disk-io.c 121 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/slab.h>
  29. #include <linux/migrate.h>
  30. #include <linux/ratelimit.h>
  31. #include <linux/uuid.h>
  32. #include <linux/semaphore.h>
  33. #include <asm/unaligned.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "hash.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "free-space-tree.h"
  45. #include "inode-map.h"
  46. #include "check-integrity.h"
  47. #include "rcu-string.h"
  48. #include "dev-replace.h"
  49. #include "raid56.h"
  50. #include "sysfs.h"
  51. #include "qgroup.h"
  52. #ifdef CONFIG_X86
  53. #include <asm/cpufeature.h>
  54. #endif
  55. #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
  56. BTRFS_HEADER_FLAG_RELOC |\
  57. BTRFS_SUPER_FLAG_ERROR |\
  58. BTRFS_SUPER_FLAG_SEEDING |\
  59. BTRFS_SUPER_FLAG_METADUMP)
  60. static const struct extent_io_ops btree_extent_io_ops;
  61. static void end_workqueue_fn(struct btrfs_work *work);
  62. static void free_fs_root(struct btrfs_root *root);
  63. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  64. int read_only);
  65. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  66. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  67. struct btrfs_root *root);
  68. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  69. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  70. struct extent_io_tree *dirty_pages,
  71. int mark);
  72. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  73. struct extent_io_tree *pinned_extents);
  74. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  75. static void btrfs_error_commit_super(struct btrfs_root *root);
  76. /*
  77. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  78. * is complete. This is used during reads to verify checksums, and it is used
  79. * by writes to insert metadata for new file extents after IO is complete.
  80. */
  81. struct btrfs_end_io_wq {
  82. struct bio *bio;
  83. bio_end_io_t *end_io;
  84. void *private;
  85. struct btrfs_fs_info *info;
  86. int error;
  87. enum btrfs_wq_endio_type metadata;
  88. struct list_head list;
  89. struct btrfs_work work;
  90. };
  91. static struct kmem_cache *btrfs_end_io_wq_cache;
  92. int __init btrfs_end_io_wq_init(void)
  93. {
  94. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  95. sizeof(struct btrfs_end_io_wq),
  96. 0,
  97. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  98. NULL);
  99. if (!btrfs_end_io_wq_cache)
  100. return -ENOMEM;
  101. return 0;
  102. }
  103. void btrfs_end_io_wq_exit(void)
  104. {
  105. if (btrfs_end_io_wq_cache)
  106. kmem_cache_destroy(btrfs_end_io_wq_cache);
  107. }
  108. /*
  109. * async submit bios are used to offload expensive checksumming
  110. * onto the worker threads. They checksum file and metadata bios
  111. * just before they are sent down the IO stack.
  112. */
  113. struct async_submit_bio {
  114. struct inode *inode;
  115. struct bio *bio;
  116. struct list_head list;
  117. extent_submit_bio_hook_t *submit_bio_start;
  118. extent_submit_bio_hook_t *submit_bio_done;
  119. int rw;
  120. int mirror_num;
  121. unsigned long bio_flags;
  122. /*
  123. * bio_offset is optional, can be used if the pages in the bio
  124. * can't tell us where in the file the bio should go
  125. */
  126. u64 bio_offset;
  127. struct btrfs_work work;
  128. int error;
  129. };
  130. /*
  131. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  132. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  133. * the level the eb occupies in the tree.
  134. *
  135. * Different roots are used for different purposes and may nest inside each
  136. * other and they require separate keysets. As lockdep keys should be
  137. * static, assign keysets according to the purpose of the root as indicated
  138. * by btrfs_root->objectid. This ensures that all special purpose roots
  139. * have separate keysets.
  140. *
  141. * Lock-nesting across peer nodes is always done with the immediate parent
  142. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  143. * subclass to avoid triggering lockdep warning in such cases.
  144. *
  145. * The key is set by the readpage_end_io_hook after the buffer has passed
  146. * csum validation but before the pages are unlocked. It is also set by
  147. * btrfs_init_new_buffer on freshly allocated blocks.
  148. *
  149. * We also add a check to make sure the highest level of the tree is the
  150. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  151. * needs update as well.
  152. */
  153. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  154. # if BTRFS_MAX_LEVEL != 8
  155. # error
  156. # endif
  157. static struct btrfs_lockdep_keyset {
  158. u64 id; /* root objectid */
  159. const char *name_stem; /* lock name stem */
  160. char names[BTRFS_MAX_LEVEL + 1][20];
  161. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  162. } btrfs_lockdep_keysets[] = {
  163. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  164. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  165. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  166. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  167. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  168. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  169. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  170. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  171. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  172. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  173. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  174. { .id = 0, .name_stem = "tree" },
  175. };
  176. void __init btrfs_init_lockdep(void)
  177. {
  178. int i, j;
  179. /* initialize lockdep class names */
  180. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  181. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  182. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  183. snprintf(ks->names[j], sizeof(ks->names[j]),
  184. "btrfs-%s-%02d", ks->name_stem, j);
  185. }
  186. }
  187. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  188. int level)
  189. {
  190. struct btrfs_lockdep_keyset *ks;
  191. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  192. /* find the matching keyset, id 0 is the default entry */
  193. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  194. if (ks->id == objectid)
  195. break;
  196. lockdep_set_class_and_name(&eb->lock,
  197. &ks->keys[level], ks->names[level]);
  198. }
  199. #endif
  200. /*
  201. * extents on the btree inode are pretty simple, there's one extent
  202. * that covers the entire device
  203. */
  204. static struct extent_map *btree_get_extent(struct inode *inode,
  205. struct page *page, size_t pg_offset, u64 start, u64 len,
  206. int create)
  207. {
  208. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  209. struct extent_map *em;
  210. int ret;
  211. read_lock(&em_tree->lock);
  212. em = lookup_extent_mapping(em_tree, start, len);
  213. if (em) {
  214. em->bdev =
  215. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  216. read_unlock(&em_tree->lock);
  217. goto out;
  218. }
  219. read_unlock(&em_tree->lock);
  220. em = alloc_extent_map();
  221. if (!em) {
  222. em = ERR_PTR(-ENOMEM);
  223. goto out;
  224. }
  225. em->start = 0;
  226. em->len = (u64)-1;
  227. em->block_len = (u64)-1;
  228. em->block_start = 0;
  229. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  230. write_lock(&em_tree->lock);
  231. ret = add_extent_mapping(em_tree, em, 0);
  232. if (ret == -EEXIST) {
  233. free_extent_map(em);
  234. em = lookup_extent_mapping(em_tree, start, len);
  235. if (!em)
  236. em = ERR_PTR(-EIO);
  237. } else if (ret) {
  238. free_extent_map(em);
  239. em = ERR_PTR(ret);
  240. }
  241. write_unlock(&em_tree->lock);
  242. out:
  243. return em;
  244. }
  245. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  246. {
  247. return btrfs_crc32c(seed, data, len);
  248. }
  249. void btrfs_csum_final(u32 crc, char *result)
  250. {
  251. put_unaligned_le32(~crc, result);
  252. }
  253. /*
  254. * compute the csum for a btree block, and either verify it or write it
  255. * into the csum field of the block.
  256. */
  257. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  258. struct extent_buffer *buf,
  259. int verify)
  260. {
  261. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  262. char *result = NULL;
  263. unsigned long len;
  264. unsigned long cur_len;
  265. unsigned long offset = BTRFS_CSUM_SIZE;
  266. char *kaddr;
  267. unsigned long map_start;
  268. unsigned long map_len;
  269. int err;
  270. u32 crc = ~(u32)0;
  271. unsigned long inline_result;
  272. len = buf->len - offset;
  273. while (len > 0) {
  274. err = map_private_extent_buffer(buf, offset, 32,
  275. &kaddr, &map_start, &map_len);
  276. if (err)
  277. return 1;
  278. cur_len = min(len, map_len - (offset - map_start));
  279. crc = btrfs_csum_data(kaddr + offset - map_start,
  280. crc, cur_len);
  281. len -= cur_len;
  282. offset += cur_len;
  283. }
  284. if (csum_size > sizeof(inline_result)) {
  285. result = kzalloc(csum_size, GFP_NOFS);
  286. if (!result)
  287. return 1;
  288. } else {
  289. result = (char *)&inline_result;
  290. }
  291. btrfs_csum_final(crc, result);
  292. if (verify) {
  293. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  294. u32 val;
  295. u32 found = 0;
  296. memcpy(&found, result, csum_size);
  297. read_extent_buffer(buf, &val, 0, csum_size);
  298. btrfs_warn_rl(fs_info,
  299. "%s checksum verify failed on %llu wanted %X found %X "
  300. "level %d",
  301. fs_info->sb->s_id, buf->start,
  302. val, found, btrfs_header_level(buf));
  303. if (result != (char *)&inline_result)
  304. kfree(result);
  305. return 1;
  306. }
  307. } else {
  308. write_extent_buffer(buf, result, 0, csum_size);
  309. }
  310. if (result != (char *)&inline_result)
  311. kfree(result);
  312. return 0;
  313. }
  314. /*
  315. * we can't consider a given block up to date unless the transid of the
  316. * block matches the transid in the parent node's pointer. This is how we
  317. * detect blocks that either didn't get written at all or got written
  318. * in the wrong place.
  319. */
  320. static int verify_parent_transid(struct extent_io_tree *io_tree,
  321. struct extent_buffer *eb, u64 parent_transid,
  322. int atomic)
  323. {
  324. struct extent_state *cached_state = NULL;
  325. int ret;
  326. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  327. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  328. return 0;
  329. if (atomic)
  330. return -EAGAIN;
  331. if (need_lock) {
  332. btrfs_tree_read_lock(eb);
  333. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  334. }
  335. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  336. &cached_state);
  337. if (extent_buffer_uptodate(eb) &&
  338. btrfs_header_generation(eb) == parent_transid) {
  339. ret = 0;
  340. goto out;
  341. }
  342. btrfs_err_rl(eb->fs_info,
  343. "parent transid verify failed on %llu wanted %llu found %llu",
  344. eb->start,
  345. parent_transid, btrfs_header_generation(eb));
  346. ret = 1;
  347. /*
  348. * Things reading via commit roots that don't have normal protection,
  349. * like send, can have a really old block in cache that may point at a
  350. * block that has been free'd and re-allocated. So don't clear uptodate
  351. * if we find an eb that is under IO (dirty/writeback) because we could
  352. * end up reading in the stale data and then writing it back out and
  353. * making everybody very sad.
  354. */
  355. if (!extent_buffer_under_io(eb))
  356. clear_extent_buffer_uptodate(eb);
  357. out:
  358. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  359. &cached_state, GFP_NOFS);
  360. if (need_lock)
  361. btrfs_tree_read_unlock_blocking(eb);
  362. return ret;
  363. }
  364. /*
  365. * Return 0 if the superblock checksum type matches the checksum value of that
  366. * algorithm. Pass the raw disk superblock data.
  367. */
  368. static int btrfs_check_super_csum(char *raw_disk_sb)
  369. {
  370. struct btrfs_super_block *disk_sb =
  371. (struct btrfs_super_block *)raw_disk_sb;
  372. u16 csum_type = btrfs_super_csum_type(disk_sb);
  373. int ret = 0;
  374. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  375. u32 crc = ~(u32)0;
  376. const int csum_size = sizeof(crc);
  377. char result[csum_size];
  378. /*
  379. * The super_block structure does not span the whole
  380. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  381. * is filled with zeros and is included in the checkum.
  382. */
  383. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  384. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  385. btrfs_csum_final(crc, result);
  386. if (memcmp(raw_disk_sb, result, csum_size))
  387. ret = 1;
  388. }
  389. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  390. printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
  391. csum_type);
  392. ret = 1;
  393. }
  394. return ret;
  395. }
  396. /*
  397. * helper to read a given tree block, doing retries as required when
  398. * the checksums don't match and we have alternate mirrors to try.
  399. */
  400. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  401. struct extent_buffer *eb,
  402. u64 start, u64 parent_transid)
  403. {
  404. struct extent_io_tree *io_tree;
  405. int failed = 0;
  406. int ret;
  407. int num_copies = 0;
  408. int mirror_num = 0;
  409. int failed_mirror = 0;
  410. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  411. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  412. while (1) {
  413. ret = read_extent_buffer_pages(io_tree, eb, start,
  414. WAIT_COMPLETE,
  415. btree_get_extent, mirror_num);
  416. if (!ret) {
  417. if (!verify_parent_transid(io_tree, eb,
  418. parent_transid, 0))
  419. break;
  420. else
  421. ret = -EIO;
  422. }
  423. /*
  424. * This buffer's crc is fine, but its contents are corrupted, so
  425. * there is no reason to read the other copies, they won't be
  426. * any less wrong.
