rtc-cmos.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279
  1. /*
  2. * RTC class driver for "CMOS RTC": PCs, ACPI, etc
  3. *
  4. * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
  5. * Copyright (C) 2006 David Brownell (convert to new framework)
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. /*
  13. * The original "cmos clock" chip was an MC146818 chip, now obsolete.
  14. * That defined the register interface now provided by all PCs, some
  15. * non-PC systems, and incorporated into ACPI. Modern PC chipsets
  16. * integrate an MC146818 clone in their southbridge, and boards use
  17. * that instead of discrete clones like the DS12887 or M48T86. There
  18. * are also clones that connect using the LPC bus.
  19. *
  20. * That register API is also used directly by various other drivers
  21. * (notably for integrated NVRAM), infrastructure (x86 has code to
  22. * bypass the RTC framework, directly reading the RTC during boot
  23. * and updating minutes/seconds for systems using NTP synch) and
  24. * utilities (like userspace 'hwclock', if no /dev node exists).
  25. *
  26. * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
  27. * interrupts disabled, holding the global rtc_lock, to exclude those
  28. * other drivers and utilities on correctly configured systems.
  29. */
  30. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  31. #include <linux/kernel.h>
  32. #include <linux/module.h>
  33. #include <linux/init.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/spinlock.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/log2.h>
  38. #include <linux/pm.h>
  39. #include <linux/of.h>
  40. #include <linux/of_platform.h>
  41. /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
  42. #include <asm-generic/rtc.h>
  43. struct cmos_rtc {
  44. struct rtc_device *rtc;
  45. struct device *dev;
  46. int irq;
  47. struct resource *iomem;
  48. time64_t alarm_expires;
  49. void (*wake_on)(struct device *);
  50. void (*wake_off)(struct device *);
  51. u8 enabled_wake;
  52. u8 suspend_ctrl;
  53. /* newer hardware extends the original register set */
  54. u8 day_alrm;
  55. u8 mon_alrm;
  56. u8 century;
  57. };
  58. /* both platform and pnp busses use negative numbers for invalid irqs */
  59. #define is_valid_irq(n) ((n) > 0)
  60. static const char driver_name[] = "rtc_cmos";
  61. /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
  62. * always mask it against the irq enable bits in RTC_CONTROL. Bit values
  63. * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
  64. */
  65. #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
  66. static inline int is_intr(u8 rtc_intr)
  67. {
  68. if (!(rtc_intr & RTC_IRQF))
  69. return 0;
  70. return rtc_intr & RTC_IRQMASK;
  71. }
  72. /*----------------------------------------------------------------*/
  73. /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
  74. * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
  75. * used in a broken "legacy replacement" mode. The breakage includes
  76. * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
  77. * other (better) use.
  78. *
  79. * When that broken mode is in use, platform glue provides a partial
  80. * emulation of hardware RTC IRQ facilities using HPET #1. We don't
  81. * want to use HPET for anything except those IRQs though...
  82. */
  83. #ifdef CONFIG_HPET_EMULATE_RTC
  84. #include <asm/hpet.h>
  85. #else
  86. static inline int is_hpet_enabled(void)
  87. {
  88. return 0;
  89. }
  90. static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
  91. {
  92. return 0;
  93. }
  94. static inline int hpet_set_rtc_irq_bit(unsigned long mask)
  95. {
  96. return 0;
  97. }
  98. static inline int
  99. hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
  100. {
  101. return 0;
  102. }
  103. static inline int hpet_set_periodic_freq(unsigned long freq)
  104. {
  105. return 0;
  106. }
  107. static inline int hpet_rtc_dropped_irq(void)
  108. {
  109. return 0;
  110. }
  111. static inline int hpet_rtc_timer_init(void)
  112. {
  113. return 0;
  114. }
  115. extern irq_handler_t hpet_rtc_interrupt;
  116. static inline int hpet_register_irq_handler(irq_handler_t handler)
  117. {
  118. return 0;
  119. }
  120. static inline int hpet_unregister_irq_handler(irq_handler_t handler)
  121. {
  122. return 0;
  123. }
  124. #endif
  125. /*----------------------------------------------------------------*/
  126. #ifdef RTC_PORT
  127. /* Most newer x86 systems have two register banks, the first used
  128. * for RTC and NVRAM and the second only for NVRAM. Caller must
  129. * own rtc_lock ... and we won't worry about access during NMI.
  130. */
  131. #define can_bank2 true
  132. static inline unsigned char cmos_read_bank2(unsigned char addr)
  133. {
  134. outb(addr, RTC_PORT(2));
  135. return inb(RTC_PORT(3));
  136. }
  137. static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
  138. {
  139. outb(addr, RTC_PORT(2));
  140. outb(val, RTC_PORT(3));
  141. }
  142. #else
  143. #define can_bank2 false
  144. static inline unsigned char cmos_read_bank2(unsigned char addr)
  145. {
  146. return 0;
  147. }
  148. static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
  149. {
  150. }
  151. #endif
  152. /*----------------------------------------------------------------*/
  153. static int cmos_read_time(struct device *dev, struct rtc_time *t)
  154. {
  155. /* REVISIT: if the clock has a "century" register, use
  156. * that instead of the heuristic in get_rtc_time().
