skbuff.h 118 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/compiler.h>
  17. #include <linux/time.h>
  18. #include <linux/bug.h>
  19. #include <linux/cache.h>
  20. #include <linux/rbtree.h>
  21. #include <linux/socket.h>
  22. #include <linux/refcount.h>
  23. #include <linux/atomic.h>
  24. #include <asm/types.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/net.h>
  27. #include <linux/textsearch.h>
  28. #include <net/checksum.h>
  29. #include <linux/rcupdate.h>
  30. #include <linux/hrtimer.h>
  31. #include <linux/dma-mapping.h>
  32. #include <linux/netdev_features.h>
  33. #include <linux/sched.h>
  34. #include <linux/sched/clock.h>
  35. #include <net/flow_dissector.h>
  36. #include <linux/splice.h>
  37. #include <linux/in6.h>
  38. #include <linux/if_packet.h>
  39. #include <net/flow.h>
  40. /* The interface for checksum offload between the stack and networking drivers
  41. * is as follows...
  42. *
  43. * A. IP checksum related features
  44. *
  45. * Drivers advertise checksum offload capabilities in the features of a device.
  46. * From the stack's point of view these are capabilities offered by the driver,
  47. * a driver typically only advertises features that it is capable of offloading
  48. * to its device.
  49. *
  50. * The checksum related features are:
  51. *
  52. * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
  53. * IP (one's complement) checksum for any combination
  54. * of protocols or protocol layering. The checksum is
  55. * computed and set in a packet per the CHECKSUM_PARTIAL
  56. * interface (see below).
  57. *
  58. * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
  59. * TCP or UDP packets over IPv4. These are specifically
  60. * unencapsulated packets of the form IPv4|TCP or
  61. * IPv4|UDP where the Protocol field in the IPv4 header
  62. * is TCP or UDP. The IPv4 header may contain IP options
  63. * This feature cannot be set in features for a device
  64. * with NETIF_F_HW_CSUM also set. This feature is being
  65. * DEPRECATED (see below).
  66. *
  67. * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
  68. * TCP or UDP packets over IPv6. These are specifically
  69. * unencapsulated packets of the form IPv6|TCP or
  70. * IPv4|UDP where the Next Header field in the IPv6
  71. * header is either TCP or UDP. IPv6 extension headers
  72. * are not supported with this feature. This feature
  73. * cannot be set in features for a device with
  74. * NETIF_F_HW_CSUM also set. This feature is being
  75. * DEPRECATED (see below).
  76. *
  77. * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
  78. * This flag is used only used to disable the RX checksum
  79. * feature for a device. The stack will accept receive
  80. * checksum indication in packets received on a device
  81. * regardless of whether NETIF_F_RXCSUM is set.
  82. *
  83. * B. Checksumming of received packets by device. Indication of checksum
  84. * verification is in set skb->ip_summed. Possible values are:
  85. *
  86. * CHECKSUM_NONE:
  87. *
  88. * Device did not checksum this packet e.g. due to lack of capabilities.
  89. * The packet contains full (though not verified) checksum in packet but
  90. * not in skb->csum. Thus, skb->csum is undefined in this case.
  91. *
  92. * CHECKSUM_UNNECESSARY:
  93. *
  94. * The hardware you're dealing with doesn't calculate the full checksum
  95. * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
  96. * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
  97. * if their checksums are okay. skb->csum is still undefined in this case
  98. * though. A driver or device must never modify the checksum field in the
  99. * packet even if checksum is verified.
  100. *
  101. * CHECKSUM_UNNECESSARY is applicable to following protocols:
  102. * TCP: IPv6 and IPv4.
  103. * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
  104. * zero UDP checksum for either IPv4 or IPv6, the networking stack
  105. * may perform further validation in this case.
  106. * GRE: only if the checksum is present in the header.
  107. * SCTP: indicates the CRC in SCTP header has been validated.
  108. * FCOE: indicates the CRC in FC frame has been validated.
  109. *
  110. * skb->csum_level indicates the number of consecutive checksums found in
  111. * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
  112. * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
  113. * and a device is able to verify the checksums for UDP (possibly zero),
  114. * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
  115. * two. If the device were only able to verify the UDP checksum and not
  116. * GRE, either because it doesn't support GRE checksum of because GRE
  117. * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
  118. * not considered in this case).
  119. *
  120. * CHECKSUM_COMPLETE:
  121. *
  122. * This is the most generic way. The device supplied checksum of the _whole_
  123. * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
  124. * hardware doesn't need to parse L3/L4 headers to implement this.
  125. *
  126. * Notes:
  127. * - Even if device supports only some protocols, but is able to produce
  128. * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
  129. * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
  130. *
  131. * CHECKSUM_PARTIAL:
  132. *
  133. * A checksum is set up to be offloaded to a device as described in the
  134. * output description for CHECKSUM_PARTIAL. This may occur on a packet
  135. * received directly from another Linux OS, e.g., a virtualized Linux kernel
  136. * on the same host, or it may be set in the input path in GRO or remote
  137. * checksum offload. For the purposes of checksum verification, the checksum
  138. * referred to by skb->csum_start + skb->csum_offset and any preceding
  139. * checksums in the packet are considered verified. Any checksums in the
  140. * packet that are after the checksum being offloaded are not considered to
  141. * be verified.
  142. *
  143. * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
  144. * in the skb->ip_summed for a packet. Values are:
  145. *
  146. * CHECKSUM_PARTIAL:
  147. *
  148. * The driver is required to checksum the packet as seen by hard_start_xmit()
  149. * from skb->csum_start up to the end, and to record/write the checksum at
  150. * offset skb->csum_start + skb->csum_offset. A driver may verify that the
  151. * csum_start and csum_offset values are valid values given the length and
  152. * offset of the packet, however they should not attempt to validate that the
  153. * checksum refers to a legitimate transport layer checksum-- it is the
  154. * purview of the stack to validate that csum_start and csum_offset are set
  155. * correctly.
  156. *
  157. * When the stack requests checksum offload for a packet, the driver MUST
  158. * ensure that the checksum is set correctly. A driver can either offload the
  159. * checksum calculation to the device, or call skb_checksum_help (in the case
  160. * that the device does not support offload for a particular checksum).
  161. *
  162. * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
  163. * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
  164. * checksum offload capability.
  165. * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
  166. * on network device checksumming capabilities: if a packet does not match
  167. * them, skb_checksum_help or skb_crc32c_help (depending on the value of
  168. * csum_not_inet, see item D.) is called to resolve the checksum.
  169. *
  170. * CHECKSUM_NONE:
  171. *
  172. * The skb was already checksummed by the protocol, or a checksum is not
  173. * required.
  174. *
  175. * CHECKSUM_UNNECESSARY:
  176. *
  177. * This has the same meaning on as CHECKSUM_NONE for checksum offload on
  178. * output.
  179. *
  180. * CHECKSUM_COMPLETE:
  181. * Not used in checksum output. If a driver observes a packet with this value
  182. * set in skbuff, if should treat as CHECKSUM_NONE being set.
  183. *
  184. * D. Non-IP checksum (CRC) offloads
  185. *
  186. * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
  187. * offloading the SCTP CRC in a packet. To perform this offload the stack
  188. * will set set csum_start and csum_offset accordingly, set ip_summed to
  189. * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
  190. * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
  191. * A driver that supports both IP checksum offload and SCTP CRC32c offload
  192. * must verify which offload is configured for a packet by testing the
  193. * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
  194. * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
  195. *
  196. * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
  197. * offloading the FCOE CRC in a packet. To perform this offload the stack
  198. * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
  199. * accordingly. Note the there is no indication in the skbuff that the
  200. * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
  201. * both IP checksum offload and FCOE CRC offload must verify which offload
  202. * is configured for a packet presumably by inspecting packet headers.
  203. *
  204. * E. Checksumming on output with GSO.
  205. *
  206. * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
  207. * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
  208. * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
  209. * part of the GSO operation is implied. If a checksum is being offloaded
  210. * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
  211. * are set to refer to the outermost checksum being offload (two offloaded
  212. * checksums are possible with UDP encapsulation).
  213. */
  214. /* Don't change this without changing skb_csum_unnecessary! */
  215. #define CHECKSUM_NONE 0
  216. #define CHECKSUM_UNNECESSARY 1
  217. #define CHECKSUM_COMPLETE 2
  218. #define CHECKSUM_PARTIAL 3
  219. /* Maximum value in skb->csum_level */
  220. #define SKB_MAX_CSUM_LEVEL 3
  221. #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
  222. #define SKB_WITH_OVERHEAD(X) \
  223. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  224. #define SKB_MAX_ORDER(X, ORDER) \
  225. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  226. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  227. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  228. /* return minimum truesize of one skb containing X bytes of data */
  229. #define SKB_TRUESIZE(X) ((X) + \
  230. SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
  231. SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  232. struct net_device;
  233. struct scatterlist;
  234. struct pipe_inode_info;
  235. struct iov_iter;
  236. struct napi_struct;
  237. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  238. struct nf_conntrack {
  239. atomic_t use;
  240. };
  241. #endif
  242. #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  243. struct nf_bridge_info {
  244. refcount_t use;
  245. enum {
  246. BRNF_PROTO_UNCHANGED,
  247. BRNF_PROTO_8021Q,
  248. BRNF_PROTO_PPPOE
  249. } orig_proto:8;
  250. u8 pkt_otherhost:1;
  251. u8 in_prerouting:1;
  252. u8 bridged_dnat:1;
  253. __u16 frag_max_size;
  254. struct net_device *physindev;
  255. /* always valid & non-NULL from FORWARD on, for physdev match */
  256. struct net_device *physoutdev;
  257. union {
  258. /* prerouting: detect dnat in orig/reply direction */
  259. __be32 ipv4_daddr;
  260. struct in6_addr ipv6_daddr;
  261. /* after prerouting + nat detected: store original source
  262. * mac since neigh resolution overwrites it, only used while
  263. * skb is out in neigh layer.
  264. */
  265. char neigh_header[8];
  266. };
  267. };
  268. #endif
  269. struct sk_buff_head {
  270. /* These two members must be first. */
  271. struct sk_buff *next;
  272. struct sk_buff *prev;
  273. __u32 qlen;
  274. spinlock_t lock;
  275. };
  276. struct sk_buff;
  277. /* To allow 64K frame to be packed as single skb without frag_list we
  278. * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
  279. * buffers which do not start on a page boundary.
  280. *
  281. * Since GRO uses frags we allocate at least 16 regardless of page
  282. * size.
  283. */
  284. #if (65536/PAGE_SIZE + 1) < 16
  285. #define MAX_SKB_FRAGS 16UL
  286. #else
  287. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
  288. #endif
  289. extern int sysctl_max_skb_frags;
  290. /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
  291. * segment using its current segmentation instead.
  292. */
  293. #define GSO_BY_FRAGS 0xFFFF
  294. typedef struct skb_frag_struct skb_frag_t;
  295. struct skb_frag_struct {
  296. struct {
  297. struct page *p;
  298. } page;
  299. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  300. __u32 page_offset;
  301. __u32 size;
  302. #else
  303. __u16 page_offset;
  304. __u16 size;
  305. #endif
  306. };
  307. static inline unsigned int skb_frag_size(const skb_frag_t *frag)
  308. {
  309. return frag->size;
  310. }
  311. static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
  312. {
  313. frag->size = size;
  314. }
  315. static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
  316. {
  317. frag->size += delta;
  318. }
  319. static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
  320. {
  321. frag->size -= delta;
  322. }
  323. static inline bool skb_frag_must_loop(struct page *p)
  324. {
  325. #if defined(CONFIG_HIGHMEM)
  326. if (PageHighMem(p))
  327. return true;
  328. #endif
  329. return false;
  330. }
  331. /**
  332. * skb_frag_foreach_page - loop over pages in a fragment
  333. *
  334. * @f: skb frag to operate on
  335. * @f_off: offset from start of f->page.p
  336. * @f_len: length from f_off to loop over
  337. * @p: (temp var) current page
  338. * @p_off: (temp var) offset from start of current page,
  339. * non-zero only on first page.
  340. * @p_len: (temp var) length in current page,
  341. * < PAGE_SIZE only on first and last page.
  342. * @copied: (temp var) length so far, excluding current p_len.
  343. *
  344. * A fragment can hold a compound page, in which case per-page
  345. * operations, notably kmap_atomic, must be called for each
  346. * regular page.
  347. */
  348. #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
  349. for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
  350. p_off = (f_off) & (PAGE_SIZE - 1), \
  351. p_len = skb_frag_must_loop(p) ? \
  352. min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
  353. copied = 0; \
  354. copied < f_len; \
  355. copied += p_len, p++, p_off = 0, \
  356. p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
  357. #define HAVE_HW_TIME_STAMP
  358. /**
  359. * struct skb_shared_hwtstamps - hardware time stamps
  360. * @hwtstamp: hardware time stamp transformed into duration
  361. * since arbitrary point in time
  362. *
  363. * Software time stamps generated by ktime_get_real() are stored in
  364. * skb->tstamp.
  365. *
  366. * hwtstamps can only be compared against other hwtstamps from
  367. * the same device.
  368. *
  369. * This structure is attached to packets as part of the
  370. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  371. */
  372. struct skb_shared_hwtstamps {
  373. ktime_t hwtstamp;
  374. };
  375. /* Definitions for tx_flags in struct skb_shared_info */
  376. enum {
  377. /* generate hardware time stamp */
  378. SKBTX_HW_TSTAMP = 1 << 0,
  379. /* generate software time stamp when queueing packet to NIC */
  380. SKBTX_SW_TSTAMP = 1 << 1,
  381. /* device driver is going to provide hardware time stamp */
  382. SKBTX_IN_PROGRESS = 1 << 2,
  383. /* device driver supports TX zero-copy buffers */
  384. SKBTX_DEV_ZEROCOPY = 1 << 3,
  385. /* generate wifi status information (where possible) */
  386. SKBTX_WIFI_STATUS = 1 << 4,
  387. /* This indicates at least one fragment might be overwritten
  388. * (as in vmsplice(), sendfile() ...)
  389. * If we need to compute a TX checksum, we'll need to copy
  390. * all frags to avoid possible bad checksum
  391. */
  392. SKBTX_SHARED_FRAG = 1 << 5,
  393. /* generate software time stamp when entering packet scheduling */
  394. SKBTX_SCHED_TSTAMP = 1 << 6,
  395. };
  396. #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
  397. #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
  398. SKBTX_SCHED_TSTAMP)
  399. #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
  400. /*
  401. * The callback notifies userspace to release buffers when skb DMA is done in
  402. * lower device, the skb last reference should be 0 when calling this.
  403. * The zerocopy_success argument is true if zero copy transmit occurred,
  404. * false on data copy or out of memory error caused by data copy attempt.
  405. * The ctx field is used to track device context.
  406. * The desc field is used to track userspace buffer index.
  407. */
  408. struct ubuf_info {
  409. void (*callback)(struct ubuf_info *, bool zerocopy_success);
  410. union {
  411. struct {
  412. unsigned long desc;
  413. void *ctx;
  414. };
  415. struct {
  416. u32 id;
  417. u16 len;
  418. u16 zerocopy:1;
  419. u32 bytelen;
  420. };
  421. };
  422. refcount_t refcnt;
  423. struct mmpin {
  424. struct user_struct *user;
  425. unsigned int num_pg;
  426. } mmp;
  427. };
  428. #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
  429. int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
  430. void mm_unaccount_pinned_pages(struct mmpin *mmp);
  431. struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
  432. struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
  433. struct ubuf_info *uarg);
  434. static inline void sock_zerocopy_get(struct ubuf_info *uarg)
  435. {
  436. refcount_inc(&uarg->refcnt);
  437. }
  438. void sock_zerocopy_put(struct ubuf_info *uarg);
  439. void sock_zerocopy_put_abort(struct ubuf_info *uarg);
  440. void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
  441. int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
  442. struct msghdr *msg, int len,
  443. struct ubuf_info *uarg);
  444. /* This data is invariant across clones and lives at
  445. * the end of the header data, ie. at skb->end.