  427. */
  428. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  429. break;
  430. num_copies = btrfs_num_copies(root->fs_info,
  431. eb->start, eb->len);
  432. if (num_copies == 1)
  433. break;
  434. if (!failed_mirror) {
  435. failed = 1;
  436. failed_mirror = eb->read_mirror;
  437. }
  438. mirror_num++;
  439. if (mirror_num == failed_mirror)
  440. mirror_num++;
  441. if (mirror_num > num_copies)
  442. break;
  443. }
  444. if (failed && !ret && failed_mirror)
  445. repair_eb_io_failure(root, eb, failed_mirror);
  446. return ret;
  447. }
  448. /*
  449. * checksum a dirty tree block before IO. This has extra checks to make sure
  450. * we only fill in the checksum field in the first page of a multi-page block
  451. */
  452. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  453. {
  454. u64 start = page_offset(page);
  455. u64 found_start;
  456. struct extent_buffer *eb;
  457. eb = (struct extent_buffer *)page->private;
  458. if (page != eb->pages[0])
  459. return 0;
  460. found_start = btrfs_header_bytenr(eb);
  461. if (WARN_ON(found_start != start || !PageUptodate(page)))
  462. return 0;
  463. csum_tree_block(fs_info, eb, 0);
  464. return 0;
  465. }
  466. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  467. struct extent_buffer *eb)
  468. {
  469. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  470. u8 fsid[BTRFS_UUID_SIZE];
  471. int ret = 1;
  472. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  473. while (fs_devices) {
  474. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  475. ret = 0;
  476. break;
  477. }
  478. fs_devices = fs_devices->seed;
  479. }
  480. return ret;
  481. }
  482. #define CORRUPT(reason, eb, root, slot) \
  483. btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
  484. "root=%llu, slot=%d", reason, \
  485. btrfs_header_bytenr(eb), root->objectid, slot)
  486. static noinline int check_leaf(struct btrfs_root *root,
  487. struct extent_buffer *leaf)
  488. {
  489. struct btrfs_key key;
  490. struct btrfs_key leaf_key;
  491. u32 nritems = btrfs_header_nritems(leaf);
  492. int slot;
  493. if (nritems == 0)
  494. return 0;
  495. /* Check the 0 item */
  496. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  497. BTRFS_LEAF_DATA_SIZE(root)) {
  498. CORRUPT("invalid item offset size pair", leaf, root, 0);
  499. return -EIO;
  500. }
  501. /*
  502. * Check to make sure each items keys are in the correct order and their
  503. * offsets make sense. We only have to loop through nritems-1 because
  504. * we check the current slot against the next slot, which verifies the
  505. * next slot's offset+size makes sense and that the current's slot
  506. * offset is correct.
  507. */
  508. for (slot = 0; slot < nritems - 1; slot++) {
  509. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  510. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  511. /* Make sure the keys are in the right order */
  512. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  513. CORRUPT("bad key order", leaf, root, slot);
  514. return -EIO;
  515. }
  516. /*
  517. * Make sure the offset and ends are right, remember that the
  518. * item data starts at the end of the leaf and grows towards the
  519. * front.
  520. */
  521. if (btrfs_item_offset_nr(leaf, slot) !=
  522. btrfs_item_end_nr(leaf, slot + 1)) {
  523. CORRUPT("slot offset bad", leaf, root, slot);
  524. return -EIO;
  525. }
  526. /*
  527. * Check to make sure that we don't point outside of the leaf,
  528. * just incase all the items are consistent to eachother, but
  529. * all point outside of the leaf.
  530. */
  531. if (btrfs_item_end_nr(leaf, slot) >
  532. BTRFS_LEAF_DATA_SIZE(root)) {
  533. CORRUPT("slot end outside of leaf", leaf, root, slot);
  534. return -EIO;
  535. }
  536. }
  537. return 0;
  538. }
  539. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  540. u64 phy_offset, struct page *page,
  541. u64 start, u64 end, int mirror)
  542. {
  543. u64 found_start;
  544. int found_level;
  545. struct extent_buffer *eb;
  546. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  547. int ret = 0;
  548. int reads_done;
  549. if (!page->private)
  550. goto out;
  551. eb = (struct extent_buffer *)page->private;
  552. /* the pending IO might have been the only thing that kept this buffer
  553. * in memory. Make sure we have a ref for all this other checks
  554. */
  555. extent_buffer_get(eb);
  556. reads_done = atomic_dec_and_test(&eb->io_pages);
  557. if (!reads_done)
  558. goto err;
  559. eb->read_mirror = mirror;
  560. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  561. ret = -EIO;
  562. goto err;
  563. }
  564. found_start = btrfs_header_bytenr(eb);
  565. if (found_start != eb->start) {
  566. btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
  567. found_start, eb->start);
  568. ret = -EIO;
  569. goto err;
  570. }
  571. if (check_tree_block_fsid(root->fs_info, eb)) {
  572. btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
  573. eb->start);
  574. ret = -EIO;
  575. goto err;
  576. }
  577. found_level = btrfs_header_level(eb);
  578. if (found_level >= BTRFS_MAX_LEVEL) {
  579. btrfs_err(root->fs_info, "bad tree block level %d",
  580. (int)btrfs_header_level(eb));
  581. ret = -EIO;
  582. goto err;
  583. }
  584. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  585. eb, found_level);
  586. ret = csum_tree_block(root->fs_info, eb, 1);
  587. if (ret) {
  588. ret = -EIO;
  589. goto err;
  590. }
  591. /*
  592. * If this is a leaf block and it is corrupt, set the corrupt bit so
  593. * that we don't try and read the other copies of this block, just
  594. * return -EIO.
  595. */
  596. if (found_level == 0 && check_leaf(root, eb)) {
  597. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  598. ret = -EIO;
  599. }
  600. if (!ret)
  601. set_extent_buffer_uptodate(eb);
  602. err:
  603. if (reads_done &&
  604. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  605. btree_readahead_hook(root, eb, eb->start, ret);
  606. if (ret) {
  607. /*
  608. * our io error hook is going to dec the io pages
  609. * again, we have to make sure it has something
  610. * to decrement
  611. */
  612. atomic_inc(&eb->io_pages);
  613. clear_extent_buffer_uptodate(eb);
  614. }
  615. free_extent_buffer(eb);
  616. out:
  617. return ret;
  618. }
  619. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  620. {
  621. struct extent_buffer *eb;
  622. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  623. eb = (struct extent_buffer *)page->private;
  624. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  625. eb->read_mirror = failed_mirror;
  626. atomic_dec(&eb->io_pages);
  627. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  628. btree_readahead_hook(root, eb, eb->start, -EIO);
  629. return -EIO; /* we fixed nothing */
  630. }
  631. static void end_workqueue_bio(struct bio *bio)
  632. {
  633. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  634. struct btrfs_fs_info *fs_info;
  635. struct btrfs_workqueue *wq;
  636. btrfs_work_func_t func;
  637. fs_info = end_io_wq->info;
  638. end_io_wq->error = bio->bi_error;
  639. if (bio->bi_rw & REQ_WRITE) {
  640. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  641. wq = fs_info->endio_meta_write_workers;
  642. func = btrfs_endio_meta_write_helper;
  643. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  644. wq = fs_info->endio_freespace_worker;
  645. func = btrfs_freespace_write_helper;
  646. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  647. wq = fs_info->endio_raid56_workers;
  648. func = btrfs_endio_raid56_helper;
  649. } else {
  650. wq = fs_info->endio_write_workers;
  651. func = btrfs_endio_write_helper;
  652. }
  653. } else {
  654. if (unlikely(end_io_wq->metadata ==
  655. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  656. wq = fs_info->endio_repair_workers;
  657. func = btrfs_endio_repair_helper;
  658. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  659. wq = fs_info->endio_raid56_workers;
  660. func = btrfs_endio_raid56_helper;
  661. } else if (end_io_wq->metadata) {
  662. wq = fs_info->endio_meta_workers;
  663. func = btrfs_endio_meta_helper;
  664. } else {
  665. wq = fs_info->endio_workers;
  666. func = btrfs_endio_helper;
  667. }
  668. }
  669. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  670. btrfs_queue_work(wq, &end_io_wq->work);
  671. }
  672. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  673. enum btrfs_wq_endio_type metadata)
  674. {
  675. struct btrfs_end_io_wq *end_io_wq;
  676. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  677. if (!end_io_wq)
  678. return -ENOMEM;
  679. end_io_wq->private = bio->bi_private;
  680. end_io_wq->end_io = bio->bi_end_io;
  681. end_io_wq->info = info;
  682. end_io_wq->error = 0;
  683. end_io_wq->bio = bio;
  684. end_io_wq->metadata = metadata;
  685. bio->bi_private = end_io_wq;
  686. bio->bi_end_io = end_workqueue_bio;
  687. return 0;
  688. }
  689. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  690. {
  691. unsigned long limit = min_t(unsigned long,
  692. info->thread_pool_size,
  693. info->fs_devices->open_devices);
  694. return 256 * limit;
  695. }
  696. static void run_one_async_start(struct btrfs_work *work)
  697. {
  698. struct async_submit_bio *async;
  699. int ret;
  700. async = container_of(work, struct async_submit_bio, work);
  701. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  702. async->mirror_num, async->bio_flags,
  703. async->bio_offset);
  704. if (ret)
  705. async->error = ret;
  706. }
  707. static void run_one_async_done(struct btrfs_work *work)
  708. {
  709. struct btrfs_fs_info *fs_info;
  710. struct async_submit_bio *async;
  711. int limit;
  712. async = container_of(work, struct async_submit_bio, work);
  713. fs_info = BTRFS_I(async->inode)->root->fs_info;
  714. limit = btrfs_async_submit_limit(fs_info);
  715. limit = limit * 2 / 3;
  716. /*
  717. * atomic_dec_return implies a barrier for waitqueue_active
  718. */
  719. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  720. waitqueue_active(&fs_info->async_submit_wait))
  721. wake_up(&fs_info->async_submit_wait);
  722. /* If an error occured we just want to clean up the bio and move on */
  723. if (async->error) {
  724. async->bio->bi_error = async->error;
  725. bio_endio(async->bio);
  726. return;
  727. }
  728. async->submit_bio_done(async->inode, async->rw, async->bio,
  729. async->mirror_num, async->bio_flags,
  730. async->bio_offset);
  731. }
  732. static void run_one_async_free(struct btrfs_work *work)
  733. {
  734. struct async_submit_bio *async;
  735. async = container_of(work, struct async_submit_bio, work);
  736. kfree(async);
  737. }
  738. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  739. int rw, struct bio *bio, int mirror_num,
  740. unsigned long bio_flags,
  741. u64 bio_offset,
  742. extent_submit_bio_hook_t *submit_bio_start,
  743. extent_submit_bio_hook_t *submit_bio_done)
  744. {
  745. struct async_submit_bio *async;
  746. async = kmalloc(sizeof(*async), GFP_NOFS);
  747. if (!async)
  748. return -ENOMEM;
  749. async->inode = inode;
  750. async->rw = rw;
  751. async->bio = bio;
  752. async->mirror_num = mirror_num;
  753. async->submit_bio_start = submit_bio_start;
  754. async->submit_bio_done = submit_bio_done;
  755. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  756. run_one_async_done, run_one_async_free);
  757. async->bio_flags = bio_flags;
  758. async->bio_offset = bio_offset;
  759. async->error = 0;
  760. atomic_inc(&fs_info->nr_async_submits);
  761. if (rw & REQ_SYNC)
  762. btrfs_set_work_high_priority(&async->work);
  763. btrfs_queue_work(fs_info->workers, &async->work);
  764. while (atomic_read(&fs_info->async_submit_draining) &&
  765. atomic_read(&fs_info->nr_async_submits)) {
  766. wait_event(fs_info->async_submit_wait,
  767. (atomic_read(&fs_info->nr_async_submits) == 0));
  768. }
  769. return 0;
  770. }
  771. static int btree_csum_one_bio(struct bio *bio)
  772. {
  773. struct bio_vec *bvec;
  774. struct btrfs_root *root;
  775. int i, ret = 0;
  776. bio_for_each_segment_all(bvec, bio, i) {
  777. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  778. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  779. if (ret)
  780. break;
  781. }
  782. return ret;
  783. }
  784. static int __btree_submit_bio_start(struct inode *inode, int rw,
  785. struct bio *bio, int mirror_num,
  786. unsigned long bio_flags,
  787. u64 bio_offset)
  788. {
  789. /*
  790. * when we're called for a write, we're already in the async
  791. * submission context. Just jump into btrfs_map_bio
  792. */
  793. return btree_csum_one_bio(bio);
  794. }
  795. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  796. int mirror_num, unsigned long bio_flags,
  797. u64 bio_offset)
  798. {
  799. int ret;
  800. /*
  801. * when we're called for a write, we're already in the async
  802. * submission context. Just jump into btrfs_map_bio
  803. */
  804. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  805. if (ret) {
  806. bio->bi_error = ret;
  807. bio_endio(bio);
  808. }
  809. return ret;
  810. }
  811. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  812. {
  813. if (bio_flags & EXTENT_BIO_TREE_LOG)
  814. return 0;
  815. #ifdef CONFIG_X86
  816. if (cpu_has_xmm4_2)
  817. return 0;
  818. #endif
  819. return 1;
  820. }
  821. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  822. int mirror_num, unsigned long bio_flags,
  823. u64 bio_offset)
  824. {
  825. int async = check_async_write(inode, bio_flags);
  826. int ret;
  827. if (!(rw & REQ_WRITE)) {
  828. /*
  829. * called for a read, do the setup so that checksum validation
  830. * can happen in the async kernel threads
  831. */
  832. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  833. bio, BTRFS_WQ_ENDIO_METADATA);
  834. if (ret)
  835. goto out_w_error;
  836. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  837. mirror_num, 0);
  838. } else if (!async) {
  839. ret = btree_csum_one_bio(bio);
  840. if (ret)
  841. goto out_w_error;
  842. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  843. mirror_num, 0);
  844. } else {
  845. /*
  846. * kthread helpers are used to submit writes so that
  847. * checksumming can happen in parallel across all CPUs
  848. */
  849. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  850. inode, rw, bio, mirror_num, 0,
  851. bio_offset,
  852. __btree_submit_bio_start,
  853. __btree_submit_bio_done);
  854. }
  855. if (ret)
  856. goto out_w_error;
  857. return 0;
  858. out_w_error:
  859. bio->bi_error = ret;
  860. bio_endio(bio);
  861. return ret;
  862. }
  863. #ifdef CONFIG_MIGRATION
  864. static int btree_migratepage(struct address_space *mapping,
  865. struct page *newpage, struct page *page,
  866. enum migrate_mode mode)
  867. {
  868. /*
  869. * we can't safely write a btree page from here,
  870. * we haven't done the locking hook
  871. */
  872. if (PageDirty(page))
  873. return -EAGAIN;
  874. /*
  875. * Buffers may be managed in a filesystem specific way.
