devmap.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412
  1. /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
  2. *
  3. * This program is free software; you can redistribute it and/or
  4. * modify it under the terms of version 2 of the GNU General Public
  5. * License as published by the Free Software Foundation.
  6. *
  7. * This program is distributed in the hope that it will be useful, but
  8. * WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  10. * General Public License for more details.
  11. */
  12. /* Devmaps primary use is as a backend map for XDP BPF helper call
  13. * bpf_redirect_map(). Because XDP is mostly concerned with performance we
  14. * spent some effort to ensure the datapath with redirect maps does not use
  15. * any locking. This is a quick note on the details.
  16. *
  17. * We have three possible paths to get into the devmap control plane bpf
  18. * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
  19. * will invoke an update, delete, or lookup operation. To ensure updates and
  20. * deletes appear atomic from the datapath side xchg() is used to modify the
  21. * netdev_map array. Then because the datapath does a lookup into the netdev_map
  22. * array (read-only) from an RCU critical section we use call_rcu() to wait for
  23. * an rcu grace period before free'ing the old data structures. This ensures the
  24. * datapath always has a valid copy. However, the datapath does a "flush"
  25. * operation that pushes any pending packets in the driver outside the RCU
  26. * critical section. Each bpf_dtab_netdev tracks these pending operations using
  27. * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed
  28. * until all bits are cleared indicating outstanding flush operations have
  29. * completed.
  30. *
  31. * BPF syscalls may race with BPF program calls on any of the update, delete
  32. * or lookup operations. As noted above the xchg() operation also keep the
  33. * netdev_map consistent in this case. From the devmap side BPF programs
  34. * calling into these operations are the same as multiple user space threads
  35. * making system calls.
  36. *
  37. * Finally, any of the above may race with a netdev_unregister notifier. The
  38. * unregister notifier must search for net devices in the map structure that
  39. * contain a reference to the net device and remove them. This is a two step
  40. * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
  41. * check to see if the ifindex is the same as the net_device being removed.
  42. * When removing the dev a cmpxchg() is used to ensure the correct dev is
  43. * removed, in the case of a concurrent update or delete operation it is
  44. * possible that the initially referenced dev is no longer in the map. As the
  45. * notifier hook walks the map we know that new dev references can not be
  46. * added by the user because core infrastructure ensures dev_get_by_index()
  47. * calls will fail at this point.
  48. */
  49. #include <linux/bpf.h>
  50. #include <linux/filter.h>
  51. struct bpf_dtab_netdev {
  52. struct net_device *dev;
  53. struct bpf_dtab *dtab;
  54. unsigned int bit;
  55. struct rcu_head rcu;
  56. };
  57. struct bpf_dtab {
  58. struct bpf_map map;
  59. struct bpf_dtab_netdev **netdev_map;
  60. unsigned long __percpu *flush_needed;
  61. struct list_head list;
  62. };
  63. static DEFINE_SPINLOCK(dev_map_lock);
  64. static LIST_HEAD(dev_map_list);
  65. static u64 dev_map_bitmap_size(const union bpf_attr *attr)
  66. {
  67. return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long);
  68. }
  69. static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
  70. {
  71. struct bpf_dtab *dtab;
  72. int err = -EINVAL;
  73. u64 cost;
  74. /* check sanity of attributes */
  75. if (attr->max_entries == 0 || attr->key_size != 4 ||
  76. attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
  77. return ERR_PTR(-EINVAL);
  78. dtab = kzalloc(sizeof(*dtab), GFP_USER);
  79. if (!dtab)
  80. return ERR_PTR(-ENOMEM);
  81. /* mandatory map attributes */
  82. dtab->map.map_type = attr->map_type;
  83. dtab->map.key_size = attr->key_size;
  84. dtab->map.value_size = attr->value_size;
  85. dtab->map.max_entries = attr->max_entries;
  86. dtab->map.map_flags = attr->map_flags;
  87. dtab->map.numa_node = bpf_map_attr_numa_node(attr);
  88. /* make sure page count doesn't overflow */
  89. cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
  90. cost += dev_map_bitmap_size(attr) * num_possible_cpus();
  91. if (cost >= U32_MAX - PAGE_SIZE)
  92. goto free_dtab;
  93. dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
  94. /* if map size is larger than memlock limit, reject it early */
  95. err = bpf_map_precharge_memlock(dtab->map.pages);
  96. if (err)
  97. goto free_dtab;
  98. err = -ENOMEM;
  99. /* A per cpu bitfield with a bit per possible net device */
  100. dtab->flush_needed = __alloc_percpu_gfp(dev_map_bitmap_size(attr),
  101. __alignof__(unsigned long),
  102. GFP_KERNEL | __GFP_NOWARN);
  103. if (!dtab->flush_needed)
  104. goto free_dtab;
  105. dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
  106. sizeof(struct bpf_dtab_netdev *),
  107. dtab->map.numa_node);
  108. if (!dtab->netdev_map)
  109. goto free_dtab;
  110. spin_lock(&dev_map_lock);
  111. list_add_tail_rcu(&dtab->list, &dev_map_list);
  112. spin_unlock(&dev_map_lock);
  113. return &dtab->map;
  114. free_dtab:
  115. free_percpu(dtab->flush_needed);
  116. kfree(dtab);
  117. return ERR_PTR(err);
  118. }
  119. static void dev_map_free(struct bpf_map *map)
  120. {
  121. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  122. int i, cpu;
  123. /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
  124. * so the programs (can be more than one that used this map) were
  125. * disconnected from events. Wait for outstanding critical sections in
  126. * these programs to complete. The rcu critical section only guarantees
  127. * no further reads against netdev_map. It does __not__ ensure pending
  128. * flush operations (if any) are complete.