  446. */
  447. struct skb_shared_info {
  448. __u8 __unused;
  449. __u8 meta_len;
  450. __u8 nr_frags;
  451. __u8 tx_flags;
  452. unsigned short gso_size;
  453. /* Warning: this field is not always filled in (UFO)! */
  454. unsigned short gso_segs;
  455. struct sk_buff *frag_list;
  456. struct skb_shared_hwtstamps hwtstamps;
  457. unsigned int gso_type;
  458. u32 tskey;
  459. /*
  460. * Warning : all fields before dataref are cleared in __alloc_skb()
  461. */
  462. atomic_t dataref;
  463. /* Intermediate layers must ensure that destructor_arg
  464. * remains valid until skb destructor */
  465. void * destructor_arg;
  466. /* must be last field, see pskb_expand_head() */
  467. skb_frag_t frags[MAX_SKB_FRAGS];
  468. };
  469. /* We divide dataref into two halves. The higher 16 bits hold references
  470. * to the payload part of skb->data. The lower 16 bits hold references to
  471. * the entire skb->data. A clone of a headerless skb holds the length of
  472. * the header in skb->hdr_len.
  473. *
  474. * All users must obey the rule that the skb->data reference count must be
  475. * greater than or equal to the payload reference count.
  476. *
  477. * Holding a reference to the payload part means that the user does not
  478. * care about modifications to the header part of skb->data.
  479. */
  480. #define SKB_DATAREF_SHIFT 16
  481. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  482. enum {
  483. SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
  484. SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
  485. SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
  486. };
  487. enum {
  488. SKB_GSO_TCPV4 = 1 << 0,
  489. /* This indicates the skb is from an untrusted source. */
  490. SKB_GSO_DODGY = 1 << 1,
  491. /* This indicates the tcp segment has CWR set. */
  492. SKB_GSO_TCP_ECN = 1 << 2,
  493. SKB_GSO_TCP_FIXEDID = 1 << 3,
  494. SKB_GSO_TCPV6 = 1 << 4,
  495. SKB_GSO_FCOE = 1 << 5,
  496. SKB_GSO_GRE = 1 << 6,
  497. SKB_GSO_GRE_CSUM = 1 << 7,
  498. SKB_GSO_IPXIP4 = 1 << 8,
  499. SKB_GSO_IPXIP6 = 1 << 9,
  500. SKB_GSO_UDP_TUNNEL = 1 << 10,
  501. SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
  502. SKB_GSO_PARTIAL = 1 << 12,
  503. SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
  504. SKB_GSO_SCTP = 1 << 14,
  505. SKB_GSO_ESP = 1 << 15,
  506. SKB_GSO_UDP = 1 << 16,
  507. };
  508. #if BITS_PER_LONG > 32
  509. #define NET_SKBUFF_DATA_USES_OFFSET 1
  510. #endif
  511. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  512. typedef unsigned int sk_buff_data_t;
  513. #else
  514. typedef unsigned char *sk_buff_data_t;
  515. #endif
  516. /**
  517. * struct sk_buff - socket buffer
  518. * @next: Next buffer in list
  519. * @prev: Previous buffer in list
  520. * @tstamp: Time we arrived/left
  521. * @rbnode: RB tree node, alternative to next/prev for netem/tcp
  522. * @sk: Socket we are owned by
  523. * @dev: Device we arrived on/are leaving by
  524. * @cb: Control buffer. Free for use by every layer. Put private vars here
  525. * @_skb_refdst: destination entry (with norefcount bit)
  526. * @sp: the security path, used for xfrm
  527. * @len: Length of actual data
  528. * @data_len: Data length
  529. * @mac_len: Length of link layer header
  530. * @hdr_len: writable header length of cloned skb
  531. * @csum: Checksum (must include start/offset pair)
  532. * @csum_start: Offset from skb->head where checksumming should start
  533. * @csum_offset: Offset from csum_start where checksum should be stored
  534. * @priority: Packet queueing priority
  535. * @ignore_df: allow local fragmentation
  536. * @cloned: Head may be cloned (check refcnt to be sure)
  537. * @ip_summed: Driver fed us an IP checksum
  538. * @nohdr: Payload reference only, must not modify header
  539. * @pkt_type: Packet class
  540. * @fclone: skbuff clone status
  541. * @ipvs_property: skbuff is owned by ipvs
  542. * @tc_skip_classify: do not classify packet. set by IFB device
  543. * @tc_at_ingress: used within tc_classify to distinguish in/egress
  544. * @tc_redirected: packet was redirected by a tc action
  545. * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
  546. * @peeked: this packet has been seen already, so stats have been
  547. * done for it, don't do them again
  548. * @nf_trace: netfilter packet trace flag
  549. * @protocol: Packet protocol from driver
  550. * @destructor: Destruct function
  551. * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
  552. * @_nfct: Associated connection, if any (with nfctinfo bits)
  553. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  554. * @skb_iif: ifindex of device we arrived on
  555. * @tc_index: Traffic control index
  556. * @hash: the packet hash
  557. * @queue_mapping: Queue mapping for multiqueue devices
  558. * @xmit_more: More SKBs are pending for this queue
  559. * @ndisc_nodetype: router type (from link layer)
  560. * @ooo_okay: allow the mapping of a socket to a queue to be changed
  561. * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
  562. * ports.
  563. * @sw_hash: indicates hash was computed in software stack
  564. * @wifi_acked_valid: wifi_acked was set
  565. * @wifi_acked: whether frame was acked on wifi or not
  566. * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
  567. * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
  568. * @dst_pending_confirm: need to confirm neighbour
  569. * @napi_id: id of the NAPI struct this skb came from
  570. * @secmark: security marking
  571. * @mark: Generic packet mark
  572. * @vlan_proto: vlan encapsulation protocol
  573. * @vlan_tci: vlan tag control information
  574. * @inner_protocol: Protocol (encapsulation)
  575. * @inner_transport_header: Inner transport layer header (encapsulation)
  576. * @inner_network_header: Network layer header (encapsulation)
  577. * @inner_mac_header: Link layer header (encapsulation)
  578. * @transport_header: Transport layer header
  579. * @network_header: Network layer header
  580. * @mac_header: Link layer header
  581. * @tail: Tail pointer
  582. * @end: End pointer
  583. * @head: Head of buffer
  584. * @data: Data head pointer
  585. * @truesize: Buffer size
  586. * @users: User count - see {datagram,tcp}.c
  587. */
  588. struct sk_buff {
  589. union {
  590. struct {
  591. /* These two members must be first. */
  592. struct sk_buff *next;
  593. struct sk_buff *prev;
  594. union {
  595. struct net_device *dev;
  596. /* Some protocols might use this space to store information,
  597. * while device pointer would be NULL.
  598. * UDP receive path is one user.
  599. */
  600. unsigned long dev_scratch;
  601. };
  602. };
  603. struct rb_node rbnode; /* used in netem & tcp stack */
  604. };
  605. struct sock *sk;
  606. union {
  607. ktime_t tstamp;
  608. u64 skb_mstamp;
  609. };
  610. /*
  611. * This is the control buffer. It is free to use for every
  612. * layer. Please put your private variables there. If you
  613. * want to keep them across layers you have to do a skb_clone()
  614. * first. This is owned by whoever has the skb queued ATM.
  615. */
  616. char cb[48] __aligned(8);
  617. union {
  618. struct {
  619. unsigned long _skb_refdst;
  620. void (*destructor)(struct sk_buff *skb);
  621. };
  622. struct list_head tcp_tsorted_anchor;
  623. };
  624. #ifdef CONFIG_XFRM
  625. struct sec_path *sp;
  626. #endif
  627. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  628. unsigned long _nfct;
  629. #endif
  630. #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  631. struct nf_bridge_info *nf_bridge;
  632. #endif
  633. unsigned int len,
  634. data_len;
  635. __u16 mac_len,
  636. hdr_len;
  637. /* Following fields are _not_ copied in __copy_skb_header()
  638. * Note that queue_mapping is here mostly to fill a hole.
  639. */
  640. __u16 queue_mapping;
  641. /* if you move cloned around you also must adapt those constants */
  642. #ifdef __BIG_ENDIAN_BITFIELD
  643. #define CLONED_MASK (1 << 7)
  644. #else
  645. #define CLONED_MASK 1
  646. #endif
  647. #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
  648. __u8 __cloned_offset[0];
  649. __u8 cloned:1,
  650. nohdr:1,
  651. fclone:2,
  652. peeked:1,
  653. head_frag:1,
  654. xmit_more:1,
  655. __unused:1; /* one bit hole */
  656. /* fields enclosed in headers_start/headers_end are copied
  657. * using a single memcpy() in __copy_skb_header()
  658. */
  659. /* private: */
  660. __u32 headers_start[0];
  661. /* public: */
  662. /* if you move pkt_type around you also must adapt those constants */
  663. #ifdef __BIG_ENDIAN_BITFIELD
  664. #define PKT_TYPE_MAX (7 << 5)
  665. #else
  666. #define PKT_TYPE_MAX 7
  667. #endif
  668. #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
  669. __u8 __pkt_type_offset[0];
  670. __u8 pkt_type:3;
  671. __u8 pfmemalloc:1;
  672. __u8 ignore_df:1;
  673. __u8 nf_trace:1;
  674. __u8 ip_summed:2;
  675. __u8 ooo_okay:1;
  676. __u8 l4_hash:1;
  677. __u8 sw_hash:1;
  678. __u8 wifi_acked_valid:1;
  679. __u8 wifi_acked:1;
  680. __u8 no_fcs:1;
  681. /* Indicates the inner headers are valid in the skbuff. */
  682. __u8 encapsulation:1;
  683. __u8 encap_hdr_csum:1;
  684. __u8 csum_valid:1;
  685. __u8 csum_complete_sw:1;
  686. __u8 csum_level:2;
  687. __u8 csum_not_inet:1;
  688. __u8 dst_pending_confirm:1;
  689. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  690. __u8 ndisc_nodetype:2;
  691. #endif
  692. __u8 ipvs_property:1;
  693. __u8 inner_protocol_type:1;
  694. __u8 remcsum_offload:1;
  695. #ifdef CONFIG_NET_SWITCHDEV
  696. __u8 offload_fwd_mark:1;
  697. __u8 offload_mr_fwd_mark:1;
  698. #endif
  699. #ifdef CONFIG_NET_CLS_ACT
  700. __u8 tc_skip_classify:1;
  701. __u8 tc_at_ingress:1;
  702. __u8 tc_redirected:1;
  703. __u8 tc_from_ingress:1;
  704. #endif
  705. #ifdef CONFIG_NET_SCHED
  706. __u16 tc_index; /* traffic control index */
  707. #endif
  708. union {
  709. __wsum csum;
  710. struct {
  711. __u16 csum_start;
  712. __u16 csum_offset;
  713. };
  714. };
  715. __u32 priority;
  716. int skb_iif;
  717. __u32 hash;
  718. __be16 vlan_proto;
  719. __u16 vlan_tci;
  720. #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
  721. union {
  722. unsigned int napi_id;
  723. unsigned int sender_cpu;
  724. };
  725. #endif
  726. #ifdef CONFIG_NETWORK_SECMARK
  727. __u32 secmark;
  728. #endif
  729. union {
  730. __u32 mark;
  731. __u32 reserved_tailroom;
  732. };
  733. union {
  734. __be16 inner_protocol;
  735. __u8 inner_ipproto;
  736. };
  737. __u16 inner_transport_header;
  738. __u16 inner_network_header;
  739. __u16 inner_mac_header;
  740. __be16 protocol;
  741. __u16 transport_header;
  742. __u16 network_header;
  743. __u16 mac_header;
  744. /* private: */
  745. __u32 headers_end[0];
  746. /* public: */
  747. /* These elements must be at the end, see alloc_skb() for details. */
  748. sk_buff_data_t tail;
  749. sk_buff_data_t end;
  750. unsigned char *head,
  751. *data;
  752. unsigned int truesize;
  753. refcount_t users;
  754. };
  755. #ifdef __KERNEL__
  756. /*
  757. * Handling routines are only of interest to the kernel
  758. */
  759. #include <linux/slab.h>
  760. #define SKB_ALLOC_FCLONE 0x01
  761. #define SKB_ALLOC_RX 0x02
  762. #define SKB_ALLOC_NAPI 0x04
  763. /* Returns true if the skb was allocated from PFMEMALLOC reserves */
  764. static inline bool skb_pfmemalloc(const struct sk_buff *skb)
  765. {
  766. return unlikely(skb->pfmemalloc);
  767. }
  768. /*
  769. * skb might have a dst pointer attached, refcounted or not.
  770. * _skb_refdst low order bit is set if refcount was _not_ taken
  771. */
  772. #define SKB_DST_NOREF 1UL
  773. #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
  774. #define SKB_NFCT_PTRMASK ~(7UL)
  775. /**
  776. * skb_dst - returns skb dst_entry
  777. * @skb: buffer
  778. *
  779. * Returns skb dst_entry, regardless of reference taken or not.
  780. */
  781. static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
  782. {
  783. /* If refdst was not refcounted, check we still are in a
  784. * rcu_read_lock section
  785. */
  786. WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
  787. !rcu_read_lock_held() &&
  788. !rcu_read_lock_bh_held());
  789. return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
  790. }
  791. /**
  792. * skb_dst_set - sets skb dst
  793. * @skb: buffer
  794. * @dst: dst entry
  795. *
  796. * Sets skb dst, assuming a reference was taken on dst and should
  797. * be released by skb_dst_drop()
  798. */
  799. static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
  800. {
  801. skb->_skb_refdst = (unsigned long)dst;
  802. }
  803. /**
  804. * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
  805. * @skb: buffer
  806. * @dst: dst entry
  807. *
  808. * Sets skb dst, assuming a reference was not taken on dst.
  809. * If dst entry is cached, we do not take reference and dst_release
  810. * will be avoided by refdst_drop. If dst entry is not cached, we take
  811. * reference, so that last dst_release can destroy the dst immediately.
  812. */
  813. static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
  814. {
  815. WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
  816. skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
  817. }
  818. /**
  819. * skb_dst_is_noref - Test if skb dst isn't refcounted
  820. * @skb: buffer
  821. */
  822. static inline bool skb_dst_is_noref(const struct sk_buff *skb)
  823. {
  824. return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
  825. }
  826. static inline struct rtable *skb_rtable(const struct sk_buff *skb)
  827. {
  828. return (struct rtable *)skb_dst(skb);
  829. }
  830. /* For mangling skb->pkt_type from user space side from applications
  831. * such as nft, tc, etc, we only allow a conservative subset of
  832. * possible pkt_types to be set.
  833. */
  834. static inline bool skb_pkt_type_ok(u32 ptype)
  835. {
  836. return ptype <= PACKET_OTHERHOST;
  837. }
  838. static inline unsigned int skb_napi_id(const struct sk_buff *skb)
  839. {
  840. #ifdef CONFIG_NET_RX_BUSY_POLL
  841. return skb->napi_id;
  842. #else
  843. return 0;
  844. #endif
  845. }
  846. /* decrement the reference count and return true if we can free the skb */
  847. static inline bool skb_unref(struct sk_buff *skb)
  848. {
  849. if (unlikely(!skb))
  850. return false;
  851. if (likely(refcount_read(&skb->users) == 1))
  852. smp_rmb();
  853. else if (likely(!refcount_dec_and_test(&skb->users)))
  854. return false;
  855. return true;
  856. }
  857. void skb_release_head_state(struct sk_buff *skb);
  858. void kfree_skb(struct sk_buff *skb);
  859. void kfree_skb_list(struct sk_buff *segs);
  860. void skb_tx_error(struct sk_buff *skb);
  861. void consume_skb(struct sk_buff *skb);
  862. void __consume_stateless_skb(struct sk_buff *skb);
  863. void __kfree_skb(struct sk_buff *skb);
  864. extern struct kmem_cache *skbuff_head_cache;
  865. void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
  866. bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
  867. bool *fragstolen, int *delta_truesize);
  868. struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
  869. int node);
  870. struct sk_buff *__build_skb(void *data, unsigned int frag_size);
  871. struct sk_buff *build_skb(void *data, unsigned int frag_size);
  872. static inline struct sk_buff *alloc_skb(unsigned int size,
  873. gfp_t priority)
  874. {
  875. return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
  876. }
  877. struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
  878. unsigned long data_len,
  879. int max_page_order,
  880. int *errcode,
  881. gfp_t gfp_mask);
  882. /* Layout of fast clones : [skb1][skb2][fclone_ref] */
  883. struct sk_buff_fclones {
  884. struct sk_buff skb1;
  885. struct sk_buff skb2;
  886. refcount_t fclone_ref;
  887. };
  888. /**
  889. * skb_fclone_busy - check if fclone is busy
  890. * @sk: socket
  891. * @skb: buffer
  892. *
  893. * Returns true if skb is a fast clone, and its clone is not freed.
