2933. * this for us (thank you, Linus!).
  2934. */
  2935. if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
  2936. _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
  2937. smp_mb(); /* caller's subsequent code after above check. */
  2938. mutex_unlock(&rsp->barrier_mutex);
  2939. return;
  2940. }
  2941. /*
  2942. * Increment ->n_barrier_done to avoid duplicate work. Use
  2943. * ACCESS_ONCE() to prevent the compiler from speculating
  2944. * the increment to precede the early-exit check.
  2945. */
  2946. ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
  2947. WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
  2948. _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
  2949. smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
  2950. /*
  2951. * Initialize the count to one rather than to zero in order to
  2952. * avoid a too-soon return to zero in case of a short grace period
  2953. * (or preemption of this task). Exclude CPU-hotplug operations
  2954. * to ensure that no offline CPU has callbacks queued.
  2955. */
  2956. init_completion(&rsp->barrier_completion);
  2957. atomic_set(&rsp->barrier_cpu_count, 1);
  2958. get_online_cpus();
  2959. /*
  2960. * Force each CPU with callbacks to register a new callback.
  2961. * When that callback is invoked, we will know that all of the
  2962. * corresponding CPU's preceding callbacks have been invoked.
  2963. */
  2964. for_each_possible_cpu(cpu) {
  2965. if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
  2966. continue;
  2967. rdp = per_cpu_ptr(rsp->rda, cpu);
  2968. if (rcu_is_nocb_cpu(cpu)) {
  2969. _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
  2970. rsp->n_barrier_done);
  2971. atomic_inc(&rsp->barrier_cpu_count);
  2972. __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
  2973. rsp, cpu, 0);
  2974. } else if (ACCESS_ONCE(rdp->qlen)) {
  2975. _rcu_barrier_trace(rsp, "OnlineQ", cpu,
  2976. rsp->n_barrier_done);
  2977. smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
  2978. } else {
  2979. _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
  2980. rsp->n_barrier_done);
  2981. }
  2982. }
  2983. put_online_cpus();
  2984. /*
  2985. * Now that we have an rcu_barrier_callback() callback on each
  2986. * CPU, and thus each counted, remove the initial count.
  2987. */
  2988. if (atomic_dec_and_test(&rsp->barrier_cpu_count))
  2989. complete(&rsp->barrier_completion);
  2990. /* Increment ->n_barrier_done to prevent duplicate work. */
  2991. smp_mb(); /* Keep increment after above mechanism. */
  2992. ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
  2993. WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
  2994. _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
  2995. smp_mb(); /* Keep increment before caller's subsequent code. */
  2996. /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
  2997. wait_for_completion(&rsp->barrier_completion);
  2998. /* Other rcu_barrier() invocations can now safely proceed. */
  2999. mutex_unlock(&rsp->barrier_mutex);
  3000. }
  3001. /**
  3002. * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
  3003. */
  3004. void rcu_barrier_bh(void)
  3005. {
  3006. _rcu_barrier(&rcu_bh_state);
  3007. }
  3008. EXPORT_SYMBOL_GPL(rcu_barrier_bh);
  3009. /**
  3010. * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
  3011. */
  3012. void rcu_barrier_sched(void)
  3013. {
  3014. _rcu_barrier(&rcu_sched_state);
  3015. }
  3016. EXPORT_SYMBOL_GPL(rcu_barrier_sched);
  3017. /*
  3018. * Do boot-time initialization of a CPU's per-CPU RCU data.
  3019. */
  3020. static void __init
  3021. rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
  3022. {
  3023. unsigned long flags;
  3024. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3025. struct rcu_node *rnp = rcu_get_root(rsp);
  3026. /* Set up local state, ensuring consistent view of global state. */
  3027. raw_spin_lock_irqsave(&rnp->lock, flags);
  3028. rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
  3029. init_callback_list(rdp);
  3030. rdp->qlen_lazy = 0;
  3031. ACCESS_ONCE(rdp->qlen) = 0;
  3032. rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
  3033. WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
  3034. WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
  3035. rdp->cpu = cpu;
  3036. rdp->rsp = rsp;
  3037. rcu_boot_init_nocb_percpu_data(rdp);
  3038. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3039. }
  3040. /*
  3041. * Initialize a CPU's per-CPU RCU data. Note that only one online or
  3042. * offline event can be happening at a given time. Note also that we
  3043. * can accept some slop in the rsp->completed access due to the fact
  3044. * that this CPU cannot possibly have any RCU callbacks in flight yet.
