core.c 188 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <asm/switch_to.h>
  76. #include <asm/tlb.h>
  77. #include <asm/irq_regs.h>
  78. #include <asm/mutex.h>
  79. #ifdef CONFIG_PARAVIRT
  80. #include <asm/paravirt.h>
  81. #endif
  82. #include "sched.h"
  83. #include "../workqueue_internal.h"
  84. #include "../smpboot.h"
  85. #define CREATE_TRACE_POINTS
  86. #include <trace/events/sched.h>
  87. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  88. {
  89. unsigned long delta;
  90. ktime_t soft, hard, now;
  91. for (;;) {
  92. if (hrtimer_active(period_timer))
  93. break;
  94. now = hrtimer_cb_get_time(period_timer);
  95. hrtimer_forward(period_timer, now, period);
  96. soft = hrtimer_get_softexpires(period_timer);
  97. hard = hrtimer_get_expires(period_timer);
  98. delta = ktime_to_ns(ktime_sub(hard, soft));
  99. __hrtimer_start_range_ns(period_timer, soft, delta,
  100. HRTIMER_MODE_ABS_PINNED, 0);
  101. }
  102. }
  103. DEFINE_MUTEX(sched_domains_mutex);
  104. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  105. static void update_rq_clock_task(struct rq *rq, s64 delta);
  106. void update_rq_clock(struct rq *rq)
  107. {
  108. s64 delta;
  109. if (rq->skip_clock_update > 0)
  110. return;
  111. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  112. rq->clock += delta;
  113. update_rq_clock_task(rq, delta);
  114. }
  115. /*
  116. * Debugging: various feature bits
  117. */
  118. #define SCHED_FEAT(name, enabled) \
  119. (1UL << __SCHED_FEAT_##name) * enabled |
  120. const_debug unsigned int sysctl_sched_features =
  121. #include "features.h"
  122. 0;
  123. #undef SCHED_FEAT
  124. #ifdef CONFIG_SCHED_DEBUG
  125. #define SCHED_FEAT(name, enabled) \
  126. #name ,
  127. static const char * const sched_feat_names[] = {
  128. #include "features.h"
  129. };
  130. #undef SCHED_FEAT
  131. static int sched_feat_show(struct seq_file *m, void *v)
  132. {
  133. int i;
  134. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  135. if (!(sysctl_sched_features & (1UL << i)))
  136. seq_puts(m, "NO_");
  137. seq_printf(m, "%s ", sched_feat_names[i]);
  138. }
  139. seq_puts(m, "\n");
  140. return 0;
  141. }
  142. #ifdef HAVE_JUMP_LABEL
  143. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  144. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  145. #define SCHED_FEAT(name, enabled) \
  146. jump_label_key__##enabled ,
  147. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  148. #include "features.h"
  149. };
  150. #undef SCHED_FEAT
  151. static void sched_feat_disable(int i)
  152. {
  153. if (static_key_enabled(&sched_feat_keys[i]))
  154. static_key_slow_dec(&sched_feat_keys[i]);
  155. }
  156. static void sched_feat_enable(int i)
  157. {
  158. if (!static_key_enabled(&sched_feat_keys[i]))
  159. static_key_slow_inc(&sched_feat_keys[i]);
  160. }
  161. #else
  162. static void sched_feat_disable(int i) { };
  163. static void sched_feat_enable(int i) { };
  164. #endif /* HAVE_JUMP_LABEL */
  165. static int sched_feat_set(char *cmp)
  166. {
  167. int i;
  168. int neg = 0;
  169. if (strncmp(cmp, "NO_", 3) == 0) {
  170. neg = 1;
  171. cmp += 3;
  172. }
  173. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  174. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  175. if (neg) {
  176. sysctl_sched_features &= ~(1UL << i);
  177. sched_feat_disable(i);
  178. } else {
  179. sysctl_sched_features |= (1UL << i);
  180. sched_feat_enable(i);
  181. }
  182. break;
  183. }
  184. }
  185. return i;
  186. }
  187. static ssize_t
  188. sched_feat_write(struct file *filp, const char __user *ubuf,
  189. size_t cnt, loff_t *ppos)
  190. {
  191. char buf[64];
  192. char *cmp;
  193. int i;
  194. if (cnt > 63)
  195. cnt = 63;
  196. if (copy_from_user(&buf, ubuf, cnt))
  197. return -EFAULT;
  198. buf[cnt] = 0;
  199. cmp = strstrip(buf);
  200. i = sched_feat_set(cmp);
  201. if (i == __SCHED_FEAT_NR)
  202. return -EINVAL;
  203. *ppos += cnt;
  204. return cnt;
  205. }
  206. static int sched_feat_open(struct inode *inode, struct file *filp)
  207. {
  208. return single_open(filp, sched_feat_show, NULL);
  209. }
  210. static const struct file_operations sched_feat_fops = {
  211. .open = sched_feat_open,
  212. .write = sched_feat_write,
  213. .read = seq_read,
  214. .llseek = seq_lseek,
  215. .release = single_release,
  216. };
  217. static __init int sched_init_debug(void)
  218. {
  219. debugfs_create_file("sched_features", 0644, NULL, NULL,
  220. &sched_feat_fops);
  221. return 0;
  222. }
  223. late_initcall(sched_init_debug);
  224. #endif /* CONFIG_SCHED_DEBUG */
  225. /*
  226. * Number of tasks to iterate in a single balance run.
  227. * Limited because this is done with IRQs disabled.
  228. */
  229. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  230. /*
  231. * period over which we average the RT time consumption, measured
  232. * in ms.
  233. *
  234. * default: 1s
  235. */
  236. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  237. /*
  238. * period over which we measure -rt task cpu usage in us.
  239. * default: 1s
  240. */
  241. unsigned int sysctl_sched_rt_period = 1000000;
  242. __read_mostly int scheduler_running;
  243. /*
  244. * part of the period that we allow rt tasks to run in us.
  245. * default: 0.95s
  246. */
  247. int sysctl_sched_rt_runtime = 950000;
  248. /*
  249. * __task_rq_lock - lock the rq @p resides on.
  250. */
  251. static inline struct rq *__task_rq_lock(struct task_struct *p)
  252. __acquires(rq->lock)
  253. {
  254. struct rq *rq;
  255. lockdep_assert_held(&p->pi_lock);
  256. for (;;) {
  257. rq = task_rq(p);
  258. raw_spin_lock(&rq->lock);
  259. if (likely(rq == task_rq(p)))
  260. return rq;
  261. raw_spin_unlock(&rq->lock);
  262. }
  263. }
  264. /*
  265. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  266. */
  267. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  268. __acquires(p->pi_lock)
  269. __acquires(rq->lock)
  270. {
  271. struct rq *rq;
  272. for (;;) {
  273. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  274. rq = task_rq(p);
  275. raw_spin_lock(&rq->lock);
  276. if (likely(rq == task_rq(p)))
  277. return rq;
  278. raw_spin_unlock(&rq->lock);
  279. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  280. }
  281. }
  282. static void __task_rq_unlock(struct rq *rq)
  283. __releases(rq->lock)
  284. {
  285. raw_spin_unlock(&rq->lock);
  286. }
  287. static inline void
  288. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  289. __releases(rq->lock)
  290. __releases(p->pi_lock)
  291. {
  292. raw_spin_unlock(&rq->lock);
  293. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  294. }
  295. /*
  296. * this_rq_lock - lock this runqueue and disable interrupts.
  297. */
  298. static struct rq *this_rq_lock(void)
  299. __acquires(rq->lock)
  300. {
  301. struct rq *rq;
  302. local_irq_disable();
  303. rq = this_rq();
  304. raw_spin_lock(&rq->lock);
  305. return rq;
  306. }
  307. #ifdef CONFIG_SCHED_HRTICK
  308. /*
  309. * Use HR-timers to deliver accurate preemption points.
  310. */
  311. static void hrtick_clear(struct rq *rq)
  312. {
  313. if (hrtimer_active(&rq->hrtick_timer))
  314. hrtimer_cancel(&rq->hrtick_timer);
  315. }
  316. /*
  317. * High-resolution timer tick.
  318. * Runs from hardirq context with interrupts disabled.
  319. */
  320. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  321. {
  322. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  323. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  324. raw_spin_lock(&rq->lock);
  325. update_rq_clock(rq);
  326. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  327. raw_spin_unlock(&rq->lock);
  328. return HRTIMER_NORESTART;
  329. }
  330. #ifdef CONFIG_SMP
  331. static int __hrtick_restart(struct rq *rq)
  332. {
  333. struct hrtimer *timer = &rq->hrtick_timer;
  334. ktime_t time = hrtimer_get_softexpires(timer);
  335. return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
  336. }
  337. /*
  338. * called from hardirq (IPI) context
  339. */
  340. static void __hrtick_start(void *arg)
  341. {
  342. struct rq *rq = arg;
  343. raw_spin_lock(&rq->lock);
  344. __hrtick_restart(rq);
  345. rq->hrtick_csd_pending = 0;
  346. raw_spin_unlock(&rq->lock);
  347. }
  348. /*
  349. * Called to set the hrtick timer state.
  350. *
  351. * called with rq->lock held and irqs disabled
  352. */
  353. void hrtick_start(struct rq *rq, u64 delay)
  354. {
  355. struct hrtimer *timer = &rq->hrtick_timer;
  356. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  357. hrtimer_set_expires(timer, time);
  358. if (rq == this_rq()) {
  359. __hrtick_restart(rq);
  360. } else if (!rq->hrtick_csd_pending) {
  361. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  362. rq->hrtick_csd_pending = 1;
  363. }
  364. }
  365. static int
  366. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  367. {
  368. int cpu = (int)(long)hcpu;
  369. switch (action) {
  370. case CPU_UP_CANCELED:
  371. case CPU_UP_CANCELED_FROZEN:
  372. case CPU_DOWN_PREPARE:
  373. case CPU_DOWN_PREPARE_FROZEN:
  374. case CPU_DEAD:
  375. case CPU_DEAD_FROZEN:
  376. hrtick_clear(cpu_rq(cpu));
  377. return NOTIFY_OK;
  378. }
  379. return NOTIFY_DONE;
  380. }
  381. static __init void init_hrtick(void)
  382. {
  383. hotcpu_notifier(hotplug_hrtick, 0);
  384. }
  385. #else
  386. /*
  387. * Called to set the hrtick timer state.
  388. *
  389. * called with rq->lock held and irqs disabled
  390. */
  391. void hrtick_start(struct rq *rq, u64 delay)
  392. {
  393. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  394. HRTIMER_MODE_REL_PINNED, 0);
  395. }
  396. static inline void init_hrtick(void)
  397. {
  398. }
  399. #endif /* CONFIG_SMP */
  400. static void init_rq_hrtick(struct rq *rq)
  401. {
  402. #ifdef CONFIG_SMP
  403. rq->hrtick_csd_pending = 0;
  404. rq->hrtick_csd.flags = 0;
  405. rq->hrtick_csd.func = __hrtick_start;
  406. rq->hrtick_csd.info = rq;
  407. #endif
  408. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  409. rq->hrtick_timer.function = hrtick;
  410. }
  411. #else /* CONFIG_SCHED_HRTICK */
  412. static inline void hrtick_clear(struct rq *rq)
  413. {
  414. }
  415. static inline void init_rq_hrtick(struct rq *rq)
  416. {
  417. }
  418. static inline void init_hrtick(void)
  419. {
  420. }
  421. #endif /* CONFIG_SCHED_HRTICK */
  422. /*
  423. * resched_task - mark a task 'to be rescheduled now'.
  424. *
  425. * On UP this means the setting of the need_resched flag, on SMP it
  426. * might also involve a cross-CPU call to trigger the scheduler on
  427. * the target CPU.
  428. */
  429. void resched_task(struct task_struct *p)
  430. {
  431. int cpu;
  432. lockdep_assert_held(&task_rq(p)->lock);
  433. if (test_tsk_need_resched(p))
  434. return;
  435. set_tsk_need_resched(p);
  436. cpu = task_cpu(p);
  437. if (cpu == smp_processor_id()) {
  438. set_preempt_need_resched();
  439. return;
  440. }
  441. /* NEED_RESCHED must be visible before we test polling */
  442. smp_mb();
  443. if (!tsk_is_polling(p))
  444. smp_send_reschedule(cpu);
  445. }
  446. void resched_cpu(int cpu)
  447. {
  448. struct rq *rq = cpu_rq(cpu);
  449. unsigned long flags;
  450. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  451. return;
  452. resched_task(cpu_curr(cpu));
  453. raw_spin_unlock_irqrestore(&rq->lock, flags);
  454. }
  455. #ifdef CONFIG_SMP
  456. #ifdef CONFIG_NO_HZ_COMMON
  457. /*
  458. * In the semi idle case, use the nearest busy cpu for migrating timers
  459. * from an idle cpu. This is good for power-savings.
  460. *
  461. * We don't do similar optimization for completely idle system, as
  462. * selecting an idle cpu will add more delays to the timers than intended
  463. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  464. */
  465. int get_nohz_timer_target(void)
  466. {
  467. int cpu = smp_processor_id();
  468. int i;
  469. struct sched_domain *sd;
  470. rcu_read_lock();
  471. for_each_domain(cpu, sd) {
  472. for_each_cpu(i, sched_domain_span(sd)) {
  473. if (!idle_cpu(i)) {
  474. cpu = i;
  475. goto unlock;
  476. }
  477. }
  478. }
  479. unlock:
  480. rcu_read_unlock();
  481. return cpu;
  482. }
  483. /*
  484. * When add_timer_on() enqueues a timer into the timer wheel of an
  485. * idle CPU then this timer might expire before the next timer event
  486. * which is scheduled to wake up that CPU. In case of a completely
  487. * idle system the next event might even be infinite time into the
  488. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  489. * leaves the inner idle loop so the newly added timer is taken into
  490. * account when the CPU goes back to idle and evaluates the timer
  491. * wheel for the next timer event.
  492. */
  493. static void wake_up_idle_cpu(int cpu)
  494. {
  495. struct rq *rq = cpu_rq(cpu);
  496. if (cpu == smp_processor_id())
  497. return;
  498. /*
  499. * This is safe, as this function is called with the timer
  500. * wheel base lock of (cpu) held. When the CPU is on the way
  501. * to idle and has not yet set rq->curr to idle then it will
  502. * be serialized on the timer wheel base lock and take the new
  503. * timer into account automatically.
  504. */
  505. if (rq->curr != rq->idle)
  506. return;
  507. /*
  508. * We can set TIF_RESCHED on the idle task of the other CPU
  509. * lockless. The worst case is that the other CPU runs the
  510. * idle task through an additional NOOP schedule()
  511. */
  512. set_tsk_need_resched(rq->idle);
  513. /* NEED_RESCHED must be visible before we test polling */
  514. smp_mb();
  515. if (!tsk_is_polling(rq->idle))
  516. smp_send_reschedule(cpu);
  517. }
  518. static bool wake_up_full_nohz_cpu(int cpu)
  519. {
  520. if (tick_nohz_full_cpu(cpu)) {
  521. if (cpu != smp_processor_id() ||
  522. tick_nohz_tick_stopped())
  523. smp_send_reschedule(cpu);
  524. return true;
  525. }
  526. return false;
  527. }
  528. void wake_up_nohz_cpu(int cpu)
  529. {
  530. if (!wake_up_full_nohz_cpu(cpu))
  531. wake_up_idle_cpu(cpu);
  532. }
  533. static inline bool got_nohz_idle_kick(void)
  534. {
  535. int cpu = smp_processor_id();
  536. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  537. return false;
  538. if (idle_cpu(cpu) && !need_resched())
  539. return true;
  540. /*
  541. * We can't run Idle Load Balance on this CPU for this time so we
  542. * cancel it and clear NOHZ_BALANCE_KICK
  543. */
  544. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  545. return false;
  546. }
  547. #else /* CONFIG_NO_HZ_COMMON */
  548. static inline bool got_nohz_idle_kick(void)
  549. {
  550. return false;
  551. }
  552. #endif /* CONFIG_NO_HZ_COMMON */
  553. #ifdef CONFIG_NO_HZ_FULL
  554. bool sched_can_stop_tick(void)
  555. {
  556. struct rq *rq;
  557. rq = this_rq();
  558. /* Make sure rq->nr_running update is visible after the IPI */
  559. smp_rmb();
  560. /* More than one running task need preemption */
  561. if (rq->nr_running > 1)
  562. return false;
  563. return true;
  564. }
  565. #endif /* CONFIG_NO_HZ_FULL */
  566. void sched_avg_update(struct rq *rq)
  567. {
  568. s64 period = sched_avg_period();
  569. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  570. /*
  571. * Inline assembly required to prevent the compiler
  572. * optimising this loop into a divmod call.
  573. * See __iter_div_u64_rem() for another example of this.
  574. */
  575. asm("" : "+rm" (rq->age_stamp));
  576. rq->age_stamp += period;
  577. rq->rt_avg /= 2;
  578. }
  579. }
  580. #endif /* CONFIG_SMP */
  581. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  582. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  583. /*
  584. * Iterate task_group tree rooted at *from, calling @down when first entering a
  585. * node and @up when leaving it for the final time.
  586. *
  587. * Caller must hold rcu_lock or sufficient equivalent.
  588. */
  589. int walk_tg_tree_from(struct task_group *from,
  590. tg_visitor down, tg_visitor up, void *data)
  591. {
  592. struct task_group *parent, *child;
  593. int ret;
  594. parent = from;
  595. down:
  596. ret = (*down)(parent, data);
  597. if (ret)
  598. goto out;
  599. list_for_each_entry_rcu(child, &parent->children, siblings) {
  600. parent = child;
  601. goto down;
  602. up:
  603. continue;
  604. }
  605. ret = (*up)(parent, data);
  606. if (ret || parent == from)
  607. goto out;
  608. child = parent;
  609. parent = parent->parent;
  610. if (parent)
  611. goto up;
  612. out:
  613. return ret;
  614. }
  615. int tg_nop(struct task_group *tg, void *data)
  616. {
  617. return 0;
  618. }
  619. #endif
  620. static void set_load_weight(struct task_struct *p)
  621. {
  622. int prio = p->static_prio - MAX_RT_PRIO;
  623. struct load_weight *load = &p->se.load;
  624. /*
  625. * SCHED_IDLE tasks get minimal weight:
  626. */
  627. if (p->policy == SCHED_IDLE) {
  628. load->weight = scale_load(WEIGHT_IDLEPRIO);
  629. load->inv_weight = WMULT_IDLEPRIO;
  630. return;
  631. }
  632. load->weight = scale_load(prio_to_weight[prio]);
  633. load->inv_weight = prio_to_wmult[prio];
  634. }
  635. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  636. {
  637. update_rq_clock(rq);
  638. sched_info_queued(rq, p);
  639. p->sched_class->enqueue_task(rq, p, flags);
  640. }
  641. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  642. {
  643. update_rq_clock(rq);
  644. sched_info_dequeued(rq, p);
  645. p->sched_class->dequeue_task(rq, p, flags);
  646. }
  647. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  648. {
  649. if (task_contributes_to_load(p))
  650. rq->nr_uninterruptible--;
  651. enqueue_task(rq, p, flags);
  652. }
  653. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  654. {
  655. if (task_contributes_to_load(p))
  656. rq->nr_uninterruptible++;
  657. dequeue_task(rq, p, flags);
  658. }
  659. static void update_rq_clock_task(struct rq *rq, s64 delta)
  660. {
  661. /*
  662. * In theory, the compile should just see 0 here, and optimize out the call
  663. * to sched_rt_avg_update. But I don't trust it...
  664. */
  665. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  666. s64 steal = 0, irq_delta = 0;
  667. #endif
  668. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  669. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  670. /*
  671. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  672. * this case when a previous update_rq_clock() happened inside a
  673. * {soft,}irq region.
  674. *
  675. * When this happens, we stop ->clock_task and only update the
  676. * prev_irq_time stamp to account for the part that fit, so that a next
  677. * update will consume the rest. This ensures ->clock_task is
  678. * monotonic.
  679. *
  680. * It does however cause some slight miss-attribution of {soft,}irq
  681. * time, a more accurate solution would be to update the irq_time using
  682. * the current rq->clock timestamp, except that would require using
  683. * atomic ops.
  684. */
  685. if (irq_delta > delta)
  686. irq_delta = delta;
  687. rq->prev_irq_time += irq_delta;
  688. delta -= irq_delta;
  689. #endif
  690. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  691. if (static_key_false((&paravirt_steal_rq_enabled))) {
  692. u64 st;
  693. steal = paravirt_steal_clock(cpu_of(rq));
  694. steal -= rq->prev_steal_time_rq;
  695. if (unlikely(steal > delta))
  696. steal = delta;
  697. st = steal_ticks(steal);
  698. steal = st * TICK_NSEC;
  699. rq->prev_steal_time_rq += steal;
  700. delta -= steal;
  701. }
  702. #endif
  703. rq->clock_task += delta;
  704. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  705. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  706. sched_rt_avg_update(rq, irq_delta + steal);
  707. #endif
  708. }
  709. void sched_set_stop_task(int cpu, struct task_struct *stop)
  710. {
  711. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  712. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  713. if (stop) {
  714. /*
  715. * Make it appear like a SCHED_FIFO task, its something
  716. * userspace knows about and won't get confused about.
  717. *
  718. * Also, it will make PI more or less work without too
  719. * much confusion -- but then, stop work should not
  720. * rely on PI working anyway.
  721. */
  722. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  723. stop->sched_class = &stop_sched_class;
  724. }
  725. cpu_rq(cpu)->stop = stop;
  726. if (old_stop) {
  727. /*
  728. * Reset it back to a normal scheduling class so that
  729. * it can die in pieces.
  730. */
  731. old_stop->sched_class = &rt_sched_class;
  732. }
  733. }
  734. /*
  735. * __normal_prio - return the priority that is based on the static prio
  736. */
  737. static inline int __normal_prio(struct task_struct *p)
  738. {
  739. return p->static_prio;
  740. }
  741. /*
  742. * Calculate the expected normal priority: i.e. priority
  743. * without taking RT-inheritance into account. Might be
  744. * boosted by interactivity modifiers. Changes upon fork,
  745. * setprio syscalls, and whenever the interactivity
  746. * estimator recalculates.
  747. */
  748. static inline int normal_prio(struct task_struct *p)
  749. {
  750. int prio;
  751. if (task_has_dl_policy(p))
  752. prio = MAX_DL_PRIO-1;
  753. else if (task_has_rt_policy(p))
  754. prio = MAX_RT_PRIO-1 - p->rt_priority;
  755. else
  756. prio = __normal_prio(p);
  757. return prio;
  758. }
  759. /*
  760. * Calculate the current priority, i.e. the priority
  761. * taken into account by the scheduler. This value might
  762. * be boosted by RT tasks, or might be boosted by
  763. * interactivity modifiers. Will be RT if the task got
  764. * RT-boosted. If not then it returns p->normal_prio.
  765. */
  766. static int effective_prio(struct task_struct *p)
  767. {
  768. p->normal_prio = normal_prio(p);
  769. /*
  770. * If we are RT tasks or we were boosted to RT priority,
  771. * keep the priority unchanged. Otherwise, update priority
  772. * to the normal priority:
  773. */
  774. if (!rt_prio(p->prio))
  775. return p->normal_prio;
  776. return p->prio;
  777. }
  778. /**
  779. * task_curr - is this task currently executing on a CPU?
  780. * @p: the task in question.
  781. *
  782. * Return: 1 if the task is currently executing. 0 otherwise.
  783. */
  784. inline int task_curr(const struct task_struct *p)
  785. {
  786. return cpu_curr(task_cpu(p)) == p;
  787. }
  788. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  789. const struct sched_class *prev_class,
  790. int oldprio)
  791. {
  792. if (prev_class != p->sched_class) {
  793. if (prev_class->switched_from)
  794. prev_class->switched_from(rq, p);
  795. p->sched_class->switched_to(rq, p);
  796. } else if (oldprio != p->prio || dl_task(p))
  797. p->sched_class->prio_changed(rq, p, oldprio);
  798. }
  799. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  800. {
  801. const struct sched_class *class;
  802. if (p->sched_class == rq->curr->sched_class) {
  803. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  804. } else {
  805. for_each_class(class) {
  806. if (class == rq->curr->sched_class)
  807. break;
  808. if (class == p->sched_class) {
  809. resched_task(rq->curr);
  810. break;
  811. }
  812. }
  813. }
  814. /*
  815. * A queue event has occurred, and we're going to schedule. In
  816. * this case, we can save a useless back to back clock update.
  817. */
  818. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  819. rq->skip_clock_update = 1;
  820. }
  821. #ifdef CONFIG_SMP
  822. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  823. {
  824. #ifdef CONFIG_SCHED_DEBUG
  825. /*
  826. * We should never call set_task_cpu() on a blocked task,
  827. * ttwu() will sort out the placement.
  828. */
  829. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  830. !(task_preempt_count(p) & PREEMPT_ACTIVE));
  831. #ifdef CONFIG_LOCKDEP
  832. /*
  833. * The caller should hold either p->pi_lock or rq->lock, when changing
  834. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  835. *
  836. * sched_move_task() holds both and thus holding either pins the cgroup,
  837. * see task_group().
  838. *
  839. * Furthermore, all task_rq users should acquire both locks, see
  840. * task_rq_lock().
  841. */
  842. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  843. lockdep_is_held(&task_rq(p)->lock)));
  844. #endif
  845. #endif
  846. trace_sched_migrate_task(p, new_cpu);
  847. if (task_cpu(p) != new_cpu) {
  848. if (p->sched_class->migrate_task_rq)
  849. p->sched_class->migrate_task_rq(p, new_cpu);
  850. p->se.nr_migrations++;
  851. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  852. }
  853. __set_task_cpu(p, new_cpu);
  854. }
  855. static void __migrate_swap_task(struct task_struct *p, int cpu)
  856. {
  857. if (p->on_rq) {
  858. struct rq *src_rq, *dst_rq;
  859. src_rq = task_rq(p);
  860. dst_rq = cpu_rq(cpu);
  861. deactivate_task(src_rq, p, 0);
  862. set_task_cpu(p, cpu);
  863. activate_task(dst_rq, p, 0);
  864. check_preempt_curr(dst_rq, p, 0);
  865. } else {
  866. /*
  867. * Task isn't running anymore; make it appear like we migrated
  868. * it before it went to sleep. This means on wakeup we make the
  869. * previous cpu our targer instead of where it really is.
  870. */
  871. p->wake_cpu = cpu;
  872. }
  873. }
  874. struct migration_swap_arg {
  875. struct task_struct *src_task, *dst_task;
  876. int src_cpu, dst_cpu;
  877. };
  878. static int migrate_swap_stop(void *data)
  879. {
  880. struct migration_swap_arg *arg = data;
  881. struct rq *src_rq, *dst_rq;
  882. int ret = -EAGAIN;
  883. src_rq = cpu_rq(arg->src_cpu);
  884. dst_rq = cpu_rq(arg->dst_cpu);
  885. double_raw_lock(&arg->src_task->pi_lock,
  886. &arg->dst_task->pi_lock);
  887. double_rq_lock(src_rq, dst_rq);
  888. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  889. goto unlock;
  890. if (task_cpu(arg->src_task) != arg->src_cpu)
  891. goto unlock;
  892. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  893. goto unlock;
  894. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  895. goto unlock;
  896. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  897. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  898. ret = 0;
  899. unlock:
  900. double_rq_unlock(src_rq, dst_rq);
  901. raw_spin_unlock(&arg->dst_task->pi_lock);
  902. raw_spin_unlock(&arg->src_task->pi_lock);
  903. return ret;
  904. }
  905. /*
  906. * Cross migrate two tasks
  907. */
  908. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  909. {
  910. struct migration_swap_arg arg;
  911. int ret = -EINVAL;
  912. arg = (struct migration_swap_arg){
  913. .src_task = cur,
  914. .src_cpu = task_cpu(cur),
  915. .dst_task = p,
  916. .dst_cpu = task_cpu(p),
  917. };
  918. if (arg.src_cpu == arg.dst_cpu)
  919. goto out;
  920. /*
  921. * These three tests are all lockless; this is OK since all of them
  922. * will be re-checked with proper locks held further down the line.
  923. */
  924. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  925. goto out;
  926. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  927. goto out;
  928. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  929. goto out;
  930. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  931. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  932. out:
  933. return ret;
  934. }
  935. struct migration_arg {
  936. struct task_struct *task;
  937. int dest_cpu;
  938. };
  939. static int migration_cpu_stop(void *data);
  940. /*
  941. * wait_task_inactive - wait for a thread to unschedule.
  942. *
  943. * If @match_state is nonzero, it's the @p->state value just checked and
  944. * not expected to change. If it changes, i.e. @p might have woken up,
  945. * then return zero. When we succeed in waiting for @p to be off its CPU,
  946. * we return a positive number (its total switch count). If a second call
  947. * a short while later returns the same number, the caller can be sure that
  948. * @p has remained unscheduled the whole time.