  894. * Some drivers call skb_orphan() in their ndo_start_xmit(),
  895. * so we also check that this didnt happen.
  896. */
  897. static inline bool skb_fclone_busy(const struct sock *sk,
  898. const struct sk_buff *skb)
  899. {
  900. const struct sk_buff_fclones *fclones;
  901. fclones = container_of(skb, struct sk_buff_fclones, skb1);
  902. return skb->fclone == SKB_FCLONE_ORIG &&
  903. refcount_read(&fclones->fclone_ref) > 1 &&
  904. fclones->skb2.sk == sk;
  905. }
  906. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  907. gfp_t priority)
  908. {
  909. return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
  910. }
  911. struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  912. int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
  913. struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
  914. struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
  915. struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
  916. gfp_t gfp_mask, bool fclone);
  917. static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
  918. gfp_t gfp_mask)
  919. {
  920. return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
  921. }
  922. int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
  923. struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  924. unsigned int headroom);
  925. struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
  926. int newtailroom, gfp_t priority);
  927. int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
  928. int offset, int len);
  929. int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
  930. int offset, int len);
  931. int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
  932. int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
  933. /**
  934. * skb_pad - zero pad the tail of an skb
  935. * @skb: buffer to pad
  936. * @pad: space to pad
  937. *
  938. * Ensure that a buffer is followed by a padding area that is zero
  939. * filled. Used by network drivers which may DMA or transfer data
  940. * beyond the buffer end onto the wire.
  941. *
  942. * May return error in out of memory cases. The skb is freed on error.
  943. */
  944. static inline int skb_pad(struct sk_buff *skb, int pad)
  945. {
  946. return __skb_pad(skb, pad, true);
  947. }
  948. #define dev_kfree_skb(a) consume_skb(a)
  949. int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  950. int getfrag(void *from, char *to, int offset,
  951. int len, int odd, struct sk_buff *skb),
  952. void *from, int length);
  953. int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
  954. int offset, size_t size);
  955. struct skb_seq_state {
  956. __u32 lower_offset;
  957. __u32 upper_offset;
  958. __u32 frag_idx;
  959. __u32 stepped_offset;
  960. struct sk_buff *root_skb;
  961. struct sk_buff *cur_skb;
  962. __u8 *frag_data;
  963. };
  964. void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
  965. unsigned int to, struct skb_seq_state *st);
  966. unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  967. struct skb_seq_state *st);
  968. void skb_abort_seq_read(struct skb_seq_state *st);
  969. unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  970. unsigned int to, struct ts_config *config);
  971. /*
  972. * Packet hash types specify the type of hash in skb_set_hash.
  973. *
  974. * Hash types refer to the protocol layer addresses which are used to
  975. * construct a packet's hash. The hashes are used to differentiate or identify
  976. * flows of the protocol layer for the hash type. Hash types are either
  977. * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
  978. *
  979. * Properties of hashes:
  980. *
  981. * 1) Two packets in different flows have different hash values
  982. * 2) Two packets in the same flow should have the same hash value
  983. *
  984. * A hash at a higher layer is considered to be more specific. A driver should
  985. * set the most specific hash possible.
  986. *
  987. * A driver cannot indicate a more specific hash than the layer at which a hash
  988. * was computed. For instance an L3 hash cannot be set as an L4 hash.
  989. *
  990. * A driver may indicate a hash level which is less specific than the
  991. * actual layer the hash was computed on. For instance, a hash computed
  992. * at L4 may be considered an L3 hash. This should only be done if the
  993. * driver can't unambiguously determine that the HW computed the hash at
  994. * the higher layer. Note that the "should" in the second property above
  995. * permits this.
  996. */
  997. enum pkt_hash_types {
  998. PKT_HASH_TYPE_NONE, /* Undefined type */
  999. PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
  1000. PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
  1001. PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
  1002. };
  1003. static inline void skb_clear_hash(struct sk_buff *skb)
  1004. {
  1005. skb->hash = 0;
  1006. skb->sw_hash = 0;
  1007. skb->l4_hash = 0;
  1008. }
  1009. static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
  1010. {
  1011. if (!skb->l4_hash)
  1012. skb_clear_hash(skb);
  1013. }
  1014. static inline void
  1015. __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
  1016. {
  1017. skb->l4_hash = is_l4;
  1018. skb->sw_hash = is_sw;
  1019. skb->hash = hash;
  1020. }
  1021. static inline void
  1022. skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
  1023. {
  1024. /* Used by drivers to set hash from HW */
  1025. __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
  1026. }
  1027. static inline void
  1028. __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
  1029. {
  1030. __skb_set_hash(skb, hash, true, is_l4);
  1031. }
  1032. void __skb_get_hash(struct sk_buff *skb);
  1033. u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
  1034. u32 skb_get_poff(const struct sk_buff *skb);
  1035. u32 __skb_get_poff(const struct sk_buff *skb, void *data,
  1036. const struct flow_keys *keys, int hlen);
  1037. __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
  1038. void *data, int hlen_proto);
  1039. static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
  1040. int thoff, u8 ip_proto)
  1041. {
  1042. return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
  1043. }
  1044. void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
  1045. const struct flow_dissector_key *key,
  1046. unsigned int key_count);
  1047. bool __skb_flow_dissect(const struct sk_buff *skb,
  1048. struct flow_dissector *flow_dissector,
  1049. void *target_container,
  1050. void *data, __be16 proto, int nhoff, int hlen,
  1051. unsigned int flags);
  1052. static inline bool skb_flow_dissect(const struct sk_buff *skb,
  1053. struct flow_dissector *flow_dissector,
  1054. void *target_container, unsigned int flags)
  1055. {
  1056. return __skb_flow_dissect(skb, flow_dissector, target_container,
  1057. NULL, 0, 0, 0, flags);
  1058. }
  1059. static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
  1060. struct flow_keys *flow,
  1061. unsigned int flags)
  1062. {
  1063. memset(flow, 0, sizeof(*flow));
  1064. return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
  1065. NULL, 0, 0, 0, flags);
  1066. }
  1067. static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
  1068. void *data, __be16 proto,
  1069. int nhoff, int hlen,
  1070. unsigned int flags)
  1071. {
  1072. memset(flow, 0, sizeof(*flow));
  1073. return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
  1074. data, proto, nhoff, hlen, flags);
  1075. }
  1076. void
  1077. skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
  1078. struct flow_dissector *flow_dissector,
  1079. void *target_container);
  1080. static inline __u32 skb_get_hash(struct sk_buff *skb)
  1081. {
  1082. if (!skb->l4_hash && !skb->sw_hash)
  1083. __skb_get_hash(skb);
  1084. return skb->hash;
  1085. }
  1086. static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
  1087. {
  1088. if (!skb->l4_hash && !skb->sw_hash) {
  1089. struct flow_keys keys;
  1090. __u32 hash = __get_hash_from_flowi6(fl6, &keys);
  1091. __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
  1092. }
  1093. return skb->hash;
  1094. }
  1095. __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
  1096. static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
  1097. {
  1098. return skb->hash;
  1099. }
  1100. static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
  1101. {
  1102. to->hash = from->hash;
  1103. to->sw_hash = from->sw_hash;
  1104. to->l4_hash = from->l4_hash;
  1105. };
  1106. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1107. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  1108. {
  1109. return skb->head + skb->end;
  1110. }
  1111. static inline unsigned int skb_end_offset(const struct sk_buff *skb)
  1112. {
  1113. return skb->end;
  1114. }
  1115. #else
  1116. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  1117. {
  1118. return skb->end;
  1119. }
  1120. static inline unsigned int skb_end_offset(const struct sk_buff *skb)
  1121. {
  1122. return skb->end - skb->head;
  1123. }
  1124. #endif
  1125. /* Internal */
  1126. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  1127. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  1128. {
  1129. return &skb_shinfo(skb)->hwtstamps;
  1130. }
  1131. static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
  1132. {
  1133. bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
  1134. return is_zcopy ? skb_uarg(skb) : NULL;
  1135. }
  1136. static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
  1137. {
  1138. if (skb && uarg && !skb_zcopy(skb)) {
  1139. sock_zerocopy_get(uarg);
  1140. skb_shinfo(skb)->destructor_arg = uarg;
  1141. skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
  1142. }
  1143. }
  1144. /* Release a reference on a zerocopy structure */
  1145. static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
  1146. {
  1147. struct ubuf_info *uarg = skb_zcopy(skb);
  1148. if (uarg) {
  1149. if (uarg->callback == sock_zerocopy_callback) {
  1150. uarg->zerocopy = uarg->zerocopy && zerocopy;
  1151. sock_zerocopy_put(uarg);
  1152. } else {
  1153. uarg->callback(uarg, zerocopy);
  1154. }
  1155. skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
  1156. }
  1157. }
  1158. /* Abort a zerocopy operation and revert zckey on error in send syscall */
  1159. static inline void skb_zcopy_abort(struct sk_buff *skb)
  1160. {
  1161. struct ubuf_info *uarg = skb_zcopy(skb);
  1162. if (uarg) {
  1163. sock_zerocopy_put_abort(uarg);
  1164. skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
  1165. }
  1166. }
  1167. /**
  1168. * skb_queue_empty - check if a queue is empty
  1169. * @list: queue head
  1170. *
  1171. * Returns true if the queue is empty, false otherwise.
  1172. */
  1173. static inline int skb_queue_empty(const struct sk_buff_head *list)
  1174. {
  1175. return list->next == (const struct sk_buff *) list;
  1176. }
  1177. /**
  1178. * skb_queue_is_last - check if skb is the last entry in the queue
  1179. * @list: queue head
  1180. * @skb: buffer
  1181. *
  1182. * Returns true if @skb is the last buffer on the list.
  1183. */
  1184. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  1185. const struct sk_buff *skb)
  1186. {
  1187. return skb->next == (const struct sk_buff *) list;
  1188. }
  1189. /**
  1190. * skb_queue_is_first - check if skb is the first entry in the queue
  1191. * @list: queue head
  1192. * @skb: buffer
  1193. *
  1194. * Returns true if @skb is the first buffer on the list.
  1195. */
  1196. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  1197. const struct sk_buff *skb)
  1198. {
  1199. return skb->prev == (const struct sk_buff *) list;
  1200. }
  1201. /**
  1202. * skb_queue_next - return the next packet in the queue
  1203. * @list: queue head
  1204. * @skb: current buffer
  1205. *
  1206. * Return the next packet in @list after @skb. It is only valid to
  1207. * call this if skb_queue_is_last() evaluates to false.
  1208. */
  1209. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  1210. const struct sk_buff *skb)
  1211. {
  1212. /* This BUG_ON may seem severe, but if we just return then we
  1213. * are going to dereference garbage.
  1214. */
  1215. BUG_ON(skb_queue_is_last(list, skb));
  1216. return skb->next;
  1217. }
  1218. /**
  1219. * skb_queue_prev - return the prev packet in the queue
  1220. * @list: queue head
  1221. * @skb: current buffer
  1222. *
  1223. * Return the prev packet in @list before @skb. It is only valid to
  1224. * call this if skb_queue_is_first() evaluates to false.
  1225. */
  1226. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  1227. const struct sk_buff *skb)
  1228. {
  1229. /* This BUG_ON may seem severe, but if we just return then we
  1230. * are going to dereference garbage.
  1231. */
  1232. BUG_ON(skb_queue_is_first(list, skb));
  1233. return skb->prev;
  1234. }
  1235. /**
  1236. * skb_get - reference buffer
  1237. * @skb: buffer to reference
  1238. *
  1239. * Makes another reference to a socket buffer and returns a pointer
  1240. * to the buffer.
  1241. */
  1242. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  1243. {
  1244. refcount_inc(&skb->users);
  1245. return skb;
  1246. }
  1247. /*
  1248. * If users == 1, we are the only owner and can avoid redundant atomic changes.
  1249. */
  1250. /**
  1251. * skb_cloned - is the buffer a clone
  1252. * @skb: buffer to check
  1253. *
  1254. * Returns true if the buffer was generated with skb_clone() and is
  1255. * one of multiple shared copies of the buffer. Cloned buffers are
  1256. * shared data so must not be written to under normal circumstances.
  1257. */
  1258. static inline int skb_cloned(const struct sk_buff *skb)
  1259. {
  1260. return skb->cloned &&
  1261. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  1262. }
  1263. static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
  1264. {
  1265. might_sleep_if(gfpflags_allow_blocking(pri));
  1266. if (skb_cloned(skb))
  1267. return pskb_expand_head(skb, 0, 0, pri);
  1268. return 0;
  1269. }
  1270. /**
  1271. * skb_header_cloned - is the header a clone
  1272. * @skb: buffer to check
  1273. *
  1274. * Returns true if modifying the header part of the buffer requires
  1275. * the data to be copied.
  1276. */
  1277. static inline int skb_header_cloned(const struct sk_buff *skb)
  1278. {
  1279. int dataref;
  1280. if (!skb->cloned)
  1281. return 0;
  1282. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  1283. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  1284. return dataref != 1;
  1285. }
  1286. static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
  1287. {
  1288. might_sleep_if(gfpflags_allow_blocking(pri));
  1289. if (skb_header_cloned(skb))
  1290. return pskb_expand_head(skb, 0, 0, pri);
  1291. return 0;
  1292. }
  1293. /**
  1294. * __skb_header_release - release reference to header
  1295. * @skb: buffer to operate on
  1296. */
  1297. static inline void __skb_header_release(struct sk_buff *skb)
  1298. {
  1299. skb->nohdr = 1;
  1300. atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
  1301. }
  1302. /**
  1303. * skb_shared - is the buffer shared
  1304. * @skb: buffer to check
  1305. *
  1306. * Returns true if more than one person has a reference to this
  1307. * buffer.
  1308. */
  1309. static inline int skb_shared(const struct sk_buff *skb)
  1310. {
  1311. return refcount_read(&skb->users) != 1;
  1312. }
  1313. /**
  1314. * skb_share_check - check if buffer is shared and if so clone it
  1315. * @skb: buffer to check
  1316. * @pri: priority for memory allocation
  1317. *
  1318. * If the buffer is shared the buffer is cloned and the old copy
  1319. * drops a reference. A new clone with a single reference is returned.
  1320. * If the buffer is not shared the original buffer is returned. When
  1321. * being called from interrupt status or with spinlocks held pri must
  1322. * be GFP_ATOMIC.
  1323. *
  1324. * NULL is returned on a memory allocation failure.
  1325. */
  1326. static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
  1327. {
  1328. might_sleep_if(gfpflags_allow_blocking(pri));
  1329. if (skb_shared(skb)) {
  1330. struct sk_buff *nskb = skb_clone(skb, pri);
  1331. if (likely(nskb))
  1332. consume_skb(skb);
  1333. else
  1334. kfree_skb(skb);
  1335. skb = nskb;
  1336. }
  1337. return skb;
  1338. }
  1339. /*
  1340. * Copy shared buffers into a new sk_buff. We effectively do COW on
  1341. * packets to handle cases where we have a local reader and forward
  1342. * and a couple of other messy ones. The normal one is tcpdumping
  1343. * a packet thats being forwarded.