  129. */
  130. spin_lock(&dev_map_lock);
  131. list_del_rcu(&dtab->list);
  132. spin_unlock(&dev_map_lock);
  133. synchronize_rcu();
  134. /* To ensure all pending flush operations have completed wait for flush
  135. * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
  136. * Because the above synchronize_rcu() ensures the map is disconnected
  137. * from the program we can assume no new bits will be set.
  138. */
  139. for_each_online_cpu(cpu) {
  140. unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu);
  141. while (!bitmap_empty(bitmap, dtab->map.max_entries))
  142. cond_resched();
  143. }
  144. for (i = 0; i < dtab->map.max_entries; i++) {
  145. struct bpf_dtab_netdev *dev;
  146. dev = dtab->netdev_map[i];
  147. if (!dev)
  148. continue;
  149. dev_put(dev->dev);
  150. kfree(dev);
  151. }
  152. free_percpu(dtab->flush_needed);
  153. bpf_map_area_free(dtab->netdev_map);
  154. kfree(dtab);
  155. }
  156. static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
  157. {
  158. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  159. u32 index = key ? *(u32 *)key : U32_MAX;
  160. u32 *next = next_key;
  161. if (index >= dtab->map.max_entries) {
  162. *next = 0;
  163. return 0;
  164. }
  165. if (index == dtab->map.max_entries - 1)
  166. return -ENOENT;
  167. *next = index + 1;
  168. return 0;
  169. }
  170. void __dev_map_insert_ctx(struct bpf_map *map, u32 bit)
  171. {
  172. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  173. unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
  174. __set_bit(bit, bitmap);
  175. }
  176. /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
  177. * from the driver before returning from its napi->poll() routine. The poll()
  178. * routine is called either from busy_poll context or net_rx_action signaled
  179. * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
  180. * net device can be torn down. On devmap tear down we ensure the ctx bitmap
  181. * is zeroed before completing to ensure all flush operations have completed.
  182. */
  183. void __dev_map_flush(struct bpf_map *map)
  184. {
  185. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  186. unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
  187. u32 bit;
  188. for_each_set_bit(bit, bitmap, map->max_entries) {
  189. struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]);
  190. struct net_device *netdev;
  191. /* This is possible if the dev entry is removed by user space
  192. * between xdp redirect and flush op.
  193. */
  194. if (unlikely(!dev))
  195. continue;
  196. __clear_bit(bit, bitmap);
  197. netdev = dev->dev;
  198. if (likely(netdev->netdev_ops->ndo_xdp_flush))
  199. netdev->netdev_ops->ndo_xdp_flush(netdev);
  200. }
  201. }
  202. /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
  203. * update happens in parallel here a dev_put wont happen until after reading the
  204. * ifindex.