  949. *
  950. * The caller must ensure that the task *will* unschedule sometime soon,
  951. * else this function might spin for a *long* time. This function can't
  952. * be called with interrupts off, or it may introduce deadlock with
  953. * smp_call_function() if an IPI is sent by the same process we are
  954. * waiting to become inactive.
  955. */
  956. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  957. {
  958. unsigned long flags;
  959. int running, on_rq;
  960. unsigned long ncsw;
  961. struct rq *rq;
  962. for (;;) {
  963. /*
  964. * We do the initial early heuristics without holding
  965. * any task-queue locks at all. We'll only try to get
  966. * the runqueue lock when things look like they will
  967. * work out!
  968. */
  969. rq = task_rq(p);
  970. /*
  971. * If the task is actively running on another CPU
  972. * still, just relax and busy-wait without holding
  973. * any locks.
  974. *
  975. * NOTE! Since we don't hold any locks, it's not
  976. * even sure that "rq" stays as the right runqueue!
  977. * But we don't care, since "task_running()" will
  978. * return false if the runqueue has changed and p
  979. * is actually now running somewhere else!
  980. */
  981. while (task_running(rq, p)) {
  982. if (match_state && unlikely(p->state != match_state))
  983. return 0;
  984. cpu_relax();
  985. }
  986. /*
  987. * Ok, time to look more closely! We need the rq
  988. * lock now, to be *sure*. If we're wrong, we'll
  989. * just go back and repeat.
  990. */
  991. rq = task_rq_lock(p, &flags);
  992. trace_sched_wait_task(p);
  993. running = task_running(rq, p);
  994. on_rq = p->on_rq;
  995. ncsw = 0;
  996. if (!match_state || p->state == match_state)
  997. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  998. task_rq_unlock(rq, p, &flags);
  999. /*
  1000. * If it changed from the expected state, bail out now.
  1001. */
  1002. if (unlikely(!ncsw))
  1003. break;
  1004. /*
  1005. * Was it really running after all now that we
  1006. * checked with the proper locks actually held?
  1007. *
  1008. * Oops. Go back and try again..
  1009. */
  1010. if (unlikely(running)) {
  1011. cpu_relax();
  1012. continue;
  1013. }
  1014. /*
  1015. * It's not enough that it's not actively running,
  1016. * it must be off the runqueue _entirely_, and not
  1017. * preempted!
  1018. *
  1019. * So if it was still runnable (but just not actively
  1020. * running right now), it's preempted, and we should
  1021. * yield - it could be a while.
  1022. */
  1023. if (unlikely(on_rq)) {
  1024. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1025. set_current_state(TASK_UNINTERRUPTIBLE);
  1026. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1027. continue;
  1028. }
  1029. /*
  1030. * Ahh, all good. It wasn't running, and it wasn't
  1031. * runnable, which means that it will never become
  1032. * running in the future either. We're all done!
  1033. */
  1034. break;
  1035. }
  1036. return ncsw;
  1037. }
  1038. /***
  1039. * kick_process - kick a running thread to enter/exit the kernel
  1040. * @p: the to-be-kicked thread
  1041. *
  1042. * Cause a process which is running on another CPU to enter
  1043. * kernel-mode, without any delay. (to get signals handled.)
  1044. *
  1045. * NOTE: this function doesn't have to take the runqueue lock,
  1046. * because all it wants to ensure is that the remote task enters
  1047. * the kernel. If the IPI races and the task has been migrated
  1048. * to another CPU then no harm is done and the purpose has been
  1049. * achieved as well.
  1050. */
  1051. void kick_process(struct task_struct *p)
  1052. {
  1053. int cpu;
  1054. preempt_disable();
  1055. cpu = task_cpu(p);
  1056. if ((cpu != smp_processor_id()) && task_curr(p))
  1057. smp_send_reschedule(cpu);
  1058. preempt_enable();
  1059. }
  1060. EXPORT_SYMBOL_GPL(kick_process);
  1061. #endif /* CONFIG_SMP */
  1062. #ifdef CONFIG_SMP
  1063. /*
  1064. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1065. */
  1066. static int select_fallback_rq(int cpu, struct task_struct *p)
  1067. {
  1068. int nid = cpu_to_node(cpu);
  1069. const struct cpumask *nodemask = NULL;
  1070. enum { cpuset, possible, fail } state = cpuset;
  1071. int dest_cpu;
  1072. /*
  1073. * If the node that the cpu is on has been offlined, cpu_to_node()
  1074. * will return -1. There is no cpu on the node, and we should
  1075. * select the cpu on the other node.
  1076. */
  1077. if (nid != -1) {
  1078. nodemask = cpumask_of_node(nid);
  1079. /* Look for allowed, online CPU in same node. */
  1080. for_each_cpu(dest_cpu, nodemask) {
  1081. if (!cpu_online(dest_cpu))
  1082. continue;
  1083. if (!cpu_active(dest_cpu))
  1084. continue;
  1085. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1086. return dest_cpu;
  1087. }
  1088. }
  1089. for (;;) {
  1090. /* Any allowed, online CPU? */
  1091. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1092. if (!cpu_online(dest_cpu))
  1093. continue;
  1094. if (!cpu_active(dest_cpu))
  1095. continue;
  1096. goto out;
  1097. }
  1098. switch (state) {
  1099. case cpuset:
  1100. /* No more Mr. Nice Guy. */
  1101. cpuset_cpus_allowed_fallback(p);
  1102. state = possible;
  1103. break;
  1104. case possible:
  1105. do_set_cpus_allowed(p, cpu_possible_mask);
  1106. state = fail;
  1107. break;
  1108. case fail:
  1109. BUG();
  1110. break;
  1111. }
  1112. }
  1113. out:
  1114. if (state != cpuset) {
  1115. /*
  1116. * Don't tell them about moving exiting tasks or
  1117. * kernel threads (both mm NULL), since they never
  1118. * leave kernel.
  1119. */
  1120. if (p->mm && printk_ratelimit()) {
  1121. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1122. task_pid_nr(p), p->comm, cpu);
  1123. }
  1124. }
  1125. return dest_cpu;
  1126. }
  1127. /*
  1128. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1129. */
  1130. static inline
  1131. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1132. {
  1133. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1134. /*
  1135. * In order not to call set_task_cpu() on a blocking task we need
  1136. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1137. * cpu.
  1138. *
  1139. * Since this is common to all placement strategies, this lives here.
  1140. *
  1141. * [ this allows ->select_task() to simply return task_cpu(p) and
  1142. * not worry about this generic constraint ]
  1143. */
  1144. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1145. !cpu_online(cpu)))
  1146. cpu = select_fallback_rq(task_cpu(p), p);
  1147. return cpu;
  1148. }
  1149. static void update_avg(u64 *avg, u64 sample)
  1150. {
  1151. s64 diff = sample - *avg;
  1152. *avg += diff >> 3;
  1153. }
  1154. #endif
  1155. static void
  1156. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1157. {
  1158. #ifdef CONFIG_SCHEDSTATS
  1159. struct rq *rq = this_rq();
  1160. #ifdef CONFIG_SMP
  1161. int this_cpu = smp_processor_id();
  1162. if (cpu == this_cpu) {
  1163. schedstat_inc(rq, ttwu_local);
  1164. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1165. } else {
  1166. struct sched_domain *sd;
  1167. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1168. rcu_read_lock();
  1169. for_each_domain(this_cpu, sd) {
  1170. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1171. schedstat_inc(sd, ttwu_wake_remote);
  1172. break;
  1173. }
  1174. }
  1175. rcu_read_unlock();
  1176. }
  1177. if (wake_flags & WF_MIGRATED)
  1178. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1179. #endif /* CONFIG_SMP */
  1180. schedstat_inc(rq, ttwu_count);
  1181. schedstat_inc(p, se.statistics.nr_wakeups);
  1182. if (wake_flags & WF_SYNC)
  1183. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1184. #endif /* CONFIG_SCHEDSTATS */
  1185. }
  1186. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1187. {
  1188. activate_task(rq, p, en_flags);
  1189. p->on_rq = 1;
  1190. /* if a worker is waking up, notify workqueue */
  1191. if (p->flags & PF_WQ_WORKER)
  1192. wq_worker_waking_up(p, cpu_of(rq));
  1193. }
  1194. /*
  1195. * Mark the task runnable and perform wakeup-preemption.
  1196. */
  1197. static void
  1198. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1199. {
  1200. check_preempt_curr(rq, p, wake_flags);
  1201. trace_sched_wakeup(p, true);
  1202. p->state = TASK_RUNNING;
  1203. #ifdef CONFIG_SMP
  1204. if (p->sched_class->task_woken)
  1205. p->sched_class->task_woken(rq, p);
  1206. if (rq->idle_stamp) {
  1207. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1208. u64 max = 2*rq->max_idle_balance_cost;
  1209. update_avg(&rq->avg_idle, delta);
  1210. if (rq->avg_idle > max)
  1211. rq->avg_idle = max;
  1212. rq->idle_stamp = 0;
  1213. }
  1214. #endif
  1215. }
  1216. static void
  1217. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1218. {
  1219. #ifdef CONFIG_SMP
  1220. if (p->sched_contributes_to_load)
  1221. rq->nr_uninterruptible--;
  1222. #endif
  1223. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1224. ttwu_do_wakeup(rq, p, wake_flags);
  1225. }
  1226. /*
  1227. * Called in case the task @p isn't fully descheduled from its runqueue,
  1228. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1229. * since all we need to do is flip p->state to TASK_RUNNING, since
  1230. * the task is still ->on_rq.
  1231. */
  1232. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1233. {
  1234. struct rq *rq;
  1235. int ret = 0;
  1236. rq = __task_rq_lock(p);
  1237. if (p->on_rq) {
  1238. /* check_preempt_curr() may use rq clock */
  1239. update_rq_clock(rq);
  1240. ttwu_do_wakeup(rq, p, wake_flags);
  1241. ret = 1;
  1242. }
  1243. __task_rq_unlock(rq);
  1244. return ret;
  1245. }
  1246. #ifdef CONFIG_SMP
  1247. static void sched_ttwu_pending(void)
  1248. {
  1249. struct rq *rq = this_rq();
  1250. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1251. struct task_struct *p;
  1252. raw_spin_lock(&rq->lock);
  1253. while (llist) {
  1254. p = llist_entry(llist, struct task_struct, wake_entry);
  1255. llist = llist_next(llist);
  1256. ttwu_do_activate(rq, p, 0);
  1257. }
  1258. raw_spin_unlock(&rq->lock);
  1259. }
  1260. void scheduler_ipi(void)
  1261. {
  1262. /*
  1263. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1264. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1265. * this IPI.
  1266. */
  1267. preempt_fold_need_resched();
  1268. if (llist_empty(&this_rq()->wake_list)
  1269. && !tick_nohz_full_cpu(smp_processor_id())
  1270. && !got_nohz_idle_kick())
  1271. return;
  1272. /*
  1273. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1274. * traditionally all their work was done from the interrupt return
  1275. * path. Now that we actually do some work, we need to make sure
  1276. * we do call them.
  1277. *
  1278. * Some archs already do call them, luckily irq_enter/exit nest
  1279. * properly.
  1280. *
  1281. * Arguably we should visit all archs and update all handlers,
  1282. * however a fair share of IPIs are still resched only so this would
  1283. * somewhat pessimize the simple resched case.
  1284. */
  1285. irq_enter();
  1286. tick_nohz_full_check();
  1287. sched_ttwu_pending();
  1288. /*
  1289. * Check if someone kicked us for doing the nohz idle load balance.
  1290. */
  1291. if (unlikely(got_nohz_idle_kick())) {
  1292. this_rq()->idle_balance = 1;
  1293. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1294. }
  1295. irq_exit();
  1296. }
  1297. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1298. {
  1299. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1300. smp_send_reschedule(cpu);
  1301. }
  1302. bool cpus_share_cache(int this_cpu, int that_cpu)
  1303. {
  1304. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1305. }
  1306. #endif /* CONFIG_SMP */
  1307. static void ttwu_queue(struct task_struct *p, int cpu)
  1308. {
  1309. struct rq *rq = cpu_rq(cpu);
  1310. #if defined(CONFIG_SMP)
  1311. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1312. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1313. ttwu_queue_remote(p, cpu);
  1314. return;
  1315. }
  1316. #endif
  1317. raw_spin_lock(&rq->lock);
  1318. ttwu_do_activate(rq, p, 0);
  1319. raw_spin_unlock(&rq->lock);
  1320. }
  1321. /**
  1322. * try_to_wake_up - wake up a thread
  1323. * @p: the thread to be awakened
  1324. * @state: the mask of task states that can be woken
  1325. * @wake_flags: wake modifier flags (WF_*)
  1326. *
  1327. * Put it on the run-queue if it's not already there. The "current"
  1328. * thread is always on the run-queue (except when the actual
  1329. * re-schedule is in progress), and as such you're allowed to do
  1330. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1331. * runnable without the overhead of this.
  1332. *
  1333. * Return: %true if @p was woken up, %false if it was already running.
  1334. * or @state didn't match @p's state.
  1335. */
  1336. static int
  1337. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1338. {
  1339. unsigned long flags;
  1340. int cpu, success = 0;
  1341. /*
  1342. * If we are going to wake up a thread waiting for CONDITION we
  1343. * need to ensure that CONDITION=1 done by the caller can not be
  1344. * reordered with p->state check below. This pairs with mb() in
  1345. * set_current_state() the waiting thread does.
  1346. */
  1347. smp_mb__before_spinlock();
  1348. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1349. if (!(p->state & state))
  1350. goto out;
  1351. success = 1; /* we're going to change ->state */
  1352. cpu = task_cpu(p);
  1353. if (p->on_rq && ttwu_remote(p, wake_flags))
  1354. goto stat;
  1355. #ifdef CONFIG_SMP
  1356. /*
  1357. * If the owning (remote) cpu is still in the middle of schedule() with
  1358. * this task as prev, wait until its done referencing the task.
  1359. */
  1360. while (p->on_cpu)
  1361. cpu_relax();
  1362. /*
  1363. * Pairs with the smp_wmb() in finish_lock_switch().
  1364. */
  1365. smp_rmb();
  1366. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1367. p->state = TASK_WAKING;
  1368. if (p->sched_class->task_waking)
  1369. p->sched_class->task_waking(p);
  1370. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1371. if (task_cpu(p) != cpu) {
  1372. wake_flags |= WF_MIGRATED;
  1373. set_task_cpu(p, cpu);
  1374. }
  1375. #endif /* CONFIG_SMP */
  1376. ttwu_queue(p, cpu);
  1377. stat:
  1378. ttwu_stat(p, cpu, wake_flags);
  1379. out:
  1380. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1381. return success;
  1382. }
  1383. /**
  1384. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1385. * @p: the thread to be awakened
  1386. *
  1387. * Put @p on the run-queue if it's not already there. The caller must
  1388. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1389. * the current task.
  1390. */
  1391. static void try_to_wake_up_local(struct task_struct *p)
  1392. {
  1393. struct rq *rq = task_rq(p);
  1394. if (WARN_ON_ONCE(rq != this_rq()) ||
  1395. WARN_ON_ONCE(p == current))
  1396. return;
  1397. lockdep_assert_held(&rq->lock);
  1398. if (!raw_spin_trylock(&p->pi_lock)) {
  1399. raw_spin_unlock(&rq->lock);
  1400. raw_spin_lock(&p->pi_lock);
  1401. raw_spin_lock(&rq->lock);
  1402. }
  1403. if (!(p->state & TASK_NORMAL))
  1404. goto out;
  1405. if (!p->on_rq)
  1406. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1407. ttwu_do_wakeup(rq, p, 0);
  1408. ttwu_stat(p, smp_processor_id(), 0);
  1409. out:
  1410. raw_spin_unlock(&p->pi_lock);
  1411. }
  1412. /**
  1413. * wake_up_process - Wake up a specific process
  1414. * @p: The process to be woken up.
  1415. *
  1416. * Attempt to wake up the nominated process and move it to the set of runnable
  1417. * processes.
  1418. *
  1419. * Return: 1 if the process was woken up, 0 if it was already running.
  1420. *
  1421. * It may be assumed that this function implies a write memory barrier before
  1422. * changing the task state if and only if any tasks are woken up.
  1423. */
  1424. int wake_up_process(struct task_struct *p)
  1425. {
  1426. WARN_ON(task_is_stopped_or_traced(p));
  1427. return try_to_wake_up(p, TASK_NORMAL, 0);
  1428. }
  1429. EXPORT_SYMBOL(wake_up_process);
  1430. int wake_up_state(struct task_struct *p, unsigned int state)
  1431. {
  1432. return try_to_wake_up(p, state, 0);
  1433. }
  1434. /*
  1435. * Perform scheduler related setup for a newly forked process p.
  1436. * p is forked by current.
  1437. *
  1438. * __sched_fork() is basic setup used by init_idle() too:
  1439. */
  1440. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1441. {
  1442. p->on_rq = 0;
  1443. p->se.on_rq = 0;
  1444. p->se.exec_start = 0;
  1445. p->se.sum_exec_runtime = 0;
  1446. p->se.prev_sum_exec_runtime = 0;
  1447. p->se.nr_migrations = 0;
  1448. p->se.vruntime = 0;
  1449. INIT_LIST_HEAD(&p->se.group_node);
  1450. #ifdef CONFIG_SCHEDSTATS
  1451. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1452. #endif
  1453. RB_CLEAR_NODE(&p->dl.rb_node);
  1454. hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1455. p->dl.dl_runtime = p->dl.runtime = 0;
  1456. p->dl.dl_deadline = p->dl.deadline = 0;
  1457. p->dl.dl_period = 0;
  1458. p->dl.flags = 0;
  1459. INIT_LIST_HEAD(&p->rt.run_list);
  1460. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1461. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1462. #endif
  1463. #ifdef CONFIG_NUMA_BALANCING
  1464. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1465. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1466. p->mm->numa_scan_seq = 0;
  1467. }
  1468. if (clone_flags & CLONE_VM)
  1469. p->numa_preferred_nid = current->numa_preferred_nid;
  1470. else
  1471. p->numa_preferred_nid = -1;
  1472. p->node_stamp = 0ULL;
  1473. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1474. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1475. p->numa_work.next = &p->numa_work;
  1476. p->numa_faults_memory = NULL;
  1477. p->numa_faults_buffer_memory = NULL;
  1478. p->last_task_numa_placement = 0;
  1479. p->last_sum_exec_runtime = 0;
  1480. INIT_LIST_HEAD(&p->numa_entry);
  1481. p->numa_group = NULL;
  1482. #endif /* CONFIG_NUMA_BALANCING */
  1483. }
  1484. #ifdef CONFIG_NUMA_BALANCING
  1485. #ifdef CONFIG_SCHED_DEBUG
  1486. void set_numabalancing_state(bool enabled)
  1487. {
  1488. if (enabled)
  1489. sched_feat_set("NUMA");
  1490. else
  1491. sched_feat_set("NO_NUMA");
  1492. }
  1493. #else
  1494. __read_mostly bool numabalancing_enabled;
  1495. void set_numabalancing_state(bool enabled)
  1496. {
  1497. numabalancing_enabled = enabled;
  1498. }
  1499. #endif /* CONFIG_SCHED_DEBUG */
  1500. #ifdef CONFIG_PROC_SYSCTL
  1501. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1502. void __user *buffer, size_t *lenp, loff_t *ppos)
  1503. {
  1504. struct ctl_table t;
  1505. int err;
  1506. int state = numabalancing_enabled;
  1507. if (write && !capable(CAP_SYS_ADMIN))
  1508. return -EPERM;
  1509. t = *table;
  1510. t.data = &state;
  1511. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1512. if (err < 0)
  1513. return err;
  1514. if (write)
  1515. set_numabalancing_state(state);
  1516. return err;
  1517. }
  1518. #endif
  1519. #endif
  1520. /*
  1521. * fork()/clone()-time setup:
  1522. */
  1523. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1524. {
  1525. unsigned long flags;
  1526. int cpu = get_cpu();
  1527. __sched_fork(clone_flags, p);
  1528. /*
  1529. * We mark the process as running here. This guarantees that
  1530. * nobody will actually run it, and a signal or other external
  1531. * event cannot wake it up and insert it on the runqueue either.
  1532. */
  1533. p->state = TASK_RUNNING;
  1534. /*
  1535. * Make sure we do not leak PI boosting priority to the child.
  1536. */
  1537. p->prio = current->normal_prio;
  1538. /*
  1539. * Revert to default priority/policy on fork if requested.
  1540. */
  1541. if (unlikely(p->sched_reset_on_fork)) {
  1542. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  1543. p->policy = SCHED_NORMAL;
  1544. p->static_prio = NICE_TO_PRIO(0);
  1545. p->rt_priority = 0;
  1546. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1547. p->static_prio = NICE_TO_PRIO(0);
  1548. p->prio = p->normal_prio = __normal_prio(p);
  1549. set_load_weight(p);
  1550. /*
  1551. * We don't need the reset flag anymore after the fork. It has
  1552. * fulfilled its duty:
  1553. */
  1554. p->sched_reset_on_fork = 0;
  1555. }
  1556. if (dl_prio(p->prio)) {
  1557. put_cpu();
  1558. return -EAGAIN;
  1559. } else if (rt_prio(p->prio)) {
  1560. p->sched_class = &rt_sched_class;
  1561. } else {
  1562. p->sched_class = &fair_sched_class;
  1563. }
  1564. if (p->sched_class->task_fork)
  1565. p->sched_class->task_fork(p);
  1566. /*
  1567. * The child is not yet in the pid-hash so no cgroup attach races,
  1568. * and the cgroup is pinned to this child due to cgroup_fork()
  1569. * is ran before sched_fork().
  1570. *
  1571. * Silence PROVE_RCU.
  1572. */
  1573. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1574. set_task_cpu(p, cpu);
  1575. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1576. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1577. if (likely(sched_info_on()))
  1578. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1579. #endif
  1580. #if defined(CONFIG_SMP)
  1581. p->on_cpu = 0;
  1582. #endif
  1583. init_task_preempt_count(p);
  1584. #ifdef CONFIG_SMP
  1585. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1586. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  1587. #endif
  1588. put_cpu();
  1589. return 0;
  1590. }
  1591. unsigned long to_ratio(u64 period, u64 runtime)
  1592. {
  1593. if (runtime == RUNTIME_INF)
  1594. return 1ULL << 20;
  1595. /*
  1596. * Doing this here saves a lot of checks in all
  1597. * the calling paths, and returning zero seems
  1598. * safe for them anyway.
  1599. */
  1600. if (period == 0)
  1601. return 0;
  1602. return div64_u64(runtime << 20, period);
  1603. }
  1604. #ifdef CONFIG_SMP
  1605. inline struct dl_bw *dl_bw_of(int i)
  1606. {
  1607. return &cpu_rq(i)->rd->dl_bw;
  1608. }
  1609. static inline int dl_bw_cpus(int i)
  1610. {
  1611. struct root_domain *rd = cpu_rq(i)->rd;
  1612. int cpus = 0;
  1613. for_each_cpu_and(i, rd->span, cpu_active_mask)
  1614. cpus++;
  1615. return cpus;
  1616. }
  1617. #else
  1618. inline struct dl_bw *dl_bw_of(int i)
  1619. {
  1620. return &cpu_rq(i)->dl.dl_bw;
  1621. }
  1622. static inline int dl_bw_cpus(int i)
  1623. {
  1624. return 1;
  1625. }
  1626. #endif
  1627. static inline
  1628. void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
  1629. {
  1630. dl_b->total_bw -= tsk_bw;
  1631. }
  1632. static inline
  1633. void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
  1634. {
  1635. dl_b->total_bw += tsk_bw;
  1636. }
  1637. static inline
  1638. bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
  1639. {
  1640. return dl_b->bw != -1 &&
  1641. dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
  1642. }
  1643. /*
  1644. * We must be sure that accepting a new task (or allowing changing the
  1645. * parameters of an existing one) is consistent with the bandwidth
  1646. * constraints. If yes, this function also accordingly updates the currently
  1647. * allocated bandwidth to reflect the new situation.
  1648. *
  1649. * This function is called while holding p's rq->lock.
  1650. */
  1651. static int dl_overflow(struct task_struct *p, int policy,
  1652. const struct sched_attr *attr)
  1653. {
  1654. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  1655. u64 period = attr->sched_period;
  1656. u64 runtime = attr->sched_runtime;
  1657. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  1658. int cpus, err = -1;
  1659. if (new_bw == p->dl.dl_bw)
  1660. return 0;
  1661. /*
  1662. * Either if a task, enters, leave, or stays -deadline but changes
  1663. * its parameters, we may need to update accordingly the total
  1664. * allocated bandwidth of the container.
  1665. */
  1666. raw_spin_lock(&dl_b->lock);
  1667. cpus = dl_bw_cpus(task_cpu(p));
  1668. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  1669. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  1670. __dl_add(dl_b, new_bw);
  1671. err = 0;
  1672. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  1673. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  1674. __dl_clear(dl_b, p->dl.dl_bw);
  1675. __dl_add(dl_b, new_bw);
  1676. err = 0;
  1677. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  1678. __dl_clear(dl_b, p->dl.dl_bw);
  1679. err = 0;
  1680. }
  1681. raw_spin_unlock(&dl_b->lock);
  1682. return err;
  1683. }
  1684. extern void init_dl_bw(struct dl_bw *dl_b);
  1685. /*
  1686. * wake_up_new_task - wake up a newly created task for the first time.
  1687. *
  1688. * This function will do some initial scheduler statistics housekeeping
  1689. * that must be done for every newly created context, then puts the task
  1690. * on the runqueue and wakes it.
  1691. */
  1692. void wake_up_new_task(struct task_struct *p)
  1693. {
  1694. unsigned long flags;
  1695. struct rq *rq;
  1696. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1697. #ifdef CONFIG_SMP
  1698. /*
  1699. * Fork balancing, do it here and not earlier because:
  1700. * - cpus_allowed can change in the fork path
  1701. * - any previously selected cpu might disappear through hotplug
  1702. */
  1703. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  1704. #endif
  1705. /* Initialize new task's runnable average */
  1706. init_task_runnable_average(p);
  1707. rq = __task_rq_lock(p);
  1708. activate_task(rq, p, 0);
  1709. p->on_rq = 1;
  1710. trace_sched_wakeup_new(p, true);
  1711. check_preempt_curr(rq, p, WF_FORK);
  1712. #ifdef CONFIG_SMP
  1713. if (p->sched_class->task_woken)
  1714. p->sched_class->task_woken(rq, p);
  1715. #endif
  1716. task_rq_unlock(rq, p, &flags);
  1717. }
  1718. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1719. /**
  1720. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1721. * @notifier: notifier struct to register
  1722. */
  1723. void preempt_notifier_register(struct preempt_notifier *notifier)
  1724. {
  1725. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1726. }
  1727. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1728. /**
  1729. * preempt_notifier_unregister - no longer interested in preemption notifications
  1730. * @notifier: notifier struct to unregister
  1731. *
  1732. * This is safe to call from within a preemption notifier.
  1733. */
  1734. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1735. {
  1736. hlist_del(&notifier->link);
  1737. }
  1738. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1739. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1740. {
  1741. struct preempt_notifier *notifier;
  1742. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1743. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1744. }
  1745. static void
  1746. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1747. struct task_struct *next)
  1748. {
  1749. struct preempt_notifier *notifier;
  1750. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1751. notifier->ops->sched_out(notifier, next);
  1752. }
  1753. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1754. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1755. {
  1756. }
  1757. static void
  1758. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1759. struct task_struct *next)
  1760. {
  1761. }
  1762. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1763. /**
  1764. * prepare_task_switch - prepare to switch tasks
  1765. * @rq: the runqueue preparing to switch
  1766. * @prev: the current task that is being switched out
  1767. * @next: the task we are going to switch to.
  1768. *
  1769. * This is called with the rq lock held and interrupts off. It must
  1770. * be paired with a subsequent finish_task_switch after the context
  1771. * switch.
  1772. *
  1773. * prepare_task_switch sets up locking and calls architecture specific
  1774. * hooks.
  1775. */
  1776. static inline void
  1777. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1778. struct task_struct *next)
  1779. {
  1780. trace_sched_switch(prev, next);
  1781. sched_info_switch(rq, prev, next);
  1782. perf_event_task_sched_out(prev, next);
  1783. fire_sched_out_preempt_notifiers(prev, next);
  1784. prepare_lock_switch(rq, next);
  1785. prepare_arch_switch(next);
  1786. }
  1787. /**
  1788. * finish_task_switch - clean up after a task-switch
  1789. * @rq: runqueue associated with task-switch
  1790. * @prev: the thread we just switched away from.
  1791. *
  1792. * finish_task_switch must be called after the context switch, paired
  1793. * with a prepare_task_switch call before the context switch.
  1794. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1795. * and do any other architecture-specific cleanup actions.