  876. * We must have no buffers or drop them.
  877. */
  878. if (page_has_private(page) &&
  879. !try_to_release_page(page, GFP_KERNEL))
  880. return -EAGAIN;
  881. return migrate_page(mapping, newpage, page, mode);
  882. }
  883. #endif
  884. static int btree_writepages(struct address_space *mapping,
  885. struct writeback_control *wbc)
  886. {
  887. struct btrfs_fs_info *fs_info;
  888. int ret;
  889. if (wbc->sync_mode == WB_SYNC_NONE) {
  890. if (wbc->for_kupdate)
  891. return 0;
  892. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  893. /* this is a bit racy, but that's ok */
  894. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  895. BTRFS_DIRTY_METADATA_THRESH);
  896. if (ret < 0)
  897. return 0;
  898. }
  899. return btree_write_cache_pages(mapping, wbc);
  900. }
  901. static int btree_readpage(struct file *file, struct page *page)
  902. {
  903. struct extent_io_tree *tree;
  904. tree = &BTRFS_I(page->mapping->host)->io_tree;
  905. return extent_read_full_page(tree, page, btree_get_extent, 0);
  906. }
  907. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  908. {
  909. if (PageWriteback(page) || PageDirty(page))
  910. return 0;
  911. return try_release_extent_buffer(page);
  912. }
  913. static void btree_invalidatepage(struct page *page, unsigned int offset,
  914. unsigned int length)
  915. {
  916. struct extent_io_tree *tree;
  917. tree = &BTRFS_I(page->mapping->host)->io_tree;
  918. extent_invalidatepage(tree, page, offset);
  919. btree_releasepage(page, GFP_NOFS);
  920. if (PagePrivate(page)) {
  921. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  922. "page private not zero on page %llu",
  923. (unsigned long long)page_offset(page));
  924. ClearPagePrivate(page);
  925. set_page_private(page, 0);
  926. page_cache_release(page);
  927. }
  928. }
  929. static int btree_set_page_dirty(struct page *page)
  930. {
  931. #ifdef DEBUG
  932. struct extent_buffer *eb;
  933. BUG_ON(!PagePrivate(page));
  934. eb = (struct extent_buffer *)page->private;
  935. BUG_ON(!eb);
  936. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  937. BUG_ON(!atomic_read(&eb->refs));
  938. btrfs_assert_tree_locked(eb);
  939. #endif
  940. return __set_page_dirty_nobuffers(page);
  941. }
  942. static const struct address_space_operations btree_aops = {
  943. .readpage = btree_readpage,
  944. .writepages = btree_writepages,
  945. .releasepage = btree_releasepage,
  946. .invalidatepage = btree_invalidatepage,
  947. #ifdef CONFIG_MIGRATION
  948. .migratepage = btree_migratepage,
  949. #endif
  950. .set_page_dirty = btree_set_page_dirty,
  951. };
  952. void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
  953. {
  954. struct extent_buffer *buf = NULL;
  955. struct inode *btree_inode = root->fs_info->btree_inode;
  956. buf = btrfs_find_create_tree_block(root, bytenr);
  957. if (!buf)
  958. return;
  959. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  960. buf, 0, WAIT_NONE, btree_get_extent, 0);
  961. free_extent_buffer(buf);
  962. }
  963. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
  964. int mirror_num, struct extent_buffer **eb)
  965. {
  966. struct extent_buffer *buf = NULL;
  967. struct inode *btree_inode = root->fs_info->btree_inode;
  968. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  969. int ret;
  970. buf = btrfs_find_create_tree_block(root, bytenr);
  971. if (!buf)
  972. return 0;
  973. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  974. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  975. btree_get_extent, mirror_num);
  976. if (ret) {
  977. free_extent_buffer(buf);
  978. return ret;
  979. }
  980. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  981. free_extent_buffer(buf);
  982. return -EIO;
  983. } else if (extent_buffer_uptodate(buf)) {
  984. *eb = buf;
  985. } else {
  986. free_extent_buffer(buf);
  987. }
  988. return 0;
  989. }
  990. struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
  991. u64 bytenr)
  992. {
  993. return find_extent_buffer(fs_info, bytenr);
  994. }
  995. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  996. u64 bytenr)
  997. {
  998. if (btrfs_test_is_dummy_root(root))
  999. return alloc_test_extent_buffer(root->fs_info, bytenr);
  1000. return alloc_extent_buffer(root->fs_info, bytenr);
  1001. }
  1002. int btrfs_write_tree_block(struct extent_buffer *buf)
  1003. {
  1004. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  1005. buf->start + buf->len - 1);
  1006. }
  1007. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  1008. {
  1009. return filemap_fdatawait_range(buf->pages[0]->mapping,
  1010. buf->start, buf->start + buf->len - 1);
  1011. }
  1012. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1013. u64 parent_transid)
  1014. {
  1015. struct extent_buffer *buf = NULL;
  1016. int ret;
  1017. buf = btrfs_find_create_tree_block(root, bytenr);
  1018. if (!buf)
  1019. return ERR_PTR(-ENOMEM);
  1020. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1021. if (ret) {
  1022. free_extent_buffer(buf);
  1023. return ERR_PTR(ret);
  1024. }
  1025. return buf;
  1026. }
  1027. void clean_tree_block(struct btrfs_trans_handle *trans,
  1028. struct btrfs_fs_info *fs_info,
  1029. struct extent_buffer *buf)
  1030. {
  1031. if (btrfs_header_generation(buf) ==
  1032. fs_info->running_transaction->transid) {
  1033. btrfs_assert_tree_locked(buf);
  1034. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1035. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1036. -buf->len,
  1037. fs_info->dirty_metadata_batch);
  1038. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1039. btrfs_set_lock_blocking(buf);
  1040. clear_extent_buffer_dirty(buf);
  1041. }
  1042. }
  1043. }
  1044. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1045. {
  1046. struct btrfs_subvolume_writers *writers;
  1047. int ret;
  1048. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1049. if (!writers)
  1050. return ERR_PTR(-ENOMEM);
  1051. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  1052. if (ret < 0) {
  1053. kfree(writers);
  1054. return ERR_PTR(ret);
  1055. }
  1056. init_waitqueue_head(&writers->wait);
  1057. return writers;
  1058. }
  1059. static void
  1060. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1061. {
  1062. percpu_counter_destroy(&writers->counter);
  1063. kfree(writers);
  1064. }
  1065. static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
  1066. struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1067. u64 objectid)
  1068. {
  1069. root->node = NULL;
  1070. root->commit_root = NULL;
  1071. root->sectorsize = sectorsize;
  1072. root->nodesize = nodesize;
  1073. root->stripesize = stripesize;
  1074. root->state = 0;
  1075. root->orphan_cleanup_state = 0;
  1076. root->objectid = objectid;
  1077. root->last_trans = 0;
  1078. root->highest_objectid = 0;
  1079. root->nr_delalloc_inodes = 0;
  1080. root->nr_ordered_extents = 0;
  1081. root->name = NULL;
  1082. root->inode_tree = RB_ROOT;
  1083. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1084. root->block_rsv = NULL;
  1085. root->orphan_block_rsv = NULL;
  1086. INIT_LIST_HEAD(&root->dirty_list);
  1087. INIT_LIST_HEAD(&root->root_list);
  1088. INIT_LIST_HEAD(&root->delalloc_inodes);
  1089. INIT_LIST_HEAD(&root->delalloc_root);
  1090. INIT_LIST_HEAD(&root->ordered_extents);
  1091. INIT_LIST_HEAD(&root->ordered_root);
  1092. INIT_LIST_HEAD(&root->logged_list[0]);
  1093. INIT_LIST_HEAD(&root->logged_list[1]);
  1094. spin_lock_init(&root->orphan_lock);
  1095. spin_lock_init(&root->inode_lock);
  1096. spin_lock_init(&root->delalloc_lock);
  1097. spin_lock_init(&root->ordered_extent_lock);
  1098. spin_lock_init(&root->accounting_lock);
  1099. spin_lock_init(&root->log_extents_lock[0]);
  1100. spin_lock_init(&root->log_extents_lock[1]);
  1101. mutex_init(&root->objectid_mutex);
  1102. mutex_init(&root->log_mutex);
  1103. mutex_init(&root->ordered_extent_mutex);
  1104. mutex_init(&root->delalloc_mutex);
  1105. init_waitqueue_head(&root->log_writer_wait);
  1106. init_waitqueue_head(&root->log_commit_wait[0]);
  1107. init_waitqueue_head(&root->log_commit_wait[1]);
  1108. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1109. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1110. atomic_set(&root->log_commit[0], 0);
  1111. atomic_set(&root->log_commit[1], 0);
  1112. atomic_set(&root->log_writers, 0);
  1113. atomic_set(&root->log_batch, 0);
  1114. atomic_set(&root->orphan_inodes, 0);
  1115. atomic_set(&root->refs, 1);
  1116. atomic_set(&root->will_be_snapshoted, 0);
  1117. atomic_set(&root->qgroup_meta_rsv, 0);
  1118. root->log_transid = 0;
  1119. root->log_transid_committed = -1;
  1120. root->last_log_commit = 0;
  1121. if (fs_info)
  1122. extent_io_tree_init(&root->dirty_log_pages,
  1123. fs_info->btree_inode->i_mapping);
  1124. memset(&root->root_key, 0, sizeof(root->root_key));
  1125. memset(&root->root_item, 0, sizeof(root->root_item));
  1126. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1127. if (fs_info)
  1128. root->defrag_trans_start = fs_info->generation;
  1129. else
  1130. root->defrag_trans_start = 0;
  1131. root->root_key.objectid = objectid;
  1132. root->anon_dev = 0;
  1133. spin_lock_init(&root->root_item_lock);
  1134. }
  1135. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1136. {
  1137. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1138. if (root)
  1139. root->fs_info = fs_info;
  1140. return root;
  1141. }
  1142. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1143. /* Should only be used by the testing infrastructure */
  1144. struct btrfs_root *btrfs_alloc_dummy_root(void)
  1145. {
  1146. struct btrfs_root *root;
  1147. root = btrfs_alloc_root(NULL);
  1148. if (!root)
  1149. return ERR_PTR(-ENOMEM);
  1150. __setup_root(4096, 4096, 4096, root, NULL, 1);
  1151. set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
  1152. root->alloc_bytenr = 0;
  1153. return root;
  1154. }
  1155. #endif
  1156. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1157. struct btrfs_fs_info *fs_info,
  1158. u64 objectid)
  1159. {
  1160. struct extent_buffer *leaf;
  1161. struct btrfs_root *tree_root = fs_info->tree_root;
  1162. struct btrfs_root *root;
  1163. struct btrfs_key key;
  1164. int ret = 0;
  1165. uuid_le uuid;
  1166. root = btrfs_alloc_root(fs_info);
  1167. if (!root)
  1168. return ERR_PTR(-ENOMEM);
  1169. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1170. tree_root->stripesize, root, fs_info, objectid);
  1171. root->root_key.objectid = objectid;
  1172. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1173. root->root_key.offset = 0;
  1174. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1175. if (IS_ERR(leaf)) {
  1176. ret = PTR_ERR(leaf);
  1177. leaf = NULL;
  1178. goto fail;
  1179. }
  1180. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1181. btrfs_set_header_bytenr(leaf, leaf->start);
  1182. btrfs_set_header_generation(leaf, trans->transid);
  1183. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1184. btrfs_set_header_owner(leaf, objectid);
  1185. root->node = leaf;
  1186. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1187. BTRFS_FSID_SIZE);
  1188. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1189. btrfs_header_chunk_tree_uuid(leaf),
  1190. BTRFS_UUID_SIZE);
  1191. btrfs_mark_buffer_dirty(leaf);
  1192. root->commit_root = btrfs_root_node(root);
  1193. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1194. root->root_item.flags = 0;
  1195. root->root_item.byte_limit = 0;
  1196. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1197. btrfs_set_root_generation(&root->root_item, trans->transid);
  1198. btrfs_set_root_level(&root->root_item, 0);
  1199. btrfs_set_root_refs(&root->root_item, 1);
  1200. btrfs_set_root_used(&root->root_item, leaf->len);
  1201. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1202. btrfs_set_root_dirid(&root->root_item, 0);
  1203. uuid_le_gen(&uuid);
  1204. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1205. root->root_item.drop_level = 0;
  1206. key.objectid = objectid;
  1207. key.type = BTRFS_ROOT_ITEM_KEY;
  1208. key.offset = 0;
  1209. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1210. if (ret)
  1211. goto fail;
  1212. btrfs_tree_unlock(leaf);
  1213. return root;
  1214. fail:
  1215. if (leaf) {
  1216. btrfs_tree_unlock(leaf);
  1217. free_extent_buffer(root->commit_root);
  1218. free_extent_buffer(leaf);
  1219. }
  1220. kfree(root);
  1221. return ERR_PTR(ret);
  1222. }
  1223. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1224. struct btrfs_fs_info *fs_info)
  1225. {
  1226. struct btrfs_root *root;
  1227. struct btrfs_root *tree_root = fs_info->tree_root;
  1228. struct extent_buffer *leaf;
  1229. root = btrfs_alloc_root(fs_info);
  1230. if (!root)
  1231. return ERR_PTR(-ENOMEM);
  1232. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1233. tree_root->stripesize, root, fs_info,
  1234. BTRFS_TREE_LOG_OBJECTID);
  1235. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1236. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1237. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1238. /*
  1239. * DON'T set REF_COWS for log trees
  1240. *
  1241. * log trees do not get reference counted because they go away
  1242. * before a real commit is actually done. They do store pointers
  1243. * to file data extents, and those reference counts still get
  1244. * updated (along with back refs to the log tree).