  1344. */
  1345. /**
  1346. * skb_unshare - make a copy of a shared buffer
  1347. * @skb: buffer to check
  1348. * @pri: priority for memory allocation
  1349. *
  1350. * If the socket buffer is a clone then this function creates a new
  1351. * copy of the data, drops a reference count on the old copy and returns
  1352. * the new copy with the reference count at 1. If the buffer is not a clone
  1353. * the original buffer is returned. When called with a spinlock held or
  1354. * from interrupt state @pri must be %GFP_ATOMIC
  1355. *
  1356. * %NULL is returned on a memory allocation failure.
  1357. */
  1358. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  1359. gfp_t pri)
  1360. {
  1361. might_sleep_if(gfpflags_allow_blocking(pri));
  1362. if (skb_cloned(skb)) {
  1363. struct sk_buff *nskb = skb_copy(skb, pri);
  1364. /* Free our shared copy */
  1365. if (likely(nskb))
  1366. consume_skb(skb);
  1367. else
  1368. kfree_skb(skb);
  1369. skb = nskb;
  1370. }
  1371. return skb;
  1372. }
  1373. /**
  1374. * skb_peek - peek at the head of an &sk_buff_head
  1375. * @list_: list to peek at
  1376. *
  1377. * Peek an &sk_buff. Unlike most other operations you _MUST_
  1378. * be careful with this one. A peek leaves the buffer on the
  1379. * list and someone else may run off with it. You must hold
  1380. * the appropriate locks or have a private queue to do this.
  1381. *
  1382. * Returns %NULL for an empty list or a pointer to the head element.
  1383. * The reference count is not incremented and the reference is therefore
  1384. * volatile. Use with caution.
  1385. */
  1386. static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
  1387. {
  1388. struct sk_buff *skb = list_->next;
  1389. if (skb == (struct sk_buff *)list_)
  1390. skb = NULL;
  1391. return skb;
  1392. }
  1393. /**
  1394. * skb_peek_next - peek skb following the given one from a queue
  1395. * @skb: skb to start from
  1396. * @list_: list to peek at
  1397. *
  1398. * Returns %NULL when the end of the list is met or a pointer to the
  1399. * next element. The reference count is not incremented and the
  1400. * reference is therefore volatile. Use with caution.
  1401. */
  1402. static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
  1403. const struct sk_buff_head *list_)
  1404. {
  1405. struct sk_buff *next = skb->next;
  1406. if (next == (struct sk_buff *)list_)
  1407. next = NULL;
  1408. return next;
  1409. }
  1410. /**
  1411. * skb_peek_tail - peek at the tail of an &sk_buff_head
  1412. * @list_: list to peek at
  1413. *
  1414. * Peek an &sk_buff. Unlike most other operations you _MUST_
  1415. * be careful with this one. A peek leaves the buffer on the
  1416. * list and someone else may run off with it. You must hold
  1417. * the appropriate locks or have a private queue to do this.
  1418. *
  1419. * Returns %NULL for an empty list or a pointer to the tail element.
  1420. * The reference count is not incremented and the reference is therefore
  1421. * volatile. Use with caution.
  1422. */
  1423. static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
  1424. {
  1425. struct sk_buff *skb = list_->prev;
  1426. if (skb == (struct sk_buff *)list_)
  1427. skb = NULL;
  1428. return skb;
  1429. }
  1430. /**
  1431. * skb_queue_len - get queue length
  1432. * @list_: list to measure
  1433. *
  1434. * Return the length of an &sk_buff queue.
  1435. */
  1436. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  1437. {
  1438. return list_->qlen;
  1439. }
  1440. /**
  1441. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  1442. * @list: queue to initialize
  1443. *
  1444. * This initializes only the list and queue length aspects of
  1445. * an sk_buff_head object. This allows to initialize the list
  1446. * aspects of an sk_buff_head without reinitializing things like
  1447. * the spinlock. It can also be used for on-stack sk_buff_head
  1448. * objects where the spinlock is known to not be used.
  1449. */
  1450. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  1451. {
  1452. list->prev = list->next = (struct sk_buff *)list;
  1453. list->qlen = 0;
  1454. }
  1455. /*
  1456. * This function creates a split out lock class for each invocation;
  1457. * this is needed for now since a whole lot of users of the skb-queue
  1458. * infrastructure in drivers have different locking usage (in hardirq)
  1459. * than the networking core (in softirq only). In the long run either the
  1460. * network layer or drivers should need annotation to consolidate the
  1461. * main types of usage into 3 classes.
  1462. */
  1463. static inline void skb_queue_head_init(struct sk_buff_head *list)
  1464. {
  1465. spin_lock_init(&list->lock);
  1466. __skb_queue_head_init(list);
  1467. }
  1468. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  1469. struct lock_class_key *class)
  1470. {
  1471. skb_queue_head_init(list);
  1472. lockdep_set_class(&list->lock, class);
  1473. }
  1474. /*
  1475. * Insert an sk_buff on a list.
  1476. *
  1477. * The "__skb_xxxx()" functions are the non-atomic ones that
  1478. * can only be called with interrupts disabled.
  1479. */
  1480. void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
  1481. struct sk_buff_head *list);
  1482. static inline void __skb_insert(struct sk_buff *newsk,
  1483. struct sk_buff *prev, struct sk_buff *next,
  1484. struct sk_buff_head *list)
  1485. {
  1486. newsk->next = next;
  1487. newsk->prev = prev;
  1488. next->prev = prev->next = newsk;
  1489. list->qlen++;
  1490. }
  1491. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  1492. struct sk_buff *prev,
  1493. struct sk_buff *next)
  1494. {
  1495. struct sk_buff *first = list->next;
  1496. struct sk_buff *last = list->prev;
  1497. first->prev = prev;
  1498. prev->next = first;
  1499. last->next = next;
  1500. next->prev = last;
  1501. }
  1502. /**
  1503. * skb_queue_splice - join two skb lists, this is designed for stacks
  1504. * @list: the new list to add
  1505. * @head: the place to add it in the first list
  1506. */
  1507. static inline void skb_queue_splice(const struct sk_buff_head *list,
  1508. struct sk_buff_head *head)
  1509. {
  1510. if (!skb_queue_empty(list)) {
  1511. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  1512. head->qlen += list->qlen;
  1513. }
  1514. }
  1515. /**
  1516. * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
  1517. * @list: the new list to add
  1518. * @head: the place to add it in the first list
  1519. *
  1520. * The list at @list is reinitialised
  1521. */
  1522. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  1523. struct sk_buff_head *head)
  1524. {
  1525. if (!skb_queue_empty(list)) {
  1526. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  1527. head->qlen += list->qlen;
  1528. __skb_queue_head_init(list);
  1529. }
  1530. }
  1531. /**
  1532. * skb_queue_splice_tail - join two skb lists, each list being a queue
  1533. * @list: the new list to add
  1534. * @head: the place to add it in the first list
  1535. */
  1536. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  1537. struct sk_buff_head *head)
  1538. {
  1539. if (!skb_queue_empty(list)) {
  1540. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  1541. head->qlen += list->qlen;
  1542. }
  1543. }
  1544. /**
  1545. * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
  1546. * @list: the new list to add
  1547. * @head: the place to add it in the first list
  1548. *
  1549. * Each of the lists is a queue.
  1550. * The list at @list is reinitialised
  1551. */
  1552. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  1553. struct sk_buff_head *head)
  1554. {
  1555. if (!skb_queue_empty(list)) {
  1556. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  1557. head->qlen += list->qlen;
  1558. __skb_queue_head_init(list);
  1559. }
  1560. }
  1561. /**
  1562. * __skb_queue_after - queue a buffer at the list head
  1563. * @list: list to use
  1564. * @prev: place after this buffer
  1565. * @newsk: buffer to queue
  1566. *
  1567. * Queue a buffer int the middle of a list. This function takes no locks
  1568. * and you must therefore hold required locks before calling it.
  1569. *
  1570. * A buffer cannot be placed on two lists at the same time.
  1571. */
  1572. static inline void __skb_queue_after(struct sk_buff_head *list,
  1573. struct sk_buff *prev,
  1574. struct sk_buff *newsk)
  1575. {
  1576. __skb_insert(newsk, prev, prev->next, list);
  1577. }
  1578. void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  1579. struct sk_buff_head *list);
  1580. static inline void __skb_queue_before(struct sk_buff_head *list,
  1581. struct sk_buff *next,
  1582. struct sk_buff *newsk)
  1583. {
  1584. __skb_insert(newsk, next->prev, next, list);
  1585. }
  1586. /**
  1587. * __skb_queue_head - queue a buffer at the list head
  1588. * @list: list to use
  1589. * @newsk: buffer to queue
  1590. *
  1591. * Queue a buffer at the start of a list. This function takes no locks
  1592. * and you must therefore hold required locks before calling it.
  1593. *
  1594. * A buffer cannot be placed on two lists at the same time.
  1595. */
  1596. void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  1597. static inline void __skb_queue_head(struct sk_buff_head *list,
  1598. struct sk_buff *newsk)
  1599. {
  1600. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  1601. }
  1602. /**
  1603. * __skb_queue_tail - queue a buffer at the list tail
  1604. * @list: list to use
  1605. * @newsk: buffer to queue
  1606. *
  1607. * Queue a buffer at the end of a list. This function takes no locks
  1608. * and you must therefore hold required locks before calling it.
  1609. *
  1610. * A buffer cannot be placed on two lists at the same time.
  1611. */
  1612. void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  1613. static inline void __skb_queue_tail(struct sk_buff_head *list,
  1614. struct sk_buff *newsk)
  1615. {
  1616. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  1617. }
  1618. /*
  1619. * remove sk_buff from list. _Must_ be called atomically, and with
  1620. * the list known..
  1621. */
  1622. void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  1623. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  1624. {
  1625. struct sk_buff *next, *prev;
  1626. list->qlen--;
  1627. next = skb->next;
  1628. prev = skb->prev;
  1629. skb->next = skb->prev = NULL;
  1630. next->prev = prev;
  1631. prev->next = next;
  1632. }
  1633. /**
  1634. * __skb_dequeue - remove from the head of the queue
  1635. * @list: list to dequeue from
  1636. *
  1637. * Remove the head of the list. This function does not take any locks
  1638. * so must be used with appropriate locks held only. The head item is
  1639. * returned or %NULL if the list is empty.
  1640. */
  1641. struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  1642. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  1643. {
  1644. struct sk_buff *skb = skb_peek(list);
  1645. if (skb)
  1646. __skb_unlink(skb, list);
  1647. return skb;
  1648. }
  1649. /**
  1650. * __skb_dequeue_tail - remove from the tail of the queue
  1651. * @list: list to dequeue from
  1652. *
  1653. * Remove the tail of the list. This function does not take any locks
  1654. * so must be used with appropriate locks held only. The tail item is
  1655. * returned or %NULL if the list is empty.
  1656. */
  1657. struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  1658. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  1659. {
  1660. struct sk_buff *skb = skb_peek_tail(list);
  1661. if (skb)
  1662. __skb_unlink(skb, list);
  1663. return skb;
  1664. }
  1665. static inline bool skb_is_nonlinear(const struct sk_buff *skb)
  1666. {
  1667. return skb->data_len;
  1668. }
  1669. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  1670. {
  1671. return skb->len - skb->data_len;
  1672. }
  1673. static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
  1674. {
  1675. unsigned int i, len = 0;
  1676. for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
  1677. len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1678. return len;
  1679. }
  1680. static inline unsigned int skb_pagelen(const struct sk_buff *skb)
  1681. {
  1682. return skb_headlen(skb) + __skb_pagelen(skb);
  1683. }
  1684. /**
  1685. * __skb_fill_page_desc - initialise a paged fragment in an skb
  1686. * @skb: buffer containing fragment to be initialised
  1687. * @i: paged fragment index to initialise
  1688. * @page: the page to use for this fragment
  1689. * @off: the offset to the data with @page
  1690. * @size: the length of the data
  1691. *
  1692. * Initialises the @i'th fragment of @skb to point to &size bytes at
  1693. * offset @off within @page.
  1694. *
  1695. * Does not take any additional reference on the fragment.
  1696. */
  1697. static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
  1698. struct page *page, int off, int size)
  1699. {
  1700. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1701. /*
  1702. * Propagate page pfmemalloc to the skb if we can. The problem is
  1703. * that not all callers have unique ownership of the page but rely
  1704. * on page_is_pfmemalloc doing the right thing(tm).
  1705. */
  1706. frag->page.p = page;
  1707. frag->page_offset = off;
  1708. skb_frag_size_set(frag, size);
  1709. page = compound_head(page);
  1710. if (page_is_pfmemalloc(page))
  1711. skb->pfmemalloc = true;
  1712. }
  1713. /**
  1714. * skb_fill_page_desc - initialise a paged fragment in an skb
  1715. * @skb: buffer containing fragment to be initialised
  1716. * @i: paged fragment index to initialise
  1717. * @page: the page to use for this fragment
  1718. * @off: the offset to the data with @page
  1719. * @size: the length of the data
  1720. *
  1721. * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
  1722. * @skb to point to @size bytes at offset @off within @page. In
  1723. * addition updates @skb such that @i is the last fragment.
  1724. *
  1725. * Does not take any additional reference on the fragment.
  1726. */
  1727. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  1728. struct page *page, int off, int size)
  1729. {
  1730. __skb_fill_page_desc(skb, i, page, off, size);
  1731. skb_shinfo(skb)->nr_frags = i + 1;
  1732. }
  1733. void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
  1734. int size, unsigned int truesize);
  1735. void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
  1736. unsigned int truesize);
  1737. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  1738. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
  1739. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  1740. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1741. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1742. {
  1743. return skb->head + skb->tail;
  1744. }
  1745. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1746. {
  1747. skb->tail = skb->data - skb->head;
  1748. }
  1749. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1750. {
  1751. skb_reset_tail_pointer(skb);
  1752. skb->tail += offset;
  1753. }
  1754. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1755. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1756. {
  1757. return skb->tail;
  1758. }
  1759. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1760. {
  1761. skb->tail = skb->data;
  1762. }
  1763. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1764. {
  1765. skb->tail = skb->data + offset;
  1766. }
  1767. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1768. /*
  1769. * Add data to an sk_buff
  1770. */
  1771. void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
  1772. void *skb_put(struct sk_buff *skb, unsigned int len);
  1773. static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
  1774. {
  1775. void *tmp = skb_tail_pointer(skb);
  1776. SKB_LINEAR_ASSERT(skb);
  1777. skb->tail += len;
  1778. skb->len += len;
  1779. return tmp;
  1780. }
  1781. static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
  1782. {
  1783. void *tmp = __skb_put(skb, len);
  1784. memset(tmp, 0, len);
  1785. return tmp;
  1786. }
  1787. static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
  1788. unsigned int len)
  1789. {
  1790. void *tmp = __skb_put(skb, len);
  1791. memcpy(tmp, data, len);
  1792. return tmp;
  1793. }
  1794. static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
  1795. {
  1796. *(u8 *)__skb_put(skb, 1) = val;
  1797. }
  1798. static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
  1799. {
  1800. void *tmp = skb_put(skb, len);
  1801. memset(tmp, 0, len);
  1802. return tmp;
  1803. }
  1804. static inline void *skb_put_data(struct sk_buff *skb, const void *data,
  1805. unsigned int len)
  1806. {
  1807. void *tmp = skb_put(skb, len);
  1808. memcpy(tmp, data, len);
  1809. return tmp;
  1810. }
  1811. static inline void skb_put_u8(struct sk_buff *skb, u8 val)
  1812. {
  1813. *(u8 *)skb_put(skb, 1) = val;
  1814. }
  1815. void *skb_push(struct sk_buff *skb, unsigned int len);
  1816. static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
  1817. {
  1818. skb->data -= len;
  1819. skb->len += len;
  1820. return skb->data;
  1821. }
  1822. void *skb_pull(struct sk_buff *skb, unsigned int len);
  1823. static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
  1824. {
  1825. skb->len -= len;
  1826. BUG_ON(skb->len < skb->data_len);
  1827. return skb->data += len;
  1828. }
  1829. static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
  1830. {
  1831. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  1832. }
  1833. void *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1834. static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1835. {
  1836. if (len > skb_headlen(skb) &&
  1837. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1838. return NULL;
  1839. skb->len -= len;
  1840. return skb->data += len;
  1841. }
  1842. static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
  1843. {
  1844. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1845. }
  1846. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1847. {
  1848. if (likely(len <= skb_headlen(skb)))
  1849. return 1;
  1850. if (unlikely(len > skb->len))
  1851. return 0;
  1852. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1853. }
  1854. void skb_condense(struct sk_buff *skb);
  1855. /**
  1856. * skb_headroom - bytes at buffer head
  1857. * @skb: buffer to check
  1858. *
  1859. * Return the number of bytes of free space at the head of an &sk_buff.