  205. */
  206. struct net_device *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
  207. {
  208. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  209. struct bpf_dtab_netdev *dev;
  210. if (key >= map->max_entries)
  211. return NULL;
  212. dev = READ_ONCE(dtab->netdev_map[key]);
  213. return dev ? dev->dev : NULL;
  214. }
  215. static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
  216. {
  217. struct net_device *dev = __dev_map_lookup_elem(map, *(u32 *)key);
  218. return dev ? &dev->ifindex : NULL;
  219. }
  220. static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
  221. {
  222. if (dev->dev->netdev_ops->ndo_xdp_flush) {
  223. struct net_device *fl = dev->dev;
  224. unsigned long *bitmap;
  225. int cpu;
  226. for_each_online_cpu(cpu) {
  227. bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu);
  228. __clear_bit(dev->bit, bitmap);
  229. fl->netdev_ops->ndo_xdp_flush(dev->dev);
  230. }
  231. }
  232. }
  233. static void __dev_map_entry_free(struct rcu_head *rcu)
  234. {
  235. struct bpf_dtab_netdev *dev;
  236. dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
  237. dev_map_flush_old(dev);
  238. dev_put(dev->dev);
  239. kfree(dev);
  240. }
  241. static int dev_map_delete_elem(struct bpf_map *map, void *key)
  242. {
  243. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  244. struct bpf_dtab_netdev *old_dev;
  245. int k = *(u32 *)key;
  246. if (k >= map->max_entries)
  247. return -EINVAL;
  248. /* Use call_rcu() here to ensure any rcu critical sections have
  249. * completed, but this does not guarantee a flush has happened
  250. * yet. Because driver side rcu_read_lock/unlock only protects the
  251. * running XDP program. However, for pending flush operations the
  252. * dev and ctx are stored in another per cpu map. And additionally,
  253. * the driver tear down ensures all soft irqs are complete before
  254. * removing the net device in the case of dev_put equals zero.
  255. */
  256. old_dev = xchg(&dtab->netdev_map[k], NULL);
  257. if (old_dev)
  258. call_rcu(&old_dev->rcu, __dev_map_entry_free);
  259. return 0;
  260. }
  261. static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
  262. u64 map_flags)
  263. {
  264. struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
  265. struct net *net = current->nsproxy->net_ns;
  266. struct bpf_dtab_netdev *dev, *old_dev;
  267. u32 i = *(u32 *)key;
  268. u32 ifindex = *(u32 *)value;
  269. if (unlikely(map_flags > BPF_EXIST))
  270. return -EINVAL;
  271. if (unlikely(i >= dtab->map.max_entries))
  272. return -E2BIG;
  273. if (unlikely(map_flags == BPF_NOEXIST))
  274. return -EEXIST;
  275. if (!ifindex) {
  276. dev = NULL;
  277. } else {
  278. dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN,
  279. map->numa_node);
  280. if (!dev)
  281. return -ENOMEM;
  282. dev->dev = dev_get_by_index(net, ifindex);
  283. if (!dev->dev) {
  284. kfree(dev);
  285. return -EINVAL;
  286. }
  287. dev->bit = i;
  288. dev->dtab = dtab;
  289. }
  290. /* Use call_rcu() here to ensure rcu critical sections have completed
  291. * Remembering the driver side flush operation will happen before the
  292. * net device is removed.
  293. */
  294. old_dev = xchg(&dtab->netdev_map[i], dev);
  295. if (old_dev)
  296. call_rcu(&old_dev->rcu, __dev_map_entry_free);
  297. return 0;
  298. }
  299. const struct bpf_map_ops dev_map_ops = {
  300. .map_alloc = dev_map_alloc,
  301. .map_free = dev_map_free,
  302. .map_get_next_key = dev_map_get_next_key,
  303. .map_lookup_elem = dev_map_lookup_elem,
  304. .map_update_elem = dev_map_update_elem,
  305. .map_delete_elem = dev_map_delete_elem,
  306. };
  307. static int dev_map_notification(struct notifier_block *notifier,
  308. ulong event, void *ptr)
  309. {
  310. struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
  311. struct bpf_dtab *dtab;
  312. int i;
  313. switch (event) {
  314. case NETDEV_UNREGISTER:
  315. /* This rcu_read_lock/unlock pair is needed because
  316. * dev_map_list is an RCU list AND to ensure a delete
  317. * operation does not free a netdev_map entry while we
  318. * are comparing it against the netdev being unregistered.
  319. */
  320. rcu_read_lock();
  321. list_for_each_entry_rcu(dtab, &dev_map_list, list) {
  322. for (i = 0; i < dtab->map.max_entries; i++) {
  323. struct bpf_dtab_netdev *dev, *odev;
  324. dev = READ_ONCE(dtab->netdev_map[i]);
  325. if (!dev ||
  326. dev->dev->ifindex != netdev->ifindex)
  327. continue;
  328. odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
  329. if (dev == odev)
  330. call_rcu(&dev->rcu,
  331. __dev_map_entry_free);
  332. }
  333. }
  334. rcu_read_unlock();
  335. break;
  336. default:
  337. break;
  338. }
  339. return NOTIFY_OK;
  340. }
  341. static struct notifier_block dev_map_notifier = {
  342. .notifier_call = dev_map_notification,
  343. };
  344. static int __init dev_map_init(void)
  345. {
  346. register_netdevice_notifier(&dev_map_notifier);
  347. return 0;
  348. }
  349. subsys_initcall(dev_map_init);