  1796. *
  1797. * Note that we may have delayed dropping an mm in context_switch(). If
  1798. * so, we finish that here outside of the runqueue lock. (Doing it
  1799. * with the lock held can cause deadlocks; see schedule() for
  1800. * details.)
  1801. */
  1802. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1803. __releases(rq->lock)
  1804. {
  1805. struct mm_struct *mm = rq->prev_mm;
  1806. long prev_state;
  1807. rq->prev_mm = NULL;
  1808. /*
  1809. * A task struct has one reference for the use as "current".
  1810. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1811. * schedule one last time. The schedule call will never return, and
  1812. * the scheduled task must drop that reference.
  1813. * The test for TASK_DEAD must occur while the runqueue locks are
  1814. * still held, otherwise prev could be scheduled on another cpu, die
  1815. * there before we look at prev->state, and then the reference would
  1816. * be dropped twice.
  1817. * Manfred Spraul <manfred@colorfullife.com>
  1818. */
  1819. prev_state = prev->state;
  1820. vtime_task_switch(prev);
  1821. finish_arch_switch(prev);
  1822. perf_event_task_sched_in(prev, current);
  1823. finish_lock_switch(rq, prev);
  1824. finish_arch_post_lock_switch();
  1825. fire_sched_in_preempt_notifiers(current);
  1826. if (mm)
  1827. mmdrop(mm);
  1828. if (unlikely(prev_state == TASK_DEAD)) {
  1829. task_numa_free(prev);
  1830. if (prev->sched_class->task_dead)
  1831. prev->sched_class->task_dead(prev);
  1832. /*
  1833. * Remove function-return probe instances associated with this
  1834. * task and put them back on the free list.
  1835. */
  1836. kprobe_flush_task(prev);
  1837. put_task_struct(prev);
  1838. }
  1839. tick_nohz_task_switch(current);
  1840. }
  1841. #ifdef CONFIG_SMP
  1842. /* rq->lock is NOT held, but preemption is disabled */
  1843. static inline void post_schedule(struct rq *rq)
  1844. {
  1845. if (rq->post_schedule) {
  1846. unsigned long flags;
  1847. raw_spin_lock_irqsave(&rq->lock, flags);
  1848. if (rq->curr->sched_class->post_schedule)
  1849. rq->curr->sched_class->post_schedule(rq);
  1850. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1851. rq->post_schedule = 0;
  1852. }
  1853. }
  1854. #else
  1855. static inline void post_schedule(struct rq *rq)
  1856. {
  1857. }
  1858. #endif
  1859. /**
  1860. * schedule_tail - first thing a freshly forked thread must call.
  1861. * @prev: the thread we just switched away from.
  1862. */
  1863. asmlinkage void schedule_tail(struct task_struct *prev)
  1864. __releases(rq->lock)
  1865. {
  1866. struct rq *rq = this_rq();
  1867. finish_task_switch(rq, prev);
  1868. /*
  1869. * FIXME: do we need to worry about rq being invalidated by the
  1870. * task_switch?
  1871. */
  1872. post_schedule(rq);
  1873. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1874. /* In this case, finish_task_switch does not reenable preemption */
  1875. preempt_enable();
  1876. #endif
  1877. if (current->set_child_tid)
  1878. put_user(task_pid_vnr(current), current->set_child_tid);
  1879. }
  1880. /*
  1881. * context_switch - switch to the new MM and the new
  1882. * thread's register state.
  1883. */
  1884. static inline void
  1885. context_switch(struct rq *rq, struct task_struct *prev,
  1886. struct task_struct *next)
  1887. {
  1888. struct mm_struct *mm, *oldmm;
  1889. prepare_task_switch(rq, prev, next);
  1890. mm = next->mm;
  1891. oldmm = prev->active_mm;
  1892. /*
  1893. * For paravirt, this is coupled with an exit in switch_to to
  1894. * combine the page table reload and the switch backend into
  1895. * one hypercall.
  1896. */
  1897. arch_start_context_switch(prev);
  1898. if (!mm) {
  1899. next->active_mm = oldmm;
  1900. atomic_inc(&oldmm->mm_count);
  1901. enter_lazy_tlb(oldmm, next);
  1902. } else
  1903. switch_mm(oldmm, mm, next);
  1904. if (!prev->mm) {
  1905. prev->active_mm = NULL;
  1906. rq->prev_mm = oldmm;
  1907. }
  1908. /*
  1909. * Since the runqueue lock will be released by the next
  1910. * task (which is an invalid locking op but in the case
  1911. * of the scheduler it's an obvious special-case), so we
  1912. * do an early lockdep release here:
  1913. */
  1914. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1915. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1916. #endif
  1917. context_tracking_task_switch(prev, next);
  1918. /* Here we just switch the register state and the stack. */
  1919. switch_to(prev, next, prev);
  1920. barrier();
  1921. /*
  1922. * this_rq must be evaluated again because prev may have moved
  1923. * CPUs since it called schedule(), thus the 'rq' on its stack
  1924. * frame will be invalid.
  1925. */
  1926. finish_task_switch(this_rq(), prev);
  1927. }
  1928. /*
  1929. * nr_running and nr_context_switches:
  1930. *
  1931. * externally visible scheduler statistics: current number of runnable
  1932. * threads, total number of context switches performed since bootup.
  1933. */
  1934. unsigned long nr_running(void)
  1935. {
  1936. unsigned long i, sum = 0;
  1937. for_each_online_cpu(i)
  1938. sum += cpu_rq(i)->nr_running;
  1939. return sum;
  1940. }
  1941. unsigned long long nr_context_switches(void)
  1942. {
  1943. int i;
  1944. unsigned long long sum = 0;
  1945. for_each_possible_cpu(i)
  1946. sum += cpu_rq(i)->nr_switches;
  1947. return sum;
  1948. }
  1949. unsigned long nr_iowait(void)
  1950. {
  1951. unsigned long i, sum = 0;
  1952. for_each_possible_cpu(i)
  1953. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1954. return sum;
  1955. }
  1956. unsigned long nr_iowait_cpu(int cpu)
  1957. {
  1958. struct rq *this = cpu_rq(cpu);
  1959. return atomic_read(&this->nr_iowait);
  1960. }
  1961. #ifdef CONFIG_SMP
  1962. /*
  1963. * sched_exec - execve() is a valuable balancing opportunity, because at
  1964. * this point the task has the smallest effective memory and cache footprint.
  1965. */
  1966. void sched_exec(void)
  1967. {
  1968. struct task_struct *p = current;
  1969. unsigned long flags;
  1970. int dest_cpu;
  1971. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1972. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  1973. if (dest_cpu == smp_processor_id())
  1974. goto unlock;
  1975. if (likely(cpu_active(dest_cpu))) {
  1976. struct migration_arg arg = { p, dest_cpu };
  1977. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1978. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  1979. return;
  1980. }
  1981. unlock:
  1982. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1983. }
  1984. #endif
  1985. DEFINE_PER_CPU(struct kernel_stat, kstat);
  1986. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  1987. EXPORT_PER_CPU_SYMBOL(kstat);
  1988. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  1989. /*
  1990. * Return any ns on the sched_clock that have not yet been accounted in
  1991. * @p in case that task is currently running.
  1992. *
  1993. * Called with task_rq_lock() held on @rq.
  1994. */
  1995. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  1996. {
  1997. u64 ns = 0;
  1998. if (task_current(rq, p)) {
  1999. update_rq_clock(rq);
  2000. ns = rq_clock_task(rq) - p->se.exec_start;
  2001. if ((s64)ns < 0)
  2002. ns = 0;
  2003. }
  2004. return ns;
  2005. }
  2006. unsigned long long task_delta_exec(struct task_struct *p)
  2007. {
  2008. unsigned long flags;
  2009. struct rq *rq;
  2010. u64 ns = 0;
  2011. rq = task_rq_lock(p, &flags);
  2012. ns = do_task_delta_exec(p, rq);
  2013. task_rq_unlock(rq, p, &flags);
  2014. return ns;
  2015. }
  2016. /*
  2017. * Return accounted runtime for the task.
  2018. * In case the task is currently running, return the runtime plus current's
  2019. * pending runtime that have not been accounted yet.
  2020. */
  2021. unsigned long long task_sched_runtime(struct task_struct *p)
  2022. {
  2023. unsigned long flags;
  2024. struct rq *rq;
  2025. u64 ns = 0;
  2026. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2027. /*
  2028. * 64-bit doesn't need locks to atomically read a 64bit value.
  2029. * So we have a optimization chance when the task's delta_exec is 0.
  2030. * Reading ->on_cpu is racy, but this is ok.
  2031. *
  2032. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2033. * If we race with it entering cpu, unaccounted time is 0. This is
  2034. * indistinguishable from the read occurring a few cycles earlier.
  2035. */
  2036. if (!p->on_cpu)
  2037. return p->se.sum_exec_runtime;
  2038. #endif
  2039. rq = task_rq_lock(p, &flags);
  2040. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2041. task_rq_unlock(rq, p, &flags);
  2042. return ns;
  2043. }
  2044. /*
  2045. * This function gets called by the timer code, with HZ frequency.
  2046. * We call it with interrupts disabled.
  2047. */
  2048. void scheduler_tick(void)
  2049. {
  2050. int cpu = smp_processor_id();
  2051. struct rq *rq = cpu_rq(cpu);
  2052. struct task_struct *curr = rq->curr;
  2053. sched_clock_tick();
  2054. raw_spin_lock(&rq->lock);
  2055. update_rq_clock(rq);
  2056. curr->sched_class->task_tick(rq, curr, 0);
  2057. update_cpu_load_active(rq);
  2058. raw_spin_unlock(&rq->lock);
  2059. perf_event_task_tick();
  2060. #ifdef CONFIG_SMP
  2061. rq->idle_balance = idle_cpu(cpu);
  2062. trigger_load_balance(rq);
  2063. #endif
  2064. rq_last_tick_reset(rq);
  2065. }
  2066. #ifdef CONFIG_NO_HZ_FULL
  2067. /**
  2068. * scheduler_tick_max_deferment
  2069. *
  2070. * Keep at least one tick per second when a single
  2071. * active task is running because the scheduler doesn't
  2072. * yet completely support full dynticks environment.
  2073. *
  2074. * This makes sure that uptime, CFS vruntime, load
  2075. * balancing, etc... continue to move forward, even
  2076. * with a very low granularity.
  2077. *
  2078. * Return: Maximum deferment in nanoseconds.
  2079. */
  2080. u64 scheduler_tick_max_deferment(void)
  2081. {
  2082. struct rq *rq = this_rq();
  2083. unsigned long next, now = ACCESS_ONCE(jiffies);
  2084. next = rq->last_sched_tick + HZ;
  2085. if (time_before_eq(next, now))
  2086. return 0;
  2087. return jiffies_to_nsecs(next - now);
  2088. }
  2089. #endif
  2090. notrace unsigned long get_parent_ip(unsigned long addr)
  2091. {
  2092. if (in_lock_functions(addr)) {
  2093. addr = CALLER_ADDR2;
  2094. if (in_lock_functions(addr))
  2095. addr = CALLER_ADDR3;
  2096. }
  2097. return addr;
  2098. }
  2099. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2100. defined(CONFIG_PREEMPT_TRACER))
  2101. void __kprobes preempt_count_add(int val)
  2102. {
  2103. #ifdef CONFIG_DEBUG_PREEMPT
  2104. /*
  2105. * Underflow?
  2106. */
  2107. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2108. return;
  2109. #endif
  2110. __preempt_count_add(val);
  2111. #ifdef CONFIG_DEBUG_PREEMPT
  2112. /*
  2113. * Spinlock count overflowing soon?
  2114. */
  2115. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2116. PREEMPT_MASK - 10);
  2117. #endif
  2118. if (preempt_count() == val) {
  2119. unsigned long ip = get_parent_ip(CALLER_ADDR1);
  2120. #ifdef CONFIG_DEBUG_PREEMPT
  2121. current->preempt_disable_ip = ip;
  2122. #endif
  2123. trace_preempt_off(CALLER_ADDR0, ip);
  2124. }
  2125. }
  2126. EXPORT_SYMBOL(preempt_count_add);
  2127. void __kprobes preempt_count_sub(int val)
  2128. {
  2129. #ifdef CONFIG_DEBUG_PREEMPT
  2130. /*
  2131. * Underflow?
  2132. */
  2133. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2134. return;
  2135. /*
  2136. * Is the spinlock portion underflowing?
  2137. */
  2138. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2139. !(preempt_count() & PREEMPT_MASK)))
  2140. return;
  2141. #endif
  2142. if (preempt_count() == val)
  2143. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2144. __preempt_count_sub(val);
  2145. }
  2146. EXPORT_SYMBOL(preempt_count_sub);
  2147. #endif
  2148. /*
  2149. * Print scheduling while atomic bug:
  2150. */
  2151. static noinline void __schedule_bug(struct task_struct *prev)
  2152. {
  2153. if (oops_in_progress)
  2154. return;
  2155. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2156. prev->comm, prev->pid, preempt_count());
  2157. debug_show_held_locks(prev);
  2158. print_modules();
  2159. if (irqs_disabled())
  2160. print_irqtrace_events(prev);
  2161. #ifdef CONFIG_DEBUG_PREEMPT
  2162. if (in_atomic_preempt_off()) {
  2163. pr_err("Preemption disabled at:");
  2164. print_ip_sym(current->preempt_disable_ip);
  2165. pr_cont("\n");
  2166. }
  2167. #endif
  2168. dump_stack();
  2169. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2170. }
  2171. /*
  2172. * Various schedule()-time debugging checks and statistics:
  2173. */
  2174. static inline void schedule_debug(struct task_struct *prev)
  2175. {
  2176. /*
  2177. * Test if we are atomic. Since do_exit() needs to call into
  2178. * schedule() atomically, we ignore that path. Otherwise whine
  2179. * if we are scheduling when we should not.
  2180. */
  2181. if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
  2182. __schedule_bug(prev);
  2183. rcu_sleep_check();
  2184. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2185. schedstat_inc(this_rq(), sched_count);
  2186. }
  2187. /*
  2188. * Pick up the highest-prio task:
  2189. */
  2190. static inline struct task_struct *
  2191. pick_next_task(struct rq *rq, struct task_struct *prev)
  2192. {
  2193. const struct sched_class *class;
  2194. struct task_struct *p;
  2195. /*
  2196. * Optimization: we know that if all tasks are in
  2197. * the fair class we can call that function directly:
  2198. */
  2199. if (likely(prev->sched_class == &fair_sched_class &&
  2200. rq->nr_running == rq->cfs.h_nr_running)) {
  2201. p = fair_sched_class.pick_next_task(rq, prev);
  2202. if (likely(p))
  2203. return p;
  2204. }
  2205. for_each_class(class) {
  2206. p = class->pick_next_task(rq, prev);
  2207. if (p)
  2208. return p;
  2209. }
  2210. BUG(); /* the idle class will always have a runnable task */
  2211. }
  2212. /*
  2213. * __schedule() is the main scheduler function.
  2214. *
  2215. * The main means of driving the scheduler and thus entering this function are:
  2216. *
  2217. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2218. *
  2219. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2220. * paths. For example, see arch/x86/entry_64.S.
  2221. *
  2222. * To drive preemption between tasks, the scheduler sets the flag in timer
  2223. * interrupt handler scheduler_tick().
  2224. *
  2225. * 3. Wakeups don't really cause entry into schedule(). They add a
  2226. * task to the run-queue and that's it.
  2227. *
  2228. * Now, if the new task added to the run-queue preempts the current
  2229. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2230. * called on the nearest possible occasion:
  2231. *
  2232. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2233. *
  2234. * - in syscall or exception context, at the next outmost
  2235. * preempt_enable(). (this might be as soon as the wake_up()'s
  2236. * spin_unlock()!)
  2237. *
  2238. * - in IRQ context, return from interrupt-handler to
  2239. * preemptible context
  2240. *
  2241. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2242. * then at the next:
  2243. *
  2244. * - cond_resched() call
  2245. * - explicit schedule() call
  2246. * - return from syscall or exception to user-space
  2247. * - return from interrupt-handler to user-space
  2248. */
  2249. static void __sched __schedule(void)
  2250. {
  2251. struct task_struct *prev, *next;
  2252. unsigned long *switch_count;
  2253. struct rq *rq;
  2254. int cpu;
  2255. need_resched:
  2256. preempt_disable();
  2257. cpu = smp_processor_id();
  2258. rq = cpu_rq(cpu);
  2259. rcu_note_context_switch(cpu);
  2260. prev = rq->curr;
  2261. schedule_debug(prev);
  2262. if (sched_feat(HRTICK))
  2263. hrtick_clear(rq);
  2264. /*
  2265. * Make sure that signal_pending_state()->signal_pending() below
  2266. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2267. * done by the caller to avoid the race with signal_wake_up().
  2268. */
  2269. smp_mb__before_spinlock();
  2270. raw_spin_lock_irq(&rq->lock);
  2271. switch_count = &prev->nivcsw;
  2272. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2273. if (unlikely(signal_pending_state(prev->state, prev))) {
  2274. prev->state = TASK_RUNNING;
  2275. } else {
  2276. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2277. prev->on_rq = 0;
  2278. /*
  2279. * If a worker went to sleep, notify and ask workqueue
  2280. * whether it wants to wake up a task to maintain
  2281. * concurrency.
  2282. */
  2283. if (prev->flags & PF_WQ_WORKER) {
  2284. struct task_struct *to_wakeup;
  2285. to_wakeup = wq_worker_sleeping(prev, cpu);
  2286. if (to_wakeup)
  2287. try_to_wake_up_local(to_wakeup);
  2288. }
  2289. }
  2290. switch_count = &prev->nvcsw;
  2291. }
  2292. if (prev->on_rq || rq->skip_clock_update < 0)
  2293. update_rq_clock(rq);
  2294. next = pick_next_task(rq, prev);
  2295. clear_tsk_need_resched(prev);
  2296. clear_preempt_need_resched();
  2297. rq->skip_clock_update = 0;
  2298. if (likely(prev != next)) {
  2299. rq->nr_switches++;
  2300. rq->curr = next;
  2301. ++*switch_count;
  2302. context_switch(rq, prev, next); /* unlocks the rq */
  2303. /*
  2304. * The context switch have flipped the stack from under us
  2305. * and restored the local variables which were saved when
  2306. * this task called schedule() in the past. prev == current
  2307. * is still correct, but it can be moved to another cpu/rq.
  2308. */
  2309. cpu = smp_processor_id();
  2310. rq = cpu_rq(cpu);
  2311. } else
  2312. raw_spin_unlock_irq(&rq->lock);
  2313. post_schedule(rq);
  2314. sched_preempt_enable_no_resched();
  2315. if (need_resched())
  2316. goto need_resched;
  2317. }
  2318. static inline void sched_submit_work(struct task_struct *tsk)
  2319. {
  2320. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2321. return;
  2322. /*
  2323. * If we are going to sleep and we have plugged IO queued,
  2324. * make sure to submit it to avoid deadlocks.
  2325. */
  2326. if (blk_needs_flush_plug(tsk))
  2327. blk_schedule_flush_plug(tsk);
  2328. }
  2329. asmlinkage void __sched schedule(void)
  2330. {
  2331. struct task_struct *tsk = current;
  2332. sched_submit_work(tsk);
  2333. __schedule();
  2334. }
  2335. EXPORT_SYMBOL(schedule);
  2336. #ifdef CONFIG_CONTEXT_TRACKING
  2337. asmlinkage void __sched schedule_user(void)
  2338. {
  2339. /*
  2340. * If we come here after a random call to set_need_resched(),
  2341. * or we have been woken up remotely but the IPI has not yet arrived,
  2342. * we haven't yet exited the RCU idle mode. Do it here manually until
  2343. * we find a better solution.
  2344. */
  2345. user_exit();
  2346. schedule();
  2347. user_enter();
  2348. }
  2349. #endif
  2350. /**
  2351. * schedule_preempt_disabled - called with preemption disabled
  2352. *
  2353. * Returns with preemption disabled. Note: preempt_count must be 1
  2354. */
  2355. void __sched schedule_preempt_disabled(void)
  2356. {
  2357. sched_preempt_enable_no_resched();
  2358. schedule();
  2359. preempt_disable();
  2360. }
  2361. #ifdef CONFIG_PREEMPT
  2362. /*
  2363. * this is the entry point to schedule() from in-kernel preemption
  2364. * off of preempt_enable. Kernel preemptions off return from interrupt
  2365. * occur there and call schedule directly.
  2366. */
  2367. asmlinkage void __sched notrace preempt_schedule(void)
  2368. {
  2369. /*
  2370. * If there is a non-zero preempt_count or interrupts are disabled,
  2371. * we do not want to preempt the current task. Just return..
  2372. */
  2373. if (likely(!preemptible()))
  2374. return;
  2375. do {
  2376. __preempt_count_add(PREEMPT_ACTIVE);
  2377. __schedule();
  2378. __preempt_count_sub(PREEMPT_ACTIVE);
  2379. /*
  2380. * Check again in case we missed a preemption opportunity
  2381. * between schedule and now.
  2382. */
  2383. barrier();
  2384. } while (need_resched());
  2385. }
  2386. EXPORT_SYMBOL(preempt_schedule);
  2387. #endif /* CONFIG_PREEMPT */
  2388. /*
  2389. * this is the entry point to schedule() from kernel preemption
  2390. * off of irq context.
  2391. * Note, that this is called and return with irqs disabled. This will
  2392. * protect us against recursive calling from irq.
  2393. */
  2394. asmlinkage void __sched preempt_schedule_irq(void)
  2395. {
  2396. enum ctx_state prev_state;
  2397. /* Catch callers which need to be fixed */
  2398. BUG_ON(preempt_count() || !irqs_disabled());
  2399. prev_state = exception_enter();
  2400. do {
  2401. __preempt_count_add(PREEMPT_ACTIVE);
  2402. local_irq_enable();
  2403. __schedule();
  2404. local_irq_disable();
  2405. __preempt_count_sub(PREEMPT_ACTIVE);
  2406. /*
  2407. * Check again in case we missed a preemption opportunity
  2408. * between schedule and now.
  2409. */
  2410. barrier();
  2411. } while (need_resched());
  2412. exception_exit(prev_state);
  2413. }
  2414. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2415. void *key)
  2416. {
  2417. return try_to_wake_up(curr->private, mode, wake_flags);
  2418. }
  2419. EXPORT_SYMBOL(default_wake_function);
  2420. static long __sched
  2421. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  2422. {
  2423. unsigned long flags;
  2424. wait_queue_t wait;
  2425. init_waitqueue_entry(&wait, current);
  2426. __set_current_state(state);
  2427. spin_lock_irqsave(&q->lock, flags);
  2428. __add_wait_queue(q, &wait);
  2429. spin_unlock(&q->lock);
  2430. timeout = schedule_timeout(timeout);
  2431. spin_lock_irq(&q->lock);
  2432. __remove_wait_queue(q, &wait);
  2433. spin_unlock_irqrestore(&q->lock, flags);
  2434. return timeout;
  2435. }
  2436. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  2437. {
  2438. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2439. }
  2440. EXPORT_SYMBOL(interruptible_sleep_on);
  2441. long __sched
  2442. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2443. {
  2444. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  2445. }
  2446. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  2447. void __sched sleep_on(wait_queue_head_t *q)
  2448. {
  2449. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2450. }
  2451. EXPORT_SYMBOL(sleep_on);
  2452. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2453. {
  2454. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  2455. }
  2456. EXPORT_SYMBOL(sleep_on_timeout);
  2457. #ifdef CONFIG_RT_MUTEXES
  2458. /*
  2459. * rt_mutex_setprio - set the current priority of a task
  2460. * @p: task
  2461. * @prio: prio value (kernel-internal form)
  2462. *
  2463. * This function changes the 'effective' priority of a task. It does
  2464. * not touch ->normal_prio like __setscheduler().
  2465. *
  2466. * Used by the rt_mutex code to implement priority inheritance logic.
  2467. */
  2468. void rt_mutex_setprio(struct task_struct *p, int prio)
  2469. {
  2470. int oldprio, on_rq, running, enqueue_flag = 0;
  2471. struct rq *rq;
  2472. const struct sched_class *prev_class;
  2473. BUG_ON(prio > MAX_PRIO);
  2474. rq = __task_rq_lock(p);
  2475. /*
  2476. * Idle task boosting is a nono in general. There is one
  2477. * exception, when PREEMPT_RT and NOHZ is active:
  2478. *
  2479. * The idle task calls get_next_timer_interrupt() and holds
  2480. * the timer wheel base->lock on the CPU and another CPU wants
  2481. * to access the timer (probably to cancel it). We can safely
  2482. * ignore the boosting request, as the idle CPU runs this code
  2483. * with interrupts disabled and will complete the lock
  2484. * protected section without being interrupted. So there is no
  2485. * real need to boost.
  2486. */
  2487. if (unlikely(p == rq->idle)) {
  2488. WARN_ON(p != rq->curr);
  2489. WARN_ON(p->pi_blocked_on);
  2490. goto out_unlock;
  2491. }
  2492. trace_sched_pi_setprio(p, prio);
  2493. p->pi_top_task = rt_mutex_get_top_task(p);
  2494. oldprio = p->prio;
  2495. prev_class = p->sched_class;
  2496. on_rq = p->on_rq;
  2497. running = task_current(rq, p);
  2498. if (on_rq)
  2499. dequeue_task(rq, p, 0);
  2500. if (running)
  2501. p->sched_class->put_prev_task(rq, p);
  2502. /*
  2503. * Boosting condition are:
  2504. * 1. -rt task is running and holds mutex A
  2505. * --> -dl task blocks on mutex A
  2506. *
  2507. * 2. -dl task is running and holds mutex A
  2508. * --> -dl task blocks on mutex A and could preempt the
  2509. * running task
  2510. */
  2511. if (dl_prio(prio)) {
  2512. if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
  2513. dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
  2514. p->dl.dl_boosted = 1;
  2515. p->dl.dl_throttled = 0;
  2516. enqueue_flag = ENQUEUE_REPLENISH;
  2517. } else
  2518. p->dl.dl_boosted = 0;
  2519. p->sched_class = &dl_sched_class;
  2520. } else if (rt_prio(prio)) {
  2521. if (dl_prio(oldprio))
  2522. p->dl.dl_boosted = 0;
  2523. if (oldprio < prio)
  2524. enqueue_flag = ENQUEUE_HEAD;
  2525. p->sched_class = &rt_sched_class;
  2526. } else {
  2527. if (dl_prio(oldprio))
  2528. p->dl.dl_boosted = 0;
  2529. p->sched_class = &fair_sched_class;
  2530. }
  2531. p->prio = prio;
  2532. if (running)
  2533. p->sched_class->set_curr_task(rq);
  2534. if (on_rq)
  2535. enqueue_task(rq, p, enqueue_flag);
  2536. check_class_changed(rq, p, prev_class, oldprio);
  2537. out_unlock:
  2538. __task_rq_unlock(rq);
  2539. }
  2540. #endif
  2541. void set_user_nice(struct task_struct *p, long nice)
  2542. {
  2543. int old_prio, delta, on_rq;
  2544. unsigned long flags;
  2545. struct rq *rq;
  2546. if (task_nice(p) == nice || nice < -20 || nice > 19)
  2547. return;
  2548. /*
  2549. * We have to be careful, if called from sys_setpriority(),
  2550. * the task might be in the middle of scheduling on another CPU.
  2551. */
  2552. rq = task_rq_lock(p, &flags);
  2553. /*
  2554. * The RT priorities are set via sched_setscheduler(), but we still
  2555. * allow the 'normal' nice value to be set - but as expected
  2556. * it wont have any effect on scheduling until the task is
  2557. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  2558. */
  2559. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2560. p->static_prio = NICE_TO_PRIO(nice);
  2561. goto out_unlock;
  2562. }
  2563. on_rq = p->on_rq;
  2564. if (on_rq)
  2565. dequeue_task(rq, p, 0);
  2566. p->static_prio = NICE_TO_PRIO(nice);
  2567. set_load_weight(p);
  2568. old_prio = p->prio;
  2569. p->prio = effective_prio(p);
  2570. delta = p->prio - old_prio;
  2571. if (on_rq) {
  2572. enqueue_task(rq, p, 0);
  2573. /*
  2574. * If the task increased its priority or is running and
  2575. * lowered its priority, then reschedule its CPU:
  2576. */
  2577. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2578. resched_task(rq->curr);
  2579. }
  2580. out_unlock:
  2581. task_rq_unlock(rq, p, &flags);
  2582. }
  2583. EXPORT_SYMBOL(set_user_nice);
  2584. /*
  2585. * can_nice - check if a task can reduce its nice value
  2586. * @p: task
  2587. * @nice: nice value
  2588. */
  2589. int can_nice(const struct task_struct *p, const int nice)
  2590. {
  2591. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2592. int nice_rlim = 20 - nice;
  2593. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2594. capable(CAP_SYS_NICE));
  2595. }
  2596. #ifdef __ARCH_WANT_SYS_NICE
  2597. /*
  2598. * sys_nice - change the priority of the current process.