  3045. */
  3046. static void
  3047. rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
  3048. {
  3049. unsigned long flags;
  3050. unsigned long mask;
  3051. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3052. struct rcu_node *rnp = rcu_get_root(rsp);
  3053. /* Exclude new grace periods. */
  3054. mutex_lock(&rsp->onoff_mutex);
  3055. /* Set up local state, ensuring consistent view of global state. */
  3056. raw_spin_lock_irqsave(&rnp->lock, flags);
  3057. rdp->beenonline = 1; /* We have now been online. */
  3058. rdp->qlen_last_fqs_check = 0;
  3059. rdp->n_force_qs_snap = rsp->n_force_qs;
  3060. rdp->blimit = blimit;
  3061. init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
  3062. rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  3063. rcu_sysidle_init_percpu_data(rdp->dynticks);
  3064. atomic_set(&rdp->dynticks->dynticks,
  3065. (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
  3066. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  3067. /* Add CPU to rcu_node bitmasks. */
  3068. rnp = rdp->mynode;
  3069. mask = rdp->grpmask;
  3070. do {
  3071. /* Exclude any attempts to start a new GP on small systems. */
  3072. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  3073. rnp->qsmaskinit |= mask;
  3074. mask = rnp->grpmask;
  3075. if (rnp == rdp->mynode) {
  3076. /*
  3077. * If there is a grace period in progress, we will
  3078. * set up to wait for it next time we run the
  3079. * RCU core code.
  3080. */
  3081. rdp->gpnum = rnp->completed;
  3082. rdp->completed = rnp->completed;
  3083. rdp->passed_quiesce = 0;
  3084. rdp->qs_pending = 0;
  3085. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
  3086. }
  3087. raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
  3088. rnp = rnp->parent;
  3089. } while (rnp != NULL && !(rnp->qsmaskinit & mask));
  3090. local_irq_restore(flags);
  3091. mutex_unlock(&rsp->onoff_mutex);
  3092. }
  3093. static void rcu_prepare_cpu(int cpu)
  3094. {
  3095. struct rcu_state *rsp;
  3096. for_each_rcu_flavor(rsp)
  3097. rcu_init_percpu_data(cpu, rsp);
  3098. }
  3099. /*
  3100. * Handle CPU online/offline notification events.
  3101. */
  3102. static int rcu_cpu_notify(struct notifier_block *self,
  3103. unsigned long action, void *hcpu)
  3104. {
  3105. long cpu = (long)hcpu;
  3106. struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
  3107. struct rcu_node *rnp = rdp->mynode;
  3108. struct rcu_state *rsp;
  3109. trace_rcu_utilization(TPS("Start CPU hotplug"));
  3110. switch (action) {
  3111. case CPU_UP_PREPARE:
  3112. case CPU_UP_PREPARE_FROZEN:
  3113. rcu_prepare_cpu(cpu);
  3114. rcu_prepare_kthreads(cpu);
  3115. break;
  3116. case CPU_ONLINE:
  3117. case CPU_DOWN_FAILED:
  3118. rcu_boost_kthread_setaffinity(rnp, -1);
  3119. break;
  3120. case CPU_DOWN_PREPARE:
  3121. rcu_boost_kthread_setaffinity(rnp, cpu);
  3122. break;
  3123. case CPU_DYING:
  3124. case CPU_DYING_FROZEN:
  3125. for_each_rcu_flavor(rsp)
  3126. rcu_cleanup_dying_cpu(rsp);
  3127. break;
  3128. case CPU_DEAD:
  3129. case CPU_DEAD_FROZEN:
  3130. case CPU_UP_CANCELED:
  3131. case CPU_UP_CANCELED_FROZEN:
  3132. for_each_rcu_flavor(rsp)
  3133. rcu_cleanup_dead_cpu(cpu, rsp);
  3134. break;
  3135. default:
  3136. break;
  3137. }
  3138. trace_rcu_utilization(TPS("End CPU hotplug"));
  3139. return NOTIFY_OK;
  3140. }
  3141. static int rcu_pm_notify(struct notifier_block *self,
  3142. unsigned long action, void *hcpu)
  3143. {
  3144. switch (action) {
  3145. case PM_HIBERNATION_PREPARE:
  3146. case PM_SUSPEND_PREPARE:
  3147. if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
  3148. rcu_expedited = 1;
  3149. break;
  3150. case PM_POST_HIBERNATION:
  3151. case PM_POST_SUSPEND:
  3152. rcu_expedited = 0;
  3153. break;
  3154. default:
  3155. break;
  3156. }
  3157. return NOTIFY_OK;
  3158. }
  3159. /*
  3160. * Spawn the kthread that handles this RCU flavor's grace periods.