  1245. */
  1246. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1247. NULL, 0, 0, 0);
  1248. if (IS_ERR(leaf)) {
  1249. kfree(root);
  1250. return ERR_CAST(leaf);
  1251. }
  1252. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1253. btrfs_set_header_bytenr(leaf, leaf->start);
  1254. btrfs_set_header_generation(leaf, trans->transid);
  1255. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1256. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1257. root->node = leaf;
  1258. write_extent_buffer(root->node, root->fs_info->fsid,
  1259. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1260. btrfs_mark_buffer_dirty(root->node);
  1261. btrfs_tree_unlock(root->node);
  1262. return root;
  1263. }
  1264. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1265. struct btrfs_fs_info *fs_info)
  1266. {
  1267. struct btrfs_root *log_root;
  1268. log_root = alloc_log_tree(trans, fs_info);
  1269. if (IS_ERR(log_root))
  1270. return PTR_ERR(log_root);
  1271. WARN_ON(fs_info->log_root_tree);
  1272. fs_info->log_root_tree = log_root;
  1273. return 0;
  1274. }
  1275. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1276. struct btrfs_root *root)
  1277. {
  1278. struct btrfs_root *log_root;
  1279. struct btrfs_inode_item *inode_item;
  1280. log_root = alloc_log_tree(trans, root->fs_info);
  1281. if (IS_ERR(log_root))
  1282. return PTR_ERR(log_root);
  1283. log_root->last_trans = trans->transid;
  1284. log_root->root_key.offset = root->root_key.objectid;
  1285. inode_item = &log_root->root_item.inode;
  1286. btrfs_set_stack_inode_generation(inode_item, 1);
  1287. btrfs_set_stack_inode_size(inode_item, 3);
  1288. btrfs_set_stack_inode_nlink(inode_item, 1);
  1289. btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
  1290. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1291. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1292. WARN_ON(root->log_root);
  1293. root->log_root = log_root;
  1294. root->log_transid = 0;
  1295. root->log_transid_committed = -1;
  1296. root->last_log_commit = 0;
  1297. return 0;
  1298. }
  1299. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1300. struct btrfs_key *key)
  1301. {
  1302. struct btrfs_root *root;
  1303. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1304. struct btrfs_path *path;
  1305. u64 generation;
  1306. int ret;
  1307. path = btrfs_alloc_path();
  1308. if (!path)
  1309. return ERR_PTR(-ENOMEM);
  1310. root = btrfs_alloc_root(fs_info);
  1311. if (!root) {
  1312. ret = -ENOMEM;
  1313. goto alloc_fail;
  1314. }
  1315. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1316. tree_root->stripesize, root, fs_info, key->objectid);
  1317. ret = btrfs_find_root(tree_root, key, path,
  1318. &root->root_item, &root->root_key);
  1319. if (ret) {
  1320. if (ret > 0)
  1321. ret = -ENOENT;
  1322. goto find_fail;
  1323. }
  1324. generation = btrfs_root_generation(&root->root_item);
  1325. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1326. generation);
  1327. if (IS_ERR(root->node)) {
  1328. ret = PTR_ERR(root->node);
  1329. goto find_fail;
  1330. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1331. ret = -EIO;
  1332. free_extent_buffer(root->node);
  1333. goto find_fail;
  1334. }
  1335. root->commit_root = btrfs_root_node(root);
  1336. out:
  1337. btrfs_free_path(path);
  1338. return root;
  1339. find_fail:
  1340. kfree(root);
  1341. alloc_fail:
  1342. root = ERR_PTR(ret);
  1343. goto out;
  1344. }
  1345. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1346. struct btrfs_key *location)
  1347. {
  1348. struct btrfs_root *root;
  1349. root = btrfs_read_tree_root(tree_root, location);
  1350. if (IS_ERR(root))
  1351. return root;
  1352. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1353. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1354. btrfs_check_and_init_root_item(&root->root_item);
  1355. }
  1356. return root;
  1357. }
  1358. int btrfs_init_fs_root(struct btrfs_root *root)
  1359. {
  1360. int ret;
  1361. struct btrfs_subvolume_writers *writers;
  1362. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1363. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1364. GFP_NOFS);
  1365. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1366. ret = -ENOMEM;
  1367. goto fail;
  1368. }
  1369. writers = btrfs_alloc_subvolume_writers();
  1370. if (IS_ERR(writers)) {
  1371. ret = PTR_ERR(writers);
  1372. goto fail;
  1373. }
  1374. root->subv_writers = writers;
  1375. btrfs_init_free_ino_ctl(root);
  1376. spin_lock_init(&root->ino_cache_lock);
  1377. init_waitqueue_head(&root->ino_cache_wait);
  1378. ret = get_anon_bdev(&root->anon_dev);
  1379. if (ret)
  1380. goto free_writers;
  1381. mutex_lock(&root->objectid_mutex);
  1382. ret = btrfs_find_highest_objectid(root,
  1383. &root->highest_objectid);
  1384. if (ret) {
  1385. mutex_unlock(&root->objectid_mutex);
  1386. goto free_root_dev;
  1387. }
  1388. ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  1389. mutex_unlock(&root->objectid_mutex);
  1390. return 0;
  1391. free_root_dev:
  1392. free_anon_bdev(root->anon_dev);
  1393. free_writers:
  1394. btrfs_free_subvolume_writers(root->subv_writers);
  1395. fail:
  1396. kfree(root->free_ino_ctl);
  1397. kfree(root->free_ino_pinned);
  1398. return ret;
  1399. }
  1400. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1401. u64 root_id)
  1402. {
  1403. struct btrfs_root *root;
  1404. spin_lock(&fs_info->fs_roots_radix_lock);
  1405. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1406. (unsigned long)root_id);
  1407. spin_unlock(&fs_info->fs_roots_radix_lock);
  1408. return root;
  1409. }
  1410. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1411. struct btrfs_root *root)
  1412. {
  1413. int ret;
  1414. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1415. if (ret)
  1416. return ret;
  1417. spin_lock(&fs_info->fs_roots_radix_lock);
  1418. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1419. (unsigned long)root->root_key.objectid,
  1420. root);
  1421. if (ret == 0)
  1422. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1423. spin_unlock(&fs_info->fs_roots_radix_lock);
  1424. radix_tree_preload_end();
  1425. return ret;
  1426. }
  1427. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1428. struct btrfs_key *location,
  1429. bool check_ref)
  1430. {
  1431. struct btrfs_root *root;
  1432. struct btrfs_path *path;
  1433. struct btrfs_key key;
  1434. int ret;
  1435. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1436. return fs_info->tree_root;
  1437. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1438. return fs_info->extent_root;
  1439. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1440. return fs_info->chunk_root;
  1441. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1442. return fs_info->dev_root;
  1443. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1444. return fs_info->csum_root;
  1445. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1446. return fs_info->quota_root ? fs_info->quota_root :
  1447. ERR_PTR(-ENOENT);
  1448. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1449. return fs_info->uuid_root ? fs_info->uuid_root :
  1450. ERR_PTR(-ENOENT);
  1451. if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  1452. return fs_info->free_space_root ? fs_info->free_space_root :
  1453. ERR_PTR(-ENOENT);
  1454. again:
  1455. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1456. if (root) {
  1457. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1458. return ERR_PTR(-ENOENT);
  1459. return root;
  1460. }
  1461. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1462. if (IS_ERR(root))
  1463. return root;
  1464. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1465. ret = -ENOENT;
  1466. goto fail;
  1467. }
  1468. ret = btrfs_init_fs_root(root);
  1469. if (ret)
  1470. goto fail;
  1471. path = btrfs_alloc_path();
  1472. if (!path) {
  1473. ret = -ENOMEM;
  1474. goto fail;
  1475. }
  1476. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1477. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1478. key.offset = location->objectid;
  1479. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1480. btrfs_free_path(path);
  1481. if (ret < 0)
  1482. goto fail;
  1483. if (ret == 0)
  1484. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1485. ret = btrfs_insert_fs_root(fs_info, root);
  1486. if (ret) {
  1487. if (ret == -EEXIST) {
  1488. free_fs_root(root);
  1489. goto again;
  1490. }
  1491. goto fail;
  1492. }
  1493. return root;
  1494. fail:
  1495. free_fs_root(root);
  1496. return ERR_PTR(ret);
  1497. }
  1498. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1499. {
  1500. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1501. int ret = 0;
  1502. struct btrfs_device *device;
  1503. struct backing_dev_info *bdi;
  1504. rcu_read_lock();
  1505. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1506. if (!device->bdev)
  1507. continue;
  1508. bdi = blk_get_backing_dev_info(device->bdev);
  1509. if (bdi_congested(bdi, bdi_bits)) {
  1510. ret = 1;
  1511. break;
  1512. }
  1513. }
  1514. rcu_read_unlock();
  1515. return ret;
  1516. }
  1517. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1518. {
  1519. int err;
  1520. err = bdi_setup_and_register(bdi, "btrfs");
  1521. if (err)
  1522. return err;
  1523. bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
  1524. bdi->congested_fn = btrfs_congested_fn;
  1525. bdi->congested_data = info;
  1526. bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  1527. return 0;
  1528. }
  1529. /*
  1530. * called by the kthread helper functions to finally call the bio end_io
  1531. * functions. This is where read checksum verification actually happens
  1532. */
  1533. static void end_workqueue_fn(struct btrfs_work *work)
  1534. {
  1535. struct bio *bio;
  1536. struct btrfs_end_io_wq *end_io_wq;
  1537. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1538. bio = end_io_wq->bio;
  1539. bio->bi_error = end_io_wq->error;
  1540. bio->bi_private = end_io_wq->private;
  1541. bio->bi_end_io = end_io_wq->end_io;
  1542. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1543. bio_endio(bio);
  1544. }
  1545. static int cleaner_kthread(void *arg)
  1546. {
  1547. struct btrfs_root *root = arg;
  1548. int again;
  1549. struct btrfs_trans_handle *trans;
  1550. do {
  1551. again = 0;
  1552. /* Make the cleaner go to sleep early. */
  1553. if (btrfs_need_cleaner_sleep(root))
  1554. goto sleep;
  1555. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1556. goto sleep;
  1557. /*
  1558. * Avoid the problem that we change the status of the fs
  1559. * during the above check and trylock.