  2599. * @increment: priority increment
  2600. *
  2601. * sys_setpriority is a more generic, but much slower function that
  2602. * does similar things.
  2603. */
  2604. SYSCALL_DEFINE1(nice, int, increment)
  2605. {
  2606. long nice, retval;
  2607. /*
  2608. * Setpriority might change our priority at the same moment.
  2609. * We don't have to worry. Conceptually one call occurs first
  2610. * and we have a single winner.
  2611. */
  2612. if (increment < -40)
  2613. increment = -40;
  2614. if (increment > 40)
  2615. increment = 40;
  2616. nice = task_nice(current) + increment;
  2617. if (nice < -20)
  2618. nice = -20;
  2619. if (nice > 19)
  2620. nice = 19;
  2621. if (increment < 0 && !can_nice(current, nice))
  2622. return -EPERM;
  2623. retval = security_task_setnice(current, nice);
  2624. if (retval)
  2625. return retval;
  2626. set_user_nice(current, nice);
  2627. return 0;
  2628. }
  2629. #endif
  2630. /**
  2631. * task_prio - return the priority value of a given task.
  2632. * @p: the task in question.
  2633. *
  2634. * Return: The priority value as seen by users in /proc.
  2635. * RT tasks are offset by -200. Normal tasks are centered
  2636. * around 0, value goes from -16 to +15.
  2637. */
  2638. int task_prio(const struct task_struct *p)
  2639. {
  2640. return p->prio - MAX_RT_PRIO;
  2641. }
  2642. /**
  2643. * idle_cpu - is a given cpu idle currently?
  2644. * @cpu: the processor in question.
  2645. *
  2646. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2647. */
  2648. int idle_cpu(int cpu)
  2649. {
  2650. struct rq *rq = cpu_rq(cpu);
  2651. if (rq->curr != rq->idle)
  2652. return 0;
  2653. if (rq->nr_running)
  2654. return 0;
  2655. #ifdef CONFIG_SMP
  2656. if (!llist_empty(&rq->wake_list))
  2657. return 0;
  2658. #endif
  2659. return 1;
  2660. }
  2661. /**
  2662. * idle_task - return the idle task for a given cpu.
  2663. * @cpu: the processor in question.
  2664. *
  2665. * Return: The idle task for the cpu @cpu.
  2666. */
  2667. struct task_struct *idle_task(int cpu)
  2668. {
  2669. return cpu_rq(cpu)->idle;
  2670. }
  2671. /**
  2672. * find_process_by_pid - find a process with a matching PID value.
  2673. * @pid: the pid in question.
  2674. *
  2675. * The task of @pid, if found. %NULL otherwise.
  2676. */
  2677. static struct task_struct *find_process_by_pid(pid_t pid)
  2678. {
  2679. return pid ? find_task_by_vpid(pid) : current;
  2680. }
  2681. /*
  2682. * This function initializes the sched_dl_entity of a newly becoming
  2683. * SCHED_DEADLINE task.
  2684. *
  2685. * Only the static values are considered here, the actual runtime and the
  2686. * absolute deadline will be properly calculated when the task is enqueued
  2687. * for the first time with its new policy.
  2688. */
  2689. static void
  2690. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  2691. {
  2692. struct sched_dl_entity *dl_se = &p->dl;
  2693. init_dl_task_timer(dl_se);
  2694. dl_se->dl_runtime = attr->sched_runtime;
  2695. dl_se->dl_deadline = attr->sched_deadline;
  2696. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  2697. dl_se->flags = attr->sched_flags;
  2698. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  2699. dl_se->dl_throttled = 0;
  2700. dl_se->dl_new = 1;
  2701. }
  2702. /* Actually do priority change: must hold pi & rq lock. */
  2703. static void __setscheduler(struct rq *rq, struct task_struct *p,
  2704. const struct sched_attr *attr)
  2705. {
  2706. int policy = attr->sched_policy;
  2707. if (policy == -1) /* setparam */
  2708. policy = p->policy;
  2709. p->policy = policy;
  2710. if (dl_policy(policy))
  2711. __setparam_dl(p, attr);
  2712. else if (fair_policy(policy))
  2713. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  2714. /*
  2715. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  2716. * !rt_policy. Always setting this ensures that things like
  2717. * getparam()/getattr() don't report silly values for !rt tasks.
  2718. */
  2719. p->rt_priority = attr->sched_priority;
  2720. p->normal_prio = normal_prio(p);
  2721. p->prio = rt_mutex_getprio(p);
  2722. if (dl_prio(p->prio))
  2723. p->sched_class = &dl_sched_class;
  2724. else if (rt_prio(p->prio))
  2725. p->sched_class = &rt_sched_class;
  2726. else
  2727. p->sched_class = &fair_sched_class;
  2728. set_load_weight(p);
  2729. }
  2730. static void
  2731. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  2732. {
  2733. struct sched_dl_entity *dl_se = &p->dl;
  2734. attr->sched_priority = p->rt_priority;
  2735. attr->sched_runtime = dl_se->dl_runtime;
  2736. attr->sched_deadline = dl_se->dl_deadline;
  2737. attr->sched_period = dl_se->dl_period;
  2738. attr->sched_flags = dl_se->flags;
  2739. }
  2740. /*
  2741. * This function validates the new parameters of a -deadline task.
  2742. * We ask for the deadline not being zero, and greater or equal
  2743. * than the runtime, as well as the period of being zero or
  2744. * greater than deadline. Furthermore, we have to be sure that
  2745. * user parameters are above the internal resolution (1us); we
  2746. * check sched_runtime only since it is always the smaller one.
  2747. */
  2748. static bool
  2749. __checkparam_dl(const struct sched_attr *attr)
  2750. {
  2751. return attr && attr->sched_deadline != 0 &&
  2752. (attr->sched_period == 0 ||
  2753. (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
  2754. (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
  2755. attr->sched_runtime >= (2 << (DL_SCALE - 1));
  2756. }
  2757. /*
  2758. * check the target process has a UID that matches the current process's
  2759. */
  2760. static bool check_same_owner(struct task_struct *p)
  2761. {
  2762. const struct cred *cred = current_cred(), *pcred;
  2763. bool match;
  2764. rcu_read_lock();
  2765. pcred = __task_cred(p);
  2766. match = (uid_eq(cred->euid, pcred->euid) ||
  2767. uid_eq(cred->euid, pcred->uid));
  2768. rcu_read_unlock();
  2769. return match;
  2770. }
  2771. static int __sched_setscheduler(struct task_struct *p,
  2772. const struct sched_attr *attr,
  2773. bool user)
  2774. {
  2775. int retval, oldprio, oldpolicy = -1, on_rq, running;
  2776. int policy = attr->sched_policy;
  2777. unsigned long flags;
  2778. const struct sched_class *prev_class;
  2779. struct rq *rq;
  2780. int reset_on_fork;
  2781. /* may grab non-irq protected spin_locks */
  2782. BUG_ON(in_interrupt());
  2783. recheck:
  2784. /* double check policy once rq lock held */
  2785. if (policy < 0) {
  2786. reset_on_fork = p->sched_reset_on_fork;
  2787. policy = oldpolicy = p->policy;
  2788. } else {
  2789. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  2790. if (policy != SCHED_DEADLINE &&
  2791. policy != SCHED_FIFO && policy != SCHED_RR &&
  2792. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  2793. policy != SCHED_IDLE)
  2794. return -EINVAL;
  2795. }
  2796. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
  2797. return -EINVAL;
  2798. /*
  2799. * Valid priorities for SCHED_FIFO and SCHED_RR are
  2800. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  2801. * SCHED_BATCH and SCHED_IDLE is 0.
  2802. */
  2803. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  2804. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  2805. return -EINVAL;
  2806. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  2807. (rt_policy(policy) != (attr->sched_priority != 0)))
  2808. return -EINVAL;
  2809. /*
  2810. * Allow unprivileged RT tasks to decrease priority:
  2811. */
  2812. if (user && !capable(CAP_SYS_NICE)) {
  2813. if (fair_policy(policy)) {
  2814. if (attr->sched_nice < task_nice(p) &&
  2815. !can_nice(p, attr->sched_nice))
  2816. return -EPERM;
  2817. }
  2818. if (rt_policy(policy)) {
  2819. unsigned long rlim_rtprio =
  2820. task_rlimit(p, RLIMIT_RTPRIO);
  2821. /* can't set/change the rt policy */
  2822. if (policy != p->policy && !rlim_rtprio)
  2823. return -EPERM;
  2824. /* can't increase priority */
  2825. if (attr->sched_priority > p->rt_priority &&
  2826. attr->sched_priority > rlim_rtprio)
  2827. return -EPERM;
  2828. }
  2829. /*
  2830. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  2831. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  2832. */
  2833. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  2834. if (!can_nice(p, task_nice(p)))
  2835. return -EPERM;
  2836. }
  2837. /* can't change other user's priorities */
  2838. if (!check_same_owner(p))
  2839. return -EPERM;
  2840. /* Normal users shall not reset the sched_reset_on_fork flag */
  2841. if (p->sched_reset_on_fork && !reset_on_fork)
  2842. return -EPERM;
  2843. }
  2844. if (user) {
  2845. retval = security_task_setscheduler(p);
  2846. if (retval)
  2847. return retval;
  2848. }
  2849. /*
  2850. * make sure no PI-waiters arrive (or leave) while we are
  2851. * changing the priority of the task:
  2852. *
  2853. * To be able to change p->policy safely, the appropriate
  2854. * runqueue lock must be held.
  2855. */
  2856. rq = task_rq_lock(p, &flags);
  2857. /*
  2858. * Changing the policy of the stop threads its a very bad idea
  2859. */
  2860. if (p == rq->stop) {
  2861. task_rq_unlock(rq, p, &flags);
  2862. return -EINVAL;
  2863. }
  2864. /*
  2865. * If not changing anything there's no need to proceed further,
  2866. * but store a possible modification of reset_on_fork.
  2867. */
  2868. if (unlikely(policy == p->policy)) {
  2869. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  2870. goto change;
  2871. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  2872. goto change;
  2873. if (dl_policy(policy))
  2874. goto change;
  2875. p->sched_reset_on_fork = reset_on_fork;
  2876. task_rq_unlock(rq, p, &flags);
  2877. return 0;
  2878. }
  2879. change:
  2880. if (user) {
  2881. #ifdef CONFIG_RT_GROUP_SCHED
  2882. /*
  2883. * Do not allow realtime tasks into groups that have no runtime
  2884. * assigned.
  2885. */
  2886. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  2887. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  2888. !task_group_is_autogroup(task_group(p))) {
  2889. task_rq_unlock(rq, p, &flags);
  2890. return -EPERM;
  2891. }
  2892. #endif
  2893. #ifdef CONFIG_SMP
  2894. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  2895. cpumask_t *span = rq->rd->span;
  2896. /*
  2897. * Don't allow tasks with an affinity mask smaller than
  2898. * the entire root_domain to become SCHED_DEADLINE. We
  2899. * will also fail if there's no bandwidth available.
  2900. */
  2901. if (!cpumask_subset(span, &p->cpus_allowed) ||
  2902. rq->rd->dl_bw.bw == 0) {
  2903. task_rq_unlock(rq, p, &flags);
  2904. return -EPERM;
  2905. }
  2906. }
  2907. #endif
  2908. }
  2909. /* recheck policy now with rq lock held */
  2910. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  2911. policy = oldpolicy = -1;
  2912. task_rq_unlock(rq, p, &flags);
  2913. goto recheck;
  2914. }
  2915. /*
  2916. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  2917. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  2918. * is available.
  2919. */
  2920. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  2921. task_rq_unlock(rq, p, &flags);
  2922. return -EBUSY;
  2923. }
  2924. on_rq = p->on_rq;
  2925. running = task_current(rq, p);
  2926. if (on_rq)
  2927. dequeue_task(rq, p, 0);
  2928. if (running)
  2929. p->sched_class->put_prev_task(rq, p);
  2930. p->sched_reset_on_fork = reset_on_fork;
  2931. oldprio = p->prio;
  2932. prev_class = p->sched_class;
  2933. __setscheduler(rq, p, attr);
  2934. if (running)
  2935. p->sched_class->set_curr_task(rq);
  2936. if (on_rq) {
  2937. /*
  2938. * We enqueue to tail when the priority of a task is
  2939. * increased (user space view).
  2940. */
  2941. enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
  2942. }
  2943. check_class_changed(rq, p, prev_class, oldprio);
  2944. task_rq_unlock(rq, p, &flags);
  2945. rt_mutex_adjust_pi(p);
  2946. return 0;
  2947. }
  2948. static int _sched_setscheduler(struct task_struct *p, int policy,
  2949. const struct sched_param *param, bool check)
  2950. {
  2951. struct sched_attr attr = {
  2952. .sched_policy = policy,
  2953. .sched_priority = param->sched_priority,
  2954. .sched_nice = PRIO_TO_NICE(p->static_prio),
  2955. };
  2956. /*
  2957. * Fixup the legacy SCHED_RESET_ON_FORK hack
  2958. */
  2959. if (policy & SCHED_RESET_ON_FORK) {
  2960. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  2961. policy &= ~SCHED_RESET_ON_FORK;
  2962. attr.sched_policy = policy;
  2963. }
  2964. return __sched_setscheduler(p, &attr, check);
  2965. }
  2966. /**
  2967. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  2968. * @p: the task in question.
  2969. * @policy: new policy.
  2970. * @param: structure containing the new RT priority.
  2971. *
  2972. * Return: 0 on success. An error code otherwise.
  2973. *
  2974. * NOTE that the task may be already dead.
  2975. */
  2976. int sched_setscheduler(struct task_struct *p, int policy,
  2977. const struct sched_param *param)
  2978. {
  2979. return _sched_setscheduler(p, policy, param, true);
  2980. }
  2981. EXPORT_SYMBOL_GPL(sched_setscheduler);
  2982. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  2983. {
  2984. return __sched_setscheduler(p, attr, true);
  2985. }
  2986. EXPORT_SYMBOL_GPL(sched_setattr);
  2987. /**
  2988. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  2989. * @p: the task in question.
  2990. * @policy: new policy.
  2991. * @param: structure containing the new RT priority.
  2992. *
  2993. * Just like sched_setscheduler, only don't bother checking if the
  2994. * current context has permission. For example, this is needed in
  2995. * stop_machine(): we create temporary high priority worker threads,
  2996. * but our caller might not have that capability.
  2997. *
  2998. * Return: 0 on success. An error code otherwise.
  2999. */
  3000. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3001. const struct sched_param *param)
  3002. {
  3003. return _sched_setscheduler(p, policy, param, false);
  3004. }
  3005. static int
  3006. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3007. {
  3008. struct sched_param lparam;
  3009. struct task_struct *p;
  3010. int retval;
  3011. if (!param || pid < 0)
  3012. return -EINVAL;
  3013. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3014. return -EFAULT;
  3015. rcu_read_lock();
  3016. retval = -ESRCH;
  3017. p = find_process_by_pid(pid);
  3018. if (p != NULL)
  3019. retval = sched_setscheduler(p, policy, &lparam);
  3020. rcu_read_unlock();
  3021. return retval;
  3022. }
  3023. /*
  3024. * Mimics kernel/events/core.c perf_copy_attr().
  3025. */
  3026. static int sched_copy_attr(struct sched_attr __user *uattr,
  3027. struct sched_attr *attr)
  3028. {
  3029. u32 size;
  3030. int ret;
  3031. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3032. return -EFAULT;
  3033. /*
  3034. * zero the full structure, so that a short copy will be nice.
  3035. */
  3036. memset(attr, 0, sizeof(*attr));
  3037. ret = get_user(size, &uattr->size);
  3038. if (ret)
  3039. return ret;
  3040. if (size > PAGE_SIZE) /* silly large */
  3041. goto err_size;
  3042. if (!size) /* abi compat */
  3043. size = SCHED_ATTR_SIZE_VER0;
  3044. if (size < SCHED_ATTR_SIZE_VER0)
  3045. goto err_size;
  3046. /*
  3047. * If we're handed a bigger struct than we know of,
  3048. * ensure all the unknown bits are 0 - i.e. new
  3049. * user-space does not rely on any kernel feature
  3050. * extensions we dont know about yet.
  3051. */
  3052. if (size > sizeof(*attr)) {
  3053. unsigned char __user *addr;
  3054. unsigned char __user *end;
  3055. unsigned char val;
  3056. addr = (void __user *)uattr + sizeof(*attr);
  3057. end = (void __user *)uattr + size;
  3058. for (; addr < end; addr++) {
  3059. ret = get_user(val, addr);
  3060. if (ret)
  3061. return ret;
  3062. if (val)
  3063. goto err_size;
  3064. }
  3065. size = sizeof(*attr);
  3066. }
  3067. ret = copy_from_user(attr, uattr, size);
  3068. if (ret)
  3069. return -EFAULT;
  3070. /*
  3071. * XXX: do we want to be lenient like existing syscalls; or do we want
  3072. * to be strict and return an error on out-of-bounds values?
  3073. */
  3074. attr->sched_nice = clamp(attr->sched_nice, -20, 19);
  3075. out:
  3076. return ret;
  3077. err_size:
  3078. put_user(sizeof(*attr), &uattr->size);
  3079. ret = -E2BIG;
  3080. goto out;
  3081. }
  3082. /**
  3083. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3084. * @pid: the pid in question.
  3085. * @policy: new policy.
  3086. * @param: structure containing the new RT priority.
  3087. *
  3088. * Return: 0 on success. An error code otherwise.
  3089. */
  3090. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3091. struct sched_param __user *, param)
  3092. {
  3093. /* negative values for policy are not valid */
  3094. if (policy < 0)
  3095. return -EINVAL;
  3096. return do_sched_setscheduler(pid, policy, param);
  3097. }
  3098. /**
  3099. * sys_sched_setparam - set/change the RT priority of a thread
  3100. * @pid: the pid in question.
  3101. * @param: structure containing the new RT priority.
  3102. *
  3103. * Return: 0 on success. An error code otherwise.
  3104. */
  3105. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3106. {
  3107. return do_sched_setscheduler(pid, -1, param);
  3108. }
  3109. /**
  3110. * sys_sched_setattr - same as above, but with extended sched_attr
  3111. * @pid: the pid in question.
  3112. * @uattr: structure containing the extended parameters.
  3113. */
  3114. SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
  3115. {
  3116. struct sched_attr attr;
  3117. struct task_struct *p;
  3118. int retval;
  3119. if (!uattr || pid < 0)
  3120. return -EINVAL;
  3121. if (sched_copy_attr(uattr, &attr))
  3122. return -EFAULT;
  3123. rcu_read_lock();
  3124. retval = -ESRCH;
  3125. p = find_process_by_pid(pid);
  3126. if (p != NULL)
  3127. retval = sched_setattr(p, &attr);
  3128. rcu_read_unlock();
  3129. return retval;
  3130. }
  3131. /**
  3132. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3133. * @pid: the pid in question.
  3134. *
  3135. * Return: On success, the policy of the thread. Otherwise, a negative error
  3136. * code.
  3137. */
  3138. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3139. {
  3140. struct task_struct *p;
  3141. int retval;
  3142. if (pid < 0)
  3143. return -EINVAL;
  3144. retval = -ESRCH;
  3145. rcu_read_lock();
  3146. p = find_process_by_pid(pid);
  3147. if (p) {
  3148. retval = security_task_getscheduler(p);
  3149. if (!retval)
  3150. retval = p->policy
  3151. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3152. }
  3153. rcu_read_unlock();
  3154. return retval;
  3155. }
  3156. /**
  3157. * sys_sched_getparam - get the RT priority of a thread
  3158. * @pid: the pid in question.
  3159. * @param: structure containing the RT priority.
  3160. *
  3161. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3162. * code.
  3163. */
  3164. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3165. {
  3166. struct sched_param lp;
  3167. struct task_struct *p;
  3168. int retval;
  3169. if (!param || pid < 0)
  3170. return -EINVAL;
  3171. rcu_read_lock();
  3172. p = find_process_by_pid(pid);
  3173. retval = -ESRCH;
  3174. if (!p)
  3175. goto out_unlock;
  3176. retval = security_task_getscheduler(p);
  3177. if (retval)
  3178. goto out_unlock;
  3179. if (task_has_dl_policy(p)) {
  3180. retval = -EINVAL;
  3181. goto out_unlock;
  3182. }
  3183. lp.sched_priority = p->rt_priority;
  3184. rcu_read_unlock();
  3185. /*
  3186. * This one might sleep, we cannot do it with a spinlock held ...
  3187. */
  3188. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3189. return retval;
  3190. out_unlock:
  3191. rcu_read_unlock();
  3192. return retval;
  3193. }
  3194. static int sched_read_attr(struct sched_attr __user *uattr,
  3195. struct sched_attr *attr,
  3196. unsigned int usize)
  3197. {
  3198. int ret;
  3199. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3200. return -EFAULT;
  3201. /*
  3202. * If we're handed a smaller struct than we know of,
  3203. * ensure all the unknown bits are 0 - i.e. old
  3204. * user-space does not get uncomplete information.
  3205. */
  3206. if (usize < sizeof(*attr)) {
  3207. unsigned char *addr;
  3208. unsigned char *end;
  3209. addr = (void *)attr + usize;
  3210. end = (void *)attr + sizeof(*attr);
  3211. for (; addr < end; addr++) {
  3212. if (*addr)
  3213. goto err_size;
  3214. }
  3215. attr->size = usize;
  3216. }
  3217. ret = copy_to_user(uattr, attr, usize);
  3218. if (ret)
  3219. return -EFAULT;
  3220. out:
  3221. return ret;
  3222. err_size:
  3223. ret = -E2BIG;
  3224. goto out;
  3225. }
  3226. /**
  3227. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3228. * @pid: the pid in question.
  3229. * @uattr: structure containing the extended parameters.
  3230. * @size: sizeof(attr) for fwd/bwd comp.
  3231. */
  3232. SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3233. unsigned int, size)
  3234. {
  3235. struct sched_attr attr = {
  3236. .size = sizeof(struct sched_attr),
  3237. };
  3238. struct task_struct *p;
  3239. int retval;
  3240. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3241. size < SCHED_ATTR_SIZE_VER0)
  3242. return -EINVAL;
  3243. rcu_read_lock();
  3244. p = find_process_by_pid(pid);
  3245. retval = -ESRCH;
  3246. if (!p)
  3247. goto out_unlock;
  3248. retval = security_task_getscheduler(p);
  3249. if (retval)
  3250. goto out_unlock;
  3251. attr.sched_policy = p->policy;
  3252. if (p->sched_reset_on_fork)
  3253. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3254. if (task_has_dl_policy(p))
  3255. __getparam_dl(p, &attr);
  3256. else if (task_has_rt_policy(p))
  3257. attr.sched_priority = p->rt_priority;
  3258. else
  3259. attr.sched_nice = task_nice(p);
  3260. rcu_read_unlock();
  3261. retval = sched_read_attr(uattr, &attr, size);
  3262. return retval;
  3263. out_unlock:
  3264. rcu_read_unlock();
  3265. return retval;
  3266. }
  3267. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3268. {
  3269. cpumask_var_t cpus_allowed, new_mask;
  3270. struct task_struct *p;
  3271. int retval;
  3272. rcu_read_lock();
  3273. p = find_process_by_pid(pid);
  3274. if (!p) {
  3275. rcu_read_unlock();
  3276. return -ESRCH;
  3277. }
  3278. /* Prevent p going away */
  3279. get_task_struct(p);
  3280. rcu_read_unlock();
  3281. if (p->flags & PF_NO_SETAFFINITY) {
  3282. retval = -EINVAL;
  3283. goto out_put_task;
  3284. }
  3285. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3286. retval = -ENOMEM;
  3287. goto out_put_task;
  3288. }
  3289. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3290. retval = -ENOMEM;
  3291. goto out_free_cpus_allowed;
  3292. }
  3293. retval = -EPERM;
  3294. if (!check_same_owner(p)) {
  3295. rcu_read_lock();
  3296. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3297. rcu_read_unlock();
  3298. goto out_unlock;
  3299. }
  3300. rcu_read_unlock();
  3301. }
  3302. retval = security_task_setscheduler(p);
  3303. if (retval)
  3304. goto out_unlock;
  3305. cpuset_cpus_allowed(p, cpus_allowed);
  3306. cpumask_and(new_mask, in_mask, cpus_allowed);
  3307. /*
  3308. * Since bandwidth control happens on root_domain basis,
  3309. * if admission test is enabled, we only admit -deadline
  3310. * tasks allowed to run on all the CPUs in the task's
  3311. * root_domain.
  3312. */
  3313. #ifdef CONFIG_SMP
  3314. if (task_has_dl_policy(p)) {
  3315. const struct cpumask *span = task_rq(p)->rd->span;
  3316. if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
  3317. retval = -EBUSY;
  3318. goto out_unlock;
  3319. }
  3320. }
  3321. #endif
  3322. again:
  3323. retval = set_cpus_allowed_ptr(p, new_mask);
  3324. if (!retval) {
  3325. cpuset_cpus_allowed(p, cpus_allowed);
  3326. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3327. /*
  3328. * We must have raced with a concurrent cpuset
  3329. * update. Just reset the cpus_allowed to the
  3330. * cpuset's cpus_allowed
  3331. */
  3332. cpumask_copy(new_mask, cpus_allowed);
  3333. goto again;
  3334. }
  3335. }
  3336. out_unlock:
  3337. free_cpumask_var(new_mask);
  3338. out_free_cpus_allowed:
  3339. free_cpumask_var(cpus_allowed);
  3340. out_put_task:
  3341. put_task_struct(p);
  3342. return retval;
  3343. }
  3344. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3345. struct cpumask *new_mask)
  3346. {
  3347. if (len < cpumask_size())
  3348. cpumask_clear(new_mask);
  3349. else if (len > cpumask_size())
  3350. len = cpumask_size();
  3351. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3352. }
  3353. /**
  3354. * sys_sched_setaffinity - set the cpu affinity of a process
  3355. * @pid: pid of the process
  3356. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3357. * @user_mask_ptr: user-space pointer to the new cpu mask
  3358. *
  3359. * Return: 0 on success. An error code otherwise.
  3360. */
  3361. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3362. unsigned long __user *, user_mask_ptr)
  3363. {
  3364. cpumask_var_t new_mask;
  3365. int retval;
  3366. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3367. return -ENOMEM;
  3368. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3369. if (retval == 0)
  3370. retval = sched_setaffinity(pid, new_mask);
  3371. free_cpumask_var(new_mask);
  3372. return retval;
  3373. }
  3374. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3375. {
  3376. struct task_struct *p;
  3377. unsigned long flags;
  3378. int retval;
  3379. rcu_read_lock();
  3380. retval = -ESRCH;
  3381. p = find_process_by_pid(pid);
  3382. if (!p)
  3383. goto out_unlock;
  3384. retval = security_task_getscheduler(p);
  3385. if (retval)
  3386. goto out_unlock;
  3387. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3388. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  3389. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3390. out_unlock:
  3391. rcu_read_unlock();
  3392. return retval;
  3393. }
  3394. /**
  3395. * sys_sched_getaffinity - get the cpu affinity of a process
  3396. * @pid: pid of the process
  3397. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3398. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3399. *
  3400. * Return: 0 on success. An error code otherwise.
  3401. */
  3402. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3403. unsigned long __user *, user_mask_ptr)
  3404. {
  3405. int ret;
  3406. cpumask_var_t mask;
  3407. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3408. return -EINVAL;
  3409. if (len & (sizeof(unsigned long)-1))
  3410. return -EINVAL;
  3411. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3412. return -ENOMEM;
  3413. ret = sched_getaffinity(pid, mask);
  3414. if (ret == 0) {
  3415. size_t retlen = min_t(size_t, len, cpumask_size());
  3416. if (copy_to_user(user_mask_ptr, mask, retlen))
  3417. ret = -EFAULT;
  3418. else
  3419. ret = retlen;
  3420. }
  3421. free_cpumask_var(mask);
  3422. return ret;
  3423. }
  3424. /**
  3425. * sys_sched_yield - yield the current processor to other threads.
  3426. *
  3427. * This function yields the current CPU to other tasks. If there are no
  3428. * other threads running on this CPU then this function will return.
  3429. *
  3430. * Return: 0.