  157. * That'll make Y3K compatility (year > 2070) easy!
  158. */
  159. get_rtc_time(t);
  160. return 0;
  161. }
  162. static int cmos_set_time(struct device *dev, struct rtc_time *t)
  163. {
  164. /* REVISIT: set the "century" register if available
  165. *
  166. * NOTE: this ignores the issue whereby updating the seconds
  167. * takes effect exactly 500ms after we write the register.
  168. * (Also queueing and other delays before we get this far.)
  169. */
  170. return set_rtc_time(t);
  171. }
  172. static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
  173. {
  174. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  175. unsigned char rtc_control;
  176. if (!is_valid_irq(cmos->irq))
  177. return -EIO;
  178. /* Basic alarms only support hour, minute, and seconds fields.
  179. * Some also support day and month, for alarms up to a year in
  180. * the future.
  181. */
  182. t->time.tm_mday = -1;
  183. t->time.tm_mon = -1;
  184. spin_lock_irq(&rtc_lock);
  185. t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
  186. t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
  187. t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
  188. if (cmos->day_alrm) {
  189. /* ignore upper bits on readback per ACPI spec */
  190. t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
  191. if (!t->time.tm_mday)
  192. t->time.tm_mday = -1;
  193. if (cmos->mon_alrm) {
  194. t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
  195. if (!t->time.tm_mon)
  196. t->time.tm_mon = -1;
  197. }
  198. }
  199. rtc_control = CMOS_READ(RTC_CONTROL);
  200. spin_unlock_irq(&rtc_lock);
  201. if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
  202. if (((unsigned)t->time.tm_sec) < 0x60)
  203. t->time.tm_sec = bcd2bin(t->time.tm_sec);
  204. else
  205. t->time.tm_sec = -1;
  206. if (((unsigned)t->time.tm_min) < 0x60)
  207. t->time.tm_min = bcd2bin(t->time.tm_min);
  208. else
  209. t->time.tm_min = -1;
  210. if (((unsigned)t->time.tm_hour) < 0x24)
  211. t->time.tm_hour = bcd2bin(t->time.tm_hour);
  212. else
  213. t->time.tm_hour = -1;
  214. if (cmos->day_alrm) {
  215. if (((unsigned)t->time.tm_mday) <= 0x31)
  216. t->time.tm_mday = bcd2bin(t->time.tm_mday);
  217. else
  218. t->time.tm_mday = -1;
  219. if (cmos->mon_alrm) {
  220. if (((unsigned)t->time.tm_mon) <= 0x12)
  221. t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
  222. else
  223. t->time.tm_mon = -1;
  224. }
  225. }
  226. }
  227. t->time.tm_year = -1;
  228. t->enabled = !!(rtc_control & RTC_AIE);
  229. t->pending = 0;
  230. return 0;
  231. }
  232. static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
  233. {
  234. unsigned char rtc_intr;
  235. /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
  236. * allegedly some older rtcs need that to handle irqs properly
  237. */
  238. rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
  239. if (is_hpet_enabled())
  240. return;
  241. rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
  242. if (is_intr(rtc_intr))
  243. rtc_update_irq(cmos->rtc, 1, rtc_intr);
  244. }
  245. static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
  246. {
  247. unsigned char rtc_control;
  248. /* flush any pending IRQ status, notably for update irqs,
  249. * before we enable new IRQs
  250. */
  251. rtc_control = CMOS_READ(RTC_CONTROL);
  252. cmos_checkintr(cmos, rtc_control);
  253. rtc_control |= mask;
  254. CMOS_WRITE(rtc_control, RTC_CONTROL);
  255. hpet_set_rtc_irq_bit(mask);
  256. cmos_checkintr(cmos, rtc_control);
  257. }
  258. static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
  259. {
  260. unsigned char rtc_control;
  261. rtc_control = CMOS_READ(RTC_CONTROL);
  262. rtc_control &= ~mask;
  263. CMOS_WRITE(rtc_control, RTC_CONTROL);
  264. hpet_mask_rtc_irq_bit(mask);
  265. cmos_checkintr(cmos, rtc_control);
  266. }
  267. static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
  268. {
  269. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  270. unsigned char mon, mday, hrs, min, sec, rtc_control;
  271. if (!is_valid_irq(cmos->irq))
  272. return -EIO;
  273. mon = t->time.tm_mon + 1;
  274. mday = t->time.tm_mday;
  275. hrs = t->time.tm_hour;
  276. min = t->time.tm_min;
  277. sec = t->time.tm_sec;
  278. rtc_control = CMOS_READ(RTC_CONTROL);
  279. if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
  280. /* Writing 0xff means "don't care" or "match all". */
  281. mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
  282. mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
  283. hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
  284. min = (min < 60) ? bin2bcd(min) : 0xff;
  285. sec = (sec < 60) ? bin2bcd(sec) : 0xff;
  286. }
  287. spin_lock_irq(&rtc_lock);
  288. /* next rtc irq must not be from previous alarm setting */
  289. cmos_irq_disable(cmos, RTC_AIE);
  290. /* update alarm */
  291. CMOS_WRITE(hrs, RTC_HOURS_ALARM);
  292. CMOS_WRITE(min, RTC_MINUTES_ALARM);
  293. CMOS_WRITE(sec, RTC_SECONDS_ALARM);
  294. /* the system may support an "enhanced" alarm */
  295. if (cmos->day_alrm) {
  296. CMOS_WRITE(mday, cmos->day_alrm);
  297. if (cmos->mon_alrm)
  298. CMOS_WRITE(mon, cmos->mon_alrm);
  299. }
  300. /* FIXME the HPET alarm glue currently ignores day_alrm
  301. * and mon_alrm ...