  1860. */
  1861. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1862. {
  1863. return skb->data - skb->head;
  1864. }
  1865. /**
  1866. * skb_tailroom - bytes at buffer end
  1867. * @skb: buffer to check
  1868. *
  1869. * Return the number of bytes of free space at the tail of an sk_buff
  1870. */
  1871. static inline int skb_tailroom(const struct sk_buff *skb)
  1872. {
  1873. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1874. }
  1875. /**
  1876. * skb_availroom - bytes at buffer end
  1877. * @skb: buffer to check
  1878. *
  1879. * Return the number of bytes of free space at the tail of an sk_buff
  1880. * allocated by sk_stream_alloc()
  1881. */
  1882. static inline int skb_availroom(const struct sk_buff *skb)
  1883. {
  1884. if (skb_is_nonlinear(skb))
  1885. return 0;
  1886. return skb->end - skb->tail - skb->reserved_tailroom;
  1887. }
  1888. /**
  1889. * skb_reserve - adjust headroom
  1890. * @skb: buffer to alter
  1891. * @len: bytes to move
  1892. *
  1893. * Increase the headroom of an empty &sk_buff by reducing the tail
  1894. * room. This is only allowed for an empty buffer.
  1895. */
  1896. static inline void skb_reserve(struct sk_buff *skb, int len)
  1897. {
  1898. skb->data += len;
  1899. skb->tail += len;
  1900. }
  1901. /**
  1902. * skb_tailroom_reserve - adjust reserved_tailroom
  1903. * @skb: buffer to alter
  1904. * @mtu: maximum amount of headlen permitted
  1905. * @needed_tailroom: minimum amount of reserved_tailroom
  1906. *
  1907. * Set reserved_tailroom so that headlen can be as large as possible but
  1908. * not larger than mtu and tailroom cannot be smaller than
  1909. * needed_tailroom.
  1910. * The required headroom should already have been reserved before using
  1911. * this function.
  1912. */
  1913. static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
  1914. unsigned int needed_tailroom)
  1915. {
  1916. SKB_LINEAR_ASSERT(skb);
  1917. if (mtu < skb_tailroom(skb) - needed_tailroom)
  1918. /* use at most mtu */
  1919. skb->reserved_tailroom = skb_tailroom(skb) - mtu;
  1920. else
  1921. /* use up to all available space */
  1922. skb->reserved_tailroom = needed_tailroom;
  1923. }
  1924. #define ENCAP_TYPE_ETHER 0
  1925. #define ENCAP_TYPE_IPPROTO 1
  1926. static inline void skb_set_inner_protocol(struct sk_buff *skb,
  1927. __be16 protocol)
  1928. {
  1929. skb->inner_protocol = protocol;
  1930. skb->inner_protocol_type = ENCAP_TYPE_ETHER;
  1931. }
  1932. static inline void skb_set_inner_ipproto(struct sk_buff *skb,
  1933. __u8 ipproto)
  1934. {
  1935. skb->inner_ipproto = ipproto;
  1936. skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
  1937. }
  1938. static inline void skb_reset_inner_headers(struct sk_buff *skb)
  1939. {
  1940. skb->inner_mac_header = skb->mac_header;
  1941. skb->inner_network_header = skb->network_header;
  1942. skb->inner_transport_header = skb->transport_header;
  1943. }
  1944. static inline void skb_reset_mac_len(struct sk_buff *skb)
  1945. {
  1946. skb->mac_len = skb->network_header - skb->mac_header;
  1947. }
  1948. static inline unsigned char *skb_inner_transport_header(const struct sk_buff
  1949. *skb)
  1950. {
  1951. return skb->head + skb->inner_transport_header;
  1952. }
  1953. static inline int skb_inner_transport_offset(const struct sk_buff *skb)
  1954. {
  1955. return skb_inner_transport_header(skb) - skb->data;
  1956. }
  1957. static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
  1958. {
  1959. skb->inner_transport_header = skb->data - skb->head;
  1960. }
  1961. static inline void skb_set_inner_transport_header(struct sk_buff *skb,
  1962. const int offset)
  1963. {
  1964. skb_reset_inner_transport_header(skb);
  1965. skb->inner_transport_header += offset;
  1966. }
  1967. static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
  1968. {
  1969. return skb->head + skb->inner_network_header;
  1970. }
  1971. static inline void skb_reset_inner_network_header(struct sk_buff *skb)
  1972. {
  1973. skb->inner_network_header = skb->data - skb->head;
  1974. }
  1975. static inline void skb_set_inner_network_header(struct sk_buff *skb,
  1976. const int offset)
  1977. {
  1978. skb_reset_inner_network_header(skb);
  1979. skb->inner_network_header += offset;
  1980. }
  1981. static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
  1982. {
  1983. return skb->head + skb->inner_mac_header;
  1984. }
  1985. static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
  1986. {
  1987. skb->inner_mac_header = skb->data - skb->head;
  1988. }
  1989. static inline void skb_set_inner_mac_header(struct sk_buff *skb,
  1990. const int offset)
  1991. {
  1992. skb_reset_inner_mac_header(skb);
  1993. skb->inner_mac_header += offset;
  1994. }
  1995. static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
  1996. {
  1997. return skb->transport_header != (typeof(skb->transport_header))~0U;
  1998. }
  1999. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  2000. {
  2001. return skb->head + skb->transport_header;
  2002. }
  2003. static inline void skb_reset_transport_header(struct sk_buff *skb)
  2004. {
  2005. skb->transport_header = skb->data - skb->head;
  2006. }
  2007. static inline void skb_set_transport_header(struct sk_buff *skb,
  2008. const int offset)
  2009. {
  2010. skb_reset_transport_header(skb);
  2011. skb->transport_header += offset;
  2012. }
  2013. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  2014. {
  2015. return skb->head + skb->network_header;
  2016. }
  2017. static inline void skb_reset_network_header(struct sk_buff *skb)
  2018. {
  2019. skb->network_header = skb->data - skb->head;
  2020. }
  2021. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  2022. {
  2023. skb_reset_network_header(skb);
  2024. skb->network_header += offset;
  2025. }
  2026. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  2027. {
  2028. return skb->head + skb->mac_header;
  2029. }
  2030. static inline int skb_mac_offset(const struct sk_buff *skb)
  2031. {
  2032. return skb_mac_header(skb) - skb->data;
  2033. }
  2034. static inline u32 skb_mac_header_len(const struct sk_buff *skb)
  2035. {
  2036. return skb->network_header - skb->mac_header;
  2037. }
  2038. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  2039. {
  2040. return skb->mac_header != (typeof(skb->mac_header))~0U;
  2041. }
  2042. static inline void skb_reset_mac_header(struct sk_buff *skb)
  2043. {
  2044. skb->mac_header = skb->data - skb->head;
  2045. }
  2046. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  2047. {
  2048. skb_reset_mac_header(skb);
  2049. skb->mac_header += offset;
  2050. }
  2051. static inline void skb_pop_mac_header(struct sk_buff *skb)
  2052. {
  2053. skb->mac_header = skb->network_header;
  2054. }
  2055. static inline void skb_probe_transport_header(struct sk_buff *skb,
  2056. const int offset_hint)
  2057. {
  2058. struct flow_keys keys;
  2059. if (skb_transport_header_was_set(skb))
  2060. return;
  2061. else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
  2062. skb_set_transport_header(skb, keys.control.thoff);
  2063. else
  2064. skb_set_transport_header(skb, offset_hint);
  2065. }
  2066. static inline void skb_mac_header_rebuild(struct sk_buff *skb)
  2067. {
  2068. if (skb_mac_header_was_set(skb)) {
  2069. const unsigned char *old_mac = skb_mac_header(skb);
  2070. skb_set_mac_header(skb, -skb->mac_len);
  2071. memmove(skb_mac_header(skb), old_mac, skb->mac_len);
  2072. }
  2073. }
  2074. static inline int skb_checksum_start_offset(const struct sk_buff *skb)
  2075. {
  2076. return skb->csum_start - skb_headroom(skb);
  2077. }
  2078. static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
  2079. {
  2080. return skb->head + skb->csum_start;
  2081. }
  2082. static inline int skb_transport_offset(const struct sk_buff *skb)
  2083. {
  2084. return skb_transport_header(skb) - skb->data;
  2085. }
  2086. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  2087. {
  2088. return skb->transport_header - skb->network_header;
  2089. }
  2090. static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
  2091. {
  2092. return skb->inner_transport_header - skb->inner_network_header;
  2093. }
  2094. static inline int skb_network_offset(const struct sk_buff *skb)
  2095. {
  2096. return skb_network_header(skb) - skb->data;
  2097. }
  2098. static inline int skb_inner_network_offset(const struct sk_buff *skb)
  2099. {
  2100. return skb_inner_network_header(skb) - skb->data;
  2101. }
  2102. static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
  2103. {
  2104. return pskb_may_pull(skb, skb_network_offset(skb) + len);
  2105. }
  2106. /*
  2107. * CPUs often take a performance hit when accessing unaligned memory
  2108. * locations. The actual performance hit varies, it can be small if the
  2109. * hardware handles it or large if we have to take an exception and fix it
  2110. * in software.
  2111. *
  2112. * Since an ethernet header is 14 bytes network drivers often end up with
  2113. * the IP header at an unaligned offset. The IP header can be aligned by
  2114. * shifting the start of the packet by 2 bytes. Drivers should do this
  2115. * with:
  2116. *
  2117. * skb_reserve(skb, NET_IP_ALIGN);
  2118. *
  2119. * The downside to this alignment of the IP header is that the DMA is now
  2120. * unaligned. On some architectures the cost of an unaligned DMA is high
  2121. * and this cost outweighs the gains made by aligning the IP header.
  2122. *
  2123. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  2124. * to be overridden.
  2125. */
  2126. #ifndef NET_IP_ALIGN
  2127. #define NET_IP_ALIGN 2
  2128. #endif
  2129. /*
  2130. * The networking layer reserves some headroom in skb data (via
  2131. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  2132. * the header has to grow. In the default case, if the header has to grow
  2133. * 32 bytes or less we avoid the reallocation.
  2134. *
  2135. * Unfortunately this headroom changes the DMA alignment of the resulting
  2136. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  2137. * on some architectures. An architecture can override this value,
  2138. * perhaps setting it to a cacheline in size (since that will maintain
  2139. * cacheline alignment of the DMA). It must be a power of 2.
  2140. *
  2141. * Various parts of the networking layer expect at least 32 bytes of
  2142. * headroom, you should not reduce this.
  2143. *
  2144. * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
  2145. * to reduce average number of cache lines per packet.
  2146. * get_rps_cpus() for example only access one 64 bytes aligned block :
  2147. * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
  2148. */
  2149. #ifndef NET_SKB_PAD
  2150. #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
  2151. #endif
  2152. int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  2153. static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
  2154. {
  2155. if (unlikely(skb_is_nonlinear(skb))) {
  2156. WARN_ON(1);
  2157. return;
  2158. }
  2159. skb->len = len;
  2160. skb_set_tail_pointer(skb, len);
  2161. }
  2162. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  2163. {
  2164. __skb_set_length(skb, len);
  2165. }
  2166. void skb_trim(struct sk_buff *skb, unsigned int len);
  2167. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  2168. {
  2169. if (skb->data_len)
  2170. return ___pskb_trim(skb, len);
  2171. __skb_trim(skb, len);
  2172. return 0;
  2173. }
  2174. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  2175. {
  2176. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  2177. }
  2178. /**
  2179. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  2180. * @skb: buffer to alter
  2181. * @len: new length
  2182. *
  2183. * This is identical to pskb_trim except that the caller knows that
  2184. * the skb is not cloned so we should never get an error due to out-
  2185. * of-memory.
  2186. */
  2187. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  2188. {
  2189. int err = pskb_trim(skb, len);
  2190. BUG_ON(err);
  2191. }
  2192. static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
  2193. {
  2194. unsigned int diff = len - skb->len;
  2195. if (skb_tailroom(skb) < diff) {
  2196. int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
  2197. GFP_ATOMIC);
  2198. if (ret)
  2199. return ret;
  2200. }
  2201. __skb_set_length(skb, len);
  2202. return 0;
  2203. }
  2204. /**
  2205. * skb_orphan - orphan a buffer
  2206. * @skb: buffer to orphan
  2207. *
  2208. * If a buffer currently has an owner then we call the owner's
  2209. * destructor function and make the @skb unowned. The buffer continues
  2210. * to exist but is no longer charged to its former owner.
  2211. */
  2212. static inline void skb_orphan(struct sk_buff *skb)
  2213. {
  2214. if (skb->destructor) {
  2215. skb->destructor(skb);
  2216. skb->destructor = NULL;
  2217. skb->sk = NULL;
  2218. } else {
  2219. BUG_ON(skb->sk);
  2220. }
  2221. }
  2222. /**
  2223. * skb_orphan_frags - orphan the frags contained in a buffer
  2224. * @skb: buffer to orphan frags from
  2225. * @gfp_mask: allocation mask for replacement pages
  2226. *
  2227. * For each frag in the SKB which needs a destructor (i.e. has an
  2228. * owner) create a copy of that frag and release the original
  2229. * page by calling the destructor.
  2230. */
  2231. static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
  2232. {
  2233. if (likely(!skb_zcopy(skb)))
  2234. return 0;
  2235. if (skb_uarg(skb)->callback == sock_zerocopy_callback)
  2236. return 0;
  2237. return skb_copy_ubufs(skb, gfp_mask);
  2238. }
  2239. /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
  2240. static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
  2241. {
  2242. if (likely(!skb_zcopy(skb)))
  2243. return 0;
  2244. return skb_copy_ubufs(skb, gfp_mask);
  2245. }
  2246. /**
  2247. * __skb_queue_purge - empty a list
  2248. * @list: list to empty
  2249. *
  2250. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  2251. * the list and one reference dropped. This function does not take the
  2252. * list lock and the caller must hold the relevant locks to use it.
  2253. */
  2254. void skb_queue_purge(struct sk_buff_head *list);
  2255. static inline void __skb_queue_purge(struct sk_buff_head *list)
  2256. {
  2257. struct sk_buff *skb;
  2258. while ((skb = __skb_dequeue(list)) != NULL)
  2259. kfree_skb(skb);
  2260. }
  2261. void skb_rbtree_purge(struct rb_root *root);
  2262. void *netdev_alloc_frag(unsigned int fragsz);
  2263. struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
  2264. gfp_t gfp_mask);
  2265. /**
  2266. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  2267. * @dev: network device to receive on
  2268. * @length: length to allocate
  2269. *
  2270. * Allocate a new &sk_buff and assign it a usage count of one. The
  2271. * buffer has unspecified headroom built in. Users should allocate
  2272. * the headroom they think they need without accounting for the
  2273. * built in space. The built in space is used for optimisations.
  2274. *
  2275. * %NULL is returned if there is no free memory. Although this function
  2276. * allocates memory it can be called from an interrupt.