  3431. */
  3432. SYSCALL_DEFINE0(sched_yield)
  3433. {
  3434. struct rq *rq = this_rq_lock();
  3435. schedstat_inc(rq, yld_count);
  3436. current->sched_class->yield_task(rq);
  3437. /*
  3438. * Since we are going to call schedule() anyway, there's
  3439. * no need to preempt or enable interrupts:
  3440. */
  3441. __release(rq->lock);
  3442. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3443. do_raw_spin_unlock(&rq->lock);
  3444. sched_preempt_enable_no_resched();
  3445. schedule();
  3446. return 0;
  3447. }
  3448. static void __cond_resched(void)
  3449. {
  3450. __preempt_count_add(PREEMPT_ACTIVE);
  3451. __schedule();
  3452. __preempt_count_sub(PREEMPT_ACTIVE);
  3453. }
  3454. int __sched _cond_resched(void)
  3455. {
  3456. if (should_resched()) {
  3457. __cond_resched();
  3458. return 1;
  3459. }
  3460. return 0;
  3461. }
  3462. EXPORT_SYMBOL(_cond_resched);
  3463. /*
  3464. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3465. * call schedule, and on return reacquire the lock.
  3466. *
  3467. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3468. * operations here to prevent schedule() from being called twice (once via
  3469. * spin_unlock(), once by hand).
  3470. */
  3471. int __cond_resched_lock(spinlock_t *lock)
  3472. {
  3473. int resched = should_resched();
  3474. int ret = 0;
  3475. lockdep_assert_held(lock);
  3476. if (spin_needbreak(lock) || resched) {
  3477. spin_unlock(lock);
  3478. if (resched)
  3479. __cond_resched();
  3480. else
  3481. cpu_relax();
  3482. ret = 1;
  3483. spin_lock(lock);
  3484. }
  3485. return ret;
  3486. }
  3487. EXPORT_SYMBOL(__cond_resched_lock);
  3488. int __sched __cond_resched_softirq(void)
  3489. {
  3490. BUG_ON(!in_softirq());
  3491. if (should_resched()) {
  3492. local_bh_enable();
  3493. __cond_resched();
  3494. local_bh_disable();
  3495. return 1;
  3496. }
  3497. return 0;
  3498. }
  3499. EXPORT_SYMBOL(__cond_resched_softirq);
  3500. /**
  3501. * yield - yield the current processor to other threads.
  3502. *
  3503. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3504. *
  3505. * The scheduler is at all times free to pick the calling task as the most
  3506. * eligible task to run, if removing the yield() call from your code breaks
  3507. * it, its already broken.
  3508. *
  3509. * Typical broken usage is:
  3510. *
  3511. * while (!event)
  3512. * yield();
  3513. *
  3514. * where one assumes that yield() will let 'the other' process run that will
  3515. * make event true. If the current task is a SCHED_FIFO task that will never
  3516. * happen. Never use yield() as a progress guarantee!!
  3517. *
  3518. * If you want to use yield() to wait for something, use wait_event().
  3519. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3520. * If you still want to use yield(), do not!
  3521. */
  3522. void __sched yield(void)
  3523. {
  3524. set_current_state(TASK_RUNNING);
  3525. sys_sched_yield();
  3526. }
  3527. EXPORT_SYMBOL(yield);
  3528. /**
  3529. * yield_to - yield the current processor to another thread in
  3530. * your thread group, or accelerate that thread toward the
  3531. * processor it's on.
  3532. * @p: target task
  3533. * @preempt: whether task preemption is allowed or not
  3534. *
  3535. * It's the caller's job to ensure that the target task struct
  3536. * can't go away on us before we can do any checks.
  3537. *
  3538. * Return:
  3539. * true (>0) if we indeed boosted the target task.
  3540. * false (0) if we failed to boost the target.
  3541. * -ESRCH if there's no task to yield to.
  3542. */
  3543. bool __sched yield_to(struct task_struct *p, bool preempt)
  3544. {
  3545. struct task_struct *curr = current;
  3546. struct rq *rq, *p_rq;
  3547. unsigned long flags;
  3548. int yielded = 0;
  3549. local_irq_save(flags);
  3550. rq = this_rq();
  3551. again:
  3552. p_rq = task_rq(p);
  3553. /*
  3554. * If we're the only runnable task on the rq and target rq also
  3555. * has only one task, there's absolutely no point in yielding.
  3556. */
  3557. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3558. yielded = -ESRCH;
  3559. goto out_irq;
  3560. }
  3561. double_rq_lock(rq, p_rq);
  3562. if (task_rq(p) != p_rq) {
  3563. double_rq_unlock(rq, p_rq);
  3564. goto again;
  3565. }
  3566. if (!curr->sched_class->yield_to_task)
  3567. goto out_unlock;
  3568. if (curr->sched_class != p->sched_class)
  3569. goto out_unlock;
  3570. if (task_running(p_rq, p) || p->state)
  3571. goto out_unlock;
  3572. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3573. if (yielded) {
  3574. schedstat_inc(rq, yld_count);
  3575. /*
  3576. * Make p's CPU reschedule; pick_next_entity takes care of
  3577. * fairness.
  3578. */
  3579. if (preempt && rq != p_rq)
  3580. resched_task(p_rq->curr);
  3581. }
  3582. out_unlock:
  3583. double_rq_unlock(rq, p_rq);
  3584. out_irq:
  3585. local_irq_restore(flags);
  3586. if (yielded > 0)
  3587. schedule();
  3588. return yielded;
  3589. }
  3590. EXPORT_SYMBOL_GPL(yield_to);
  3591. /*
  3592. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3593. * that process accounting knows that this is a task in IO wait state.
  3594. */
  3595. void __sched io_schedule(void)
  3596. {
  3597. struct rq *rq = raw_rq();
  3598. delayacct_blkio_start();
  3599. atomic_inc(&rq->nr_iowait);
  3600. blk_flush_plug(current);
  3601. current->in_iowait = 1;
  3602. schedule();
  3603. current->in_iowait = 0;
  3604. atomic_dec(&rq->nr_iowait);
  3605. delayacct_blkio_end();
  3606. }
  3607. EXPORT_SYMBOL(io_schedule);
  3608. long __sched io_schedule_timeout(long timeout)
  3609. {
  3610. struct rq *rq = raw_rq();
  3611. long ret;
  3612. delayacct_blkio_start();
  3613. atomic_inc(&rq->nr_iowait);
  3614. blk_flush_plug(current);
  3615. current->in_iowait = 1;
  3616. ret = schedule_timeout(timeout);
  3617. current->in_iowait = 0;
  3618. atomic_dec(&rq->nr_iowait);
  3619. delayacct_blkio_end();
  3620. return ret;
  3621. }
  3622. /**
  3623. * sys_sched_get_priority_max - return maximum RT priority.
  3624. * @policy: scheduling class.
  3625. *
  3626. * Return: On success, this syscall returns the maximum
  3627. * rt_priority that can be used by a given scheduling class.
  3628. * On failure, a negative error code is returned.
  3629. */
  3630. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3631. {
  3632. int ret = -EINVAL;
  3633. switch (policy) {
  3634. case SCHED_FIFO:
  3635. case SCHED_RR:
  3636. ret = MAX_USER_RT_PRIO-1;
  3637. break;
  3638. case SCHED_DEADLINE:
  3639. case SCHED_NORMAL:
  3640. case SCHED_BATCH:
  3641. case SCHED_IDLE:
  3642. ret = 0;
  3643. break;
  3644. }
  3645. return ret;
  3646. }
  3647. /**
  3648. * sys_sched_get_priority_min - return minimum RT priority.
  3649. * @policy: scheduling class.
  3650. *
  3651. * Return: On success, this syscall returns the minimum
  3652. * rt_priority that can be used by a given scheduling class.
  3653. * On failure, a negative error code is returned.
  3654. */
  3655. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3656. {
  3657. int ret = -EINVAL;
  3658. switch (policy) {
  3659. case SCHED_FIFO:
  3660. case SCHED_RR:
  3661. ret = 1;
  3662. break;
  3663. case SCHED_DEADLINE:
  3664. case SCHED_NORMAL:
  3665. case SCHED_BATCH:
  3666. case SCHED_IDLE:
  3667. ret = 0;
  3668. }
  3669. return ret;
  3670. }
  3671. /**
  3672. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3673. * @pid: pid of the process.
  3674. * @interval: userspace pointer to the timeslice value.
  3675. *
  3676. * this syscall writes the default timeslice value of a given process
  3677. * into the user-space timespec buffer. A value of '0' means infinity.
  3678. *
  3679. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  3680. * an error code.
  3681. */
  3682. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3683. struct timespec __user *, interval)
  3684. {
  3685. struct task_struct *p;
  3686. unsigned int time_slice;
  3687. unsigned long flags;
  3688. struct rq *rq;
  3689. int retval;
  3690. struct timespec t;
  3691. if (pid < 0)
  3692. return -EINVAL;
  3693. retval = -ESRCH;
  3694. rcu_read_lock();
  3695. p = find_process_by_pid(pid);
  3696. if (!p)
  3697. goto out_unlock;
  3698. retval = security_task_getscheduler(p);
  3699. if (retval)
  3700. goto out_unlock;
  3701. rq = task_rq_lock(p, &flags);
  3702. time_slice = 0;
  3703. if (p->sched_class->get_rr_interval)
  3704. time_slice = p->sched_class->get_rr_interval(rq, p);
  3705. task_rq_unlock(rq, p, &flags);
  3706. rcu_read_unlock();
  3707. jiffies_to_timespec(time_slice, &t);
  3708. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3709. return retval;
  3710. out_unlock:
  3711. rcu_read_unlock();
  3712. return retval;
  3713. }
  3714. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3715. void sched_show_task(struct task_struct *p)
  3716. {
  3717. unsigned long free = 0;
  3718. int ppid;
  3719. unsigned state;
  3720. state = p->state ? __ffs(p->state) + 1 : 0;
  3721. printk(KERN_INFO "%-15.15s %c", p->comm,
  3722. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3723. #if BITS_PER_LONG == 32
  3724. if (state == TASK_RUNNING)
  3725. printk(KERN_CONT " running ");
  3726. else
  3727. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3728. #else
  3729. if (state == TASK_RUNNING)
  3730. printk(KERN_CONT " running task ");
  3731. else
  3732. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3733. #endif
  3734. #ifdef CONFIG_DEBUG_STACK_USAGE
  3735. free = stack_not_used(p);
  3736. #endif
  3737. rcu_read_lock();
  3738. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3739. rcu_read_unlock();
  3740. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3741. task_pid_nr(p), ppid,
  3742. (unsigned long)task_thread_info(p)->flags);
  3743. print_worker_info(KERN_INFO, p);
  3744. show_stack(p, NULL);
  3745. }
  3746. void show_state_filter(unsigned long state_filter)
  3747. {
  3748. struct task_struct *g, *p;
  3749. #if BITS_PER_LONG == 32
  3750. printk(KERN_INFO
  3751. " task PC stack pid father\n");
  3752. #else
  3753. printk(KERN_INFO
  3754. " task PC stack pid father\n");
  3755. #endif
  3756. rcu_read_lock();
  3757. do_each_thread(g, p) {
  3758. /*
  3759. * reset the NMI-timeout, listing all files on a slow
  3760. * console might take a lot of time:
  3761. */
  3762. touch_nmi_watchdog();
  3763. if (!state_filter || (p->state & state_filter))
  3764. sched_show_task(p);
  3765. } while_each_thread(g, p);
  3766. touch_all_softlockup_watchdogs();
  3767. #ifdef CONFIG_SCHED_DEBUG
  3768. sysrq_sched_debug_show();
  3769. #endif
  3770. rcu_read_unlock();
  3771. /*
  3772. * Only show locks if all tasks are dumped:
  3773. */
  3774. if (!state_filter)
  3775. debug_show_all_locks();
  3776. }
  3777. void init_idle_bootup_task(struct task_struct *idle)
  3778. {
  3779. idle->sched_class = &idle_sched_class;
  3780. }
  3781. /**
  3782. * init_idle - set up an idle thread for a given CPU
  3783. * @idle: task in question
  3784. * @cpu: cpu the idle task belongs to
  3785. *
  3786. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3787. * flag, to make booting more robust.
  3788. */
  3789. void init_idle(struct task_struct *idle, int cpu)
  3790. {
  3791. struct rq *rq = cpu_rq(cpu);
  3792. unsigned long flags;
  3793. raw_spin_lock_irqsave(&rq->lock, flags);
  3794. __sched_fork(0, idle);
  3795. idle->state = TASK_RUNNING;
  3796. idle->se.exec_start = sched_clock();
  3797. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3798. /*
  3799. * We're having a chicken and egg problem, even though we are
  3800. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3801. * lockdep check in task_group() will fail.
  3802. *
  3803. * Similar case to sched_fork(). / Alternatively we could
  3804. * use task_rq_lock() here and obtain the other rq->lock.
  3805. *
  3806. * Silence PROVE_RCU
  3807. */
  3808. rcu_read_lock();
  3809. __set_task_cpu(idle, cpu);
  3810. rcu_read_unlock();
  3811. rq->curr = rq->idle = idle;
  3812. idle->on_rq = 1;
  3813. #if defined(CONFIG_SMP)
  3814. idle->on_cpu = 1;
  3815. #endif
  3816. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3817. /* Set the preempt count _outside_ the spinlocks! */
  3818. init_idle_preempt_count(idle, cpu);
  3819. /*
  3820. * The idle tasks have their own, simple scheduling class:
  3821. */
  3822. idle->sched_class = &idle_sched_class;
  3823. ftrace_graph_init_idle_task(idle, cpu);
  3824. vtime_init_idle(idle, cpu);
  3825. #if defined(CONFIG_SMP)
  3826. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3827. #endif
  3828. }
  3829. #ifdef CONFIG_SMP
  3830. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  3831. {
  3832. if (p->sched_class && p->sched_class->set_cpus_allowed)
  3833. p->sched_class->set_cpus_allowed(p, new_mask);
  3834. cpumask_copy(&p->cpus_allowed, new_mask);
  3835. p->nr_cpus_allowed = cpumask_weight(new_mask);
  3836. }
  3837. /*
  3838. * This is how migration works:
  3839. *
  3840. * 1) we invoke migration_cpu_stop() on the target CPU using
  3841. * stop_one_cpu().
  3842. * 2) stopper starts to run (implicitly forcing the migrated thread
  3843. * off the CPU)
  3844. * 3) it checks whether the migrated task is still in the wrong runqueue.
  3845. * 4) if it's in the wrong runqueue then the migration thread removes
  3846. * it and puts it into the right queue.
  3847. * 5) stopper completes and stop_one_cpu() returns and the migration
  3848. * is done.
  3849. */
  3850. /*
  3851. * Change a given task's CPU affinity. Migrate the thread to a
  3852. * proper CPU and schedule it away if the CPU it's executing on
  3853. * is removed from the allowed bitmask.
  3854. *
  3855. * NOTE: the caller must have a valid reference to the task, the
  3856. * task must not exit() & deallocate itself prematurely. The
  3857. * call is not atomic; no spinlocks may be held.
  3858. */
  3859. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  3860. {
  3861. unsigned long flags;
  3862. struct rq *rq;
  3863. unsigned int dest_cpu;
  3864. int ret = 0;
  3865. rq = task_rq_lock(p, &flags);
  3866. if (cpumask_equal(&p->cpus_allowed, new_mask))
  3867. goto out;
  3868. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  3869. ret = -EINVAL;
  3870. goto out;
  3871. }
  3872. do_set_cpus_allowed(p, new_mask);
  3873. /* Can the task run on the task's current CPU? If so, we're done */
  3874. if (cpumask_test_cpu(task_cpu(p), new_mask))
  3875. goto out;
  3876. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  3877. if (p->on_rq) {
  3878. struct migration_arg arg = { p, dest_cpu };
  3879. /* Need help from migration thread: drop lock and wait. */
  3880. task_rq_unlock(rq, p, &flags);
  3881. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  3882. tlb_migrate_finish(p->mm);
  3883. return 0;
  3884. }
  3885. out:
  3886. task_rq_unlock(rq, p, &flags);
  3887. return ret;
  3888. }
  3889. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  3890. /*
  3891. * Move (not current) task off this cpu, onto dest cpu. We're doing
  3892. * this because either it can't run here any more (set_cpus_allowed()
  3893. * away from this CPU, or CPU going down), or because we're
  3894. * attempting to rebalance this task on exec (sched_exec).
  3895. *
  3896. * So we race with normal scheduler movements, but that's OK, as long
  3897. * as the task is no longer on this CPU.
  3898. *
  3899. * Returns non-zero if task was successfully migrated.
  3900. */
  3901. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  3902. {
  3903. struct rq *rq_dest, *rq_src;
  3904. int ret = 0;
  3905. if (unlikely(!cpu_active(dest_cpu)))
  3906. return ret;
  3907. rq_src = cpu_rq(src_cpu);
  3908. rq_dest = cpu_rq(dest_cpu);
  3909. raw_spin_lock(&p->pi_lock);
  3910. double_rq_lock(rq_src, rq_dest);
  3911. /* Already moved. */
  3912. if (task_cpu(p) != src_cpu)
  3913. goto done;
  3914. /* Affinity changed (again). */
  3915. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  3916. goto fail;
  3917. /*
  3918. * If we're not on a rq, the next wake-up will ensure we're
  3919. * placed properly.
  3920. */
  3921. if (p->on_rq) {
  3922. dequeue_task(rq_src, p, 0);
  3923. set_task_cpu(p, dest_cpu);
  3924. enqueue_task(rq_dest, p, 0);
  3925. check_preempt_curr(rq_dest, p, 0);
  3926. }
  3927. done:
  3928. ret = 1;
  3929. fail:
  3930. double_rq_unlock(rq_src, rq_dest);
  3931. raw_spin_unlock(&p->pi_lock);
  3932. return ret;
  3933. }
  3934. #ifdef CONFIG_NUMA_BALANCING
  3935. /* Migrate current task p to target_cpu */
  3936. int migrate_task_to(struct task_struct *p, int target_cpu)
  3937. {
  3938. struct migration_arg arg = { p, target_cpu };
  3939. int curr_cpu = task_cpu(p);
  3940. if (curr_cpu == target_cpu)
  3941. return 0;
  3942. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  3943. return -EINVAL;
  3944. /* TODO: This is not properly updating schedstats */
  3945. trace_sched_move_numa(p, curr_cpu, target_cpu);
  3946. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  3947. }
  3948. /*
  3949. * Requeue a task on a given node and accurately track the number of NUMA
  3950. * tasks on the runqueues
  3951. */
  3952. void sched_setnuma(struct task_struct *p, int nid)
  3953. {
  3954. struct rq *rq;
  3955. unsigned long flags;
  3956. bool on_rq, running;
  3957. rq = task_rq_lock(p, &flags);
  3958. on_rq = p->on_rq;
  3959. running = task_current(rq, p);
  3960. if (on_rq)
  3961. dequeue_task(rq, p, 0);
  3962. if (running)
  3963. p->sched_class->put_prev_task(rq, p);
  3964. p->numa_preferred_nid = nid;
  3965. if (running)
  3966. p->sched_class->set_curr_task(rq);
  3967. if (on_rq)
  3968. enqueue_task(rq, p, 0);
  3969. task_rq_unlock(rq, p, &flags);
  3970. }
  3971. #endif
  3972. /*
  3973. * migration_cpu_stop - this will be executed by a highprio stopper thread
  3974. * and performs thread migration by bumping thread off CPU then
  3975. * 'pushing' onto another runqueue.
  3976. */
  3977. static int migration_cpu_stop(void *data)
  3978. {
  3979. struct migration_arg *arg = data;
  3980. /*
  3981. * The original target cpu might have gone down and we might
  3982. * be on another cpu but it doesn't matter.
  3983. */
  3984. local_irq_disable();
  3985. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  3986. local_irq_enable();
  3987. return 0;
  3988. }
  3989. #ifdef CONFIG_HOTPLUG_CPU
  3990. /*
  3991. * Ensures that the idle task is using init_mm right before its cpu goes
  3992. * offline.
  3993. */
  3994. void idle_task_exit(void)
  3995. {
  3996. struct mm_struct *mm = current->active_mm;
  3997. BUG_ON(cpu_online(smp_processor_id()));
  3998. if (mm != &init_mm)
  3999. switch_mm(mm, &init_mm, current);
  4000. mmdrop(mm);
  4001. }
  4002. /*
  4003. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4004. * we might have. Assumes we're called after migrate_tasks() so that the
  4005. * nr_active count is stable.
  4006. *
  4007. * Also see the comment "Global load-average calculations".
  4008. */
  4009. static void calc_load_migrate(struct rq *rq)
  4010. {
  4011. long delta = calc_load_fold_active(rq);
  4012. if (delta)
  4013. atomic_long_add(delta, &calc_load_tasks);
  4014. }
  4015. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4016. {
  4017. }
  4018. static const struct sched_class fake_sched_class = {
  4019. .put_prev_task = put_prev_task_fake,
  4020. };
  4021. static struct task_struct fake_task = {
  4022. /*
  4023. * Avoid pull_{rt,dl}_task()
  4024. */
  4025. .prio = MAX_PRIO + 1,
  4026. .sched_class = &fake_sched_class,
  4027. };
  4028. /*
  4029. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4030. * try_to_wake_up()->select_task_rq().
  4031. *
  4032. * Called with rq->lock held even though we'er in stop_machine() and
  4033. * there's no concurrency possible, we hold the required locks anyway
  4034. * because of lock validation efforts.
  4035. */
  4036. static void migrate_tasks(unsigned int dead_cpu)
  4037. {
  4038. struct rq *rq = cpu_rq(dead_cpu);
  4039. struct task_struct *next, *stop = rq->stop;
  4040. int dest_cpu;
  4041. /*
  4042. * Fudge the rq selection such that the below task selection loop
  4043. * doesn't get stuck on the currently eligible stop task.
  4044. *
  4045. * We're currently inside stop_machine() and the rq is either stuck
  4046. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4047. * either way we should never end up calling schedule() until we're
  4048. * done here.
  4049. */
  4050. rq->stop = NULL;
  4051. /*
  4052. * put_prev_task() and pick_next_task() sched
  4053. * class method both need to have an up-to-date
  4054. * value of rq->clock[_task]
  4055. */
  4056. update_rq_clock(rq);
  4057. for ( ; ; ) {
  4058. /*
  4059. * There's this thread running, bail when that's the only
  4060. * remaining thread.
  4061. */
  4062. if (rq->nr_running == 1)
  4063. break;
  4064. next = pick_next_task(rq, &fake_task);
  4065. BUG_ON(!next);
  4066. next->sched_class->put_prev_task(rq, next);
  4067. /* Find suitable destination for @next, with force if needed. */
  4068. dest_cpu = select_fallback_rq(dead_cpu, next);
  4069. raw_spin_unlock(&rq->lock);
  4070. __migrate_task(next, dead_cpu, dest_cpu);
  4071. raw_spin_lock(&rq->lock);
  4072. }
  4073. rq->stop = stop;
  4074. }
  4075. #endif /* CONFIG_HOTPLUG_CPU */
  4076. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4077. static struct ctl_table sd_ctl_dir[] = {
  4078. {
  4079. .procname = "sched_domain",
  4080. .mode = 0555,
  4081. },
  4082. {}
  4083. };
  4084. static struct ctl_table sd_ctl_root[] = {
  4085. {
  4086. .procname = "kernel",
  4087. .mode = 0555,
  4088. .child = sd_ctl_dir,
  4089. },
  4090. {}
  4091. };
  4092. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4093. {
  4094. struct ctl_table *entry =
  4095. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4096. return entry;
  4097. }
  4098. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4099. {
  4100. struct ctl_table *entry;
  4101. /*
  4102. * In the intermediate directories, both the child directory and
  4103. * procname are dynamically allocated and could fail but the mode
  4104. * will always be set. In the lowest directory the names are
  4105. * static strings and all have proc handlers.
  4106. */
  4107. for (entry = *tablep; entry->mode; entry++) {
  4108. if (entry->child)
  4109. sd_free_ctl_entry(&entry->child);
  4110. if (entry->proc_handler == NULL)
  4111. kfree(entry->procname);
  4112. }
  4113. kfree(*tablep);
  4114. *tablep = NULL;
  4115. }
  4116. static int min_load_idx = 0;
  4117. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  4118. static void
  4119. set_table_entry(struct ctl_table *entry,
  4120. const char *procname, void *data, int maxlen,
  4121. umode_t mode, proc_handler *proc_handler,
  4122. bool load_idx)
  4123. {
  4124. entry->procname = procname;
  4125. entry->data = data;
  4126. entry->maxlen = maxlen;
  4127. entry->mode = mode;
  4128. entry->proc_handler = proc_handler;
  4129. if (load_idx) {
  4130. entry->extra1 = &min_load_idx;
  4131. entry->extra2 = &max_load_idx;
  4132. }
  4133. }
  4134. static struct ctl_table *
  4135. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4136. {
  4137. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4138. if (table == NULL)
  4139. return NULL;
  4140. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4141. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4142. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4143. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4144. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4145. sizeof(int), 0644, proc_dointvec_minmax, true);
  4146. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4147. sizeof(int), 0644, proc_dointvec_minmax, true);
  4148. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4149. sizeof(int), 0644, proc_dointvec_minmax, true);
  4150. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4151. sizeof(int), 0644, proc_dointvec_minmax, true);
  4152. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4153. sizeof(int), 0644, proc_dointvec_minmax, true);
  4154. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4155. sizeof(int), 0644, proc_dointvec_minmax, false);
  4156. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4157. sizeof(int), 0644, proc_dointvec_minmax, false);
  4158. set_table_entry(&table[9], "cache_nice_tries",
  4159. &sd->cache_nice_tries,
  4160. sizeof(int), 0644, proc_dointvec_minmax, false);
  4161. set_table_entry(&table[10], "flags", &sd->flags,
  4162. sizeof(int), 0644, proc_dointvec_minmax, false);
  4163. set_table_entry(&table[11], "max_newidle_lb_cost",
  4164. &sd->max_newidle_lb_cost,
  4165. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4166. set_table_entry(&table[12], "name", sd->name,
  4167. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4168. /* &table[13] is terminator */
  4169. return table;
  4170. }
  4171. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4172. {
  4173. struct ctl_table *entry, *table;
  4174. struct sched_domain *sd;
  4175. int domain_num = 0, i;
  4176. char buf[32];
  4177. for_each_domain(cpu, sd)
  4178. domain_num++;
  4179. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4180. if (table == NULL)
  4181. return NULL;
  4182. i = 0;
  4183. for_each_domain(cpu, sd) {
  4184. snprintf(buf, 32, "domain%d", i);
  4185. entry->procname = kstrdup(buf, GFP_KERNEL);
  4186. entry->mode = 0555;
  4187. entry->child = sd_alloc_ctl_domain_table(sd);
  4188. entry++;
  4189. i++;
  4190. }
  4191. return table;
  4192. }
  4193. static struct ctl_table_header *sd_sysctl_header;
  4194. static void register_sched_domain_sysctl(void)
  4195. {
  4196. int i, cpu_num = num_possible_cpus();
  4197. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4198. char buf[32];
  4199. WARN_ON(sd_ctl_dir[0].child);
  4200. sd_ctl_dir[0].child = entry;
  4201. if (entry == NULL)
  4202. return;
  4203. for_each_possible_cpu(i) {
  4204. snprintf(buf, 32, "cpu%d", i);
  4205. entry->procname = kstrdup(buf, GFP_KERNEL);
  4206. entry->mode = 0555;
  4207. entry->child = sd_alloc_ctl_cpu_table(i);
  4208. entry++;
  4209. }
  4210. WARN_ON(sd_sysctl_header);
  4211. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4212. }
  4213. /* may be called multiple times per register */
  4214. static void unregister_sched_domain_sysctl(void)
  4215. {
  4216. if (sd_sysctl_header)
  4217. unregister_sysctl_table(sd_sysctl_header);
  4218. sd_sysctl_header = NULL;
  4219. if (sd_ctl_dir[0].child)
  4220. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4221. }
  4222. #else
  4223. static void register_sched_domain_sysctl(void)
  4224. {
  4225. }
  4226. static void unregister_sched_domain_sysctl(void)
  4227. {
  4228. }
  4229. #endif
  4230. static void set_rq_online(struct rq *rq)
  4231. {
  4232. if (!rq->online) {
  4233. const struct sched_class *class;
  4234. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4235. rq->online = 1;
  4236. for_each_class(class) {
  4237. if (class->rq_online)
  4238. class->rq_online(rq);
  4239. }
  4240. }
  4241. }
  4242. static void set_rq_offline(struct rq *rq)
  4243. {
  4244. if (rq->online) {
  4245. const struct sched_class *class;
  4246. for_each_class(class) {
  4247. if (class->rq_offline)
  4248. class->rq_offline(rq);
  4249. }
  4250. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4251. rq->online = 0;
  4252. }
  4253. }
  4254. /*
  4255. * migration_call - callback that gets triggered when a CPU is added.
  4256. * Here we can start up the necessary migration thread for the new CPU.