  302. */
  303. hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
  304. if (t->enabled)
  305. cmos_irq_enable(cmos, RTC_AIE);
  306. spin_unlock_irq(&rtc_lock);
  307. cmos->alarm_expires = rtc_tm_to_time64(&t->time);
  308. return 0;
  309. }
  310. static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
  311. {
  312. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  313. unsigned long flags;
  314. if (!is_valid_irq(cmos->irq))
  315. return -EINVAL;
  316. spin_lock_irqsave(&rtc_lock, flags);
  317. if (enabled)
  318. cmos_irq_enable(cmos, RTC_AIE);
  319. else
  320. cmos_irq_disable(cmos, RTC_AIE);
  321. spin_unlock_irqrestore(&rtc_lock, flags);
  322. return 0;
  323. }
  324. #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
  325. static int cmos_procfs(struct device *dev, struct seq_file *seq)
  326. {
  327. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  328. unsigned char rtc_control, valid;
  329. spin_lock_irq(&rtc_lock);
  330. rtc_control = CMOS_READ(RTC_CONTROL);
  331. valid = CMOS_READ(RTC_VALID);
  332. spin_unlock_irq(&rtc_lock);
  333. /* NOTE: at least ICH6 reports battery status using a different
  334. * (non-RTC) bit; and SQWE is ignored on many current systems.
  335. */
  336. seq_printf(seq,
  337. "periodic_IRQ\t: %s\n"
  338. "update_IRQ\t: %s\n"
  339. "HPET_emulated\t: %s\n"
  340. // "square_wave\t: %s\n"
  341. "BCD\t\t: %s\n"
  342. "DST_enable\t: %s\n"
  343. "periodic_freq\t: %d\n"
  344. "batt_status\t: %s\n",
  345. (rtc_control & RTC_PIE) ? "yes" : "no",
  346. (rtc_control & RTC_UIE) ? "yes" : "no",
  347. is_hpet_enabled() ? "yes" : "no",
  348. // (rtc_control & RTC_SQWE) ? "yes" : "no",
  349. (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
  350. (rtc_control & RTC_DST_EN) ? "yes" : "no",
  351. cmos->rtc->irq_freq,
  352. (valid & RTC_VRT) ? "okay" : "dead");
  353. return 0;
  354. }
  355. #else
  356. #define cmos_procfs NULL
  357. #endif
  358. static const struct rtc_class_ops cmos_rtc_ops = {
  359. .read_time = cmos_read_time,
  360. .set_time = cmos_set_time,
  361. .read_alarm = cmos_read_alarm,
  362. .set_alarm = cmos_set_alarm,
  363. .proc = cmos_procfs,
  364. .alarm_irq_enable = cmos_alarm_irq_enable,
  365. };
  366. /*----------------------------------------------------------------*/
  367. /*
  368. * All these chips have at least 64 bytes of address space, shared by
  369. * RTC registers and NVRAM. Most of those bytes of NVRAM are used
  370. * by boot firmware. Modern chips have 128 or 256 bytes.
  371. */
  372. #define NVRAM_OFFSET (RTC_REG_D + 1)
  373. static ssize_t
  374. cmos_nvram_read(struct file *filp, struct kobject *kobj,
  375. struct bin_attribute *attr,
  376. char *buf, loff_t off, size_t count)
  377. {
  378. int retval;
  379. if (unlikely(off >= attr->size))
  380. return 0;
  381. if (unlikely(off < 0))
  382. return -EINVAL;
  383. if ((off + count) > attr->size)
  384. count = attr->size - off;
  385. off += NVRAM_OFFSET;
  386. spin_lock_irq(&rtc_lock);
  387. for (retval = 0; count; count--, off++, retval++) {
  388. if (off < 128)
  389. *buf++ = CMOS_READ(off);
  390. else if (can_bank2)
  391. *buf++ = cmos_read_bank2(off);
  392. else
  393. break;
  394. }
  395. spin_unlock_irq(&rtc_lock);
  396. return retval;
  397. }
  398. static ssize_t
  399. cmos_nvram_write(struct file *filp, struct kobject *kobj,
  400. struct bin_attribute *attr,
  401. char *buf, loff_t off, size_t count)
  402. {
  403. struct cmos_rtc *cmos;
  404. int retval;
  405. cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
  406. if (unlikely(off >= attr->size))
  407. return -EFBIG;
  408. if (unlikely(off < 0))
  409. return -EINVAL;
  410. if ((off + count) > attr->size)
  411. count = attr->size - off;
  412. /* NOTE: on at least PCs and Ataris, the boot firmware uses a
  413. * checksum on part of the NVRAM data. That's currently ignored
  414. * here. If userspace is smart enough to know what fields of
  415. * NVRAM to update, updating checksums is also part of its job.