  2277. */
  2278. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  2279. unsigned int length)
  2280. {
  2281. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  2282. }
  2283. /* legacy helper around __netdev_alloc_skb() */
  2284. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  2285. gfp_t gfp_mask)
  2286. {
  2287. return __netdev_alloc_skb(NULL, length, gfp_mask);
  2288. }
  2289. /* legacy helper around netdev_alloc_skb() */
  2290. static inline struct sk_buff *dev_alloc_skb(unsigned int length)
  2291. {
  2292. return netdev_alloc_skb(NULL, length);
  2293. }
  2294. static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
  2295. unsigned int length, gfp_t gfp)
  2296. {
  2297. struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
  2298. if (NET_IP_ALIGN && skb)
  2299. skb_reserve(skb, NET_IP_ALIGN);
  2300. return skb;
  2301. }
  2302. static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
  2303. unsigned int length)
  2304. {
  2305. return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
  2306. }
  2307. static inline void skb_free_frag(void *addr)
  2308. {
  2309. page_frag_free(addr);
  2310. }
  2311. void *napi_alloc_frag(unsigned int fragsz);
  2312. struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
  2313. unsigned int length, gfp_t gfp_mask);
  2314. static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
  2315. unsigned int length)
  2316. {
  2317. return __napi_alloc_skb(napi, length, GFP_ATOMIC);
  2318. }
  2319. void napi_consume_skb(struct sk_buff *skb, int budget);
  2320. void __kfree_skb_flush(void);
  2321. void __kfree_skb_defer(struct sk_buff *skb);
  2322. /**
  2323. * __dev_alloc_pages - allocate page for network Rx
  2324. * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
  2325. * @order: size of the allocation
  2326. *
  2327. * Allocate a new page.
  2328. *
  2329. * %NULL is returned if there is no free memory.
  2330. */
  2331. static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
  2332. unsigned int order)
  2333. {
  2334. /* This piece of code contains several assumptions.
  2335. * 1. This is for device Rx, therefor a cold page is preferred.
  2336. * 2. The expectation is the user wants a compound page.
  2337. * 3. If requesting a order 0 page it will not be compound
  2338. * due to the check to see if order has a value in prep_new_page
  2339. * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
  2340. * code in gfp_to_alloc_flags that should be enforcing this.
  2341. */
  2342. gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
  2343. return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
  2344. }
  2345. static inline struct page *dev_alloc_pages(unsigned int order)
  2346. {
  2347. return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
  2348. }
  2349. /**
  2350. * __dev_alloc_page - allocate a page for network Rx
  2351. * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
  2352. *
  2353. * Allocate a new page.
  2354. *
  2355. * %NULL is returned if there is no free memory.
  2356. */
  2357. static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
  2358. {
  2359. return __dev_alloc_pages(gfp_mask, 0);
  2360. }
  2361. static inline struct page *dev_alloc_page(void)
  2362. {
  2363. return dev_alloc_pages(0);
  2364. }
  2365. /**
  2366. * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
  2367. * @page: The page that was allocated from skb_alloc_page
  2368. * @skb: The skb that may need pfmemalloc set
  2369. */
  2370. static inline void skb_propagate_pfmemalloc(struct page *page,
  2371. struct sk_buff *skb)
  2372. {
  2373. if (page_is_pfmemalloc(page))
  2374. skb->pfmemalloc = true;
  2375. }
  2376. /**
  2377. * skb_frag_page - retrieve the page referred to by a paged fragment
  2378. * @frag: the paged fragment
  2379. *
  2380. * Returns the &struct page associated with @frag.
  2381. */
  2382. static inline struct page *skb_frag_page(const skb_frag_t *frag)
  2383. {
  2384. return frag->page.p;
  2385. }
  2386. /**
  2387. * __skb_frag_ref - take an addition reference on a paged fragment.
  2388. * @frag: the paged fragment
  2389. *
  2390. * Takes an additional reference on the paged fragment @frag.
  2391. */
  2392. static inline void __skb_frag_ref(skb_frag_t *frag)
  2393. {
  2394. get_page(skb_frag_page(frag));
  2395. }
  2396. /**
  2397. * skb_frag_ref - take an addition reference on a paged fragment of an skb.
  2398. * @skb: the buffer
  2399. * @f: the fragment offset.
  2400. *
  2401. * Takes an additional reference on the @f'th paged fragment of @skb.
  2402. */
  2403. static inline void skb_frag_ref(struct sk_buff *skb, int f)
  2404. {
  2405. __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
  2406. }
  2407. /**
  2408. * __skb_frag_unref - release a reference on a paged fragment.
  2409. * @frag: the paged fragment
  2410. *
  2411. * Releases a reference on the paged fragment @frag.
  2412. */
  2413. static inline void __skb_frag_unref(skb_frag_t *frag)
  2414. {
  2415. put_page(skb_frag_page(frag));
  2416. }
  2417. /**
  2418. * skb_frag_unref - release a reference on a paged fragment of an skb.
  2419. * @skb: the buffer
  2420. * @f: the fragment offset
  2421. *
  2422. * Releases a reference on the @f'th paged fragment of @skb.
  2423. */
  2424. static inline void skb_frag_unref(struct sk_buff *skb, int f)
  2425. {
  2426. __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
  2427. }
  2428. /**
  2429. * skb_frag_address - gets the address of the data contained in a paged fragment
  2430. * @frag: the paged fragment buffer
  2431. *
  2432. * Returns the address of the data within @frag. The page must already
  2433. * be mapped.
  2434. */
  2435. static inline void *skb_frag_address(const skb_frag_t *frag)
  2436. {
  2437. return page_address(skb_frag_page(frag)) + frag->page_offset;
  2438. }
  2439. /**
  2440. * skb_frag_address_safe - gets the address of the data contained in a paged fragment
  2441. * @frag: the paged fragment buffer
  2442. *
  2443. * Returns the address of the data within @frag. Checks that the page
  2444. * is mapped and returns %NULL otherwise.
  2445. */
  2446. static inline void *skb_frag_address_safe(const skb_frag_t *frag)
  2447. {
  2448. void *ptr = page_address(skb_frag_page(frag));
  2449. if (unlikely(!ptr))
  2450. return NULL;
  2451. return ptr + frag->page_offset;
  2452. }
  2453. /**
  2454. * __skb_frag_set_page - sets the page contained in a paged fragment
  2455. * @frag: the paged fragment
  2456. * @page: the page to set
  2457. *
  2458. * Sets the fragment @frag to contain @page.
  2459. */
  2460. static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
  2461. {
  2462. frag->page.p = page;
  2463. }
  2464. /**
  2465. * skb_frag_set_page - sets the page contained in a paged fragment of an skb
  2466. * @skb: the buffer
  2467. * @f: the fragment offset
  2468. * @page: the page to set
  2469. *
  2470. * Sets the @f'th fragment of @skb to contain @page.
  2471. */
  2472. static inline void skb_frag_set_page(struct sk_buff *skb, int f,
  2473. struct page *page)
  2474. {
  2475. __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
  2476. }
  2477. bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
  2478. /**
  2479. * skb_frag_dma_map - maps a paged fragment via the DMA API
  2480. * @dev: the device to map the fragment to
  2481. * @frag: the paged fragment to map
  2482. * @offset: the offset within the fragment (starting at the
  2483. * fragment's own offset)
  2484. * @size: the number of bytes to map
  2485. * @dir: the direction of the mapping (``PCI_DMA_*``)
  2486. *
  2487. * Maps the page associated with @frag to @device.
  2488. */
  2489. static inline dma_addr_t skb_frag_dma_map(struct device *dev,
  2490. const skb_frag_t *frag,
  2491. size_t offset, size_t size,
  2492. enum dma_data_direction dir)
  2493. {
  2494. return dma_map_page(dev, skb_frag_page(frag),
  2495. frag->page_offset + offset, size, dir);
  2496. }
  2497. static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
  2498. gfp_t gfp_mask)
  2499. {
  2500. return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
  2501. }
  2502. static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
  2503. gfp_t gfp_mask)
  2504. {
  2505. return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
  2506. }
  2507. /**
  2508. * skb_clone_writable - is the header of a clone writable
  2509. * @skb: buffer to check
  2510. * @len: length up to which to write
  2511. *
  2512. * Returns true if modifying the header part of the cloned buffer
  2513. * does not requires the data to be copied.
  2514. */
  2515. static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
  2516. {
  2517. return !skb_header_cloned(skb) &&
  2518. skb_headroom(skb) + len <= skb->hdr_len;
  2519. }
  2520. static inline int skb_try_make_writable(struct sk_buff *skb,
  2521. unsigned int write_len)
  2522. {
  2523. return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
  2524. pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  2525. }
  2526. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  2527. int cloned)
  2528. {
  2529. int delta = 0;
  2530. if (headroom > skb_headroom(skb))
  2531. delta = headroom - skb_headroom(skb);
  2532. if (delta || cloned)
  2533. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  2534. GFP_ATOMIC);
  2535. return 0;
  2536. }
  2537. /**
  2538. * skb_cow - copy header of skb when it is required
  2539. * @skb: buffer to cow
  2540. * @headroom: needed headroom
  2541. *
  2542. * If the skb passed lacks sufficient headroom or its data part
  2543. * is shared, data is reallocated. If reallocation fails, an error
  2544. * is returned and original skb is not changed.
  2545. *
  2546. * The result is skb with writable area skb->head...skb->tail
  2547. * and at least @headroom of space at head.
  2548. */
  2549. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  2550. {
  2551. return __skb_cow(skb, headroom, skb_cloned(skb));
  2552. }
  2553. /**
  2554. * skb_cow_head - skb_cow but only making the head writable
  2555. * @skb: buffer to cow
  2556. * @headroom: needed headroom
  2557. *
  2558. * This function is identical to skb_cow except that we replace the
  2559. * skb_cloned check by skb_header_cloned. It should be used when
  2560. * you only need to push on some header and do not need to modify
  2561. * the data.
  2562. */
  2563. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  2564. {
  2565. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  2566. }
  2567. /**
  2568. * skb_padto - pad an skbuff up to a minimal size
  2569. * @skb: buffer to pad
  2570. * @len: minimal length
  2571. *
  2572. * Pads up a buffer to ensure the trailing bytes exist and are
  2573. * blanked. If the buffer already contains sufficient data it
  2574. * is untouched. Otherwise it is extended. Returns zero on
  2575. * success. The skb is freed on error.
  2576. */
  2577. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  2578. {
  2579. unsigned int size = skb->len;
  2580. if (likely(size >= len))
  2581. return 0;
  2582. return skb_pad(skb, len - size);
  2583. }
  2584. /**
  2585. * skb_put_padto - increase size and pad an skbuff up to a minimal size
  2586. * @skb: buffer to pad
  2587. * @len: minimal length
  2588. * @free_on_error: free buffer on error
  2589. *
  2590. * Pads up a buffer to ensure the trailing bytes exist and are
  2591. * blanked. If the buffer already contains sufficient data it
  2592. * is untouched. Otherwise it is extended. Returns zero on
  2593. * success. The skb is freed on error if @free_on_error is true.
  2594. */
  2595. static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
  2596. bool free_on_error)
  2597. {
  2598. unsigned int size = skb->len;
  2599. if (unlikely(size < len)) {
  2600. len -= size;
  2601. if (__skb_pad(skb, len, free_on_error))
  2602. return -ENOMEM;
  2603. __skb_put(skb, len);
  2604. }
  2605. return 0;
  2606. }
  2607. /**
  2608. * skb_put_padto - increase size and pad an skbuff up to a minimal size
  2609. * @skb: buffer to pad
  2610. * @len: minimal length
  2611. *
  2612. * Pads up a buffer to ensure the trailing bytes exist and are
  2613. * blanked. If the buffer already contains sufficient data it
  2614. * is untouched. Otherwise it is extended. Returns zero on
  2615. * success. The skb is freed on error.
  2616. */
  2617. static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
  2618. {
  2619. return __skb_put_padto(skb, len, true);
  2620. }
  2621. static inline int skb_add_data(struct sk_buff *skb,
  2622. struct iov_iter *from, int copy)
  2623. {
  2624. const int off = skb->len;
  2625. if (skb->ip_summed == CHECKSUM_NONE) {
  2626. __wsum csum = 0;
  2627. if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
  2628. &csum, from)) {
  2629. skb->csum = csum_block_add(skb->csum, csum, off);
  2630. return 0;
  2631. }
  2632. } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
  2633. return 0;
  2634. __skb_trim(skb, off);
  2635. return -EFAULT;
  2636. }
  2637. static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
  2638. const struct page *page, int off)
  2639. {
  2640. if (skb_zcopy(skb))
  2641. return false;
  2642. if (i) {
  2643. const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  2644. return page == skb_frag_page(frag) &&
  2645. off == frag->page_offset + skb_frag_size(frag);
  2646. }
  2647. return false;
  2648. }
  2649. static inline int __skb_linearize(struct sk_buff *skb)
  2650. {
  2651. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  2652. }
  2653. /**
  2654. * skb_linearize - convert paged skb to linear one
  2655. * @skb: buffer to linarize
  2656. *
  2657. * If there is no free memory -ENOMEM is returned, otherwise zero
  2658. * is returned and the old skb data released.
  2659. */
  2660. static inline int skb_linearize(struct sk_buff *skb)
  2661. {
  2662. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  2663. }
  2664. /**
  2665. * skb_has_shared_frag - can any frag be overwritten
  2666. * @skb: buffer to test
  2667. *
  2668. * Return true if the skb has at least one frag that might be modified
  2669. * by an external entity (as in vmsplice()/sendfile())
  2670. */
  2671. static inline bool skb_has_shared_frag(const struct sk_buff *skb)
  2672. {
  2673. return skb_is_nonlinear(skb) &&
  2674. skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
  2675. }
  2676. /**
  2677. * skb_linearize_cow - make sure skb is linear and writable
  2678. * @skb: buffer to process
  2679. *
  2680. * If there is no free memory -ENOMEM is returned, otherwise zero
  2681. * is returned and the old skb data released.
  2682. */
  2683. static inline int skb_linearize_cow(struct sk_buff *skb)
  2684. {
  2685. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  2686. __skb_linearize(skb) : 0;
  2687. }
  2688. static __always_inline void
  2689. __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
  2690. unsigned int off)
  2691. {
  2692. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2693. skb->csum = csum_block_sub(skb->csum,
  2694. csum_partial(start, len, 0), off);
  2695. else if (skb->ip_summed == CHECKSUM_PARTIAL &&
  2696. skb_checksum_start_offset(skb) < 0)
  2697. skb->ip_summed = CHECKSUM_NONE;
  2698. }
  2699. /**
  2700. * skb_postpull_rcsum - update checksum for received skb after pull
  2701. * @skb: buffer to update
  2702. * @start: start of data before pull
  2703. * @len: length of data pulled
  2704. *
  2705. * After doing a pull on a received packet, you need to call this to
  2706. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  2707. * CHECKSUM_NONE so that it can be recomputed from scratch.
  2708. */
  2709. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  2710. const void *start, unsigned int len)
  2711. {
  2712. __skb_postpull_rcsum(skb, start, len, 0);
  2713. }
  2714. static __always_inline void
  2715. __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
  2716. unsigned int off)
  2717. {
  2718. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2719. skb->csum = csum_block_add(skb->csum,
  2720. csum_partial(start, len, 0), off);
  2721. }
  2722. /**
  2723. * skb_postpush_rcsum - update checksum for received skb after push
  2724. * @skb: buffer to update
  2725. * @start: start of data after push
  2726. * @len: length of data pushed
  2727. *
  2728. * After doing a push on a received packet, you need to call this to
  2729. * update the CHECKSUM_COMPLETE checksum.
  2730. */
  2731. static inline void skb_postpush_rcsum(struct sk_buff *skb,
  2732. const void *start, unsigned int len)
  2733. {
  2734. __skb_postpush_rcsum(skb, start, len, 0);
  2735. }
  2736. void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  2737. /**
  2738. * skb_push_rcsum - push skb and update receive checksum
  2739. * @skb: buffer to update
  2740. * @len: length of data pulled
  2741. *
  2742. * This function performs an skb_push on the packet and updates
  2743. * the CHECKSUM_COMPLETE checksum. It should be used on
  2744. * receive path processing instead of skb_push unless you know
  2745. * that the checksum difference is zero (e.g., a valid IP header)
  2746. * or you are setting ip_summed to CHECKSUM_NONE.