  4257. */
  4258. static int
  4259. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4260. {
  4261. int cpu = (long)hcpu;
  4262. unsigned long flags;
  4263. struct rq *rq = cpu_rq(cpu);
  4264. switch (action & ~CPU_TASKS_FROZEN) {
  4265. case CPU_UP_PREPARE:
  4266. rq->calc_load_update = calc_load_update;
  4267. break;
  4268. case CPU_ONLINE:
  4269. /* Update our root-domain */
  4270. raw_spin_lock_irqsave(&rq->lock, flags);
  4271. if (rq->rd) {
  4272. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4273. set_rq_online(rq);
  4274. }
  4275. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4276. break;
  4277. #ifdef CONFIG_HOTPLUG_CPU
  4278. case CPU_DYING:
  4279. sched_ttwu_pending();
  4280. /* Update our root-domain */
  4281. raw_spin_lock_irqsave(&rq->lock, flags);
  4282. if (rq->rd) {
  4283. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4284. set_rq_offline(rq);
  4285. }
  4286. migrate_tasks(cpu);
  4287. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4288. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4289. break;
  4290. case CPU_DEAD:
  4291. calc_load_migrate(rq);
  4292. break;
  4293. #endif
  4294. }
  4295. update_max_interval();
  4296. return NOTIFY_OK;
  4297. }
  4298. /*
  4299. * Register at high priority so that task migration (migrate_all_tasks)
  4300. * happens before everything else. This has to be lower priority than
  4301. * the notifier in the perf_event subsystem, though.
  4302. */
  4303. static struct notifier_block migration_notifier = {
  4304. .notifier_call = migration_call,
  4305. .priority = CPU_PRI_MIGRATION,
  4306. };
  4307. static int sched_cpu_active(struct notifier_block *nfb,
  4308. unsigned long action, void *hcpu)
  4309. {
  4310. switch (action & ~CPU_TASKS_FROZEN) {
  4311. case CPU_STARTING:
  4312. case CPU_DOWN_FAILED:
  4313. set_cpu_active((long)hcpu, true);
  4314. return NOTIFY_OK;
  4315. default:
  4316. return NOTIFY_DONE;
  4317. }
  4318. }
  4319. static int sched_cpu_inactive(struct notifier_block *nfb,
  4320. unsigned long action, void *hcpu)
  4321. {
  4322. unsigned long flags;
  4323. long cpu = (long)hcpu;
  4324. switch (action & ~CPU_TASKS_FROZEN) {
  4325. case CPU_DOWN_PREPARE:
  4326. set_cpu_active(cpu, false);
  4327. /* explicitly allow suspend */
  4328. if (!(action & CPU_TASKS_FROZEN)) {
  4329. struct dl_bw *dl_b = dl_bw_of(cpu);
  4330. bool overflow;
  4331. int cpus;
  4332. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4333. cpus = dl_bw_cpus(cpu);
  4334. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  4335. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4336. if (overflow)
  4337. return notifier_from_errno(-EBUSY);
  4338. }
  4339. return NOTIFY_OK;
  4340. }
  4341. return NOTIFY_DONE;
  4342. }
  4343. static int __init migration_init(void)
  4344. {
  4345. void *cpu = (void *)(long)smp_processor_id();
  4346. int err;
  4347. /* Initialize migration for the boot CPU */
  4348. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4349. BUG_ON(err == NOTIFY_BAD);
  4350. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4351. register_cpu_notifier(&migration_notifier);
  4352. /* Register cpu active notifiers */
  4353. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4354. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4355. return 0;
  4356. }
  4357. early_initcall(migration_init);
  4358. #endif
  4359. #ifdef CONFIG_SMP
  4360. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4361. #ifdef CONFIG_SCHED_DEBUG
  4362. static __read_mostly int sched_debug_enabled;
  4363. static int __init sched_debug_setup(char *str)
  4364. {
  4365. sched_debug_enabled = 1;
  4366. return 0;
  4367. }
  4368. early_param("sched_debug", sched_debug_setup);
  4369. static inline bool sched_debug(void)
  4370. {
  4371. return sched_debug_enabled;
  4372. }
  4373. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4374. struct cpumask *groupmask)
  4375. {
  4376. struct sched_group *group = sd->groups;
  4377. char str[256];
  4378. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4379. cpumask_clear(groupmask);
  4380. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4381. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4382. printk("does not load-balance\n");
  4383. if (sd->parent)
  4384. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4385. " has parent");
  4386. return -1;
  4387. }
  4388. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4389. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4390. printk(KERN_ERR "ERROR: domain->span does not contain "
  4391. "CPU%d\n", cpu);
  4392. }
  4393. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4394. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4395. " CPU%d\n", cpu);
  4396. }
  4397. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4398. do {
  4399. if (!group) {
  4400. printk("\n");
  4401. printk(KERN_ERR "ERROR: group is NULL\n");
  4402. break;
  4403. }
  4404. /*
  4405. * Even though we initialize ->power to something semi-sane,
  4406. * we leave power_orig unset. This allows us to detect if
  4407. * domain iteration is still funny without causing /0 traps.
  4408. */
  4409. if (!group->sgp->power_orig) {
  4410. printk(KERN_CONT "\n");
  4411. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4412. "set\n");
  4413. break;
  4414. }
  4415. if (!cpumask_weight(sched_group_cpus(group))) {
  4416. printk(KERN_CONT "\n");
  4417. printk(KERN_ERR "ERROR: empty group\n");
  4418. break;
  4419. }
  4420. if (!(sd->flags & SD_OVERLAP) &&
  4421. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4422. printk(KERN_CONT "\n");
  4423. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4424. break;
  4425. }
  4426. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4427. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4428. printk(KERN_CONT " %s", str);
  4429. if (group->sgp->power != SCHED_POWER_SCALE) {
  4430. printk(KERN_CONT " (cpu_power = %d)",
  4431. group->sgp->power);
  4432. }
  4433. group = group->next;
  4434. } while (group != sd->groups);
  4435. printk(KERN_CONT "\n");
  4436. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4437. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4438. if (sd->parent &&
  4439. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4440. printk(KERN_ERR "ERROR: parent span is not a superset "
  4441. "of domain->span\n");
  4442. return 0;
  4443. }
  4444. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4445. {
  4446. int level = 0;
  4447. if (!sched_debug_enabled)
  4448. return;
  4449. if (!sd) {
  4450. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4451. return;
  4452. }
  4453. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4454. for (;;) {
  4455. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4456. break;
  4457. level++;
  4458. sd = sd->parent;
  4459. if (!sd)
  4460. break;
  4461. }
  4462. }
  4463. #else /* !CONFIG_SCHED_DEBUG */
  4464. # define sched_domain_debug(sd, cpu) do { } while (0)
  4465. static inline bool sched_debug(void)
  4466. {
  4467. return false;
  4468. }
  4469. #endif /* CONFIG_SCHED_DEBUG */
  4470. static int sd_degenerate(struct sched_domain *sd)
  4471. {
  4472. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4473. return 1;
  4474. /* Following flags need at least 2 groups */
  4475. if (sd->flags & (SD_LOAD_BALANCE |
  4476. SD_BALANCE_NEWIDLE |
  4477. SD_BALANCE_FORK |
  4478. SD_BALANCE_EXEC |
  4479. SD_SHARE_CPUPOWER |
  4480. SD_SHARE_PKG_RESOURCES)) {
  4481. if (sd->groups != sd->groups->next)
  4482. return 0;
  4483. }
  4484. /* Following flags don't use groups */
  4485. if (sd->flags & (SD_WAKE_AFFINE))
  4486. return 0;
  4487. return 1;
  4488. }
  4489. static int
  4490. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4491. {
  4492. unsigned long cflags = sd->flags, pflags = parent->flags;
  4493. if (sd_degenerate(parent))
  4494. return 1;
  4495. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4496. return 0;
  4497. /* Flags needing groups don't count if only 1 group in parent */
  4498. if (parent->groups == parent->groups->next) {
  4499. pflags &= ~(SD_LOAD_BALANCE |
  4500. SD_BALANCE_NEWIDLE |
  4501. SD_BALANCE_FORK |
  4502. SD_BALANCE_EXEC |
  4503. SD_SHARE_CPUPOWER |
  4504. SD_SHARE_PKG_RESOURCES |
  4505. SD_PREFER_SIBLING);
  4506. if (nr_node_ids == 1)
  4507. pflags &= ~SD_SERIALIZE;
  4508. }
  4509. if (~cflags & pflags)
  4510. return 0;
  4511. return 1;
  4512. }
  4513. static void free_rootdomain(struct rcu_head *rcu)
  4514. {
  4515. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4516. cpupri_cleanup(&rd->cpupri);
  4517. cpudl_cleanup(&rd->cpudl);
  4518. free_cpumask_var(rd->dlo_mask);
  4519. free_cpumask_var(rd->rto_mask);
  4520. free_cpumask_var(rd->online);
  4521. free_cpumask_var(rd->span);
  4522. kfree(rd);
  4523. }
  4524. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4525. {
  4526. struct root_domain *old_rd = NULL;
  4527. unsigned long flags;
  4528. raw_spin_lock_irqsave(&rq->lock, flags);
  4529. if (rq->rd) {
  4530. old_rd = rq->rd;
  4531. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4532. set_rq_offline(rq);
  4533. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4534. /*
  4535. * If we dont want to free the old_rd yet then
  4536. * set old_rd to NULL to skip the freeing later
  4537. * in this function:
  4538. */
  4539. if (!atomic_dec_and_test(&old_rd->refcount))
  4540. old_rd = NULL;
  4541. }
  4542. atomic_inc(&rd->refcount);
  4543. rq->rd = rd;
  4544. cpumask_set_cpu(rq->cpu, rd->span);
  4545. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4546. set_rq_online(rq);
  4547. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4548. if (old_rd)
  4549. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4550. }
  4551. static int init_rootdomain(struct root_domain *rd)
  4552. {
  4553. memset(rd, 0, sizeof(*rd));
  4554. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4555. goto out;
  4556. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4557. goto free_span;
  4558. if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  4559. goto free_online;
  4560. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4561. goto free_dlo_mask;
  4562. init_dl_bw(&rd->dl_bw);
  4563. if (cpudl_init(&rd->cpudl) != 0)
  4564. goto free_dlo_mask;
  4565. if (cpupri_init(&rd->cpupri) != 0)
  4566. goto free_rto_mask;
  4567. return 0;
  4568. free_rto_mask:
  4569. free_cpumask_var(rd->rto_mask);
  4570. free_dlo_mask:
  4571. free_cpumask_var(rd->dlo_mask);
  4572. free_online:
  4573. free_cpumask_var(rd->online);
  4574. free_span:
  4575. free_cpumask_var(rd->span);
  4576. out:
  4577. return -ENOMEM;
  4578. }
  4579. /*
  4580. * By default the system creates a single root-domain with all cpus as
  4581. * members (mimicking the global state we have today).
  4582. */
  4583. struct root_domain def_root_domain;
  4584. static void init_defrootdomain(void)
  4585. {
  4586. init_rootdomain(&def_root_domain);
  4587. atomic_set(&def_root_domain.refcount, 1);
  4588. }
  4589. static struct root_domain *alloc_rootdomain(void)
  4590. {
  4591. struct root_domain *rd;
  4592. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4593. if (!rd)
  4594. return NULL;
  4595. if (init_rootdomain(rd) != 0) {
  4596. kfree(rd);
  4597. return NULL;
  4598. }
  4599. return rd;
  4600. }
  4601. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4602. {
  4603. struct sched_group *tmp, *first;
  4604. if (!sg)
  4605. return;
  4606. first = sg;
  4607. do {
  4608. tmp = sg->next;
  4609. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4610. kfree(sg->sgp);
  4611. kfree(sg);
  4612. sg = tmp;
  4613. } while (sg != first);
  4614. }
  4615. static void free_sched_domain(struct rcu_head *rcu)
  4616. {
  4617. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4618. /*
  4619. * If its an overlapping domain it has private groups, iterate and
  4620. * nuke them all.
  4621. */
  4622. if (sd->flags & SD_OVERLAP) {
  4623. free_sched_groups(sd->groups, 1);
  4624. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4625. kfree(sd->groups->sgp);
  4626. kfree(sd->groups);
  4627. }
  4628. kfree(sd);
  4629. }
  4630. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4631. {
  4632. call_rcu(&sd->rcu, free_sched_domain);
  4633. }
  4634. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4635. {
  4636. for (; sd; sd = sd->parent)
  4637. destroy_sched_domain(sd, cpu);
  4638. }
  4639. /*
  4640. * Keep a special pointer to the highest sched_domain that has
  4641. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4642. * allows us to avoid some pointer chasing select_idle_sibling().
  4643. *
  4644. * Also keep a unique ID per domain (we use the first cpu number in
  4645. * the cpumask of the domain), this allows us to quickly tell if
  4646. * two cpus are in the same cache domain, see cpus_share_cache().
  4647. */
  4648. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4649. DEFINE_PER_CPU(int, sd_llc_size);
  4650. DEFINE_PER_CPU(int, sd_llc_id);
  4651. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  4652. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  4653. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  4654. static void update_top_cache_domain(int cpu)
  4655. {
  4656. struct sched_domain *sd;
  4657. struct sched_domain *busy_sd = NULL;
  4658. int id = cpu;
  4659. int size = 1;
  4660. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4661. if (sd) {
  4662. id = cpumask_first(sched_domain_span(sd));
  4663. size = cpumask_weight(sched_domain_span(sd));
  4664. busy_sd = sd->parent; /* sd_busy */
  4665. }
  4666. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  4667. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4668. per_cpu(sd_llc_size, cpu) = size;
  4669. per_cpu(sd_llc_id, cpu) = id;
  4670. sd = lowest_flag_domain(cpu, SD_NUMA);
  4671. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  4672. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  4673. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  4674. }
  4675. /*
  4676. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4677. * hold the hotplug lock.
  4678. */
  4679. static void
  4680. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4681. {
  4682. struct rq *rq = cpu_rq(cpu);
  4683. struct sched_domain *tmp;
  4684. /* Remove the sched domains which do not contribute to scheduling. */
  4685. for (tmp = sd; tmp; ) {
  4686. struct sched_domain *parent = tmp->parent;
  4687. if (!parent)
  4688. break;
  4689. if (sd_parent_degenerate(tmp, parent)) {
  4690. tmp->parent = parent->parent;
  4691. if (parent->parent)
  4692. parent->parent->child = tmp;
  4693. /*
  4694. * Transfer SD_PREFER_SIBLING down in case of a
  4695. * degenerate parent; the spans match for this
  4696. * so the property transfers.
  4697. */
  4698. if (parent->flags & SD_PREFER_SIBLING)
  4699. tmp->flags |= SD_PREFER_SIBLING;
  4700. destroy_sched_domain(parent, cpu);
  4701. } else
  4702. tmp = tmp->parent;
  4703. }
  4704. if (sd && sd_degenerate(sd)) {
  4705. tmp = sd;
  4706. sd = sd->parent;
  4707. destroy_sched_domain(tmp, cpu);
  4708. if (sd)
  4709. sd->child = NULL;
  4710. }
  4711. sched_domain_debug(sd, cpu);
  4712. rq_attach_root(rq, rd);
  4713. tmp = rq->sd;
  4714. rcu_assign_pointer(rq->sd, sd);
  4715. destroy_sched_domains(tmp, cpu);
  4716. update_top_cache_domain(cpu);
  4717. }
  4718. /* cpus with isolated domains */
  4719. static cpumask_var_t cpu_isolated_map;
  4720. /* Setup the mask of cpus configured for isolated domains */
  4721. static int __init isolated_cpu_setup(char *str)
  4722. {
  4723. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4724. cpulist_parse(str, cpu_isolated_map);
  4725. return 1;
  4726. }
  4727. __setup("isolcpus=", isolated_cpu_setup);
  4728. static const struct cpumask *cpu_cpu_mask(int cpu)
  4729. {
  4730. return cpumask_of_node(cpu_to_node(cpu));
  4731. }
  4732. struct sd_data {
  4733. struct sched_domain **__percpu sd;
  4734. struct sched_group **__percpu sg;
  4735. struct sched_group_power **__percpu sgp;
  4736. };
  4737. struct s_data {
  4738. struct sched_domain ** __percpu sd;
  4739. struct root_domain *rd;
  4740. };
  4741. enum s_alloc {
  4742. sa_rootdomain,
  4743. sa_sd,
  4744. sa_sd_storage,
  4745. sa_none,
  4746. };
  4747. struct sched_domain_topology_level;
  4748. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  4749. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  4750. #define SDTL_OVERLAP 0x01
  4751. struct sched_domain_topology_level {
  4752. sched_domain_init_f init;
  4753. sched_domain_mask_f mask;
  4754. int flags;
  4755. int numa_level;
  4756. struct sd_data data;
  4757. };
  4758. /*
  4759. * Build an iteration mask that can exclude certain CPUs from the upwards
  4760. * domain traversal.
  4761. *
  4762. * Asymmetric node setups can result in situations where the domain tree is of
  4763. * unequal depth, make sure to skip domains that already cover the entire
  4764. * range.
  4765. *
  4766. * In that case build_sched_domains() will have terminated the iteration early
  4767. * and our sibling sd spans will be empty. Domains should always include the
  4768. * cpu they're built on, so check that.
  4769. *
  4770. */
  4771. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4772. {
  4773. const struct cpumask *span = sched_domain_span(sd);
  4774. struct sd_data *sdd = sd->private;
  4775. struct sched_domain *sibling;
  4776. int i;
  4777. for_each_cpu(i, span) {
  4778. sibling = *per_cpu_ptr(sdd->sd, i);
  4779. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4780. continue;
  4781. cpumask_set_cpu(i, sched_group_mask(sg));
  4782. }
  4783. }
  4784. /*
  4785. * Return the canonical balance cpu for this group, this is the first cpu
  4786. * of this group that's also in the iteration mask.
  4787. */
  4788. int group_balance_cpu(struct sched_group *sg)
  4789. {
  4790. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4791. }
  4792. static int
  4793. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4794. {
  4795. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4796. const struct cpumask *span = sched_domain_span(sd);
  4797. struct cpumask *covered = sched_domains_tmpmask;
  4798. struct sd_data *sdd = sd->private;
  4799. struct sched_domain *child;
  4800. int i;
  4801. cpumask_clear(covered);
  4802. for_each_cpu(i, span) {
  4803. struct cpumask *sg_span;
  4804. if (cpumask_test_cpu(i, covered))
  4805. continue;
  4806. child = *per_cpu_ptr(sdd->sd, i);
  4807. /* See the comment near build_group_mask(). */
  4808. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4809. continue;
  4810. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4811. GFP_KERNEL, cpu_to_node(cpu));
  4812. if (!sg)
  4813. goto fail;
  4814. sg_span = sched_group_cpus(sg);
  4815. if (child->child) {
  4816. child = child->child;
  4817. cpumask_copy(sg_span, sched_domain_span(child));
  4818. } else
  4819. cpumask_set_cpu(i, sg_span);
  4820. cpumask_or(covered, covered, sg_span);
  4821. sg->sgp = *per_cpu_ptr(sdd->sgp, i);
  4822. if (atomic_inc_return(&sg->sgp->ref) == 1)
  4823. build_group_mask(sd, sg);
  4824. /*
  4825. * Initialize sgp->power such that even if we mess up the
  4826. * domains and no possible iteration will get us here, we won't
  4827. * die on a /0 trap.
  4828. */
  4829. sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  4830. sg->sgp->power_orig = sg->sgp->power;
  4831. /*
  4832. * Make sure the first group of this domain contains the
  4833. * canonical balance cpu. Otherwise the sched_domain iteration
  4834. * breaks. See update_sg_lb_stats().
  4835. */
  4836. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4837. group_balance_cpu(sg) == cpu)
  4838. groups = sg;
  4839. if (!first)
  4840. first = sg;
  4841. if (last)
  4842. last->next = sg;
  4843. last = sg;
  4844. last->next = first;
  4845. }
  4846. sd->groups = groups;
  4847. return 0;
  4848. fail:
  4849. free_sched_groups(first, 0);
  4850. return -ENOMEM;
  4851. }
  4852. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4853. {
  4854. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4855. struct sched_domain *child = sd->child;
  4856. if (child)
  4857. cpu = cpumask_first(sched_domain_span(child));
  4858. if (sg) {
  4859. *sg = *per_cpu_ptr(sdd->sg, cpu);
  4860. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  4861. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  4862. }
  4863. return cpu;
  4864. }
  4865. /*
  4866. * build_sched_groups will build a circular linked list of the groups
  4867. * covered by the given span, and will set each group's ->cpumask correctly,
  4868. * and ->cpu_power to 0.
  4869. *
  4870. * Assumes the sched_domain tree is fully constructed
  4871. */
  4872. static int
  4873. build_sched_groups(struct sched_domain *sd, int cpu)
  4874. {
  4875. struct sched_group *first = NULL, *last = NULL;
  4876. struct sd_data *sdd = sd->private;
  4877. const struct cpumask *span = sched_domain_span(sd);
  4878. struct cpumask *covered;
  4879. int i;
  4880. get_group(cpu, sdd, &sd->groups);
  4881. atomic_inc(&sd->groups->ref);
  4882. if (cpu != cpumask_first(span))
  4883. return 0;
  4884. lockdep_assert_held(&sched_domains_mutex);
  4885. covered = sched_domains_tmpmask;
  4886. cpumask_clear(covered);
  4887. for_each_cpu(i, span) {
  4888. struct sched_group *sg;
  4889. int group, j;
  4890. if (cpumask_test_cpu(i, covered))
  4891. continue;
  4892. group = get_group(i, sdd, &sg);
  4893. cpumask_clear(sched_group_cpus(sg));
  4894. sg->sgp->power = 0;
  4895. cpumask_setall(sched_group_mask(sg));
  4896. for_each_cpu(j, span) {
  4897. if (get_group(j, sdd, NULL) != group)
  4898. continue;
  4899. cpumask_set_cpu(j, covered);
  4900. cpumask_set_cpu(j, sched_group_cpus(sg));
  4901. }
  4902. if (!first)
  4903. first = sg;
  4904. if (last)
  4905. last->next = sg;
  4906. last = sg;
  4907. }
  4908. last->next = first;
  4909. return 0;
  4910. }
  4911. /*
  4912. * Initialize sched groups cpu_power.
  4913. *
  4914. * cpu_power indicates the capacity of sched group, which is used while
  4915. * distributing the load between different sched groups in a sched domain.
  4916. * Typically cpu_power for all the groups in a sched domain will be same unless
  4917. * there are asymmetries in the topology. If there are asymmetries, group
  4918. * having more cpu_power will pickup more load compared to the group having
  4919. * less cpu_power.
  4920. */
  4921. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  4922. {
  4923. struct sched_group *sg = sd->groups;
  4924. WARN_ON(!sg);
  4925. do {
  4926. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  4927. sg = sg->next;
  4928. } while (sg != sd->groups);
  4929. if (cpu != group_balance_cpu(sg))
  4930. return;
  4931. update_group_power(sd, cpu);
  4932. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  4933. }
  4934. int __weak arch_sd_sibling_asym_packing(void)
  4935. {
  4936. return 0*SD_ASYM_PACKING;
  4937. }
  4938. /*
  4939. * Initializers for schedule domains
  4940. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  4941. */
  4942. #ifdef CONFIG_SCHED_DEBUG
  4943. # define SD_INIT_NAME(sd, type) sd->name = #type
  4944. #else
  4945. # define SD_INIT_NAME(sd, type) do { } while (0)
  4946. #endif
  4947. #define SD_INIT_FUNC(type) \
  4948. static noinline struct sched_domain * \
  4949. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  4950. { \
  4951. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  4952. *sd = SD_##type##_INIT; \
  4953. SD_INIT_NAME(sd, type); \
  4954. sd->private = &tl->data; \
  4955. return sd; \
  4956. }
  4957. SD_INIT_FUNC(CPU)
  4958. #ifdef CONFIG_SCHED_SMT
  4959. SD_INIT_FUNC(SIBLING)
  4960. #endif
  4961. #ifdef CONFIG_SCHED_MC
  4962. SD_INIT_FUNC(MC)
  4963. #endif
  4964. #ifdef CONFIG_SCHED_BOOK
  4965. SD_INIT_FUNC(BOOK)
  4966. #endif
  4967. static int default_relax_domain_level = -1;
  4968. int sched_domain_level_max;
  4969. static int __init setup_relax_domain_level(char *str)
  4970. {
  4971. if (kstrtoint(str, 0, &default_relax_domain_level))
  4972. pr_warn("Unable to set relax_domain_level\n");
  4973. return 1;
  4974. }
  4975. __setup("relax_domain_level=", setup_relax_domain_level);
  4976. static void set_domain_attribute(struct sched_domain *sd,
  4977. struct sched_domain_attr *attr)
  4978. {
  4979. int request;
  4980. if (!attr || attr->relax_domain_level < 0) {
  4981. if (default_relax_domain_level < 0)
  4982. return;
  4983. else
  4984. request = default_relax_domain_level;
  4985. } else
  4986. request = attr->relax_domain_level;
  4987. if (request < sd->level) {
  4988. /* turn off idle balance on this domain */
  4989. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  4990. } else {
  4991. /* turn on idle balance on this domain */
  4992. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  4993. }
  4994. }
  4995. static void __sdt_free(const struct cpumask *cpu_map);
  4996. static int __sdt_alloc(const struct cpumask *cpu_map);
  4997. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  4998. const struct cpumask *cpu_map)
  4999. {
  5000. switch (what) {
  5001. case sa_rootdomain:
  5002. if (!atomic_read(&d->rd->refcount))
  5003. free_rootdomain(&d->rd->rcu); /* fall through */
  5004. case sa_sd:
  5005. free_percpu(d->sd); /* fall through */
  5006. case sa_sd_storage:
  5007. __sdt_free(cpu_map); /* fall through */
  5008. case sa_none:
  5009. break;
  5010. }
  5011. }
  5012. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5013. const struct cpumask *cpu_map)
  5014. {
  5015. memset(d, 0, sizeof(*d));
  5016. if (__sdt_alloc(cpu_map))
  5017. return sa_sd_storage;
  5018. d->sd = alloc_percpu(struct sched_domain *);
  5019. if (!d->sd)
  5020. return sa_sd_storage;
  5021. d->rd = alloc_rootdomain();
  5022. if (!d->rd)
  5023. return sa_sd;
  5024. return sa_rootdomain;
  5025. }
  5026. /*
  5027. * NULL the sd_data elements we've used to build the sched_domain and
  5028. * sched_group structure so that the subsequent __free_domain_allocs()
  5029. * will not free the data we're using.
  5030. */
  5031. static void claim_allocations(int cpu, struct sched_domain *sd)
  5032. {
  5033. struct sd_data *sdd = sd->private;
  5034. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5035. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5036. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5037. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5038. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5039. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5040. }
  5041. #ifdef CONFIG_SCHED_SMT
  5042. static const struct cpumask *cpu_smt_mask(int cpu)
  5043. {
  5044. return topology_thread_cpumask(cpu);
  5045. }
  5046. #endif
  5047. /*
  5048. * Topology list, bottom-up.
  5049. */
  5050. static struct sched_domain_topology_level default_topology[] = {
  5051. #ifdef CONFIG_SCHED_SMT
  5052. { sd_init_SIBLING, cpu_smt_mask, },
  5053. #endif
  5054. #ifdef CONFIG_SCHED_MC
  5055. { sd_init_MC, cpu_coregroup_mask, },
  5056. #endif
  5057. #ifdef CONFIG_SCHED_BOOK
  5058. { sd_init_BOOK, cpu_book_mask, },
  5059. #endif
  5060. { sd_init_CPU, cpu_cpu_mask, },
  5061. { NULL, },
  5062. };
  5063. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5064. #define for_each_sd_topology(tl) \
  5065. for (tl = sched_domain_topology; tl->init; tl++)
  5066. #ifdef CONFIG_NUMA
  5067. static int sched_domains_numa_levels;
  5068. static int *sched_domains_numa_distance;
  5069. static struct cpumask ***sched_domains_numa_masks;
  5070. static int sched_domains_curr_level;
  5071. static inline int sd_local_flags(int level)
  5072. {
  5073. if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
  5074. return 0;
  5075. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  5076. }
  5077. static struct sched_domain *
  5078. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  5079. {
  5080. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5081. int level = tl->numa_level;
  5082. int sd_weight = cpumask_weight(
  5083. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  5084. *sd = (struct sched_domain){
  5085. .min_interval = sd_weight,
  5086. .max_interval = 2*sd_weight,
  5087. .busy_factor = 32,
  5088. .imbalance_pct = 125,
  5089. .cache_nice_tries = 2,
  5090. .busy_idx = 3,
  5091. .idle_idx = 2,
  5092. .newidle_idx = 0,
  5093. .wake_idx = 0,
  5094. .forkexec_idx = 0,
  5095. .flags = 1*SD_LOAD_BALANCE
  5096. | 1*SD_BALANCE_NEWIDLE
  5097. | 0*SD_BALANCE_EXEC
  5098. | 0*SD_BALANCE_FORK
  5099. | 0*SD_BALANCE_WAKE
  5100. | 0*SD_WAKE_AFFINE
  5101. | 0*SD_SHARE_CPUPOWER
  5102. | 0*SD_SHARE_PKG_RESOURCES
  5103. | 1*SD_SERIALIZE
  5104. | 0*SD_PREFER_SIBLING
  5105. | 1*SD_NUMA
  5106. | sd_local_flags(level)
  5107. ,
  5108. .last_balance = jiffies,
  5109. .balance_interval = sd_weight,
  5110. };
  5111. SD_INIT_NAME(sd, NUMA);
  5112. sd->private = &tl->data;
  5113. /*
  5114. * Ugly hack to pass state to sd_numa_mask()...