  3161. */
  3162. static int __init rcu_spawn_gp_kthread(void)
  3163. {
  3164. unsigned long flags;
  3165. struct rcu_node *rnp;
  3166. struct rcu_state *rsp;
  3167. struct task_struct *t;
  3168. for_each_rcu_flavor(rsp) {
  3169. t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
  3170. BUG_ON(IS_ERR(t));
  3171. rnp = rcu_get_root(rsp);
  3172. raw_spin_lock_irqsave(&rnp->lock, flags);
  3173. rsp->gp_kthread = t;
  3174. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3175. rcu_spawn_nocb_kthreads(rsp);
  3176. }
  3177. return 0;
  3178. }
  3179. early_initcall(rcu_spawn_gp_kthread);
  3180. /*
  3181. * This function is invoked towards the end of the scheduler's initialization
  3182. * process. Before this is called, the idle task might contain
  3183. * RCU read-side critical sections (during which time, this idle
  3184. * task is booting the system). After this function is called, the
  3185. * idle tasks are prohibited from containing RCU read-side critical
  3186. * sections. This function also enables RCU lockdep checking.
  3187. */
  3188. void rcu_scheduler_starting(void)
  3189. {
  3190. WARN_ON(num_online_cpus() != 1);
  3191. WARN_ON(nr_context_switches() > 0);
  3192. rcu_scheduler_active = 1;
  3193. }
  3194. /*
  3195. * Compute the per-level fanout, either using the exact fanout specified
  3196. * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
  3197. */
  3198. #ifdef CONFIG_RCU_FANOUT_EXACT
  3199. static void __init rcu_init_levelspread(struct rcu_state *rsp)
  3200. {
  3201. int i;
  3202. rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
  3203. for (i = rcu_num_lvls - 2; i >= 0; i--)
  3204. rsp->levelspread[i] = CONFIG_RCU_FANOUT;
  3205. }
  3206. #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
  3207. static void __init rcu_init_levelspread(struct rcu_state *rsp)
  3208. {
  3209. int ccur;
  3210. int cprv;
  3211. int i;
  3212. cprv = nr_cpu_ids;
  3213. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  3214. ccur = rsp->levelcnt[i];
  3215. rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
  3216. cprv = ccur;
  3217. }
  3218. }
  3219. #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
  3220. /*
  3221. * Helper function for rcu_init() that initializes one rcu_state structure.
  3222. */
  3223. static void __init rcu_init_one(struct rcu_state *rsp,
  3224. struct rcu_data __percpu *rda)
  3225. {
  3226. static const char * const buf[] = {
  3227. "rcu_node_0",
  3228. "rcu_node_1",
  3229. "rcu_node_2",
  3230. "rcu_node_3" }; /* Match MAX_RCU_LVLS */
  3231. static const char * const fqs[] = {
  3232. "rcu_node_fqs_0",
  3233. "rcu_node_fqs_1",
  3234. "rcu_node_fqs_2",
  3235. "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
  3236. static u8 fl_mask = 0x1;
  3237. int cpustride = 1;
  3238. int i;
  3239. int j;
  3240. struct rcu_node *rnp;
  3241. BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
  3242. /* Silence gcc 4.8 warning about array index out of range. */
  3243. if (rcu_num_lvls > RCU_NUM_LVLS)
  3244. panic("rcu_init_one: rcu_num_lvls overflow");
  3245. /* Initialize the level-tracking arrays. */
  3246. for (i = 0; i < rcu_num_lvls; i++)
  3247. rsp->levelcnt[i] = num_rcu_lvl[i];
  3248. for (i = 1; i < rcu_num_lvls; i++)
  3249. rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
  3250. rcu_init_levelspread(rsp);
  3251. rsp->flavor_mask = fl_mask;
  3252. fl_mask <<= 1;
  3253. /* Initialize the elements themselves, starting from the leaves. */
  3254. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  3255. cpustride *= rsp->levelspread[i];
  3256. rnp = rsp->level[i];
  3257. for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
  3258. raw_spin_lock_init(&rnp->lock);
  3259. lockdep_set_class_and_name(&rnp->lock,
  3260. &rcu_node_class[i], buf[i]);
  3261. raw_spin_lock_init(&rnp->fqslock);
  3262. lockdep_set_class_and_name(&rnp->fqslock,
  3263. &rcu_fqs_class[i], fqs[i]);
  3264. rnp->gpnum = rsp->gpnum;
  3265. rnp->completed = rsp->completed;
  3266. rnp->qsmask = 0;
  3267. rnp->qsmaskinit = 0;
  3268. rnp->grplo = j * cpustride;
  3269. rnp->grphi = (j + 1) * cpustride - 1;
  3270. if (rnp->grphi >= nr_cpu_ids)
  3271. rnp->grphi = nr_cpu_ids - 1;
  3272. if (i == 0) {
  3273. rnp->grpnum = 0;
  3274. rnp->grpmask = 0;
  3275. rnp->parent = NULL;
  3276. } else {
  3277. rnp->grpnum = j % rsp->levelspread[i - 1];
  3278. rnp->grpmask = 1UL << rnp->grpnum;
  3279. rnp->parent = rsp->level[i - 1] +
  3280. j / rsp->levelspread[i - 1];
  3281. }
  3282. rnp->level = i;
  3283. INIT_LIST_HEAD(&rnp->blkd_tasks);
  3284. rcu_init_one_nocb(rnp);
  3285. }
  3286. }
  3287. rsp->rda = rda;
  3288. init_waitqueue_head(&rsp->gp_wq);
  3289. rnp = rsp->level[rcu_num_lvls - 1];
  3290. for_each_possible_cpu(i) {
  3291. while (i > rnp->grphi)
  3292. rnp++;
  3293. per_cpu_ptr(rsp->rda, i)->mynode = rnp;
  3294. rcu_boot_init_percpu_data(i, rsp);
  3295. }
  3296. list_add(&rsp->flavors, &rcu_struct_flavors);
  3297. }
  3298. /*
  3299. * Compute the rcu_node tree geometry from kernel parameters. This cannot
  3300. * replace the definitions in tree.h because those are needed to size
  3301. * the ->node array in the rcu_state structure.