  1560. */
  1561. if (btrfs_need_cleaner_sleep(root)) {
  1562. mutex_unlock(&root->fs_info->cleaner_mutex);
  1563. goto sleep;
  1564. }
  1565. mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
  1566. btrfs_run_delayed_iputs(root);
  1567. mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
  1568. again = btrfs_clean_one_deleted_snapshot(root);
  1569. mutex_unlock(&root->fs_info->cleaner_mutex);
  1570. /*
  1571. * The defragger has dealt with the R/O remount and umount,
  1572. * needn't do anything special here.
  1573. */
  1574. btrfs_run_defrag_inodes(root->fs_info);
  1575. /*
  1576. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1577. * with relocation (btrfs_relocate_chunk) and relocation
  1578. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1579. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1580. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1581. * unused block groups.
  1582. */
  1583. btrfs_delete_unused_bgs(root->fs_info);
  1584. sleep:
  1585. if (!try_to_freeze() && !again) {
  1586. set_current_state(TASK_INTERRUPTIBLE);
  1587. if (!kthread_should_stop())
  1588. schedule();
  1589. __set_current_state(TASK_RUNNING);
  1590. }
  1591. } while (!kthread_should_stop());
  1592. /*
  1593. * Transaction kthread is stopped before us and wakes us up.
  1594. * However we might have started a new transaction and COWed some
  1595. * tree blocks when deleting unused block groups for example. So
  1596. * make sure we commit the transaction we started to have a clean
  1597. * shutdown when evicting the btree inode - if it has dirty pages
  1598. * when we do the final iput() on it, eviction will trigger a
  1599. * writeback for it which will fail with null pointer dereferences
  1600. * since work queues and other resources were already released and
  1601. * destroyed by the time the iput/eviction/writeback is made.
  1602. */
  1603. trans = btrfs_attach_transaction(root);
  1604. if (IS_ERR(trans)) {
  1605. if (PTR_ERR(trans) != -ENOENT)
  1606. btrfs_err(root->fs_info,
  1607. "cleaner transaction attach returned %ld",
  1608. PTR_ERR(trans));
  1609. } else {
  1610. int ret;
  1611. ret = btrfs_commit_transaction(trans, root);
  1612. if (ret)
  1613. btrfs_err(root->fs_info,
  1614. "cleaner open transaction commit returned %d",
  1615. ret);
  1616. }
  1617. return 0;
  1618. }
  1619. static int transaction_kthread(void *arg)
  1620. {
  1621. struct btrfs_root *root = arg;
  1622. struct btrfs_trans_handle *trans;
  1623. struct btrfs_transaction *cur;
  1624. u64 transid;
  1625. unsigned long now;
  1626. unsigned long delay;
  1627. bool cannot_commit;
  1628. do {
  1629. cannot_commit = false;
  1630. delay = HZ * root->fs_info->commit_interval;
  1631. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1632. spin_lock(&root->fs_info->trans_lock);
  1633. cur = root->fs_info->running_transaction;
  1634. if (!cur) {
  1635. spin_unlock(&root->fs_info->trans_lock);
  1636. goto sleep;
  1637. }
  1638. now = get_seconds();
  1639. if (cur->state < TRANS_STATE_BLOCKED &&
  1640. (now < cur->start_time ||
  1641. now - cur->start_time < root->fs_info->commit_interval)) {
  1642. spin_unlock(&root->fs_info->trans_lock);
  1643. delay = HZ * 5;
  1644. goto sleep;
  1645. }
  1646. transid = cur->transid;
  1647. spin_unlock(&root->fs_info->trans_lock);
  1648. /* If the file system is aborted, this will always fail. */
  1649. trans = btrfs_attach_transaction(root);
  1650. if (IS_ERR(trans)) {
  1651. if (PTR_ERR(trans) != -ENOENT)
  1652. cannot_commit = true;
  1653. goto sleep;
  1654. }
  1655. if (transid == trans->transid) {
  1656. btrfs_commit_transaction(trans, root);
  1657. } else {
  1658. btrfs_end_transaction(trans, root);
  1659. }
  1660. sleep:
  1661. wake_up_process(root->fs_info->cleaner_kthread);
  1662. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1663. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1664. &root->fs_info->fs_state)))
  1665. btrfs_cleanup_transaction(root);
  1666. if (!try_to_freeze()) {
  1667. set_current_state(TASK_INTERRUPTIBLE);
  1668. if (!kthread_should_stop() &&
  1669. (!btrfs_transaction_blocked(root->fs_info) ||
  1670. cannot_commit))
  1671. schedule_timeout(delay);
  1672. __set_current_state(TASK_RUNNING);
  1673. }
  1674. } while (!kthread_should_stop());
  1675. return 0;
  1676. }
  1677. /*
  1678. * this will find the highest generation in the array of
  1679. * root backups. The index of the highest array is returned,
  1680. * or -1 if we can't find anything.
  1681. *
  1682. * We check to make sure the array is valid by comparing the
  1683. * generation of the latest root in the array with the generation
  1684. * in the super block. If they don't match we pitch it.
  1685. */
  1686. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1687. {
  1688. u64 cur;
  1689. int newest_index = -1;
  1690. struct btrfs_root_backup *root_backup;
  1691. int i;
  1692. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1693. root_backup = info->super_copy->super_roots + i;
  1694. cur = btrfs_backup_tree_root_gen(root_backup);
  1695. if (cur == newest_gen)
  1696. newest_index = i;
  1697. }
  1698. /* check to see if we actually wrapped around */
  1699. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1700. root_backup = info->super_copy->super_roots;
  1701. cur = btrfs_backup_tree_root_gen(root_backup);
  1702. if (cur == newest_gen)
  1703. newest_index = 0;
  1704. }
  1705. return newest_index;
  1706. }
  1707. /*
  1708. * find the oldest backup so we know where to store new entries
  1709. * in the backup array. This will set the backup_root_index
  1710. * field in the fs_info struct
  1711. */
  1712. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1713. u64 newest_gen)
  1714. {
  1715. int newest_index = -1;
  1716. newest_index = find_newest_super_backup(info, newest_gen);
  1717. /* if there was garbage in there, just move along */
  1718. if (newest_index == -1) {
  1719. info->backup_root_index = 0;
  1720. } else {
  1721. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1722. }
  1723. }
  1724. /*
  1725. * copy all the root pointers into the super backup array.
  1726. * this will bump the backup pointer by one when it is
  1727. * done
  1728. */
  1729. static void backup_super_roots(struct btrfs_fs_info *info)
  1730. {
  1731. int next_backup;
  1732. struct btrfs_root_backup *root_backup;
  1733. int last_backup;
  1734. next_backup = info->backup_root_index;
  1735. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1736. BTRFS_NUM_BACKUP_ROOTS;
  1737. /*
  1738. * just overwrite the last backup if we're at the same generation
  1739. * this happens only at umount
  1740. */
  1741. root_backup = info->super_for_commit->super_roots + last_backup;
  1742. if (btrfs_backup_tree_root_gen(root_backup) ==
  1743. btrfs_header_generation(info->tree_root->node))
  1744. next_backup = last_backup;
  1745. root_backup = info->super_for_commit->super_roots + next_backup;
  1746. /*
  1747. * make sure all of our padding and empty slots get zero filled
  1748. * regardless of which ones we use today
  1749. */
  1750. memset(root_backup, 0, sizeof(*root_backup));
  1751. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1752. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1753. btrfs_set_backup_tree_root_gen(root_backup,
  1754. btrfs_header_generation(info->tree_root->node));
  1755. btrfs_set_backup_tree_root_level(root_backup,
  1756. btrfs_header_level(info->tree_root->node));
  1757. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1758. btrfs_set_backup_chunk_root_gen(root_backup,
  1759. btrfs_header_generation(info->chunk_root->node));
  1760. btrfs_set_backup_chunk_root_level(root_backup,
  1761. btrfs_header_level(info->chunk_root->node));
  1762. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1763. btrfs_set_backup_extent_root_gen(root_backup,
  1764. btrfs_header_generation(info->extent_root->node));
  1765. btrfs_set_backup_extent_root_level(root_backup,
  1766. btrfs_header_level(info->extent_root->node));
  1767. /*
  1768. * we might commit during log recovery, which happens before we set
  1769. * the fs_root. Make sure it is valid before we fill it in.
  1770. */
  1771. if (info->fs_root && info->fs_root->node) {
  1772. btrfs_set_backup_fs_root(root_backup,
  1773. info->fs_root->node->start);
  1774. btrfs_set_backup_fs_root_gen(root_backup,
  1775. btrfs_header_generation(info->fs_root->node));
  1776. btrfs_set_backup_fs_root_level(root_backup,
  1777. btrfs_header_level(info->fs_root->node));
  1778. }
  1779. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1780. btrfs_set_backup_dev_root_gen(root_backup,
  1781. btrfs_header_generation(info->dev_root->node));
  1782. btrfs_set_backup_dev_root_level(root_backup,
  1783. btrfs_header_level(info->dev_root->node));
  1784. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1785. btrfs_set_backup_csum_root_gen(root_backup,
  1786. btrfs_header_generation(info->csum_root->node));
  1787. btrfs_set_backup_csum_root_level(root_backup,
  1788. btrfs_header_level(info->csum_root->node));
  1789. btrfs_set_backup_total_bytes(root_backup,
  1790. btrfs_super_total_bytes(info->super_copy));
  1791. btrfs_set_backup_bytes_used(root_backup,
  1792. btrfs_super_bytes_used(info->super_copy));
  1793. btrfs_set_backup_num_devices(root_backup,
  1794. btrfs_super_num_devices(info->super_copy));
  1795. /*
  1796. * if we don't copy this out to the super_copy, it won't get remembered
  1797. * for the next commit
  1798. */
  1799. memcpy(&info->super_copy->super_roots,
  1800. &info->super_for_commit->super_roots,
  1801. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1802. }
  1803. /*
  1804. * this copies info out of the root backup array and back into
  1805. * the in-memory super block. It is meant to help iterate through
  1806. * the array, so you send it the number of backups you've already
  1807. * tried and the last backup index you used.