  416. */
  417. off += NVRAM_OFFSET;
  418. spin_lock_irq(&rtc_lock);
  419. for (retval = 0; count; count--, off++, retval++) {
  420. /* don't trash RTC registers */
  421. if (off == cmos->day_alrm
  422. || off == cmos->mon_alrm
  423. || off == cmos->century)
  424. buf++;
  425. else if (off < 128)
  426. CMOS_WRITE(*buf++, off);
  427. else if (can_bank2)
  428. cmos_write_bank2(*buf++, off);
  429. else
  430. break;
  431. }
  432. spin_unlock_irq(&rtc_lock);
  433. return retval;
  434. }
  435. static struct bin_attribute nvram = {
  436. .attr = {
  437. .name = "nvram",
  438. .mode = S_IRUGO | S_IWUSR,
  439. },
  440. .read = cmos_nvram_read,
  441. .write = cmos_nvram_write,
  442. /* size gets set up later */
  443. };
  444. /*----------------------------------------------------------------*/
  445. static struct cmos_rtc cmos_rtc;
  446. static irqreturn_t cmos_interrupt(int irq, void *p)
  447. {
  448. u8 irqstat;
  449. u8 rtc_control;
  450. spin_lock(&rtc_lock);
  451. /* When the HPET interrupt handler calls us, the interrupt
  452. * status is passed as arg1 instead of the irq number. But
  453. * always clear irq status, even when HPET is in the way.
  454. *
  455. * Note that HPET and RTC are almost certainly out of phase,
  456. * giving different IRQ status ...
  457. */
  458. irqstat = CMOS_READ(RTC_INTR_FLAGS);
  459. rtc_control = CMOS_READ(RTC_CONTROL);
  460. if (is_hpet_enabled())
  461. irqstat = (unsigned long)irq & 0xF0;
  462. /* If we were suspended, RTC_CONTROL may not be accurate since the
  463. * bios may have cleared it.
  464. */
  465. if (!cmos_rtc.suspend_ctrl)
  466. irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
  467. else
  468. irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
  469. /* All Linux RTC alarms should be treated as if they were oneshot.
  470. * Similar code may be needed in system wakeup paths, in case the
  471. * alarm woke the system.
  472. */
  473. if (irqstat & RTC_AIE) {
  474. cmos_rtc.suspend_ctrl &= ~RTC_AIE;
  475. rtc_control &= ~RTC_AIE;
  476. CMOS_WRITE(rtc_control, RTC_CONTROL);
  477. hpet_mask_rtc_irq_bit(RTC_AIE);
  478. CMOS_READ(RTC_INTR_FLAGS);
  479. }
  480. spin_unlock(&rtc_lock);
  481. if (is_intr(irqstat)) {
  482. rtc_update_irq(p, 1, irqstat);
  483. return IRQ_HANDLED;
  484. } else
  485. return IRQ_NONE;
  486. }
  487. #ifdef CONFIG_PNP
  488. #define INITSECTION
  489. #else
  490. #define INITSECTION __init
  491. #endif
  492. static int INITSECTION
  493. cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
  494. {
  495. struct cmos_rtc_board_info *info = dev_get_platdata(dev);
  496. int retval = 0;
  497. unsigned char rtc_control;
  498. unsigned address_space;
  499. u32 flags = 0;
  500. /* there can be only one ... */
  501. if (cmos_rtc.dev)
  502. return -EBUSY;
  503. if (!ports)
  504. return -ENODEV;
  505. /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
  506. *
  507. * REVISIT non-x86 systems may instead use memory space resources
  508. * (needing ioremap etc), not i/o space resources like this ...
  509. */
  510. if (RTC_IOMAPPED)
  511. ports = request_region(ports->start, resource_size(ports),
  512. driver_name);
  513. else
  514. ports = request_mem_region(ports->start, resource_size(ports),
  515. driver_name);
  516. if (!ports) {
  517. dev_dbg(dev, "i/o registers already in use\n");
  518. return -EBUSY;
  519. }
  520. cmos_rtc.irq = rtc_irq;
  521. cmos_rtc.iomem = ports;
  522. /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
  523. * driver did, but don't reject unknown configs. Old hardware
  524. * won't address 128 bytes. Newer chips have multiple banks,
  525. * though they may not be listed in one I/O resource.