  3302. */
  3303. static void __init rcu_init_geometry(void)
  3304. {
  3305. ulong d;
  3306. int i;
  3307. int j;
  3308. int n = nr_cpu_ids;
  3309. int rcu_capacity[MAX_RCU_LVLS + 1];
  3310. /*
  3311. * Initialize any unspecified boot parameters.
  3312. * The default values of jiffies_till_first_fqs and
  3313. * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
  3314. * value, which is a function of HZ, then adding one for each
  3315. * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
  3316. */
  3317. d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
  3318. if (jiffies_till_first_fqs == ULONG_MAX)
  3319. jiffies_till_first_fqs = d;
  3320. if (jiffies_till_next_fqs == ULONG_MAX)
  3321. jiffies_till_next_fqs = d;
  3322. /* If the compile-time values are accurate, just leave. */
  3323. if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
  3324. nr_cpu_ids == NR_CPUS)
  3325. return;
  3326. pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
  3327. rcu_fanout_leaf, nr_cpu_ids);
  3328. /*
  3329. * Compute number of nodes that can be handled an rcu_node tree
  3330. * with the given number of levels. Setting rcu_capacity[0] makes
  3331. * some of the arithmetic easier.
  3332. */
  3333. rcu_capacity[0] = 1;
  3334. rcu_capacity[1] = rcu_fanout_leaf;
  3335. for (i = 2; i <= MAX_RCU_LVLS; i++)
  3336. rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
  3337. /*
  3338. * The boot-time rcu_fanout_leaf parameter is only permitted
  3339. * to increase the leaf-level fanout, not decrease it. Of course,
  3340. * the leaf-level fanout cannot exceed the number of bits in
  3341. * the rcu_node masks. Finally, the tree must be able to accommodate
  3342. * the configured number of CPUs. Complain and fall back to the
  3343. * compile-time values if these limits are exceeded.
  3344. */
  3345. if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
  3346. rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
  3347. n > rcu_capacity[MAX_RCU_LVLS]) {
  3348. WARN_ON(1);
  3349. return;
  3350. }
  3351. /* Calculate the number of rcu_nodes at each level of the tree. */
  3352. for (i = 1; i <= MAX_RCU_LVLS; i++)
  3353. if (n <= rcu_capacity[i]) {
  3354. for (j = 0; j <= i; j++)
  3355. num_rcu_lvl[j] =
  3356. DIV_ROUND_UP(n, rcu_capacity[i - j]);
  3357. rcu_num_lvls = i;
  3358. for (j = i + 1; j <= MAX_RCU_LVLS; j++)
  3359. num_rcu_lvl[j] = 0;
  3360. break;
  3361. }
  3362. /* Calculate the total number of rcu_node structures. */
  3363. rcu_num_nodes = 0;
  3364. for (i = 0; i <= MAX_RCU_LVLS; i++)
  3365. rcu_num_nodes += num_rcu_lvl[i];
  3366. rcu_num_nodes -= n;
  3367. }
  3368. void __init rcu_init(void)
  3369. {
  3370. int cpu;
  3371. rcu_bootup_announce();
  3372. rcu_init_geometry();
  3373. rcu_init_one(&rcu_bh_state, &rcu_bh_data);
  3374. rcu_init_one(&rcu_sched_state, &rcu_sched_data);
  3375. __rcu_init_preempt();
  3376. open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
  3377. /*
  3378. * We don't need protection against CPU-hotplug here because
  3379. * this is called early in boot, before either interrupts
  3380. * or the scheduler are operational.
  3381. */
  3382. cpu_notifier(rcu_cpu_notify, 0);
  3383. pm_notifier(rcu_pm_notify, 0);
  3384. for_each_online_cpu(cpu)
  3385. rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
  3386. }
  3387. #include "tree_plugin.h"