  1808. *
  1809. * this returns -1 when it has tried all the backups
  1810. */
  1811. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1812. struct btrfs_super_block *super,
  1813. int *num_backups_tried, int *backup_index)
  1814. {
  1815. struct btrfs_root_backup *root_backup;
  1816. int newest = *backup_index;
  1817. if (*num_backups_tried == 0) {
  1818. u64 gen = btrfs_super_generation(super);
  1819. newest = find_newest_super_backup(info, gen);
  1820. if (newest == -1)
  1821. return -1;
  1822. *backup_index = newest;
  1823. *num_backups_tried = 1;
  1824. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1825. /* we've tried all the backups, all done */
  1826. return -1;
  1827. } else {
  1828. /* jump to the next oldest backup */
  1829. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1830. BTRFS_NUM_BACKUP_ROOTS;
  1831. *backup_index = newest;
  1832. *num_backups_tried += 1;
  1833. }
  1834. root_backup = super->super_roots + newest;
  1835. btrfs_set_super_generation(super,
  1836. btrfs_backup_tree_root_gen(root_backup));
  1837. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1838. btrfs_set_super_root_level(super,
  1839. btrfs_backup_tree_root_level(root_backup));
  1840. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1841. /*
  1842. * fixme: the total bytes and num_devices need to match or we should
  1843. * need a fsck
  1844. */
  1845. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1846. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1847. return 0;
  1848. }
  1849. /* helper to cleanup workers */
  1850. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1851. {
  1852. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1853. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1854. btrfs_destroy_workqueue(fs_info->workers);
  1855. btrfs_destroy_workqueue(fs_info->endio_workers);
  1856. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1857. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1858. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1859. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1860. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1861. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1862. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1863. btrfs_destroy_workqueue(fs_info->submit_workers);
  1864. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1865. btrfs_destroy_workqueue(fs_info->caching_workers);
  1866. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1867. btrfs_destroy_workqueue(fs_info->flush_workers);
  1868. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1869. btrfs_destroy_workqueue(fs_info->extent_workers);
  1870. }
  1871. static void free_root_extent_buffers(struct btrfs_root *root)
  1872. {
  1873. if (root) {
  1874. free_extent_buffer(root->node);
  1875. free_extent_buffer(root->commit_root);
  1876. root->node = NULL;
  1877. root->commit_root = NULL;
  1878. }
  1879. }
  1880. /* helper to cleanup tree roots */
  1881. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1882. {
  1883. free_root_extent_buffers(info->tree_root);
  1884. free_root_extent_buffers(info->dev_root);
  1885. free_root_extent_buffers(info->extent_root);
  1886. free_root_extent_buffers(info->csum_root);
  1887. free_root_extent_buffers(info->quota_root);
  1888. free_root_extent_buffers(info->uuid_root);
  1889. if (chunk_root)
  1890. free_root_extent_buffers(info->chunk_root);
  1891. free_root_extent_buffers(info->free_space_root);
  1892. }
  1893. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1894. {
  1895. int ret;
  1896. struct btrfs_root *gang[8];
  1897. int i;
  1898. while (!list_empty(&fs_info->dead_roots)) {
  1899. gang[0] = list_entry(fs_info->dead_roots.next,
  1900. struct btrfs_root, root_list);
  1901. list_del(&gang[0]->root_list);
  1902. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1903. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1904. } else {
  1905. free_extent_buffer(gang[0]->node);
  1906. free_extent_buffer(gang[0]->commit_root);
  1907. btrfs_put_fs_root(gang[0]);
  1908. }
  1909. }
  1910. while (1) {
  1911. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1912. (void **)gang, 0,
  1913. ARRAY_SIZE(gang));
  1914. if (!ret)
  1915. break;
  1916. for (i = 0; i < ret; i++)
  1917. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1918. }
  1919. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1920. btrfs_free_log_root_tree(NULL, fs_info);
  1921. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1922. fs_info->pinned_extents);
  1923. }
  1924. }
  1925. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1926. {
  1927. mutex_init(&fs_info->scrub_lock);
  1928. atomic_set(&fs_info->scrubs_running, 0);
  1929. atomic_set(&fs_info->scrub_pause_req, 0);
  1930. atomic_set(&fs_info->scrubs_paused, 0);
  1931. atomic_set(&fs_info->scrub_cancel_req, 0);
  1932. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1933. fs_info->scrub_workers_refcnt = 0;
  1934. }
  1935. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1936. {
  1937. spin_lock_init(&fs_info->balance_lock);
  1938. mutex_init(&fs_info->balance_mutex);
  1939. atomic_set(&fs_info->balance_running, 0);
  1940. atomic_set(&fs_info->balance_pause_req, 0);
  1941. atomic_set(&fs_info->balance_cancel_req, 0);
  1942. fs_info->balance_ctl = NULL;
  1943. init_waitqueue_head(&fs_info->balance_wait_q);
  1944. }
  1945. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
  1946. struct btrfs_root *tree_root)
  1947. {
  1948. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1949. set_nlink(fs_info->btree_inode, 1);
  1950. /*
  1951. * we set the i_size on the btree inode to the max possible int.
  1952. * the real end of the address space is determined by all of
  1953. * the devices in the system
  1954. */
  1955. fs_info->btree_inode->i_size = OFFSET_MAX;
  1956. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1957. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1958. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1959. fs_info->btree_inode->i_mapping);
  1960. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1961. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1962. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1963. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1964. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1965. sizeof(struct btrfs_key));
  1966. set_bit(BTRFS_INODE_DUMMY,
  1967. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1968. btrfs_insert_inode_hash(fs_info->btree_inode);
  1969. }
  1970. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  1971. {
  1972. fs_info->dev_replace.lock_owner = 0;
  1973. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1974. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1975. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1976. mutex_init(&fs_info->dev_replace.lock);
  1977. init_waitqueue_head(&fs_info->replace_wait);
  1978. }
  1979. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  1980. {
  1981. spin_lock_init(&fs_info->qgroup_lock);
  1982. mutex_init(&fs_info->qgroup_ioctl_lock);
  1983. fs_info->qgroup_tree = RB_ROOT;
  1984. fs_info->qgroup_op_tree = RB_ROOT;
  1985. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1986. fs_info->qgroup_seq = 1;
  1987. fs_info->quota_enabled = 0;
  1988. fs_info->pending_quota_state = 0;
  1989. fs_info->qgroup_ulist = NULL;
  1990. mutex_init(&fs_info->qgroup_rescan_lock);
  1991. }
  1992. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  1993. struct btrfs_fs_devices *fs_devices)
  1994. {
  1995. int max_active = fs_info->thread_pool_size;
  1996. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  1997. fs_info->workers =
  1998. btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
  1999. max_active, 16);
  2000. fs_info->delalloc_workers =
  2001. btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
  2002. fs_info->flush_workers =
  2003. btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
  2004. fs_info->caching_workers =
  2005. btrfs_alloc_workqueue("cache", flags, max_active, 0);
  2006. /*
  2007. * a higher idle thresh on the submit workers makes it much more
  2008. * likely that bios will be send down in a sane order to the
  2009. * devices
  2010. */
  2011. fs_info->submit_workers =
  2012. btrfs_alloc_workqueue("submit", flags,
  2013. min_t(u64, fs_devices->num_devices,
  2014. max_active), 64);
  2015. fs_info->fixup_workers =
  2016. btrfs_alloc_workqueue("fixup", flags, 1, 0);
  2017. /*
  2018. * endios are largely parallel and should have a very
  2019. * low idle thresh
  2020. */
  2021. fs_info->endio_workers =
  2022. btrfs_alloc_workqueue("endio", flags, max_active, 4);
  2023. fs_info->endio_meta_workers =
  2024. btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
  2025. fs_info->endio_meta_write_workers =
  2026. btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
  2027. fs_info->endio_raid56_workers =
  2028. btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
  2029. fs_info->endio_repair_workers =
  2030. btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
  2031. fs_info->rmw_workers =
  2032. btrfs_alloc_workqueue("rmw", flags, max_active, 2);
  2033. fs_info->endio_write_workers =
  2034. btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
  2035. fs_info->endio_freespace_worker =
  2036. btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
  2037. fs_info->delayed_workers =
  2038. btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
  2039. fs_info->readahead_workers =
  2040. btrfs_alloc_workqueue("readahead", flags, max_active, 2);
  2041. fs_info->qgroup_rescan_workers =
  2042. btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
  2043. fs_info->extent_workers =
  2044. btrfs_alloc_workqueue("extent-refs", flags,
  2045. min_t(u64, fs_devices->num_devices,
  2046. max_active), 8);
  2047. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2048. fs_info->submit_workers && fs_info->flush_workers &&
  2049. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2050. fs_info->endio_meta_write_workers &&
  2051. fs_info->endio_repair_workers &&
  2052. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2053. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2054. fs_info->caching_workers && fs_info->readahead_workers &&
  2055. fs_info->fixup_workers && fs_info->delayed_workers &&
  2056. fs_info->extent_workers &&
  2057. fs_info->qgroup_rescan_workers)) {
  2058. return -ENOMEM;
  2059. }
  2060. return 0;
  2061. }
  2062. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2063. struct btrfs_fs_devices *fs_devices)
  2064. {
  2065. int ret;
  2066. struct btrfs_root *tree_root = fs_info->tree_root;
  2067. struct btrfs_root *log_tree_root;
  2068. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2069. u64 bytenr = btrfs_super_log_root(disk_super);
  2070. if (fs_devices->rw_devices == 0) {
  2071. btrfs_warn(fs_info, "log replay required on RO media");
  2072. return -EIO;
  2073. }
  2074. log_tree_root = btrfs_alloc_root(fs_info);
  2075. if (!log_tree_root)
  2076. return -ENOMEM;
  2077. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  2078. tree_root->stripesize, log_tree_root, fs_info,
  2079. BTRFS_TREE_LOG_OBJECTID);
  2080. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2081. fs_info->generation + 1);
  2082. if (IS_ERR(log_tree_root->node)) {
  2083. btrfs_warn(fs_info, "failed to read log tree");
  2084. ret = PTR_ERR(log_tree_root->node);
  2085. kfree(log_tree_root);
  2086. return ret;
  2087. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2088. btrfs_err(fs_info, "failed to read log tree");
  2089. free_extent_buffer(log_tree_root->node);
  2090. kfree(log_tree_root);
  2091. return -EIO;
  2092. }
  2093. /* returns with log_tree_root freed on success */
  2094. ret = btrfs_recover_log_trees(log_tree_root);
  2095. if (ret) {
  2096. btrfs_std_error(tree_root->fs_info, ret,
  2097. "Failed to recover log tree");
  2098. free_extent_buffer(log_tree_root->node);
  2099. kfree(log_tree_root);
  2100. return ret;
  2101. }
  2102. if (fs_info->sb->s_flags & MS_RDONLY) {
  2103. ret = btrfs_commit_super(tree_root);
  2104. if (ret)
  2105. return ret;
  2106. }
  2107. return 0;
  2108. }
  2109. static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
  2110. struct btrfs_root *tree_root)
  2111. {
  2112. struct btrfs_root *root;
  2113. struct btrfs_key location;
  2114. int ret;
  2115. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2116. location.type = BTRFS_ROOT_ITEM_KEY;
  2117. location.offset = 0;
  2118. root = btrfs_read_tree_root(tree_root, &location);
  2119. if (IS_ERR(root))
  2120. return PTR_ERR(root);
  2121. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2122. fs_info->extent_root = root;
  2123. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2124. root = btrfs_read_tree_root(tree_root, &location);
  2125. if (IS_ERR(root))
  2126. return PTR_ERR(root);
  2127. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2128. fs_info->dev_root = root;
  2129. btrfs_init_devices_late(fs_info);
  2130. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2131. root = btrfs_read_tree_root(tree_root, &location);
  2132. if (IS_ERR(root))
  2133. return PTR_ERR(root);
  2134. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2135. fs_info->csum_root = root;
  2136. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2137. root = btrfs_read_tree_root(tree_root, &location);
  2138. if (!IS_ERR(root)) {
  2139. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2140. fs_info->quota_enabled = 1;
  2141. fs_info->pending_quota_state = 1;
  2142. fs_info->quota_root = root;
  2143. }
  2144. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2145. root = btrfs_read_tree_root(tree_root, &location);
  2146. if (IS_ERR(root)) {
  2147. ret = PTR_ERR(root);
  2148. if (ret != -ENOENT)
  2149. return ret;
  2150. } else {
  2151. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2152. fs_info->uuid_root = root;
  2153. }
  2154. if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2155. location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
  2156. root = btrfs_read_tree_root(tree_root, &location);
  2157. if (IS_ERR(root))
  2158. return PTR_ERR(root);