  526. */
  527. #if defined(CONFIG_ATARI)
  528. address_space = 64;
  529. #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
  530. || defined(__sparc__) || defined(__mips__) \
  531. || defined(__powerpc__)
  532. address_space = 128;
  533. #else
  534. #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
  535. address_space = 128;
  536. #endif
  537. if (can_bank2 && ports->end > (ports->start + 1))
  538. address_space = 256;
  539. /* For ACPI systems extension info comes from the FADT. On others,
  540. * board specific setup provides it as appropriate. Systems where
  541. * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
  542. * some almost-clones) can provide hooks to make that behave.
  543. *
  544. * Note that ACPI doesn't preclude putting these registers into
  545. * "extended" areas of the chip, including some that we won't yet
  546. * expect CMOS_READ and friends to handle.
  547. */
  548. if (info) {
  549. if (info->flags)
  550. flags = info->flags;
  551. if (info->address_space)
  552. address_space = info->address_space;
  553. if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
  554. cmos_rtc.day_alrm = info->rtc_day_alarm;
  555. if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
  556. cmos_rtc.mon_alrm = info->rtc_mon_alarm;
  557. if (info->rtc_century && info->rtc_century < 128)
  558. cmos_rtc.century = info->rtc_century;
  559. if (info->wake_on && info->wake_off) {
  560. cmos_rtc.wake_on = info->wake_on;
  561. cmos_rtc.wake_off = info->wake_off;
  562. }
  563. }
  564. cmos_rtc.dev = dev;
  565. dev_set_drvdata(dev, &cmos_rtc);
  566. cmos_rtc.rtc = rtc_device_register(driver_name, dev,
  567. &cmos_rtc_ops, THIS_MODULE);
  568. if (IS_ERR(cmos_rtc.rtc)) {
  569. retval = PTR_ERR(cmos_rtc.rtc);
  570. goto cleanup0;
  571. }
  572. rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
  573. spin_lock_irq(&rtc_lock);
  574. if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
  575. /* force periodic irq to CMOS reset default of 1024Hz;
  576. *
  577. * REVISIT it's been reported that at least one x86_64 ALI
  578. * mobo doesn't use 32KHz here ... for portability we might
  579. * need to do something about other clock frequencies.
  580. */
  581. cmos_rtc.rtc->irq_freq = 1024;
  582. hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
  583. CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
  584. }
  585. /* disable irqs */
  586. if (is_valid_irq(rtc_irq))
  587. cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
  588. rtc_control = CMOS_READ(RTC_CONTROL);
  589. spin_unlock_irq(&rtc_lock);
  590. /* FIXME:
  591. * <asm-generic/rtc.h> doesn't know 12-hour mode either.
  592. */
  593. if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
  594. dev_warn(dev, "only 24-hr supported\n");
  595. retval = -ENXIO;
  596. goto cleanup1;
  597. }
  598. if (is_valid_irq(rtc_irq)) {
  599. irq_handler_t rtc_cmos_int_handler;
  600. if (is_hpet_enabled()) {
  601. rtc_cmos_int_handler = hpet_rtc_interrupt;
  602. retval = hpet_register_irq_handler(cmos_interrupt);
  603. if (retval) {
  604. dev_warn(dev, "hpet_register_irq_handler "
  605. " failed in rtc_init().");
  606. goto cleanup1;
  607. }
  608. } else
  609. rtc_cmos_int_handler = cmos_interrupt;
  610. retval = request_irq(rtc_irq, rtc_cmos_int_handler,
  611. 0, dev_name(&cmos_rtc.rtc->dev),
  612. cmos_rtc.rtc);
  613. if (retval < 0) {
  614. dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
  615. goto cleanup1;
  616. }
  617. }
  618. hpet_rtc_timer_init();
  619. /* export at least the first block of NVRAM */
  620. nvram.size = address_space - NVRAM_OFFSET;
  621. retval = sysfs_create_bin_file(&dev->kobj, &nvram);
  622. if (retval < 0) {
  623. dev_dbg(dev, "can't create nvram file? %d\n", retval);
  624. goto cleanup2;
  625. }
  626. dev_info(dev, "%s%s, %zd bytes nvram%s\n",
  627. !is_valid_irq(rtc_irq) ? "no alarms" :
  628. cmos_rtc.mon_alrm ? "alarms up to one year" :
  629. cmos_rtc.day_alrm ? "alarms up to one month" :
  630. "alarms up to one day",
  631. cmos_rtc.century ? ", y3k" : "",
  632. nvram.size,
  633. is_hpet_enabled() ? ", hpet irqs" : "");
  634. return 0;
  635. cleanup2:
  636. if (is_valid_irq(rtc_irq))
  637. free_irq(rtc_irq, cmos_rtc.rtc);
  638. cleanup1:
  639. cmos_rtc.dev = NULL;
  640. rtc_device_unregister(cmos_rtc.rtc);
  641. cleanup0:
  642. if (RTC_IOMAPPED)
  643. release_region(ports->start, resource_size(ports));
  644. else
  645. release_mem_region(ports->start, resource_size(ports));
  646. return retval;
  647. }
  648. static void cmos_do_shutdown(int rtc_irq)
  649. {
  650. spin_lock_irq(&rtc_lock);
  651. if (is_valid_irq(rtc_irq))
  652. cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
  653. spin_unlock_irq(&rtc_lock);
  654. }
  655. static void __exit cmos_do_remove(struct device *dev)
  656. {
  657. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  658. struct resource *ports;
  659. cmos_do_shutdown(cmos->irq);