  2747. */
  2748. static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
  2749. {
  2750. skb_push(skb, len);
  2751. skb_postpush_rcsum(skb, skb->data, len);
  2752. return skb->data;
  2753. }
  2754. /**
  2755. * pskb_trim_rcsum - trim received skb and update checksum
  2756. * @skb: buffer to trim
  2757. * @len: new length
  2758. *
  2759. * This is exactly the same as pskb_trim except that it ensures the
  2760. * checksum of received packets are still valid after the operation.
  2761. */
  2762. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  2763. {
  2764. if (likely(len >= skb->len))
  2765. return 0;
  2766. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2767. skb->ip_summed = CHECKSUM_NONE;
  2768. return __pskb_trim(skb, len);
  2769. }
  2770. static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  2771. {
  2772. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2773. skb->ip_summed = CHECKSUM_NONE;
  2774. __skb_trim(skb, len);
  2775. return 0;
  2776. }
  2777. static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
  2778. {
  2779. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2780. skb->ip_summed = CHECKSUM_NONE;
  2781. return __skb_grow(skb, len);
  2782. }
  2783. #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
  2784. #define skb_rb_first(root) rb_to_skb(rb_first(root))
  2785. #define skb_rb_last(root) rb_to_skb(rb_last(root))
  2786. #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
  2787. #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
  2788. #define skb_queue_walk(queue, skb) \
  2789. for (skb = (queue)->next; \
  2790. skb != (struct sk_buff *)(queue); \
  2791. skb = skb->next)
  2792. #define skb_queue_walk_safe(queue, skb, tmp) \
  2793. for (skb = (queue)->next, tmp = skb->next; \
  2794. skb != (struct sk_buff *)(queue); \
  2795. skb = tmp, tmp = skb->next)
  2796. #define skb_queue_walk_from(queue, skb) \
  2797. for (; skb != (struct sk_buff *)(queue); \
  2798. skb = skb->next)
  2799. #define skb_rbtree_walk(skb, root) \
  2800. for (skb = skb_rb_first(root); skb != NULL; \
  2801. skb = skb_rb_next(skb))
  2802. #define skb_rbtree_walk_from(skb) \
  2803. for (; skb != NULL; \
  2804. skb = skb_rb_next(skb))
  2805. #define skb_rbtree_walk_from_safe(skb, tmp) \
  2806. for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
  2807. skb = tmp)
  2808. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  2809. for (tmp = skb->next; \
  2810. skb != (struct sk_buff *)(queue); \
  2811. skb = tmp, tmp = skb->next)
  2812. #define skb_queue_reverse_walk(queue, skb) \
  2813. for (skb = (queue)->prev; \
  2814. skb != (struct sk_buff *)(queue); \
  2815. skb = skb->prev)
  2816. #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
  2817. for (skb = (queue)->prev, tmp = skb->prev; \
  2818. skb != (struct sk_buff *)(queue); \
  2819. skb = tmp, tmp = skb->prev)
  2820. #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
  2821. for (tmp = skb->prev; \
  2822. skb != (struct sk_buff *)(queue); \
  2823. skb = tmp, tmp = skb->prev)
  2824. static inline bool skb_has_frag_list(const struct sk_buff *skb)
  2825. {
  2826. return skb_shinfo(skb)->frag_list != NULL;
  2827. }
  2828. static inline void skb_frag_list_init(struct sk_buff *skb)
  2829. {
  2830. skb_shinfo(skb)->frag_list = NULL;
  2831. }
  2832. #define skb_walk_frags(skb, iter) \
  2833. for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
  2834. int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
  2835. const struct sk_buff *skb);
  2836. struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
  2837. struct sk_buff_head *queue,
  2838. unsigned int flags,
  2839. void (*destructor)(struct sock *sk,
  2840. struct sk_buff *skb),
  2841. int *peeked, int *off, int *err,
  2842. struct sk_buff **last);
  2843. struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
  2844. void (*destructor)(struct sock *sk,
  2845. struct sk_buff *skb),
  2846. int *peeked, int *off, int *err,
  2847. struct sk_buff **last);
  2848. struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  2849. void (*destructor)(struct sock *sk,
  2850. struct sk_buff *skb),
  2851. int *peeked, int *off, int *err);
  2852. struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
  2853. int *err);
  2854. __poll_t datagram_poll(struct file *file, struct socket *sock,
  2855. struct poll_table_struct *wait);
  2856. int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
  2857. struct iov_iter *to, int size);
  2858. static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
  2859. struct msghdr *msg, int size)
  2860. {
  2861. return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
  2862. }
  2863. int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
  2864. struct msghdr *msg);
  2865. int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
  2866. struct iov_iter *from, int len);
  2867. int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
  2868. void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  2869. void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
  2870. static inline void skb_free_datagram_locked(struct sock *sk,
  2871. struct sk_buff *skb)
  2872. {
  2873. __skb_free_datagram_locked(sk, skb, 0);
  2874. }
  2875. int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
  2876. int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
  2877. int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
  2878. __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
  2879. int len, __wsum csum);
  2880. int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
  2881. struct pipe_inode_info *pipe, unsigned int len,
  2882. unsigned int flags);
  2883. int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
  2884. int len);
  2885. int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
  2886. void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  2887. unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
  2888. int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
  2889. int len, int hlen);
  2890. void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
  2891. int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
  2892. void skb_scrub_packet(struct sk_buff *skb, bool xnet);
  2893. unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
  2894. bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
  2895. bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
  2896. struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
  2897. struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
  2898. int skb_ensure_writable(struct sk_buff *skb, int write_len);
  2899. int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
  2900. int skb_vlan_pop(struct sk_buff *skb);
  2901. int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
  2902. struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
  2903. gfp_t gfp);
  2904. static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
  2905. {
  2906. return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
  2907. }
  2908. static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
  2909. {
  2910. return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
  2911. }
  2912. struct skb_checksum_ops {
  2913. __wsum (*update)(const void *mem, int len, __wsum wsum);
  2914. __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
  2915. };
  2916. extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
  2917. __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
  2918. __wsum csum, const struct skb_checksum_ops *ops);
  2919. __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
  2920. __wsum csum);
  2921. static inline void * __must_check
  2922. __skb_header_pointer(const struct sk_buff *skb, int offset,
  2923. int len, void *data, int hlen, void *buffer)
  2924. {
  2925. if (hlen - offset >= len)
  2926. return data + offset;
  2927. if (!skb ||
  2928. skb_copy_bits(skb, offset, buffer, len) < 0)
  2929. return NULL;
  2930. return buffer;
  2931. }
  2932. static inline void * __must_check
  2933. skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
  2934. {
  2935. return __skb_header_pointer(skb, offset, len, skb->data,
  2936. skb_headlen(skb), buffer);
  2937. }
  2938. /**
  2939. * skb_needs_linearize - check if we need to linearize a given skb
  2940. * depending on the given device features.
  2941. * @skb: socket buffer to check
  2942. * @features: net device features
  2943. *
  2944. * Returns true if either:
  2945. * 1. skb has frag_list and the device doesn't support FRAGLIST, or
  2946. * 2. skb is fragmented and the device does not support SG.
  2947. */
  2948. static inline bool skb_needs_linearize(struct sk_buff *skb,
  2949. netdev_features_t features)
  2950. {
  2951. return skb_is_nonlinear(skb) &&
  2952. ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
  2953. (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
  2954. }
  2955. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  2956. void *to,
  2957. const unsigned int len)
  2958. {
  2959. memcpy(to, skb->data, len);
  2960. }
  2961. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  2962. const int offset, void *to,
  2963. const unsigned int len)
  2964. {
  2965. memcpy(to, skb->data + offset, len);
  2966. }
  2967. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  2968. const void *from,
  2969. const unsigned int len)
  2970. {
  2971. memcpy(skb->data, from, len);
  2972. }
  2973. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  2974. const int offset,
  2975. const void *from,
  2976. const unsigned int len)
  2977. {
  2978. memcpy(skb->data + offset, from, len);
  2979. }
  2980. void skb_init(void);
  2981. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  2982. {
  2983. return skb->tstamp;
  2984. }
  2985. /**
  2986. * skb_get_timestamp - get timestamp from a skb
  2987. * @skb: skb to get stamp from
  2988. * @stamp: pointer to struct timeval to store stamp in
  2989. *
  2990. * Timestamps are stored in the skb as offsets to a base timestamp.
  2991. * This function converts the offset back to a struct timeval and stores
  2992. * it in stamp.
  2993. */
  2994. static inline void skb_get_timestamp(const struct sk_buff *skb,
  2995. struct timeval *stamp)
  2996. {
  2997. *stamp = ktime_to_timeval(skb->tstamp);
  2998. }
  2999. static inline void skb_get_timestampns(const struct sk_buff *skb,
  3000. struct timespec *stamp)
  3001. {
  3002. *stamp = ktime_to_timespec(skb->tstamp);
  3003. }
  3004. static inline void __net_timestamp(struct sk_buff *skb)
  3005. {
  3006. skb->tstamp = ktime_get_real();
  3007. }
  3008. static inline ktime_t net_timedelta(ktime_t t)
  3009. {
  3010. return ktime_sub(ktime_get_real(), t);
  3011. }
  3012. static inline ktime_t net_invalid_timestamp(void)
  3013. {
  3014. return 0;
  3015. }
  3016. static inline u8 skb_metadata_len(const struct sk_buff *skb)
  3017. {
  3018. return skb_shinfo(skb)->meta_len;
  3019. }
  3020. static inline void *skb_metadata_end(const struct sk_buff *skb)
  3021. {
  3022. return skb_mac_header(skb);
  3023. }
  3024. static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
  3025. const struct sk_buff *skb_b,
  3026. u8 meta_len)
  3027. {
  3028. const void *a = skb_metadata_end(skb_a);
  3029. const void *b = skb_metadata_end(skb_b);
  3030. /* Using more efficient varaiant than plain call to memcmp(). */
  3031. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  3032. u64 diffs = 0;
  3033. switch (meta_len) {
  3034. #define __it(x, op) (x -= sizeof(u##op))
  3035. #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
  3036. case 32: diffs |= __it_diff(a, b, 64);
  3037. case 24: diffs |= __it_diff(a, b, 64);
  3038. case 16: diffs |= __it_diff(a, b, 64);
  3039. case 8: diffs |= __it_diff(a, b, 64);
  3040. break;
  3041. case 28: diffs |= __it_diff(a, b, 64);
  3042. case 20: diffs |= __it_diff(a, b, 64);
  3043. case 12: diffs |= __it_diff(a, b, 64);
  3044. case 4: diffs |= __it_diff(a, b, 32);
  3045. break;
  3046. }
  3047. return diffs;
  3048. #else
  3049. return memcmp(a - meta_len, b - meta_len, meta_len);
  3050. #endif
  3051. }
  3052. static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
  3053. const struct sk_buff *skb_b)
  3054. {
  3055. u8 len_a = skb_metadata_len(skb_a);
  3056. u8 len_b = skb_metadata_len(skb_b);
  3057. if (!(len_a | len_b))
  3058. return false;
  3059. return len_a != len_b ?
  3060. true : __skb_metadata_differs(skb_a, skb_b, len_a);
  3061. }
  3062. static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
  3063. {
  3064. skb_shinfo(skb)->meta_len = meta_len;
  3065. }
  3066. static inline void skb_metadata_clear(struct sk_buff *skb)
  3067. {
  3068. skb_metadata_set(skb, 0);
  3069. }
  3070. struct sk_buff *skb_clone_sk(struct sk_buff *skb);
  3071. #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
  3072. void skb_clone_tx_timestamp(struct sk_buff *skb);
  3073. bool skb_defer_rx_timestamp(struct sk_buff *skb);
  3074. #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
  3075. static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
  3076. {
  3077. }
  3078. static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
  3079. {
  3080. return false;
  3081. }
  3082. #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
  3083. /**
  3084. * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
  3085. *
  3086. * PHY drivers may accept clones of transmitted packets for
  3087. * timestamping via their phy_driver.txtstamp method. These drivers
  3088. * must call this function to return the skb back to the stack with a
  3089. * timestamp.
  3090. *
  3091. * @skb: clone of the the original outgoing packet
  3092. * @hwtstamps: hardware time stamps
  3093. *
  3094. */
  3095. void skb_complete_tx_timestamp(struct sk_buff *skb,
  3096. struct skb_shared_hwtstamps *hwtstamps);
  3097. void __skb_tstamp_tx(struct sk_buff *orig_skb,
  3098. struct skb_shared_hwtstamps *hwtstamps,
  3099. struct sock *sk, int tstype);
  3100. /**
  3101. * skb_tstamp_tx - queue clone of skb with send time stamps
  3102. * @orig_skb: the original outgoing packet
  3103. * @hwtstamps: hardware time stamps, may be NULL if not available
  3104. *
  3105. * If the skb has a socket associated, then this function clones the
  3106. * skb (thus sharing the actual data and optional structures), stores
  3107. * the optional hardware time stamping information (if non NULL) or
  3108. * generates a software time stamp (otherwise), then queues the clone
  3109. * to the error queue of the socket. Errors are silently ignored.
  3110. */
  3111. void skb_tstamp_tx(struct sk_buff *orig_skb,
  3112. struct skb_shared_hwtstamps *hwtstamps);
  3113. /**
  3114. * skb_tx_timestamp() - Driver hook for transmit timestamping
  3115. *
  3116. * Ethernet MAC Drivers should call this function in their hard_xmit()
  3117. * function immediately before giving the sk_buff to the MAC hardware.
  3118. *
  3119. * Specifically, one should make absolutely sure that this function is
  3120. * called before TX completion of this packet can trigger. Otherwise
  3121. * the packet could potentially already be freed.
  3122. *
  3123. * @skb: A socket buffer.
  3124. */
  3125. static inline void skb_tx_timestamp(struct sk_buff *skb)
  3126. {
  3127. skb_clone_tx_timestamp(skb);
  3128. if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
  3129. skb_tstamp_tx(skb, NULL);
  3130. }
  3131. /**
  3132. * skb_complete_wifi_ack - deliver skb with wifi status
  3133. *
  3134. * @skb: the original outgoing packet
  3135. * @acked: ack status
  3136. *
  3137. */
  3138. void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
  3139. __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  3140. __sum16 __skb_checksum_complete(struct sk_buff *skb);
  3141. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  3142. {
  3143. return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
  3144. skb->csum_valid ||
  3145. (skb->ip_summed == CHECKSUM_PARTIAL &&
  3146. skb_checksum_start_offset(skb) >= 0));
  3147. }
  3148. /**
  3149. * skb_checksum_complete - Calculate checksum of an entire packet
  3150. * @skb: packet to process
  3151. *
  3152. * This function calculates the checksum over the entire packet plus
  3153. * the value of skb->csum. The latter can be used to supply the
  3154. * checksum of a pseudo header as used by TCP/UDP. It returns the
  3155. * checksum.
  3156. *
  3157. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  3158. * this function can be used to verify that checksum on received
  3159. * packets. In that case the function should return zero if the
  3160. * checksum is correct. In particular, this function will return zero
  3161. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  3162. * hardware has already verified the correctness of the checksum.
  3163. */
  3164. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  3165. {
  3166. return skb_csum_unnecessary(skb) ?
  3167. 0 : __skb_checksum_complete(skb);
  3168. }
  3169. static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
  3170. {
  3171. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  3172. if (skb->csum_level == 0)
  3173. skb->ip_summed = CHECKSUM_NONE;
  3174. else
  3175. skb->csum_level--;
  3176. }
  3177. }
  3178. static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
  3179. {
  3180. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  3181. if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
  3182. skb->csum_level++;
  3183. } else if (skb->ip_summed == CHECKSUM_NONE) {
  3184. skb->ip_summed = CHECKSUM_UNNECESSARY;
  3185. skb->csum_level = 0;
  3186. }
  3187. }
  3188. /* Check if we need to perform checksum complete validation.