  2159. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2160. fs_info->free_space_root = root;
  2161. }
  2162. return 0;
  2163. }
  2164. int open_ctree(struct super_block *sb,
  2165. struct btrfs_fs_devices *fs_devices,
  2166. char *options)
  2167. {
  2168. u32 sectorsize;
  2169. u32 nodesize;
  2170. u32 stripesize;
  2171. u64 generation;
  2172. u64 features;
  2173. struct btrfs_key location;
  2174. struct buffer_head *bh;
  2175. struct btrfs_super_block *disk_super;
  2176. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2177. struct btrfs_root *tree_root;
  2178. struct btrfs_root *chunk_root;
  2179. int ret;
  2180. int err = -EINVAL;
  2181. int num_backups_tried = 0;
  2182. int backup_index = 0;
  2183. int max_active;
  2184. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  2185. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  2186. if (!tree_root || !chunk_root) {
  2187. err = -ENOMEM;
  2188. goto fail;
  2189. }
  2190. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2191. if (ret) {
  2192. err = ret;
  2193. goto fail;
  2194. }
  2195. ret = setup_bdi(fs_info, &fs_info->bdi);
  2196. if (ret) {
  2197. err = ret;
  2198. goto fail_srcu;
  2199. }
  2200. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2201. if (ret) {
  2202. err = ret;
  2203. goto fail_bdi;
  2204. }
  2205. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  2206. (1 + ilog2(nr_cpu_ids));
  2207. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2208. if (ret) {
  2209. err = ret;
  2210. goto fail_dirty_metadata_bytes;
  2211. }
  2212. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2213. if (ret) {
  2214. err = ret;
  2215. goto fail_delalloc_bytes;
  2216. }
  2217. fs_info->btree_inode = new_inode(sb);
  2218. if (!fs_info->btree_inode) {
  2219. err = -ENOMEM;
  2220. goto fail_bio_counter;
  2221. }
  2222. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2223. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2224. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2225. INIT_LIST_HEAD(&fs_info->trans_list);
  2226. INIT_LIST_HEAD(&fs_info->dead_roots);
  2227. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2228. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2229. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2230. spin_lock_init(&fs_info->delalloc_root_lock);
  2231. spin_lock_init(&fs_info->trans_lock);
  2232. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2233. spin_lock_init(&fs_info->delayed_iput_lock);
  2234. spin_lock_init(&fs_info->defrag_inodes_lock);
  2235. spin_lock_init(&fs_info->free_chunk_lock);
  2236. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2237. spin_lock_init(&fs_info->super_lock);
  2238. spin_lock_init(&fs_info->qgroup_op_lock);
  2239. spin_lock_init(&fs_info->buffer_lock);
  2240. spin_lock_init(&fs_info->unused_bgs_lock);
  2241. rwlock_init(&fs_info->tree_mod_log_lock);
  2242. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2243. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2244. mutex_init(&fs_info->reloc_mutex);
  2245. mutex_init(&fs_info->delalloc_root_mutex);
  2246. mutex_init(&fs_info->cleaner_delayed_iput_mutex);
  2247. seqlock_init(&fs_info->profiles_lock);
  2248. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2249. INIT_LIST_HEAD(&fs_info->space_info);
  2250. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2251. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2252. btrfs_mapping_init(&fs_info->mapping_tree);
  2253. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2254. BTRFS_BLOCK_RSV_GLOBAL);
  2255. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  2256. BTRFS_BLOCK_RSV_DELALLOC);
  2257. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2258. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2259. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2260. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2261. BTRFS_BLOCK_RSV_DELOPS);
  2262. atomic_set(&fs_info->nr_async_submits, 0);
  2263. atomic_set(&fs_info->async_delalloc_pages, 0);
  2264. atomic_set(&fs_info->async_submit_draining, 0);
  2265. atomic_set(&fs_info->nr_async_bios, 0);
  2266. atomic_set(&fs_info->defrag_running, 0);
  2267. atomic_set(&fs_info->qgroup_op_seq, 0);
  2268. atomic64_set(&fs_info->tree_mod_seq, 0);
  2269. fs_info->sb = sb;
  2270. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2271. fs_info->metadata_ratio = 0;
  2272. fs_info->defrag_inodes = RB_ROOT;
  2273. fs_info->free_chunk_space = 0;
  2274. fs_info->tree_mod_log = RB_ROOT;
  2275. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2276. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2277. /* readahead state */
  2278. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2279. spin_lock_init(&fs_info->reada_lock);
  2280. fs_info->thread_pool_size = min_t(unsigned long,
  2281. num_online_cpus() + 2, 8);
  2282. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2283. spin_lock_init(&fs_info->ordered_root_lock);
  2284. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2285. GFP_NOFS);
  2286. if (!fs_info->delayed_root) {
  2287. err = -ENOMEM;
  2288. goto fail_iput;
  2289. }
  2290. btrfs_init_delayed_root(fs_info->delayed_root);
  2291. btrfs_init_scrub(fs_info);
  2292. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2293. fs_info->check_integrity_print_mask = 0;
  2294. #endif
  2295. btrfs_init_balance(fs_info);
  2296. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2297. sb->s_blocksize = 4096;
  2298. sb->s_blocksize_bits = blksize_bits(4096);
  2299. sb->s_bdi = &fs_info->bdi;
  2300. btrfs_init_btree_inode(fs_info, tree_root);
  2301. spin_lock_init(&fs_info->block_group_cache_lock);
  2302. fs_info->block_group_cache_tree = RB_ROOT;
  2303. fs_info->first_logical_byte = (u64)-1;
  2304. extent_io_tree_init(&fs_info->freed_extents[0],
  2305. fs_info->btree_inode->i_mapping);
  2306. extent_io_tree_init(&fs_info->freed_extents[1],
  2307. fs_info->btree_inode->i_mapping);
  2308. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2309. fs_info->do_barriers = 1;
  2310. mutex_init(&fs_info->ordered_operations_mutex);
  2311. mutex_init(&fs_info->tree_log_mutex);
  2312. mutex_init(&fs_info->chunk_mutex);
  2313. mutex_init(&fs_info->transaction_kthread_mutex);
  2314. mutex_init(&fs_info->cleaner_mutex);
  2315. mutex_init(&fs_info->volume_mutex);
  2316. mutex_init(&fs_info->ro_block_group_mutex);
  2317. init_rwsem(&fs_info->commit_root_sem);
  2318. init_rwsem(&fs_info->cleanup_work_sem);
  2319. init_rwsem(&fs_info->subvol_sem);
  2320. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2321. btrfs_init_dev_replace_locks(fs_info);
  2322. btrfs_init_qgroup(fs_info);
  2323. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2324. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2325. init_waitqueue_head(&fs_info->transaction_throttle);
  2326. init_waitqueue_head(&fs_info->transaction_wait);
  2327. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2328. init_waitqueue_head(&fs_info->async_submit_wait);
  2329. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2330. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2331. if (ret) {
  2332. err = ret;
  2333. goto fail_alloc;
  2334. }
  2335. __setup_root(4096, 4096, 4096, tree_root,
  2336. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2337. invalidate_bdev(fs_devices->latest_bdev);
  2338. /*
  2339. * Read super block and check the signature bytes only
  2340. */
  2341. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2342. if (IS_ERR(bh)) {
  2343. err = PTR_ERR(bh);
  2344. goto fail_alloc;
  2345. }
  2346. /*
  2347. * We want to check superblock checksum, the type is stored inside.
  2348. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2349. */
  2350. if (btrfs_check_super_csum(bh->b_data)) {
  2351. printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
  2352. err = -EINVAL;
  2353. brelse(bh);
  2354. goto fail_alloc;
  2355. }
  2356. /*
  2357. * super_copy is zeroed at allocation time and we never touch the
  2358. * following bytes up to INFO_SIZE, the checksum is calculated from
  2359. * the whole block of INFO_SIZE
  2360. */
  2361. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2362. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2363. sizeof(*fs_info->super_for_commit));
  2364. brelse(bh);
  2365. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2366. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2367. if (ret) {
  2368. printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
  2369. err = -EINVAL;
  2370. goto fail_alloc;
  2371. }
  2372. disk_super = fs_info->super_copy;
  2373. if (!btrfs_super_root(disk_super))
  2374. goto fail_alloc;
  2375. /* check FS state, whether FS is broken. */
  2376. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2377. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2378. /*
  2379. * run through our array of backup supers and setup
  2380. * our ring pointer to the oldest one
  2381. */
  2382. generation = btrfs_super_generation(disk_super);
  2383. find_oldest_super_backup(fs_info, generation);
  2384. /*
  2385. * In the long term, we'll store the compression type in the super
  2386. * block, and it'll be used for per file compression control.
  2387. */
  2388. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2389. ret = btrfs_parse_options(tree_root, options);
  2390. if (ret) {
  2391. err = ret;
  2392. goto fail_alloc;
  2393. }
  2394. features = btrfs_super_incompat_flags(disk_super) &
  2395. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2396. if (features) {
  2397. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2398. "unsupported optional features (%Lx).\n",
  2399. features);
  2400. err = -EINVAL;
  2401. goto fail_alloc;
  2402. }
  2403. features = btrfs_super_incompat_flags(disk_super);
  2404. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2405. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2406. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2407. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2408. printk(KERN_INFO "BTRFS: has skinny extents\n");
  2409. /*
  2410. * flag our filesystem as having big metadata blocks if
  2411. * they are bigger than the page size
  2412. */
  2413. if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
  2414. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2415. printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
  2416. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2417. }
  2418. nodesize = btrfs_super_nodesize(disk_super);
  2419. sectorsize = btrfs_super_sectorsize(disk_super);
  2420. stripesize = btrfs_super_stripesize(disk_super);
  2421. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2422. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2423. /*
  2424. * mixed block groups end up with duplicate but slightly offset
  2425. * extent buffers for the same range. It leads to corruptions
  2426. */
  2427. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2428. (sectorsize != nodesize)) {
  2429. printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
  2430. "are not allowed for mixed block groups on %s\n",
  2431. sb->s_id);
  2432. goto fail_alloc;
  2433. }
  2434. /*
  2435. * Needn't use the lock because there is no other task which will
  2436. * update the flag.
  2437. */
  2438. btrfs_set_super_incompat_flags(disk_super, features);
  2439. features = btrfs_super_compat_ro_flags(disk_super) &
  2440. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2441. if (!(sb->s_flags & MS_RDONLY) && features) {
  2442. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2443. "unsupported option features (%Lx).\n",
  2444. features);
  2445. err = -EINVAL;
  2446. goto fail_alloc;
  2447. }
  2448. max_active = fs_info->thread_pool_size;
  2449. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2450. if (ret) {
  2451. err = ret;
  2452. goto fail_sb_buffer;
  2453. }
  2454. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2455. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2456. SZ_4M / PAGE_CACHE_SIZE);
  2457. tree_root->nodesize = nodesize;
  2458. tree_root->sectorsize = sectorsize;
  2459. tree_root->stripesize = stripesize;
  2460. sb->s_blocksize = sectorsize;
  2461. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2462. mutex_lock(&fs_info->chunk_mutex);
  2463. ret = btrfs_read_sys_array(tree_root);
  2464. mutex_unlock(&fs_info->chunk_mutex);
  2465. if (ret) {
  2466. printk(KERN_ERR "BTRFS: failed to read the system "
  2467. "array on %s\n", sb->s_id);
  2468. goto fail_sb_buffer;
  2469. }
  2470. generation = btrfs_super_chunk_root_generation(disk_super);
  2471. __setup_root(nodesize, sectorsize, stripesize, chunk_root,
  2472. fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2473. chunk_root->node = read_tree_block(chunk_root,
  2474. btrfs_super_chunk_root(disk_super),
  2475. generation);
  2476. if (IS_ERR(chunk_root->node) ||
  2477. !extent_buffer_uptodate(chunk_root->node)) {
  2478. printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
  2479. sb->s_id);
  2480. if (!IS_ERR(chunk_root->node))
  2481. free_extent_buffer(chunk_root->node);
  2482. chunk_root->node = NULL;
  2483. goto fail_tree_roots;
  2484. }
  2485. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2486. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2487. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2488. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2489. ret = btrfs_read_chunk_tree(chunk_root);
  2490. if (ret) {
  2491. printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
  2492. sb->s_id);
  2493. goto fail_tree_roots;
  2494. }
  2495. /*
  2496. * keep the device that is marked to be the target device for the
  2497. * dev_replace procedure
  2498. */
  2499. btrfs_close_extra_devices(fs_devices, 0);
  2500. if (!fs_devices->latest_bdev) {
  2501. printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
  2502. sb->s_id);
  2503. goto fail_tree_roots;
  2504. }
  2505. retry_root_backup:
  2506. generation = btrfs_super_generation(disk_super);
  2507. tree_root->node = read_tree_block(tree_root,
  2508. btrfs_super_root(disk_super),
  2509. generation);
  2510. if (IS_ERR(tree_root->node) ||
  2511. !extent_buffer_uptodate(tree_root->node)) {