  660. sysfs_remove_bin_file(&dev->kobj, &nvram);
  661. if (is_valid_irq(cmos->irq)) {
  662. free_irq(cmos->irq, cmos->rtc);
  663. hpet_unregister_irq_handler(cmos_interrupt);
  664. }
  665. rtc_device_unregister(cmos->rtc);
  666. cmos->rtc = NULL;
  667. ports = cmos->iomem;
  668. if (RTC_IOMAPPED)
  669. release_region(ports->start, resource_size(ports));
  670. else
  671. release_mem_region(ports->start, resource_size(ports));
  672. cmos->iomem = NULL;
  673. cmos->dev = NULL;
  674. }
  675. static int cmos_aie_poweroff(struct device *dev)
  676. {
  677. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  678. struct rtc_time now;
  679. time64_t t_now;
  680. int retval = 0;
  681. unsigned char rtc_control;
  682. if (!cmos->alarm_expires)
  683. return -EINVAL;
  684. spin_lock_irq(&rtc_lock);
  685. rtc_control = CMOS_READ(RTC_CONTROL);
  686. spin_unlock_irq(&rtc_lock);
  687. /* We only care about the situation where AIE is disabled. */
  688. if (rtc_control & RTC_AIE)
  689. return -EBUSY;
  690. cmos_read_time(dev, &now);
  691. t_now = rtc_tm_to_time64(&now);
  692. /*
  693. * When enabling "RTC wake-up" in BIOS setup, the machine reboots
  694. * automatically right after shutdown on some buggy boxes.
  695. * This automatic rebooting issue won't happen when the alarm
  696. * time is larger than now+1 seconds.
  697. *
  698. * If the alarm time is equal to now+1 seconds, the issue can be
  699. * prevented by cancelling the alarm.
  700. */
  701. if (cmos->alarm_expires == t_now + 1) {
  702. struct rtc_wkalrm alarm;
  703. /* Cancel the AIE timer by configuring the past time. */
  704. rtc_time64_to_tm(t_now - 1, &alarm.time);
  705. alarm.enabled = 0;
  706. retval = cmos_set_alarm(dev, &alarm);
  707. } else if (cmos->alarm_expires > t_now + 1) {
  708. retval = -EBUSY;
  709. }
  710. return retval;
  711. }
  712. #ifdef CONFIG_PM
  713. static int cmos_suspend(struct device *dev)
  714. {
  715. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  716. unsigned char tmp;
  717. /* only the alarm might be a wakeup event source */
  718. spin_lock_irq(&rtc_lock);
  719. cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
  720. if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
  721. unsigned char mask;
  722. if (device_may_wakeup(dev))
  723. mask = RTC_IRQMASK & ~RTC_AIE;
  724. else
  725. mask = RTC_IRQMASK;
  726. tmp &= ~mask;
  727. CMOS_WRITE(tmp, RTC_CONTROL);
  728. hpet_mask_rtc_irq_bit(mask);
  729. cmos_checkintr(cmos, tmp);
  730. }
  731. spin_unlock_irq(&rtc_lock);
  732. if (tmp & RTC_AIE) {
  733. cmos->enabled_wake = 1;
  734. if (cmos->wake_on)
  735. cmos->wake_on(dev);
  736. else
  737. enable_irq_wake(cmos->irq);
  738. }
  739. dev_dbg(dev, "suspend%s, ctrl %02x\n",
  740. (tmp & RTC_AIE) ? ", alarm may wake" : "",
  741. tmp);
  742. return 0;
  743. }
  744. /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
  745. * after a detour through G3 "mechanical off", although the ACPI spec
  746. * says wakeup should only work from G1/S4 "hibernate". To most users,
  747. * distinctions between S4 and S5 are pointless. So when the hardware
  748. * allows, don't draw that distinction.
  749. */
  750. static inline int cmos_poweroff(struct device *dev)
  751. {
  752. return cmos_suspend(dev);
  753. }
  754. #ifdef CONFIG_PM_SLEEP
  755. static int cmos_resume(struct device *dev)
  756. {
  757. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  758. unsigned char tmp;
  759. if (cmos->enabled_wake) {
  760. if (cmos->wake_off)
  761. cmos->wake_off(dev);
  762. else
  763. disable_irq_wake(cmos->irq);
  764. cmos->enabled_wake = 0;
  765. }
  766. spin_lock_irq(&rtc_lock);
  767. tmp = cmos->suspend_ctrl;
  768. cmos->suspend_ctrl = 0;
  769. /* re-enable any irqs previously active */
  770. if (tmp & RTC_IRQMASK) {
  771. unsigned char mask;
  772. if (device_may_wakeup(dev))
  773. hpet_rtc_timer_init();
  774. do {
  775. CMOS_WRITE(tmp, RTC_CONTROL);
  776. hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
  777. mask = CMOS_READ(RTC_INTR_FLAGS);
  778. mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
  779. if (!is_hpet_enabled() || !is_intr(mask))
  780. break;
  781. /* force one-shot behavior if HPET blocked
  782. * the wake alarm's irq
  783. */
  784. rtc_update_irq(cmos->rtc, 1, mask);
  785. tmp &= ~RTC_AIE;
  786. hpet_mask_rtc_irq_bit(RTC_AIE);
  787. } while (mask & RTC_AIE);
  788. }
  789. spin_unlock_irq(&rtc_lock);
  790. dev_dbg(dev, "resume, ctrl %02x\n", tmp);
  791. return 0;
  792. }
  793. #endif
  794. #else
  795. static inline int cmos_poweroff(struct device *dev)
  796. {
  797. return -ENOSYS;
  798. }
  799. #endif
  800. static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
  801. /*----------------------------------------------------------------*/
  802. /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
  803. * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
  804. * probably list them in similar PNPBIOS tables; so PNP is more common.