  5115. */
  5116. sched_domains_curr_level = tl->numa_level;
  5117. return sd;
  5118. }
  5119. static const struct cpumask *sd_numa_mask(int cpu)
  5120. {
  5121. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5122. }
  5123. static void sched_numa_warn(const char *str)
  5124. {
  5125. static int done = false;
  5126. int i,j;
  5127. if (done)
  5128. return;
  5129. done = true;
  5130. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5131. for (i = 0; i < nr_node_ids; i++) {
  5132. printk(KERN_WARNING " ");
  5133. for (j = 0; j < nr_node_ids; j++)
  5134. printk(KERN_CONT "%02d ", node_distance(i,j));
  5135. printk(KERN_CONT "\n");
  5136. }
  5137. printk(KERN_WARNING "\n");
  5138. }
  5139. static bool find_numa_distance(int distance)
  5140. {
  5141. int i;
  5142. if (distance == node_distance(0, 0))
  5143. return true;
  5144. for (i = 0; i < sched_domains_numa_levels; i++) {
  5145. if (sched_domains_numa_distance[i] == distance)
  5146. return true;
  5147. }
  5148. return false;
  5149. }
  5150. static void sched_init_numa(void)
  5151. {
  5152. int next_distance, curr_distance = node_distance(0, 0);
  5153. struct sched_domain_topology_level *tl;
  5154. int level = 0;
  5155. int i, j, k;
  5156. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5157. if (!sched_domains_numa_distance)
  5158. return;
  5159. /*
  5160. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5161. * unique distances in the node_distance() table.
  5162. *
  5163. * Assumes node_distance(0,j) includes all distances in
  5164. * node_distance(i,j) in order to avoid cubic time.
  5165. */
  5166. next_distance = curr_distance;
  5167. for (i = 0; i < nr_node_ids; i++) {
  5168. for (j = 0; j < nr_node_ids; j++) {
  5169. for (k = 0; k < nr_node_ids; k++) {
  5170. int distance = node_distance(i, k);
  5171. if (distance > curr_distance &&
  5172. (distance < next_distance ||
  5173. next_distance == curr_distance))
  5174. next_distance = distance;
  5175. /*
  5176. * While not a strong assumption it would be nice to know
  5177. * about cases where if node A is connected to B, B is not
  5178. * equally connected to A.
  5179. */
  5180. if (sched_debug() && node_distance(k, i) != distance)
  5181. sched_numa_warn("Node-distance not symmetric");
  5182. if (sched_debug() && i && !find_numa_distance(distance))
  5183. sched_numa_warn("Node-0 not representative");
  5184. }
  5185. if (next_distance != curr_distance) {
  5186. sched_domains_numa_distance[level++] = next_distance;
  5187. sched_domains_numa_levels = level;
  5188. curr_distance = next_distance;
  5189. } else break;
  5190. }
  5191. /*
  5192. * In case of sched_debug() we verify the above assumption.
  5193. */
  5194. if (!sched_debug())
  5195. break;
  5196. }
  5197. /*
  5198. * 'level' contains the number of unique distances, excluding the
  5199. * identity distance node_distance(i,i).
  5200. *
  5201. * The sched_domains_numa_distance[] array includes the actual distance
  5202. * numbers.
  5203. */
  5204. /*
  5205. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5206. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5207. * the array will contain less then 'level' members. This could be
  5208. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5209. * in other functions.
  5210. *
  5211. * We reset it to 'level' at the end of this function.
  5212. */
  5213. sched_domains_numa_levels = 0;
  5214. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5215. if (!sched_domains_numa_masks)
  5216. return;
  5217. /*
  5218. * Now for each level, construct a mask per node which contains all
  5219. * cpus of nodes that are that many hops away from us.
  5220. */
  5221. for (i = 0; i < level; i++) {
  5222. sched_domains_numa_masks[i] =
  5223. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5224. if (!sched_domains_numa_masks[i])
  5225. return;
  5226. for (j = 0; j < nr_node_ids; j++) {
  5227. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5228. if (!mask)
  5229. return;
  5230. sched_domains_numa_masks[i][j] = mask;
  5231. for (k = 0; k < nr_node_ids; k++) {
  5232. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5233. continue;
  5234. cpumask_or(mask, mask, cpumask_of_node(k));
  5235. }
  5236. }
  5237. }
  5238. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  5239. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5240. if (!tl)
  5241. return;
  5242. /*
  5243. * Copy the default topology bits..
  5244. */
  5245. for (i = 0; default_topology[i].init; i++)
  5246. tl[i] = default_topology[i];
  5247. /*
  5248. * .. and append 'j' levels of NUMA goodness.
  5249. */
  5250. for (j = 0; j < level; i++, j++) {
  5251. tl[i] = (struct sched_domain_topology_level){
  5252. .init = sd_numa_init,
  5253. .mask = sd_numa_mask,
  5254. .flags = SDTL_OVERLAP,
  5255. .numa_level = j,
  5256. };
  5257. }
  5258. sched_domain_topology = tl;
  5259. sched_domains_numa_levels = level;
  5260. }
  5261. static void sched_domains_numa_masks_set(int cpu)
  5262. {
  5263. int i, j;
  5264. int node = cpu_to_node(cpu);
  5265. for (i = 0; i < sched_domains_numa_levels; i++) {
  5266. for (j = 0; j < nr_node_ids; j++) {
  5267. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5268. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5269. }
  5270. }
  5271. }
  5272. static void sched_domains_numa_masks_clear(int cpu)
  5273. {
  5274. int i, j;
  5275. for (i = 0; i < sched_domains_numa_levels; i++) {
  5276. for (j = 0; j < nr_node_ids; j++)
  5277. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5278. }
  5279. }
  5280. /*
  5281. * Update sched_domains_numa_masks[level][node] array when new cpus
  5282. * are onlined.
  5283. */
  5284. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5285. unsigned long action,
  5286. void *hcpu)
  5287. {
  5288. int cpu = (long)hcpu;
  5289. switch (action & ~CPU_TASKS_FROZEN) {
  5290. case CPU_ONLINE:
  5291. sched_domains_numa_masks_set(cpu);
  5292. break;
  5293. case CPU_DEAD:
  5294. sched_domains_numa_masks_clear(cpu);
  5295. break;
  5296. default:
  5297. return NOTIFY_DONE;
  5298. }
  5299. return NOTIFY_OK;
  5300. }
  5301. #else
  5302. static inline void sched_init_numa(void)
  5303. {
  5304. }
  5305. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5306. unsigned long action,
  5307. void *hcpu)
  5308. {
  5309. return 0;
  5310. }
  5311. #endif /* CONFIG_NUMA */
  5312. static int __sdt_alloc(const struct cpumask *cpu_map)
  5313. {
  5314. struct sched_domain_topology_level *tl;
  5315. int j;
  5316. for_each_sd_topology(tl) {
  5317. struct sd_data *sdd = &tl->data;
  5318. sdd->sd = alloc_percpu(struct sched_domain *);
  5319. if (!sdd->sd)
  5320. return -ENOMEM;
  5321. sdd->sg = alloc_percpu(struct sched_group *);
  5322. if (!sdd->sg)
  5323. return -ENOMEM;
  5324. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5325. if (!sdd->sgp)
  5326. return -ENOMEM;
  5327. for_each_cpu(j, cpu_map) {
  5328. struct sched_domain *sd;
  5329. struct sched_group *sg;
  5330. struct sched_group_power *sgp;
  5331. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5332. GFP_KERNEL, cpu_to_node(j));
  5333. if (!sd)
  5334. return -ENOMEM;
  5335. *per_cpu_ptr(sdd->sd, j) = sd;
  5336. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5337. GFP_KERNEL, cpu_to_node(j));
  5338. if (!sg)
  5339. return -ENOMEM;
  5340. sg->next = sg;
  5341. *per_cpu_ptr(sdd->sg, j) = sg;
  5342. sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
  5343. GFP_KERNEL, cpu_to_node(j));
  5344. if (!sgp)
  5345. return -ENOMEM;
  5346. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5347. }
  5348. }
  5349. return 0;
  5350. }
  5351. static void __sdt_free(const struct cpumask *cpu_map)
  5352. {
  5353. struct sched_domain_topology_level *tl;
  5354. int j;
  5355. for_each_sd_topology(tl) {
  5356. struct sd_data *sdd = &tl->data;
  5357. for_each_cpu(j, cpu_map) {
  5358. struct sched_domain *sd;
  5359. if (sdd->sd) {
  5360. sd = *per_cpu_ptr(sdd->sd, j);
  5361. if (sd && (sd->flags & SD_OVERLAP))
  5362. free_sched_groups(sd->groups, 0);
  5363. kfree(*per_cpu_ptr(sdd->sd, j));
  5364. }
  5365. if (sdd->sg)
  5366. kfree(*per_cpu_ptr(sdd->sg, j));
  5367. if (sdd->sgp)
  5368. kfree(*per_cpu_ptr(sdd->sgp, j));
  5369. }
  5370. free_percpu(sdd->sd);
  5371. sdd->sd = NULL;
  5372. free_percpu(sdd->sg);
  5373. sdd->sg = NULL;
  5374. free_percpu(sdd->sgp);
  5375. sdd->sgp = NULL;
  5376. }
  5377. }
  5378. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5379. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5380. struct sched_domain *child, int cpu)
  5381. {
  5382. struct sched_domain *sd = tl->init(tl, cpu);
  5383. if (!sd)
  5384. return child;
  5385. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5386. if (child) {
  5387. sd->level = child->level + 1;
  5388. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5389. child->parent = sd;
  5390. sd->child = child;
  5391. }
  5392. set_domain_attribute(sd, attr);
  5393. return sd;
  5394. }
  5395. /*
  5396. * Build sched domains for a given set of cpus and attach the sched domains
  5397. * to the individual cpus
  5398. */
  5399. static int build_sched_domains(const struct cpumask *cpu_map,
  5400. struct sched_domain_attr *attr)
  5401. {
  5402. enum s_alloc alloc_state;
  5403. struct sched_domain *sd;
  5404. struct s_data d;
  5405. int i, ret = -ENOMEM;
  5406. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5407. if (alloc_state != sa_rootdomain)
  5408. goto error;
  5409. /* Set up domains for cpus specified by the cpu_map. */
  5410. for_each_cpu(i, cpu_map) {
  5411. struct sched_domain_topology_level *tl;
  5412. sd = NULL;
  5413. for_each_sd_topology(tl) {
  5414. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5415. if (tl == sched_domain_topology)
  5416. *per_cpu_ptr(d.sd, i) = sd;
  5417. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5418. sd->flags |= SD_OVERLAP;
  5419. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5420. break;
  5421. }
  5422. }
  5423. /* Build the groups for the domains */
  5424. for_each_cpu(i, cpu_map) {
  5425. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5426. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5427. if (sd->flags & SD_OVERLAP) {
  5428. if (build_overlap_sched_groups(sd, i))
  5429. goto error;
  5430. } else {
  5431. if (build_sched_groups(sd, i))
  5432. goto error;
  5433. }
  5434. }
  5435. }
  5436. /* Calculate CPU power for physical packages and nodes */
  5437. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5438. if (!cpumask_test_cpu(i, cpu_map))
  5439. continue;
  5440. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5441. claim_allocations(i, sd);
  5442. init_sched_groups_power(i, sd);
  5443. }
  5444. }
  5445. /* Attach the domains */
  5446. rcu_read_lock();
  5447. for_each_cpu(i, cpu_map) {
  5448. sd = *per_cpu_ptr(d.sd, i);
  5449. cpu_attach_domain(sd, d.rd, i);
  5450. }
  5451. rcu_read_unlock();
  5452. ret = 0;
  5453. error:
  5454. __free_domain_allocs(&d, alloc_state, cpu_map);
  5455. return ret;
  5456. }
  5457. static cpumask_var_t *doms_cur; /* current sched domains */
  5458. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5459. static struct sched_domain_attr *dattr_cur;
  5460. /* attribues of custom domains in 'doms_cur' */
  5461. /*
  5462. * Special case: If a kmalloc of a doms_cur partition (array of
  5463. * cpumask) fails, then fallback to a single sched domain,
  5464. * as determined by the single cpumask fallback_doms.
  5465. */
  5466. static cpumask_var_t fallback_doms;
  5467. /*
  5468. * arch_update_cpu_topology lets virtualized architectures update the
  5469. * cpu core maps. It is supposed to return 1 if the topology changed
  5470. * or 0 if it stayed the same.
  5471. */
  5472. int __attribute__((weak)) arch_update_cpu_topology(void)
  5473. {
  5474. return 0;
  5475. }
  5476. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5477. {
  5478. int i;
  5479. cpumask_var_t *doms;
  5480. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5481. if (!doms)
  5482. return NULL;
  5483. for (i = 0; i < ndoms; i++) {
  5484. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5485. free_sched_domains(doms, i);
  5486. return NULL;
  5487. }
  5488. }
  5489. return doms;
  5490. }
  5491. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5492. {
  5493. unsigned int i;
  5494. for (i = 0; i < ndoms; i++)
  5495. free_cpumask_var(doms[i]);
  5496. kfree(doms);
  5497. }
  5498. /*
  5499. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5500. * For now this just excludes isolated cpus, but could be used to
  5501. * exclude other special cases in the future.
  5502. */
  5503. static int init_sched_domains(const struct cpumask *cpu_map)
  5504. {
  5505. int err;
  5506. arch_update_cpu_topology();
  5507. ndoms_cur = 1;
  5508. doms_cur = alloc_sched_domains(ndoms_cur);
  5509. if (!doms_cur)
  5510. doms_cur = &fallback_doms;
  5511. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5512. err = build_sched_domains(doms_cur[0], NULL);
  5513. register_sched_domain_sysctl();
  5514. return err;
  5515. }
  5516. /*
  5517. * Detach sched domains from a group of cpus specified in cpu_map
  5518. * These cpus will now be attached to the NULL domain
  5519. */
  5520. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5521. {
  5522. int i;
  5523. rcu_read_lock();
  5524. for_each_cpu(i, cpu_map)
  5525. cpu_attach_domain(NULL, &def_root_domain, i);
  5526. rcu_read_unlock();
  5527. }
  5528. /* handle null as "default" */
  5529. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5530. struct sched_domain_attr *new, int idx_new)
  5531. {
  5532. struct sched_domain_attr tmp;
  5533. /* fast path */
  5534. if (!new && !cur)
  5535. return 1;
  5536. tmp = SD_ATTR_INIT;
  5537. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5538. new ? (new + idx_new) : &tmp,
  5539. sizeof(struct sched_domain_attr));
  5540. }
  5541. /*
  5542. * Partition sched domains as specified by the 'ndoms_new'
  5543. * cpumasks in the array doms_new[] of cpumasks. This compares
  5544. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5545. * It destroys each deleted domain and builds each new domain.
  5546. *
  5547. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5548. * The masks don't intersect (don't overlap.) We should setup one
  5549. * sched domain for each mask. CPUs not in any of the cpumasks will
  5550. * not be load balanced. If the same cpumask appears both in the
  5551. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5552. * it as it is.
  5553. *
  5554. * The passed in 'doms_new' should be allocated using
  5555. * alloc_sched_domains. This routine takes ownership of it and will
  5556. * free_sched_domains it when done with it. If the caller failed the
  5557. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5558. * and partition_sched_domains() will fallback to the single partition
  5559. * 'fallback_doms', it also forces the domains to be rebuilt.
  5560. *
  5561. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5562. * ndoms_new == 0 is a special case for destroying existing domains,
  5563. * and it will not create the default domain.
  5564. *
  5565. * Call with hotplug lock held
  5566. */
  5567. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5568. struct sched_domain_attr *dattr_new)
  5569. {
  5570. int i, j, n;
  5571. int new_topology;
  5572. mutex_lock(&sched_domains_mutex);
  5573. /* always unregister in case we don't destroy any domains */
  5574. unregister_sched_domain_sysctl();
  5575. /* Let architecture update cpu core mappings. */
  5576. new_topology = arch_update_cpu_topology();
  5577. n = doms_new ? ndoms_new : 0;
  5578. /* Destroy deleted domains */
  5579. for (i = 0; i < ndoms_cur; i++) {
  5580. for (j = 0; j < n && !new_topology; j++) {
  5581. if (cpumask_equal(doms_cur[i], doms_new[j])
  5582. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5583. goto match1;
  5584. }
  5585. /* no match - a current sched domain not in new doms_new[] */
  5586. detach_destroy_domains(doms_cur[i]);
  5587. match1:
  5588. ;
  5589. }
  5590. n = ndoms_cur;
  5591. if (doms_new == NULL) {
  5592. n = 0;
  5593. doms_new = &fallback_doms;
  5594. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5595. WARN_ON_ONCE(dattr_new);
  5596. }
  5597. /* Build new domains */
  5598. for (i = 0; i < ndoms_new; i++) {
  5599. for (j = 0; j < n && !new_topology; j++) {
  5600. if (cpumask_equal(doms_new[i], doms_cur[j])
  5601. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5602. goto match2;
  5603. }
  5604. /* no match - add a new doms_new */
  5605. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5606. match2:
  5607. ;
  5608. }
  5609. /* Remember the new sched domains */
  5610. if (doms_cur != &fallback_doms)
  5611. free_sched_domains(doms_cur, ndoms_cur);
  5612. kfree(dattr_cur); /* kfree(NULL) is safe */
  5613. doms_cur = doms_new;
  5614. dattr_cur = dattr_new;
  5615. ndoms_cur = ndoms_new;
  5616. register_sched_domain_sysctl();
  5617. mutex_unlock(&sched_domains_mutex);
  5618. }
  5619. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5620. /*
  5621. * Update cpusets according to cpu_active mask. If cpusets are
  5622. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5623. * around partition_sched_domains().
  5624. *
  5625. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5626. * want to restore it back to its original state upon resume anyway.
  5627. */
  5628. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5629. void *hcpu)
  5630. {
  5631. switch (action) {
  5632. case CPU_ONLINE_FROZEN:
  5633. case CPU_DOWN_FAILED_FROZEN:
  5634. /*
  5635. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5636. * resume sequence. As long as this is not the last online
  5637. * operation in the resume sequence, just build a single sched
  5638. * domain, ignoring cpusets.
  5639. */
  5640. num_cpus_frozen--;
  5641. if (likely(num_cpus_frozen)) {
  5642. partition_sched_domains(1, NULL, NULL);
  5643. break;
  5644. }
  5645. /*
  5646. * This is the last CPU online operation. So fall through and
  5647. * restore the original sched domains by considering the
  5648. * cpuset configurations.
  5649. */
  5650. case CPU_ONLINE:
  5651. case CPU_DOWN_FAILED:
  5652. cpuset_update_active_cpus(true);
  5653. break;
  5654. default:
  5655. return NOTIFY_DONE;
  5656. }
  5657. return NOTIFY_OK;
  5658. }
  5659. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5660. void *hcpu)
  5661. {
  5662. switch (action) {
  5663. case CPU_DOWN_PREPARE:
  5664. cpuset_update_active_cpus(false);
  5665. break;
  5666. case CPU_DOWN_PREPARE_FROZEN:
  5667. num_cpus_frozen++;
  5668. partition_sched_domains(1, NULL, NULL);
  5669. break;
  5670. default:
  5671. return NOTIFY_DONE;
  5672. }
  5673. return NOTIFY_OK;
  5674. }
  5675. void __init sched_init_smp(void)
  5676. {
  5677. cpumask_var_t non_isolated_cpus;
  5678. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5679. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5680. sched_init_numa();
  5681. /*
  5682. * There's no userspace yet to cause hotplug operations; hence all the
  5683. * cpu masks are stable and all blatant races in the below code cannot
  5684. * happen.
  5685. */
  5686. mutex_lock(&sched_domains_mutex);
  5687. init_sched_domains(cpu_active_mask);
  5688. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5689. if (cpumask_empty(non_isolated_cpus))
  5690. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5691. mutex_unlock(&sched_domains_mutex);
  5692. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5693. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5694. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5695. init_hrtick();
  5696. /* Move init over to a non-isolated CPU */
  5697. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5698. BUG();
  5699. sched_init_granularity();
  5700. free_cpumask_var(non_isolated_cpus);
  5701. init_sched_rt_class();
  5702. init_sched_dl_class();
  5703. }
  5704. #else
  5705. void __init sched_init_smp(void)
  5706. {
  5707. sched_init_granularity();
  5708. }
  5709. #endif /* CONFIG_SMP */
  5710. const_debug unsigned int sysctl_timer_migration = 1;
  5711. int in_sched_functions(unsigned long addr)
  5712. {
  5713. return in_lock_functions(addr) ||
  5714. (addr >= (unsigned long)__sched_text_start
  5715. && addr < (unsigned long)__sched_text_end);
  5716. }
  5717. #ifdef CONFIG_CGROUP_SCHED
  5718. /*
  5719. * Default task group.
  5720. * Every task in system belongs to this group at bootup.
  5721. */
  5722. struct task_group root_task_group;
  5723. LIST_HEAD(task_groups);
  5724. #endif
  5725. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  5726. void __init sched_init(void)
  5727. {
  5728. int i, j;
  5729. unsigned long alloc_size = 0, ptr;
  5730. #ifdef CONFIG_FAIR_GROUP_SCHED
  5731. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5732. #endif
  5733. #ifdef CONFIG_RT_GROUP_SCHED
  5734. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5735. #endif
  5736. #ifdef CONFIG_CPUMASK_OFFSTACK
  5737. alloc_size += num_possible_cpus() * cpumask_size();
  5738. #endif
  5739. if (alloc_size) {
  5740. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5741. #ifdef CONFIG_FAIR_GROUP_SCHED
  5742. root_task_group.se = (struct sched_entity **)ptr;
  5743. ptr += nr_cpu_ids * sizeof(void **);
  5744. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5745. ptr += nr_cpu_ids * sizeof(void **);
  5746. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5747. #ifdef CONFIG_RT_GROUP_SCHED
  5748. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5749. ptr += nr_cpu_ids * sizeof(void **);
  5750. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5751. ptr += nr_cpu_ids * sizeof(void **);
  5752. #endif /* CONFIG_RT_GROUP_SCHED */
  5753. #ifdef CONFIG_CPUMASK_OFFSTACK
  5754. for_each_possible_cpu(i) {
  5755. per_cpu(load_balance_mask, i) = (void *)ptr;
  5756. ptr += cpumask_size();
  5757. }
  5758. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5759. }
  5760. init_rt_bandwidth(&def_rt_bandwidth,
  5761. global_rt_period(), global_rt_runtime());
  5762. init_dl_bandwidth(&def_dl_bandwidth,
  5763. global_rt_period(), global_rt_runtime());
  5764. #ifdef CONFIG_SMP
  5765. init_defrootdomain();
  5766. #endif
  5767. #ifdef CONFIG_RT_GROUP_SCHED
  5768. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5769. global_rt_period(), global_rt_runtime());
  5770. #endif /* CONFIG_RT_GROUP_SCHED */
  5771. #ifdef CONFIG_CGROUP_SCHED
  5772. list_add(&root_task_group.list, &task_groups);
  5773. INIT_LIST_HEAD(&root_task_group.children);
  5774. INIT_LIST_HEAD(&root_task_group.siblings);
  5775. autogroup_init(&init_task);
  5776. #endif /* CONFIG_CGROUP_SCHED */
  5777. for_each_possible_cpu(i) {
  5778. struct rq *rq;
  5779. rq = cpu_rq(i);
  5780. raw_spin_lock_init(&rq->lock);
  5781. rq->nr_running = 0;
  5782. rq->calc_load_active = 0;
  5783. rq->calc_load_update = jiffies + LOAD_FREQ;
  5784. init_cfs_rq(&rq->cfs);
  5785. init_rt_rq(&rq->rt, rq);
  5786. init_dl_rq(&rq->dl, rq);
  5787. #ifdef CONFIG_FAIR_GROUP_SCHED
  5788. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5789. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5790. /*
  5791. * How much cpu bandwidth does root_task_group get?
  5792. *
  5793. * In case of task-groups formed thr' the cgroup filesystem, it
  5794. * gets 100% of the cpu resources in the system. This overall
  5795. * system cpu resource is divided among the tasks of
  5796. * root_task_group and its child task-groups in a fair manner,
  5797. * based on each entity's (task or task-group's) weight
  5798. * (se->load.weight).
  5799. *
  5800. * In other words, if root_task_group has 10 tasks of weight
  5801. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5802. * then A0's share of the cpu resource is:
  5803. *
  5804. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5805. *
  5806. * We achieve this by letting root_task_group's tasks sit
  5807. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5808. */
  5809. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5810. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5811. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5812. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5813. #ifdef CONFIG_RT_GROUP_SCHED
  5814. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5815. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5816. #endif
  5817. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5818. rq->cpu_load[j] = 0;
  5819. rq->last_load_update_tick = jiffies;
  5820. #ifdef CONFIG_SMP
  5821. rq->sd = NULL;
  5822. rq->rd = NULL;
  5823. rq->cpu_power = SCHED_POWER_SCALE;
  5824. rq->post_schedule = 0;
  5825. rq->active_balance = 0;
  5826. rq->next_balance = jiffies;
  5827. rq->push_cpu = 0;
  5828. rq->cpu = i;
  5829. rq->online = 0;
  5830. rq->idle_stamp = 0;
  5831. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5832. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  5833. INIT_LIST_HEAD(&rq->cfs_tasks);
  5834. rq_attach_root(rq, &def_root_domain);
  5835. #ifdef CONFIG_NO_HZ_COMMON
  5836. rq->nohz_flags = 0;
  5837. #endif
  5838. #ifdef CONFIG_NO_HZ_FULL
  5839. rq->last_sched_tick = 0;
  5840. #endif
  5841. #endif
  5842. init_rq_hrtick(rq);
  5843. atomic_set(&rq->nr_iowait, 0);
  5844. }
  5845. set_load_weight(&init_task);
  5846. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5847. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5848. #endif
  5849. /*
  5850. * The boot idle thread does lazy MMU switching as well:
  5851. */
  5852. atomic_inc(&init_mm.mm_count);
  5853. enter_lazy_tlb(&init_mm, current);
  5854. /*
  5855. * Make us the idle thread. Technically, schedule() should not be
  5856. * called from this thread, however somewhere below it might be,
  5857. * but because we are the idle thread, we just pick up running again
  5858. * when this runqueue becomes "idle".
  5859. */
  5860. init_idle(current, smp_processor_id());
  5861. calc_load_update = jiffies + LOAD_FREQ;
  5862. /*
  5863. * During early bootup we pretend to be a normal task:
  5864. */
  5865. current->sched_class = &fair_sched_class;
  5866. #ifdef CONFIG_SMP
  5867. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5868. /* May be allocated at isolcpus cmdline parse time */
  5869. if (cpu_isolated_map == NULL)
  5870. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5871. idle_thread_set_boot_cpu();
  5872. #endif
  5873. init_sched_fair_class();
  5874. scheduler_running = 1;
  5875. }
  5876. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5877. static inline int preempt_count_equals(int preempt_offset)
  5878. {
  5879. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5880. return (nested == preempt_offset);
  5881. }
  5882. void __might_sleep(const char *file, int line, int preempt_offset)
  5883. {
  5884. static unsigned long prev_jiffy; /* ratelimiting */
  5885. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5886. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  5887. !is_idle_task(current)) ||
  5888. system_state != SYSTEM_RUNNING || oops_in_progress)
  5889. return;
  5890. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5891. return;
  5892. prev_jiffy = jiffies;
  5893. printk(KERN_ERR
  5894. "BUG: sleeping function called from invalid context at %s:%d\n",
  5895. file, line);
  5896. printk(KERN_ERR
  5897. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5898. in_atomic(), irqs_disabled(),
  5899. current->pid, current->comm);
  5900. debug_show_held_locks(current);
  5901. if (irqs_disabled())
  5902. print_irqtrace_events(current);
  5903. #ifdef CONFIG_DEBUG_PREEMPT
  5904. if (!preempt_count_equals(preempt_offset)) {
  5905. pr_err("Preemption disabled at:");
  5906. print_ip_sym(current->preempt_disable_ip);
  5907. pr_cont("\n");
  5908. }
  5909. #endif
  5910. dump_stack();
  5911. }
  5912. EXPORT_SYMBOL(__might_sleep);
  5913. #endif
  5914. #ifdef CONFIG_MAGIC_SYSRQ
  5915. static void normalize_task(struct rq *rq, struct task_struct *p)
  5916. {
  5917. const struct sched_class *prev_class = p->sched_class;
  5918. struct sched_attr attr = {
  5919. .sched_policy = SCHED_NORMAL,
  5920. };
  5921. int old_prio = p->prio;
  5922. int on_rq;
  5923. on_rq = p->on_rq;
  5924. if (on_rq)
  5925. dequeue_task(rq, p, 0);
  5926. __setscheduler(rq, p, &attr);
  5927. if (on_rq) {
  5928. enqueue_task(rq, p, 0);
  5929. resched_task(rq->curr);
  5930. }
  5931. check_class_changed(rq, p, prev_class, old_prio);
  5932. }
  5933. void normalize_rt_tasks(void)
  5934. {
  5935. struct task_struct *g, *p;
  5936. unsigned long flags;
  5937. struct rq *rq;
  5938. read_lock_irqsave(&tasklist_lock, flags);
  5939. do_each_thread(g, p) {
  5940. /*
  5941. * Only normalize user tasks:
  5942. */
  5943. if (!p->mm)
  5944. continue;
  5945. p->se.exec_start = 0;
  5946. #ifdef CONFIG_SCHEDSTATS
  5947. p->se.statistics.wait_start = 0;
  5948. p->se.statistics.sleep_start = 0;
  5949. p->se.statistics.block_start = 0;
  5950. #endif
  5951. if (!dl_task(p) && !rt_task(p)) {
  5952. /*
  5953. * Renice negative nice level userspace
  5954. * tasks back to 0:
  5955. */
  5956. if (task_nice(p) < 0 && p->mm)
  5957. set_user_nice(p, 0);
  5958. continue;
  5959. }
  5960. raw_spin_lock(&p->pi_lock);
  5961. rq = __task_rq_lock(p);
  5962. normalize_task(rq, p);
  5963. __task_rq_unlock(rq);
  5964. raw_spin_unlock(&p->pi_lock);
  5965. } while_each_thread(g, p);
  5966. read_unlock_irqrestore(&tasklist_lock, flags);
  5967. }
  5968. #endif /* CONFIG_MAGIC_SYSRQ */
  5969. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  5970. /*
  5971. * These functions are only useful for the IA64 MCA handling, or kdb.