  3189. *
  3190. * Returns true if checksum complete is needed, false otherwise
  3191. * (either checksum is unnecessary or zero checksum is allowed).
  3192. */
  3193. static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
  3194. bool zero_okay,
  3195. __sum16 check)
  3196. {
  3197. if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
  3198. skb->csum_valid = 1;
  3199. __skb_decr_checksum_unnecessary(skb);
  3200. return false;
  3201. }
  3202. return true;
  3203. }
  3204. /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
  3205. * in checksum_init.
  3206. */
  3207. #define CHECKSUM_BREAK 76
  3208. /* Unset checksum-complete
  3209. *
  3210. * Unset checksum complete can be done when packet is being modified
  3211. * (uncompressed for instance) and checksum-complete value is
  3212. * invalidated.
  3213. */
  3214. static inline void skb_checksum_complete_unset(struct sk_buff *skb)
  3215. {
  3216. if (skb->ip_summed == CHECKSUM_COMPLETE)
  3217. skb->ip_summed = CHECKSUM_NONE;
  3218. }
  3219. /* Validate (init) checksum based on checksum complete.
  3220. *
  3221. * Return values:
  3222. * 0: checksum is validated or try to in skb_checksum_complete. In the latter
  3223. * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
  3224. * checksum is stored in skb->csum for use in __skb_checksum_complete
  3225. * non-zero: value of invalid checksum
  3226. *
  3227. */
  3228. static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
  3229. bool complete,
  3230. __wsum psum)
  3231. {
  3232. if (skb->ip_summed == CHECKSUM_COMPLETE) {
  3233. if (!csum_fold(csum_add(psum, skb->csum))) {
  3234. skb->csum_valid = 1;
  3235. return 0;
  3236. }
  3237. }
  3238. skb->csum = psum;
  3239. if (complete || skb->len <= CHECKSUM_BREAK) {
  3240. __sum16 csum;
  3241. csum = __skb_checksum_complete(skb);
  3242. skb->csum_valid = !csum;
  3243. return csum;
  3244. }
  3245. return 0;
  3246. }
  3247. static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
  3248. {
  3249. return 0;
  3250. }
  3251. /* Perform checksum validate (init). Note that this is a macro since we only
  3252. * want to calculate the pseudo header which is an input function if necessary.
  3253. * First we try to validate without any computation (checksum unnecessary) and
  3254. * then calculate based on checksum complete calling the function to compute
  3255. * pseudo header.
  3256. *
  3257. * Return values:
  3258. * 0: checksum is validated or try to in skb_checksum_complete
  3259. * non-zero: value of invalid checksum
  3260. */
  3261. #define __skb_checksum_validate(skb, proto, complete, \
  3262. zero_okay, check, compute_pseudo) \
  3263. ({ \
  3264. __sum16 __ret = 0; \
  3265. skb->csum_valid = 0; \
  3266. if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
  3267. __ret = __skb_checksum_validate_complete(skb, \
  3268. complete, compute_pseudo(skb, proto)); \
  3269. __ret; \
  3270. })
  3271. #define skb_checksum_init(skb, proto, compute_pseudo) \
  3272. __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
  3273. #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
  3274. __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
  3275. #define skb_checksum_validate(skb, proto, compute_pseudo) \
  3276. __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
  3277. #define skb_checksum_validate_zero_check(skb, proto, check, \
  3278. compute_pseudo) \
  3279. __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
  3280. #define skb_checksum_simple_validate(skb) \
  3281. __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
  3282. static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
  3283. {
  3284. return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
  3285. }
  3286. static inline void __skb_checksum_convert(struct sk_buff *skb,
  3287. __sum16 check, __wsum pseudo)
  3288. {
  3289. skb->csum = ~pseudo;
  3290. skb->ip_summed = CHECKSUM_COMPLETE;
  3291. }
  3292. #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
  3293. do { \
  3294. if (__skb_checksum_convert_check(skb)) \
  3295. __skb_checksum_convert(skb, check, \
  3296. compute_pseudo(skb, proto)); \
  3297. } while (0)
  3298. static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
  3299. u16 start, u16 offset)
  3300. {
  3301. skb->ip_summed = CHECKSUM_PARTIAL;
  3302. skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
  3303. skb->csum_offset = offset - start;
  3304. }
  3305. /* Update skbuf and packet to reflect the remote checksum offload operation.
  3306. * When called, ptr indicates the starting point for skb->csum when
  3307. * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
  3308. * here, skb_postpull_rcsum is done so skb->csum start is ptr.
  3309. */
  3310. static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
  3311. int start, int offset, bool nopartial)
  3312. {
  3313. __wsum delta;
  3314. if (!nopartial) {
  3315. skb_remcsum_adjust_partial(skb, ptr, start, offset);
  3316. return;
  3317. }
  3318. if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
  3319. __skb_checksum_complete(skb);
  3320. skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
  3321. }
  3322. delta = remcsum_adjust(ptr, skb->csum, start, offset);
  3323. /* Adjust skb->csum since we changed the packet */
  3324. skb->csum = csum_add(skb->csum, delta);
  3325. }
  3326. static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
  3327. {
  3328. #if IS_ENABLED(CONFIG_NF_CONNTRACK)
  3329. return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
  3330. #else
  3331. return NULL;
  3332. #endif
  3333. }
  3334. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  3335. void nf_conntrack_destroy(struct nf_conntrack *nfct);
  3336. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  3337. {
  3338. if (nfct && atomic_dec_and_test(&nfct->use))
  3339. nf_conntrack_destroy(nfct);
  3340. }
  3341. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  3342. {
  3343. if (nfct)
  3344. atomic_inc(&nfct->use);
  3345. }
  3346. #endif
  3347. #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  3348. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  3349. {
  3350. if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
  3351. kfree(nf_bridge);
  3352. }
  3353. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  3354. {
  3355. if (nf_bridge)
  3356. refcount_inc(&nf_bridge->use);
  3357. }
  3358. #endif /* CONFIG_BRIDGE_NETFILTER */
  3359. static inline void nf_reset(struct sk_buff *skb)
  3360. {
  3361. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  3362. nf_conntrack_put(skb_nfct(skb));
  3363. skb->_nfct = 0;
  3364. #endif
  3365. #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  3366. nf_bridge_put(skb->nf_bridge);
  3367. skb->nf_bridge = NULL;
  3368. #endif
  3369. }
  3370. static inline void nf_reset_trace(struct sk_buff *skb)
  3371. {
  3372. #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
  3373. skb->nf_trace = 0;
  3374. #endif
  3375. }
  3376. static inline void ipvs_reset(struct sk_buff *skb)
  3377. {
  3378. #if IS_ENABLED(CONFIG_IP_VS)
  3379. skb->ipvs_property = 0;
  3380. #endif
  3381. }
  3382. /* Note: This doesn't put any conntrack and bridge info in dst. */
  3383. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
  3384. bool copy)
  3385. {
  3386. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  3387. dst->_nfct = src->_nfct;
  3388. nf_conntrack_get(skb_nfct(src));
  3389. #endif
  3390. #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  3391. dst->nf_bridge = src->nf_bridge;
  3392. nf_bridge_get(src->nf_bridge);
  3393. #endif
  3394. #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
  3395. if (copy)
  3396. dst->nf_trace = src->nf_trace;
  3397. #endif
  3398. }
  3399. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  3400. {
  3401. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  3402. nf_conntrack_put(skb_nfct(dst));
  3403. #endif
  3404. #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  3405. nf_bridge_put(dst->nf_bridge);
  3406. #endif
  3407. __nf_copy(dst, src, true);
  3408. }
  3409. #ifdef CONFIG_NETWORK_SECMARK
  3410. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  3411. {
  3412. to->secmark = from->secmark;
  3413. }
  3414. static inline void skb_init_secmark(struct sk_buff *skb)
  3415. {
  3416. skb->secmark = 0;
  3417. }
  3418. #else
  3419. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  3420. { }
  3421. static inline void skb_init_secmark(struct sk_buff *skb)
  3422. { }
  3423. #endif
  3424. static inline bool skb_irq_freeable(const struct sk_buff *skb)
  3425. {
  3426. return !skb->destructor &&
  3427. #if IS_ENABLED(CONFIG_XFRM)
  3428. !skb->sp &&
  3429. #endif
  3430. !skb_nfct(skb) &&
  3431. !skb->_skb_refdst &&
  3432. !skb_has_frag_list(skb);
  3433. }
  3434. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  3435. {
  3436. skb->queue_mapping = queue_mapping;
  3437. }
  3438. static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
  3439. {
  3440. return skb->queue_mapping;
  3441. }
  3442. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  3443. {
  3444. to->queue_mapping = from->queue_mapping;
  3445. }
  3446. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  3447. {
  3448. skb->queue_mapping = rx_queue + 1;
  3449. }
  3450. static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
  3451. {
  3452. return skb->queue_mapping - 1;
  3453. }
  3454. static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
  3455. {
  3456. return skb->queue_mapping != 0;
  3457. }
  3458. static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
  3459. {
  3460. skb->dst_pending_confirm = val;
  3461. }
  3462. static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
  3463. {
  3464. return skb->dst_pending_confirm != 0;
  3465. }
  3466. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  3467. {
  3468. #ifdef CONFIG_XFRM
  3469. return skb->sp;
  3470. #else
  3471. return NULL;
  3472. #endif
  3473. }
  3474. /* Keeps track of mac header offset relative to skb->head.
  3475. * It is useful for TSO of Tunneling protocol. e.g. GRE.
  3476. * For non-tunnel skb it points to skb_mac_header() and for
  3477. * tunnel skb it points to outer mac header.
  3478. * Keeps track of level of encapsulation of network headers.
  3479. */
  3480. struct skb_gso_cb {
  3481. union {
  3482. int mac_offset;
  3483. int data_offset;
  3484. };
  3485. int encap_level;
  3486. __wsum csum;
  3487. __u16 csum_start;
  3488. };
  3489. #define SKB_SGO_CB_OFFSET 32
  3490. #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
  3491. static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
  3492. {
  3493. return (skb_mac_header(inner_skb) - inner_skb->head) -
  3494. SKB_GSO_CB(inner_skb)->mac_offset;
  3495. }
  3496. static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
  3497. {
  3498. int new_headroom, headroom;
  3499. int ret;
  3500. headroom = skb_headroom(skb);
  3501. ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
  3502. if (ret)
  3503. return ret;
  3504. new_headroom = skb_headroom(skb);
  3505. SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
  3506. return 0;
  3507. }
  3508. static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
  3509. {
  3510. /* Do not update partial checksums if remote checksum is enabled. */
  3511. if (skb->remcsum_offload)
  3512. return;
  3513. SKB_GSO_CB(skb)->csum = res;
  3514. SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
  3515. }
  3516. /* Compute the checksum for a gso segment. First compute the checksum value
  3517. * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
  3518. * then add in skb->csum (checksum from csum_start to end of packet).
  3519. * skb->csum and csum_start are then updated to reflect the checksum of the
  3520. * resultant packet starting from the transport header-- the resultant checksum
  3521. * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
  3522. * header.
  3523. */
  3524. static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
  3525. {
  3526. unsigned char *csum_start = skb_transport_header(skb);
  3527. int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
  3528. __wsum partial = SKB_GSO_CB(skb)->csum;
  3529. SKB_GSO_CB(skb)->csum = res;
  3530. SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
  3531. return csum_fold(csum_partial(csum_start, plen, partial));
  3532. }
  3533. static inline bool skb_is_gso(const struct sk_buff *skb)
  3534. {
  3535. return skb_shinfo(skb)->gso_size;
  3536. }
  3537. /* Note: Should be called only if skb_is_gso(skb) is true */
  3538. static inline bool skb_is_gso_v6(const struct sk_buff *skb)
  3539. {
  3540. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  3541. }
  3542. static inline void skb_gso_reset(struct sk_buff *skb)
  3543. {
  3544. skb_shinfo(skb)->gso_size = 0;
  3545. skb_shinfo(skb)->gso_segs = 0;
  3546. skb_shinfo(skb)->gso_type = 0;
  3547. }
  3548. void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  3549. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  3550. {
  3551. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  3552. * wanted then gso_type will be set. */
  3553. const struct skb_shared_info *shinfo = skb_shinfo(skb);
  3554. if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
  3555. unlikely(shinfo->gso_type == 0)) {
  3556. __skb_warn_lro_forwarding(skb);
  3557. return true;
  3558. }
  3559. return false;
  3560. }
  3561. static inline void skb_forward_csum(struct sk_buff *skb)
  3562. {
  3563. /* Unfortunately we don't support this one. Any brave souls? */
  3564. if (skb->ip_summed == CHECKSUM_COMPLETE)
  3565. skb->ip_summed = CHECKSUM_NONE;
  3566. }
  3567. /**
  3568. * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
  3569. * @skb: skb to check
  3570. *
  3571. * fresh skbs have their ip_summed set to CHECKSUM_NONE.
  3572. * Instead of forcing ip_summed to CHECKSUM_NONE, we can
  3573. * use this helper, to document places where we make this assertion.
  3574. */
  3575. static inline void skb_checksum_none_assert(const struct sk_buff *skb)
  3576. {
  3577. #ifdef DEBUG
  3578. BUG_ON(skb->ip_summed != CHECKSUM_NONE);
  3579. #endif
  3580. }
  3581. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  3582. int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
  3583. struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
  3584. unsigned int transport_len,
  3585. __sum16(*skb_chkf)(struct sk_buff *skb));
  3586. /**
  3587. * skb_head_is_locked - Determine if the skb->head is locked down
  3588. * @skb: skb to check
  3589. *
  3590. * The head on skbs build around a head frag can be removed if they are
  3591. * not cloned. This function returns true if the skb head is locked down
  3592. * due to either being allocated via kmalloc, or by being a clone with
  3593. * multiple references to the head.
  3594. */
  3595. static inline bool skb_head_is_locked(const struct sk_buff *skb)
  3596. {
  3597. return !skb->head_frag || skb_cloned(skb);
  3598. }
  3599. /**
  3600. * skb_gso_network_seglen - Return length of individual segments of a gso packet
  3601. *
  3602. * @skb: GSO skb
  3603. *
  3604. * skb_gso_network_seglen is used to determine the real size of the
  3605. * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
  3606. *
  3607. * The MAC/L2 header is not accounted for.
  3608. */
  3609. static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
  3610. {
  3611. unsigned int hdr_len = skb_transport_header(skb) -
  3612. skb_network_header(skb);
  3613. return hdr_len + skb_gso_transport_seglen(skb);
  3614. }
  3615. /**
  3616. * skb_gso_mac_seglen - Return length of individual segments of a gso packet
  3617. *
  3618. * @skb: GSO skb
  3619. *
  3620. * skb_gso_mac_seglen is used to determine the real size of the
  3621. * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
  3622. * headers (TCP/UDP).
  3623. */
  3624. static inline unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
  3625. {
  3626. unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
  3627. return hdr_len + skb_gso_transport_seglen(skb);
  3628. }
  3629. /* Local Checksum Offload.
  3630. * Compute outer checksum based on the assumption that the
  3631. * inner checksum will be offloaded later.
  3632. * See Documentation/networking/checksum-offloads.txt for
  3633. * explanation of how this works.
  3634. * Fill in outer checksum adjustment (e.g. with sum of outer
  3635. * pseudo-header) before calling.
  3636. * Also ensure that inner checksum is in linear data area.
  3637. */
  3638. static inline __wsum lco_csum(struct sk_buff *skb)
  3639. {
  3640. unsigned char *csum_start = skb_checksum_start(skb);
  3641. unsigned char *l4_hdr = skb_transport_header(skb);
  3642. __wsum partial;
  3643. /* Start with complement of inner checksum adjustment */
  3644. partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
  3645. skb->csum_offset));
  3646. /* Add in checksum of our headers (incl. outer checksum
  3647. * adjustment filled in by caller) and return result.
  3648. */
  3649. return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
  3650. }
  3651. #endif /* __KERNEL__ */
  3652. #endif /* _LINUX_SKBUFF_H */