  805. *
  806. * We don't use legacy "poke at the hardware" probing. Ancient PCs that
  807. * predate even PNPBIOS should set up platform_bus devices.
  808. */
  809. #ifdef CONFIG_ACPI
  810. #include <linux/acpi.h>
  811. static u32 rtc_handler(void *context)
  812. {
  813. struct device *dev = context;
  814. pm_wakeup_event(dev, 0);
  815. acpi_clear_event(ACPI_EVENT_RTC);
  816. acpi_disable_event(ACPI_EVENT_RTC, 0);
  817. return ACPI_INTERRUPT_HANDLED;
  818. }
  819. static inline void rtc_wake_setup(struct device *dev)
  820. {
  821. acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
  822. /*
  823. * After the RTC handler is installed, the Fixed_RTC event should
  824. * be disabled. Only when the RTC alarm is set will it be enabled.
  825. */
  826. acpi_clear_event(ACPI_EVENT_RTC);
  827. acpi_disable_event(ACPI_EVENT_RTC, 0);
  828. }
  829. static void rtc_wake_on(struct device *dev)
  830. {
  831. acpi_clear_event(ACPI_EVENT_RTC);
  832. acpi_enable_event(ACPI_EVENT_RTC, 0);
  833. }
  834. static void rtc_wake_off(struct device *dev)
  835. {
  836. acpi_disable_event(ACPI_EVENT_RTC, 0);
  837. }
  838. /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
  839. * its device node and pass extra config data. This helps its driver use
  840. * capabilities that the now-obsolete mc146818 didn't have, and informs it
  841. * that this board's RTC is wakeup-capable (per ACPI spec).
  842. */
  843. static struct cmos_rtc_board_info acpi_rtc_info;
  844. static void cmos_wake_setup(struct device *dev)
  845. {
  846. if (acpi_disabled)
  847. return;
  848. rtc_wake_setup(dev);
  849. acpi_rtc_info.wake_on = rtc_wake_on;
  850. acpi_rtc_info.wake_off = rtc_wake_off;
  851. /* workaround bug in some ACPI tables */
  852. if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
  853. dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
  854. acpi_gbl_FADT.month_alarm);
  855. acpi_gbl_FADT.month_alarm = 0;
  856. }
  857. acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
  858. acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
  859. acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
  860. /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
  861. if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
  862. dev_info(dev, "RTC can wake from S4\n");
  863. dev->platform_data = &acpi_rtc_info;
  864. /* RTC always wakes from S1/S2/S3, and often S4/STD */
  865. device_init_wakeup(dev, 1);
  866. }
  867. #else
  868. static void cmos_wake_setup(struct device *dev)
  869. {
  870. }
  871. #endif
  872. #ifdef CONFIG_PNP
  873. #include <linux/pnp.h>
  874. static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
  875. {
  876. cmos_wake_setup(&pnp->dev);
  877. if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
  878. /* Some machines contain a PNP entry for the RTC, but
  879. * don't define the IRQ. It should always be safe to
  880. * hardcode it in these cases
  881. */
  882. return cmos_do_probe(&pnp->dev,
  883. pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
  884. else
  885. return cmos_do_probe(&pnp->dev,
  886. pnp_get_resource(pnp, IORESOURCE_IO, 0),
  887. pnp_irq(pnp, 0));
  888. }
  889. static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
  890. {
  891. cmos_do_remove(&pnp->dev);
  892. }
  893. static void cmos_pnp_shutdown(struct pnp_dev *pnp)
  894. {
  895. struct device *dev = &pnp->dev;
  896. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  897. if (system_state == SYSTEM_POWER_OFF) {
  898. int retval = cmos_poweroff(dev);
  899. if (cmos_aie_poweroff(dev) < 0 && !retval)
  900. return;
  901. }
  902. cmos_do_shutdown(cmos->irq);
  903. }
  904. static const struct pnp_device_id rtc_ids[] = {
  905. { .id = "PNP0b00", },
  906. { .id = "PNP0b01", },
  907. { .id = "PNP0b02", },
  908. { },
  909. };
  910. MODULE_DEVICE_TABLE(pnp, rtc_ids);
  911. static struct pnp_driver cmos_pnp_driver = {
  912. .name = (char *) driver_name,
  913. .id_table = rtc_ids,
  914. .probe = cmos_pnp_probe,
  915. .remove = __exit_p(cmos_pnp_remove),
  916. .shutdown = cmos_pnp_shutdown,