  5972. *
  5973. * They can only be called when the whole system has been
  5974. * stopped - every CPU needs to be quiescent, and no scheduling
  5975. * activity can take place. Using them for anything else would
  5976. * be a serious bug, and as a result, they aren't even visible
  5977. * under any other configuration.
  5978. */
  5979. /**
  5980. * curr_task - return the current task for a given cpu.
  5981. * @cpu: the processor in question.
  5982. *
  5983. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5984. *
  5985. * Return: The current task for @cpu.
  5986. */
  5987. struct task_struct *curr_task(int cpu)
  5988. {
  5989. return cpu_curr(cpu);
  5990. }
  5991. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  5992. #ifdef CONFIG_IA64
  5993. /**
  5994. * set_curr_task - set the current task for a given cpu.
  5995. * @cpu: the processor in question.
  5996. * @p: the task pointer to set.
  5997. *
  5998. * Description: This function must only be used when non-maskable interrupts
  5999. * are serviced on a separate stack. It allows the architecture to switch the
  6000. * notion of the current task on a cpu in a non-blocking manner. This function
  6001. * must be called with all CPU's synchronized, and interrupts disabled, the
  6002. * and caller must save the original value of the current task (see
  6003. * curr_task() above) and restore that value before reenabling interrupts and
  6004. * re-starting the system.
  6005. *
  6006. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6007. */
  6008. void set_curr_task(int cpu, struct task_struct *p)
  6009. {
  6010. cpu_curr(cpu) = p;
  6011. }
  6012. #endif
  6013. #ifdef CONFIG_CGROUP_SCHED
  6014. /* task_group_lock serializes the addition/removal of task groups */
  6015. static DEFINE_SPINLOCK(task_group_lock);
  6016. static void free_sched_group(struct task_group *tg)
  6017. {
  6018. free_fair_sched_group(tg);
  6019. free_rt_sched_group(tg);
  6020. autogroup_free(tg);
  6021. kfree(tg);
  6022. }
  6023. /* allocate runqueue etc for a new task group */
  6024. struct task_group *sched_create_group(struct task_group *parent)
  6025. {
  6026. struct task_group *tg;
  6027. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6028. if (!tg)
  6029. return ERR_PTR(-ENOMEM);
  6030. if (!alloc_fair_sched_group(tg, parent))
  6031. goto err;
  6032. if (!alloc_rt_sched_group(tg, parent))
  6033. goto err;
  6034. return tg;
  6035. err:
  6036. free_sched_group(tg);
  6037. return ERR_PTR(-ENOMEM);
  6038. }
  6039. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6040. {
  6041. unsigned long flags;
  6042. spin_lock_irqsave(&task_group_lock, flags);
  6043. list_add_rcu(&tg->list, &task_groups);
  6044. WARN_ON(!parent); /* root should already exist */
  6045. tg->parent = parent;
  6046. INIT_LIST_HEAD(&tg->children);
  6047. list_add_rcu(&tg->siblings, &parent->children);
  6048. spin_unlock_irqrestore(&task_group_lock, flags);
  6049. }
  6050. /* rcu callback to free various structures associated with a task group */
  6051. static void free_sched_group_rcu(struct rcu_head *rhp)
  6052. {
  6053. /* now it should be safe to free those cfs_rqs */
  6054. free_sched_group(container_of(rhp, struct task_group, rcu));
  6055. }
  6056. /* Destroy runqueue etc associated with a task group */
  6057. void sched_destroy_group(struct task_group *tg)
  6058. {
  6059. /* wait for possible concurrent references to cfs_rqs complete */
  6060. call_rcu(&tg->rcu, free_sched_group_rcu);
  6061. }
  6062. void sched_offline_group(struct task_group *tg)
  6063. {
  6064. unsigned long flags;
  6065. int i;
  6066. /* end participation in shares distribution */
  6067. for_each_possible_cpu(i)
  6068. unregister_fair_sched_group(tg, i);
  6069. spin_lock_irqsave(&task_group_lock, flags);
  6070. list_del_rcu(&tg->list);
  6071. list_del_rcu(&tg->siblings);
  6072. spin_unlock_irqrestore(&task_group_lock, flags);
  6073. }
  6074. /* change task's runqueue when it moves between groups.
  6075. * The caller of this function should have put the task in its new group
  6076. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6077. * reflect its new group.
  6078. */
  6079. void sched_move_task(struct task_struct *tsk)
  6080. {
  6081. struct task_group *tg;
  6082. int on_rq, running;
  6083. unsigned long flags;
  6084. struct rq *rq;
  6085. rq = task_rq_lock(tsk, &flags);
  6086. running = task_current(rq, tsk);
  6087. on_rq = tsk->on_rq;
  6088. if (on_rq)
  6089. dequeue_task(rq, tsk, 0);
  6090. if (unlikely(running))
  6091. tsk->sched_class->put_prev_task(rq, tsk);
  6092. tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
  6093. lockdep_is_held(&tsk->sighand->siglock)),
  6094. struct task_group, css);
  6095. tg = autogroup_task_group(tsk, tg);
  6096. tsk->sched_task_group = tg;
  6097. #ifdef CONFIG_FAIR_GROUP_SCHED
  6098. if (tsk->sched_class->task_move_group)
  6099. tsk->sched_class->task_move_group(tsk, on_rq);
  6100. else
  6101. #endif
  6102. set_task_rq(tsk, task_cpu(tsk));
  6103. if (unlikely(running))
  6104. tsk->sched_class->set_curr_task(rq);
  6105. if (on_rq)
  6106. enqueue_task(rq, tsk, 0);
  6107. task_rq_unlock(rq, tsk, &flags);
  6108. }
  6109. #endif /* CONFIG_CGROUP_SCHED */
  6110. #ifdef CONFIG_RT_GROUP_SCHED
  6111. /*
  6112. * Ensure that the real time constraints are schedulable.
  6113. */
  6114. static DEFINE_MUTEX(rt_constraints_mutex);
  6115. /* Must be called with tasklist_lock held */
  6116. static inline int tg_has_rt_tasks(struct task_group *tg)
  6117. {
  6118. struct task_struct *g, *p;
  6119. do_each_thread(g, p) {
  6120. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6121. return 1;
  6122. } while_each_thread(g, p);
  6123. return 0;
  6124. }
  6125. struct rt_schedulable_data {
  6126. struct task_group *tg;
  6127. u64 rt_period;
  6128. u64 rt_runtime;
  6129. };
  6130. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6131. {
  6132. struct rt_schedulable_data *d = data;
  6133. struct task_group *child;
  6134. unsigned long total, sum = 0;
  6135. u64 period, runtime;
  6136. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6137. runtime = tg->rt_bandwidth.rt_runtime;
  6138. if (tg == d->tg) {
  6139. period = d->rt_period;
  6140. runtime = d->rt_runtime;
  6141. }
  6142. /*
  6143. * Cannot have more runtime than the period.
  6144. */
  6145. if (runtime > period && runtime != RUNTIME_INF)
  6146. return -EINVAL;
  6147. /*
  6148. * Ensure we don't starve existing RT tasks.
  6149. */
  6150. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6151. return -EBUSY;
  6152. total = to_ratio(period, runtime);
  6153. /*
  6154. * Nobody can have more than the global setting allows.
  6155. */
  6156. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6157. return -EINVAL;
  6158. /*
  6159. * The sum of our children's runtime should not exceed our own.
  6160. */
  6161. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6162. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6163. runtime = child->rt_bandwidth.rt_runtime;
  6164. if (child == d->tg) {
  6165. period = d->rt_period;
  6166. runtime = d->rt_runtime;
  6167. }
  6168. sum += to_ratio(period, runtime);
  6169. }
  6170. if (sum > total)
  6171. return -EINVAL;
  6172. return 0;
  6173. }
  6174. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6175. {
  6176. int ret;
  6177. struct rt_schedulable_data data = {
  6178. .tg = tg,
  6179. .rt_period = period,
  6180. .rt_runtime = runtime,
  6181. };
  6182. rcu_read_lock();
  6183. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6184. rcu_read_unlock();
  6185. return ret;
  6186. }
  6187. static int tg_set_rt_bandwidth(struct task_group *tg,
  6188. u64 rt_period, u64 rt_runtime)
  6189. {
  6190. int i, err = 0;
  6191. mutex_lock(&rt_constraints_mutex);
  6192. read_lock(&tasklist_lock);
  6193. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6194. if (err)
  6195. goto unlock;
  6196. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6197. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6198. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6199. for_each_possible_cpu(i) {
  6200. struct rt_rq *rt_rq = tg->rt_rq[i];
  6201. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6202. rt_rq->rt_runtime = rt_runtime;
  6203. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6204. }
  6205. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6206. unlock:
  6207. read_unlock(&tasklist_lock);
  6208. mutex_unlock(&rt_constraints_mutex);
  6209. return err;
  6210. }
  6211. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6212. {
  6213. u64 rt_runtime, rt_period;
  6214. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6215. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6216. if (rt_runtime_us < 0)
  6217. rt_runtime = RUNTIME_INF;
  6218. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6219. }
  6220. static long sched_group_rt_runtime(struct task_group *tg)
  6221. {
  6222. u64 rt_runtime_us;
  6223. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6224. return -1;
  6225. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6226. do_div(rt_runtime_us, NSEC_PER_USEC);
  6227. return rt_runtime_us;
  6228. }
  6229. static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6230. {
  6231. u64 rt_runtime, rt_period;
  6232. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6233. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6234. if (rt_period == 0)
  6235. return -EINVAL;
  6236. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6237. }
  6238. static long sched_group_rt_period(struct task_group *tg)
  6239. {
  6240. u64 rt_period_us;
  6241. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6242. do_div(rt_period_us, NSEC_PER_USEC);
  6243. return rt_period_us;
  6244. }
  6245. #endif /* CONFIG_RT_GROUP_SCHED */
  6246. #ifdef CONFIG_RT_GROUP_SCHED
  6247. static int sched_rt_global_constraints(void)
  6248. {
  6249. int ret = 0;
  6250. mutex_lock(&rt_constraints_mutex);
  6251. read_lock(&tasklist_lock);
  6252. ret = __rt_schedulable(NULL, 0, 0);
  6253. read_unlock(&tasklist_lock);
  6254. mutex_unlock(&rt_constraints_mutex);
  6255. return ret;
  6256. }
  6257. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6258. {
  6259. /* Don't accept realtime tasks when there is no way for them to run */
  6260. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6261. return 0;
  6262. return 1;
  6263. }
  6264. #else /* !CONFIG_RT_GROUP_SCHED */
  6265. static int sched_rt_global_constraints(void)
  6266. {
  6267. unsigned long flags;
  6268. int i, ret = 0;
  6269. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6270. for_each_possible_cpu(i) {
  6271. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6272. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6273. rt_rq->rt_runtime = global_rt_runtime();
  6274. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6275. }
  6276. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6277. return ret;
  6278. }
  6279. #endif /* CONFIG_RT_GROUP_SCHED */
  6280. static int sched_dl_global_constraints(void)
  6281. {
  6282. u64 runtime = global_rt_runtime();
  6283. u64 period = global_rt_period();
  6284. u64 new_bw = to_ratio(period, runtime);
  6285. int cpu, ret = 0;
  6286. /*
  6287. * Here we want to check the bandwidth not being set to some
  6288. * value smaller than the currently allocated bandwidth in
  6289. * any of the root_domains.
  6290. *
  6291. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6292. * cycling on root_domains... Discussion on different/better
  6293. * solutions is welcome!
  6294. */
  6295. for_each_possible_cpu(cpu) {
  6296. struct dl_bw *dl_b = dl_bw_of(cpu);
  6297. raw_spin_lock(&dl_b->lock);
  6298. if (new_bw < dl_b->total_bw)
  6299. ret = -EBUSY;
  6300. raw_spin_unlock(&dl_b->lock);
  6301. if (ret)
  6302. break;
  6303. }
  6304. return ret;
  6305. }
  6306. static void sched_dl_do_global(void)
  6307. {
  6308. u64 new_bw = -1;
  6309. int cpu;
  6310. def_dl_bandwidth.dl_period = global_rt_period();
  6311. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6312. if (global_rt_runtime() != RUNTIME_INF)
  6313. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6314. /*
  6315. * FIXME: As above...
  6316. */
  6317. for_each_possible_cpu(cpu) {
  6318. struct dl_bw *dl_b = dl_bw_of(cpu);
  6319. raw_spin_lock(&dl_b->lock);
  6320. dl_b->bw = new_bw;
  6321. raw_spin_unlock(&dl_b->lock);
  6322. }
  6323. }
  6324. static int sched_rt_global_validate(void)
  6325. {
  6326. if (sysctl_sched_rt_period <= 0)
  6327. return -EINVAL;
  6328. if (sysctl_sched_rt_runtime > sysctl_sched_rt_period)
  6329. return -EINVAL;
  6330. return 0;
  6331. }
  6332. static void sched_rt_do_global(void)
  6333. {
  6334. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6335. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6336. }
  6337. int sched_rt_handler(struct ctl_table *table, int write,
  6338. void __user *buffer, size_t *lenp,
  6339. loff_t *ppos)
  6340. {
  6341. int old_period, old_runtime;
  6342. static DEFINE_MUTEX(mutex);
  6343. int ret;
  6344. mutex_lock(&mutex);
  6345. old_period = sysctl_sched_rt_period;
  6346. old_runtime = sysctl_sched_rt_runtime;
  6347. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6348. if (!ret && write) {
  6349. ret = sched_rt_global_validate();
  6350. if (ret)
  6351. goto undo;
  6352. ret = sched_rt_global_constraints();
  6353. if (ret)
  6354. goto undo;
  6355. ret = sched_dl_global_constraints();
  6356. if (ret)
  6357. goto undo;
  6358. sched_rt_do_global();
  6359. sched_dl_do_global();
  6360. }
  6361. if (0) {
  6362. undo:
  6363. sysctl_sched_rt_period = old_period;
  6364. sysctl_sched_rt_runtime = old_runtime;
  6365. }
  6366. mutex_unlock(&mutex);
  6367. return ret;
  6368. }
  6369. int sched_rr_handler(struct ctl_table *table, int write,
  6370. void __user *buffer, size_t *lenp,
  6371. loff_t *ppos)
  6372. {
  6373. int ret;
  6374. static DEFINE_MUTEX(mutex);
  6375. mutex_lock(&mutex);
  6376. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6377. /* make sure that internally we keep jiffies */
  6378. /* also, writing zero resets timeslice to default */
  6379. if (!ret && write) {
  6380. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6381. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6382. }
  6383. mutex_unlock(&mutex);
  6384. return ret;
  6385. }
  6386. #ifdef CONFIG_CGROUP_SCHED
  6387. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6388. {
  6389. return css ? container_of(css, struct task_group, css) : NULL;
  6390. }
  6391. static struct cgroup_subsys_state *
  6392. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6393. {
  6394. struct task_group *parent = css_tg(parent_css);
  6395. struct task_group *tg;
  6396. if (!parent) {
  6397. /* This is early initialization for the top cgroup */
  6398. return &root_task_group.css;
  6399. }
  6400. tg = sched_create_group(parent);
  6401. if (IS_ERR(tg))
  6402. return ERR_PTR(-ENOMEM);
  6403. return &tg->css;
  6404. }
  6405. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6406. {
  6407. struct task_group *tg = css_tg(css);
  6408. struct task_group *parent = css_tg(css_parent(css));
  6409. if (parent)
  6410. sched_online_group(tg, parent);
  6411. return 0;
  6412. }
  6413. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6414. {
  6415. struct task_group *tg = css_tg(css);
  6416. sched_destroy_group(tg);
  6417. }
  6418. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6419. {
  6420. struct task_group *tg = css_tg(css);
  6421. sched_offline_group(tg);
  6422. }
  6423. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6424. struct cgroup_taskset *tset)
  6425. {
  6426. struct task_struct *task;
  6427. cgroup_taskset_for_each(task, css, tset) {
  6428. #ifdef CONFIG_RT_GROUP_SCHED
  6429. if (!sched_rt_can_attach(css_tg(css), task))
  6430. return -EINVAL;
  6431. #else
  6432. /* We don't support RT-tasks being in separate groups */
  6433. if (task->sched_class != &fair_sched_class)
  6434. return -EINVAL;
  6435. #endif
  6436. }
  6437. return 0;
  6438. }
  6439. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6440. struct cgroup_taskset *tset)
  6441. {
  6442. struct task_struct *task;
  6443. cgroup_taskset_for_each(task, css, tset)
  6444. sched_move_task(task);
  6445. }
  6446. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6447. struct cgroup_subsys_state *old_css,
  6448. struct task_struct *task)
  6449. {
  6450. /*
  6451. * cgroup_exit() is called in the copy_process() failure path.
  6452. * Ignore this case since the task hasn't ran yet, this avoids
  6453. * trying to poke a half freed task state from generic code.
  6454. */
  6455. if (!(task->flags & PF_EXITING))
  6456. return;
  6457. sched_move_task(task);
  6458. }
  6459. #ifdef CONFIG_FAIR_GROUP_SCHED
  6460. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6461. struct cftype *cftype, u64 shareval)
  6462. {
  6463. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6464. }
  6465. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6466. struct cftype *cft)
  6467. {
  6468. struct task_group *tg = css_tg(css);
  6469. return (u64) scale_load_down(tg->shares);
  6470. }
  6471. #ifdef CONFIG_CFS_BANDWIDTH
  6472. static DEFINE_MUTEX(cfs_constraints_mutex);
  6473. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6474. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6475. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6476. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6477. {
  6478. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6479. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6480. if (tg == &root_task_group)
  6481. return -EINVAL;
  6482. /*
  6483. * Ensure we have at some amount of bandwidth every period. This is
  6484. * to prevent reaching a state of large arrears when throttled via
  6485. * entity_tick() resulting in prolonged exit starvation.
  6486. */
  6487. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6488. return -EINVAL;
  6489. /*
  6490. * Likewise, bound things on the otherside by preventing insane quota
  6491. * periods. This also allows us to normalize in computing quota
  6492. * feasibility.
  6493. */
  6494. if (period > max_cfs_quota_period)
  6495. return -EINVAL;
  6496. mutex_lock(&cfs_constraints_mutex);
  6497. ret = __cfs_schedulable(tg, period, quota);
  6498. if (ret)
  6499. goto out_unlock;
  6500. runtime_enabled = quota != RUNTIME_INF;
  6501. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6502. /*
  6503. * If we need to toggle cfs_bandwidth_used, off->on must occur
  6504. * before making related changes, and on->off must occur afterwards
  6505. */
  6506. if (runtime_enabled && !runtime_was_enabled)
  6507. cfs_bandwidth_usage_inc();
  6508. raw_spin_lock_irq(&cfs_b->lock);
  6509. cfs_b->period = ns_to_ktime(period);
  6510. cfs_b->quota = quota;
  6511. __refill_cfs_bandwidth_runtime(cfs_b);
  6512. /* restart the period timer (if active) to handle new period expiry */
  6513. if (runtime_enabled && cfs_b->timer_active) {
  6514. /* force a reprogram */
  6515. cfs_b->timer_active = 0;
  6516. __start_cfs_bandwidth(cfs_b);
  6517. }
  6518. raw_spin_unlock_irq(&cfs_b->lock);
  6519. for_each_possible_cpu(i) {
  6520. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6521. struct rq *rq = cfs_rq->rq;
  6522. raw_spin_lock_irq(&rq->lock);
  6523. cfs_rq->runtime_enabled = runtime_enabled;
  6524. cfs_rq->runtime_remaining = 0;
  6525. if (cfs_rq->throttled)
  6526. unthrottle_cfs_rq(cfs_rq);
  6527. raw_spin_unlock_irq(&rq->lock);
  6528. }
  6529. if (runtime_was_enabled && !runtime_enabled)
  6530. cfs_bandwidth_usage_dec();
  6531. out_unlock:
  6532. mutex_unlock(&cfs_constraints_mutex);
  6533. return ret;
  6534. }
  6535. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6536. {
  6537. u64 quota, period;
  6538. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6539. if (cfs_quota_us < 0)
  6540. quota = RUNTIME_INF;
  6541. else
  6542. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6543. return tg_set_cfs_bandwidth(tg, period, quota);
  6544. }
  6545. long tg_get_cfs_quota(struct task_group *tg)
  6546. {
  6547. u64 quota_us;
  6548. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6549. return -1;
  6550. quota_us = tg->cfs_bandwidth.quota;
  6551. do_div(quota_us, NSEC_PER_USEC);
  6552. return quota_us;
  6553. }
  6554. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6555. {
  6556. u64 quota, period;
  6557. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6558. quota = tg->cfs_bandwidth.quota;
  6559. return tg_set_cfs_bandwidth(tg, period, quota);
  6560. }
  6561. long tg_get_cfs_period(struct task_group *tg)
  6562. {
  6563. u64 cfs_period_us;
  6564. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6565. do_div(cfs_period_us, NSEC_PER_USEC);
  6566. return cfs_period_us;
  6567. }
  6568. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6569. struct cftype *cft)
  6570. {
  6571. return tg_get_cfs_quota(css_tg(css));
  6572. }
  6573. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6574. struct cftype *cftype, s64 cfs_quota_us)
  6575. {
  6576. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6577. }
  6578. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6579. struct cftype *cft)
  6580. {
  6581. return tg_get_cfs_period(css_tg(css));
  6582. }
  6583. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  6584. struct cftype *cftype, u64 cfs_period_us)
  6585. {
  6586. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  6587. }
  6588. struct cfs_schedulable_data {
  6589. struct task_group *tg;
  6590. u64 period, quota;
  6591. };
  6592. /*
  6593. * normalize group quota/period to be quota/max_period
  6594. * note: units are usecs
  6595. */
  6596. static u64 normalize_cfs_quota(struct task_group *tg,
  6597. struct cfs_schedulable_data *d)
  6598. {
  6599. u64 quota, period;
  6600. if (tg == d->tg) {
  6601. period = d->period;
  6602. quota = d->quota;
  6603. } else {
  6604. period = tg_get_cfs_period(tg);
  6605. quota = tg_get_cfs_quota(tg);
  6606. }
  6607. /* note: these should typically be equivalent */
  6608. if (quota == RUNTIME_INF || quota == -1)
  6609. return RUNTIME_INF;
  6610. return to_ratio(period, quota);
  6611. }
  6612. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6613. {
  6614. struct cfs_schedulable_data *d = data;
  6615. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6616. s64 quota = 0, parent_quota = -1;
  6617. if (!tg->parent) {
  6618. quota = RUNTIME_INF;
  6619. } else {
  6620. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6621. quota = normalize_cfs_quota(tg, d);
  6622. parent_quota = parent_b->hierarchal_quota;
  6623. /*
  6624. * ensure max(child_quota) <= parent_quota, inherit when no
  6625. * limit is set
  6626. */
  6627. if (quota == RUNTIME_INF)
  6628. quota = parent_quota;
  6629. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6630. return -EINVAL;
  6631. }
  6632. cfs_b->hierarchal_quota = quota;
  6633. return 0;
  6634. }
  6635. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6636. {
  6637. int ret;
  6638. struct cfs_schedulable_data data = {
  6639. .tg = tg,
  6640. .period = period,
  6641. .quota = quota,
  6642. };
  6643. if (quota != RUNTIME_INF) {
  6644. do_div(data.period, NSEC_PER_USEC);
  6645. do_div(data.quota, NSEC_PER_USEC);
  6646. }
  6647. rcu_read_lock();
  6648. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6649. rcu_read_unlock();
  6650. return ret;
  6651. }
  6652. static int cpu_stats_show(struct seq_file *sf, void *v)
  6653. {
  6654. struct task_group *tg = css_tg(seq_css(sf));
  6655. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6656. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  6657. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  6658. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  6659. return 0;
  6660. }
  6661. #endif /* CONFIG_CFS_BANDWIDTH */
  6662. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6663. #ifdef CONFIG_RT_GROUP_SCHED
  6664. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  6665. struct cftype *cft, s64 val)
  6666. {
  6667. return sched_group_set_rt_runtime(css_tg(css), val);
  6668. }
  6669. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  6670. struct cftype *cft)
  6671. {
  6672. return sched_group_rt_runtime(css_tg(css));
  6673. }
  6674. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  6675. struct cftype *cftype, u64 rt_period_us)
  6676. {
  6677. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  6678. }
  6679. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  6680. struct cftype *cft)
  6681. {
  6682. return sched_group_rt_period(css_tg(css));
  6683. }
  6684. #endif /* CONFIG_RT_GROUP_SCHED */
  6685. static struct cftype cpu_files[] = {
  6686. #ifdef CONFIG_FAIR_GROUP_SCHED
  6687. {
  6688. .name = "shares",
  6689. .read_u64 = cpu_shares_read_u64,
  6690. .write_u64 = cpu_shares_write_u64,
  6691. },
  6692. #endif
  6693. #ifdef CONFIG_CFS_BANDWIDTH
  6694. {
  6695. .name = "cfs_quota_us",
  6696. .read_s64 = cpu_cfs_quota_read_s64,
  6697. .write_s64 = cpu_cfs_quota_write_s64,
  6698. },
  6699. {
  6700. .name = "cfs_period_us",
  6701. .read_u64 = cpu_cfs_period_read_u64,
  6702. .write_u64 = cpu_cfs_period_write_u64,
  6703. },
  6704. {
  6705. .name = "stat",
  6706. .seq_show = cpu_stats_show,
  6707. },
  6708. #endif
  6709. #ifdef CONFIG_RT_GROUP_SCHED
  6710. {
  6711. .name = "rt_runtime_us",
  6712. .read_s64 = cpu_rt_runtime_read,
  6713. .write_s64 = cpu_rt_runtime_write,
  6714. },
  6715. {
  6716. .name = "rt_period_us",
  6717. .read_u64 = cpu_rt_period_read_uint,
  6718. .write_u64 = cpu_rt_period_write_uint,
  6719. },
  6720. #endif
  6721. { } /* terminate */
  6722. };
  6723. struct cgroup_subsys cpu_cgroup_subsys = {
  6724. .name = "cpu",
  6725. .css_alloc = cpu_cgroup_css_alloc,
  6726. .css_free = cpu_cgroup_css_free,
  6727. .css_online = cpu_cgroup_css_online,
  6728. .css_offline = cpu_cgroup_css_offline,
  6729. .can_attach = cpu_cgroup_can_attach,
  6730. .attach = cpu_cgroup_attach,
  6731. .exit = cpu_cgroup_exit,
  6732. .subsys_id = cpu_cgroup_subsys_id,
  6733. .base_cftypes = cpu_files,
  6734. .early_init = 1,
  6735. };
  6736. #endif /* CONFIG_CGROUP_SCHED */
  6737. void dump_cpu_task(int cpu)
  6738. {
  6739. pr_info("Task dump for CPU %d:\n", cpu);
  6740. sched_show_task(cpu_curr(cpu));
  6741. }