  917. /* flag ensures resume() gets called, and stops syslog spam */
  918. .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
  919. .driver = {
  920. .pm = &cmos_pm_ops,
  921. },
  922. };
  923. #endif /* CONFIG_PNP */
  924. #ifdef CONFIG_OF
  925. static const struct of_device_id of_cmos_match[] = {
  926. {
  927. .compatible = "motorola,mc146818",
  928. },
  929. { },
  930. };
  931. MODULE_DEVICE_TABLE(of, of_cmos_match);
  932. static __init void cmos_of_init(struct platform_device *pdev)
  933. {
  934. struct device_node *node = pdev->dev.of_node;
  935. struct rtc_time time;
  936. int ret;
  937. const __be32 *val;
  938. if (!node)
  939. return;
  940. val = of_get_property(node, "ctrl-reg", NULL);
  941. if (val)
  942. CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
  943. val = of_get_property(node, "freq-reg", NULL);
  944. if (val)
  945. CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
  946. get_rtc_time(&time);
  947. ret = rtc_valid_tm(&time);
  948. if (ret) {
  949. struct rtc_time def_time = {
  950. .tm_year = 1,
  951. .tm_mday = 1,
  952. };
  953. set_rtc_time(&def_time);
  954. }
  955. }
  956. #else
  957. static inline void cmos_of_init(struct platform_device *pdev) {}
  958. #endif
  959. /*----------------------------------------------------------------*/
  960. /* Platform setup should have set up an RTC device, when PNP is
  961. * unavailable ... this could happen even on (older) PCs.
  962. */
  963. static int __init cmos_platform_probe(struct platform_device *pdev)
  964. {
  965. struct resource *resource;
  966. int irq;
  967. cmos_of_init(pdev);
  968. cmos_wake_setup(&pdev->dev);
  969. if (RTC_IOMAPPED)
  970. resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
  971. else
  972. resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  973. irq = platform_get_irq(pdev, 0);
  974. if (irq < 0)
  975. irq = -1;
  976. return cmos_do_probe(&pdev->dev, resource, irq);
  977. }
  978. static int __exit cmos_platform_remove(struct platform_device *pdev)
  979. {
  980. cmos_do_remove(&pdev->dev);
  981. return 0;
  982. }
  983. static void cmos_platform_shutdown(struct platform_device *pdev)
  984. {
  985. struct device *dev = &pdev->dev;
  986. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  987. if (system_state == SYSTEM_POWER_OFF) {
  988. int retval = cmos_poweroff(dev);
  989. if (cmos_aie_poweroff(dev) < 0 && !retval)
  990. return;
  991. }
  992. cmos_do_shutdown(cmos->irq);
  993. }
  994. /* work with hotplug and coldplug */
  995. MODULE_ALIAS("platform:rtc_cmos");
  996. static struct platform_driver cmos_platform_driver = {
  997. .remove = __exit_p(cmos_platform_remove),
  998. .shutdown = cmos_platform_shutdown,
  999. .driver = {
  1000. .name = driver_name,
  1001. #ifdef CONFIG_PM
  1002. .pm = &cmos_pm_ops,
  1003. #endif
  1004. .of_match_table = of_match_ptr(of_cmos_match),
  1005. }
  1006. };
  1007. #ifdef CONFIG_PNP
  1008. static bool pnp_driver_registered;
  1009. #endif
  1010. static bool platform_driver_registered;
  1011. static int __init cmos_init(void)
  1012. {
  1013. int retval = 0;
  1014. #ifdef CONFIG_PNP
  1015. retval = pnp_register_driver(&cmos_pnp_driver);
  1016. if (retval == 0)
  1017. pnp_driver_registered = true;
  1018. #endif
  1019. if (!cmos_rtc.dev) {
  1020. retval = platform_driver_probe(&cmos_platform_driver,
  1021. cmos_platform_probe);
  1022. if (retval == 0)
  1023. platform_driver_registered = true;
  1024. }
  1025. if (retval == 0)
  1026. return 0;
  1027. #ifdef CONFIG_PNP
  1028. if (pnp_driver_registered)
  1029. pnp_unregister_driver(&cmos_pnp_driver);
  1030. #endif
  1031. return retval;
  1032. }
  1033. module_init(cmos_init);
  1034. static void __exit cmos_exit(void)
  1035. {
  1036. #ifdef CONFIG_PNP
  1037. if (pnp_driver_registered)
  1038. pnp_unregister_driver(&cmos_pnp_driver);
  1039. #endif
  1040. if (platform_driver_registered)
  1041. platform_driver_unregister(&cmos_platform_driver);
  1042. }
  1043. module_exit(cmos_exit);
  1044. MODULE_AUTHOR("David Brownell");
  1045. MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
  1046. MODULE_LICENSE("GPL");