  2512. printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
  2513. sb->s_id);
  2514. if (!IS_ERR(tree_root->node))
  2515. free_extent_buffer(tree_root->node);
  2516. tree_root->node = NULL;
  2517. goto recovery_tree_root;
  2518. }
  2519. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2520. tree_root->commit_root = btrfs_root_node(tree_root);
  2521. btrfs_set_root_refs(&tree_root->root_item, 1);
  2522. mutex_lock(&tree_root->objectid_mutex);
  2523. ret = btrfs_find_highest_objectid(tree_root,
  2524. &tree_root->highest_objectid);
  2525. if (ret) {
  2526. mutex_unlock(&tree_root->objectid_mutex);
  2527. goto recovery_tree_root;
  2528. }
  2529. ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  2530. mutex_unlock(&tree_root->objectid_mutex);
  2531. ret = btrfs_read_roots(fs_info, tree_root);
  2532. if (ret)
  2533. goto recovery_tree_root;
  2534. fs_info->generation = generation;
  2535. fs_info->last_trans_committed = generation;
  2536. ret = btrfs_recover_balance(fs_info);
  2537. if (ret) {
  2538. printk(KERN_ERR "BTRFS: failed to recover balance\n");
  2539. goto fail_block_groups;
  2540. }
  2541. ret = btrfs_init_dev_stats(fs_info);
  2542. if (ret) {
  2543. printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
  2544. ret);
  2545. goto fail_block_groups;
  2546. }
  2547. ret = btrfs_init_dev_replace(fs_info);
  2548. if (ret) {
  2549. pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
  2550. goto fail_block_groups;
  2551. }
  2552. btrfs_close_extra_devices(fs_devices, 1);
  2553. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2554. if (ret) {
  2555. pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
  2556. goto fail_block_groups;
  2557. }
  2558. ret = btrfs_sysfs_add_device(fs_devices);
  2559. if (ret) {
  2560. pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
  2561. goto fail_fsdev_sysfs;
  2562. }
  2563. ret = btrfs_sysfs_add_mounted(fs_info);
  2564. if (ret) {
  2565. pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
  2566. goto fail_fsdev_sysfs;
  2567. }
  2568. ret = btrfs_init_space_info(fs_info);
  2569. if (ret) {
  2570. printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
  2571. goto fail_sysfs;
  2572. }
  2573. ret = btrfs_read_block_groups(fs_info->extent_root);
  2574. if (ret) {
  2575. printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
  2576. goto fail_sysfs;
  2577. }
  2578. fs_info->num_tolerated_disk_barrier_failures =
  2579. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2580. if (fs_info->fs_devices->missing_devices >
  2581. fs_info->num_tolerated_disk_barrier_failures &&
  2582. !(sb->s_flags & MS_RDONLY)) {
  2583. pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
  2584. fs_info->fs_devices->missing_devices,
  2585. fs_info->num_tolerated_disk_barrier_failures);
  2586. goto fail_sysfs;
  2587. }
  2588. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2589. "btrfs-cleaner");
  2590. if (IS_ERR(fs_info->cleaner_kthread))
  2591. goto fail_sysfs;
  2592. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2593. tree_root,
  2594. "btrfs-transaction");
  2595. if (IS_ERR(fs_info->transaction_kthread))
  2596. goto fail_cleaner;
  2597. if (!btrfs_test_opt(tree_root, SSD) &&
  2598. !btrfs_test_opt(tree_root, NOSSD) &&
  2599. !fs_info->fs_devices->rotating) {
  2600. printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
  2601. "mode\n");
  2602. btrfs_set_opt(fs_info->mount_opt, SSD);
  2603. }
  2604. /*
  2605. * Mount does not set all options immediatelly, we can do it now and do
  2606. * not have to wait for transaction commit
  2607. */
  2608. btrfs_apply_pending_changes(fs_info);
  2609. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2610. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2611. ret = btrfsic_mount(tree_root, fs_devices,
  2612. btrfs_test_opt(tree_root,
  2613. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2614. 1 : 0,
  2615. fs_info->check_integrity_print_mask);
  2616. if (ret)
  2617. printk(KERN_WARNING "BTRFS: failed to initialize"
  2618. " integrity check module %s\n", sb->s_id);
  2619. }
  2620. #endif
  2621. ret = btrfs_read_qgroup_config(fs_info);
  2622. if (ret)
  2623. goto fail_trans_kthread;
  2624. /* do not make disk changes in broken FS */
  2625. if (btrfs_super_log_root(disk_super) != 0) {
  2626. ret = btrfs_replay_log(fs_info, fs_devices);
  2627. if (ret) {
  2628. err = ret;
  2629. goto fail_qgroup;
  2630. }
  2631. }
  2632. ret = btrfs_find_orphan_roots(tree_root);
  2633. if (ret)
  2634. goto fail_qgroup;
  2635. if (!(sb->s_flags & MS_RDONLY)) {
  2636. ret = btrfs_cleanup_fs_roots(fs_info);
  2637. if (ret)
  2638. goto fail_qgroup;
  2639. mutex_lock(&fs_info->cleaner_mutex);
  2640. ret = btrfs_recover_relocation(tree_root);
  2641. mutex_unlock(&fs_info->cleaner_mutex);
  2642. if (ret < 0) {
  2643. printk(KERN_WARNING
  2644. "BTRFS: failed to recover relocation\n");
  2645. err = -EINVAL;
  2646. goto fail_qgroup;
  2647. }
  2648. }
  2649. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2650. location.type = BTRFS_ROOT_ITEM_KEY;
  2651. location.offset = 0;
  2652. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2653. if (IS_ERR(fs_info->fs_root)) {
  2654. err = PTR_ERR(fs_info->fs_root);
  2655. goto fail_qgroup;
  2656. }
  2657. if (sb->s_flags & MS_RDONLY)
  2658. return 0;
  2659. if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
  2660. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2661. pr_info("BTRFS: creating free space tree\n");
  2662. ret = btrfs_create_free_space_tree(fs_info);
  2663. if (ret) {
  2664. pr_warn("BTRFS: failed to create free space tree %d\n",
  2665. ret);
  2666. close_ctree(tree_root);
  2667. return ret;
  2668. }
  2669. }
  2670. down_read(&fs_info->cleanup_work_sem);
  2671. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2672. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2673. up_read(&fs_info->cleanup_work_sem);
  2674. close_ctree(tree_root);
  2675. return ret;
  2676. }
  2677. up_read(&fs_info->cleanup_work_sem);
  2678. ret = btrfs_resume_balance_async(fs_info);
  2679. if (ret) {
  2680. printk(KERN_WARNING "BTRFS: failed to resume balance\n");
  2681. close_ctree(tree_root);
  2682. return ret;
  2683. }
  2684. ret = btrfs_resume_dev_replace_async(fs_info);
  2685. if (ret) {
  2686. pr_warn("BTRFS: failed to resume dev_replace\n");
  2687. close_ctree(tree_root);
  2688. return ret;
  2689. }
  2690. btrfs_qgroup_rescan_resume(fs_info);
  2691. if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
  2692. btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2693. pr_info("BTRFS: clearing free space tree\n");
  2694. ret = btrfs_clear_free_space_tree(fs_info);
  2695. if (ret) {
  2696. pr_warn("BTRFS: failed to clear free space tree %d\n",
  2697. ret);
  2698. close_ctree(tree_root);
  2699. return ret;
  2700. }
  2701. }
  2702. if (!fs_info->uuid_root) {
  2703. pr_info("BTRFS: creating UUID tree\n");
  2704. ret = btrfs_create_uuid_tree(fs_info);
  2705. if (ret) {
  2706. pr_warn("BTRFS: failed to create the UUID tree %d\n",
  2707. ret);
  2708. close_ctree(tree_root);
  2709. return ret;
  2710. }
  2711. } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
  2712. fs_info->generation !=
  2713. btrfs_super_uuid_tree_generation(disk_super)) {
  2714. pr_info("BTRFS: checking UUID tree\n");
  2715. ret = btrfs_check_uuid_tree(fs_info);
  2716. if (ret) {
  2717. pr_warn("BTRFS: failed to check the UUID tree %d\n",
  2718. ret);
  2719. close_ctree(tree_root);
  2720. return ret;
  2721. }
  2722. } else {
  2723. fs_info->update_uuid_tree_gen = 1;
  2724. }
  2725. fs_info->open = 1;
  2726. return 0;
  2727. fail_qgroup:
  2728. btrfs_free_qgroup_config(fs_info);
  2729. fail_trans_kthread:
  2730. kthread_stop(fs_info->transaction_kthread);
  2731. btrfs_cleanup_transaction(fs_info->tree_root);
  2732. btrfs_free_fs_roots(fs_info);
  2733. fail_cleaner:
  2734. kthread_stop(fs_info->cleaner_kthread);
  2735. /*
  2736. * make sure we're done with the btree inode before we stop our
  2737. * kthreads
  2738. */
  2739. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2740. fail_sysfs:
  2741. btrfs_sysfs_remove_mounted(fs_info);
  2742. fail_fsdev_sysfs:
  2743. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2744. fail_block_groups:
  2745. btrfs_put_block_group_cache(fs_info);
  2746. btrfs_free_block_groups(fs_info);
  2747. fail_tree_roots:
  2748. free_root_pointers(fs_info, 1);
  2749. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2750. fail_sb_buffer:
  2751. btrfs_stop_all_workers(fs_info);
  2752. fail_alloc:
  2753. fail_iput:
  2754. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2755. iput(fs_info->btree_inode);
  2756. fail_bio_counter:
  2757. percpu_counter_destroy(&fs_info->bio_counter);
  2758. fail_delalloc_bytes:
  2759. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2760. fail_dirty_metadata_bytes:
  2761. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2762. fail_bdi:
  2763. bdi_destroy(&fs_info->bdi);
  2764. fail_srcu:
  2765. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2766. fail:
  2767. btrfs_free_stripe_hash_table(fs_info);
  2768. btrfs_close_devices(fs_info->fs_devices);
  2769. return err;
  2770. recovery_tree_root:
  2771. if (!btrfs_test_opt(tree_root, RECOVERY))
  2772. goto fail_tree_roots;
  2773. free_root_pointers(fs_info, 0);
  2774. /* don't use the log in recovery mode, it won't be valid */
  2775. btrfs_set_super_log_root(disk_super, 0);
  2776. /* we can't trust the free space cache either */
  2777. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2778. ret = next_root_backup(fs_info, fs_info->super_copy,
  2779. &num_backups_tried, &backup_index);
  2780. if (ret == -1)
  2781. goto fail_block_groups;
  2782. goto retry_root_backup;
  2783. }
  2784. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2785. {
  2786. if (uptodate) {
  2787. set_buffer_uptodate(bh);
  2788. } else {
  2789. struct btrfs_device *device = (struct btrfs_device *)
  2790. bh->b_private;
  2791. btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
  2792. "lost page write due to IO error on %s",
  2793. rcu_str_deref(device->name));
  2794. /* note, we dont' set_buffer_write_io_error because we have
  2795. * our own ways of dealing with the IO errors
  2796. */
  2797. clear_buffer_uptodate(bh);
  2798. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2799. }
  2800. unlock_buffer(bh);
  2801. put_bh(bh);
  2802. }
  2803. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2804. struct buffer_head **bh_ret)
  2805. {
  2806. struct buffer_head *bh;
  2807. struct btrfs_super_block *super;
  2808. u64 bytenr;
  2809. bytenr = btrfs_sb_offset(copy_num);
  2810. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2811. return -EINVAL;
  2812. bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
  2813. /*
  2814. * If we fail to read from the underlying devices, as of now
  2815. * the best option we have is to mark it EIO.
  2816. */
  2817. if (!bh)
  2818. return -EIO;
  2819. super = (struct btrfs_super_block *)bh->b_data;
  2820. if (btrfs_super_bytenr(super) != bytenr ||
  2821. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2822. brelse(bh);
  2823. return -EINVAL;
  2824. }
  2825. *bh_ret = bh;
  2826. return 0;
  2827. }
  2828. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2829. {
  2830. struct buffer_head *bh;
  2831. struct buffer_head *latest = NULL;
  2832. struct btrfs_super_block *super;
  2833. int i;
  2834. u64 transid = 0;
  2835. int ret = -EINVAL;
  2836. /* we would like to check all the supers, but that would make
  2837. * a btrfs mount succeed after a mkfs from a different FS.
  2838. * So, we need to add a special mount option to scan for
  2839. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2840. */
  2841. for (i = 0; i < 1; i++) {
  2842. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2843. if (ret)
  2844. continue;
  2845. super = (struct btrfs_super_block *)bh->b_data;
  2846. if (!latest || btrfs_super_generation(super) > transid) {
  2847. brelse(latest);
  2848. latest = bh;
  2849. transid = btrfs_super_generation(super);
  2850. } else {
  2851. brelse(bh);
  2852. }
  2853. }
  2854. if (!latest)
  2855. return ERR_PTR(ret);
  2856. return latest;
  2857. }
  2858. /*
  2859. * this should be called twice, once with wait == 0 and
  2860. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2861. * we write are pinned.
  2862. *
  2863. * They are released when wait == 1 is done.
  2864. * max_mirrors must be the same for both runs, and it indicates how
  2865. * many supers on this one device should be written.
  2866. *
  2867. * max_mirrors == 0 means to write them all.
  2868. */
  2869. static int write_dev_supers(struct btrfs_device *device,
  2870. struct btrfs_super_block *sb,
  2871. int do_barriers, int wait, int max_mirrors)
  2872. {
  2873. struct buffer_head *bh;
  2874. int i;
  2875. int ret;
  2876. int errors = 0;
  2877. u32 crc;
  2878. u64 bytenr;
  2879. if (max_mirrors == 0)
  2880. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2881. for (i = 0; i < max_mirrors; i++) {
  2882. bytenr = btrfs_sb_offset(i);
  2883. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2884. device->commit_total_bytes)
  2885. break;
  2886. if (wait) {
  2887. bh = __find_get_block(device->bdev, bytenr / 4096,
  2888. BTRFS_SUPER_INFO_SIZE);
  2889. if (!bh) {
  2890. errors++;
  2891. continue;
  2892. }
  2893. wait_on_buffer(bh);
  2894. if (!buffer_uptodate(bh))
  2895. errors++;
  2896. /* drop our reference */
  2897. brelse(bh);
  2898. /* drop the reference from the wait == 0 run */
  2899. brelse(bh);
  2900. continue;
  2901. } else {
  2902. btrfs_set_super_bytenr(sb, bytenr);
  2903. crc = ~(u32)0;
  2904. crc = btrfs_csum_data((char *)sb +
  2905. BTRFS_CSUM_SIZE, crc,
  2906. BTRFS_SUPER_INFO_SIZE -
  2907. BTRFS_CSUM_SIZE);
  2908. btrfs_csum_final(crc, sb->csum);
  2909. /*
  2910. * one reference for us, and we leave it for the
  2911. * caller
  2912. */
  2913. bh = __getblk(device->bdev, bytenr / 4096,
  2914. BTRFS_SUPER_INFO_SIZE);
  2915. if (!bh) {
  2916. btrfs_err(device->dev_root->fs_info,
  2917. "couldn't get super buffer head for bytenr %llu",
  2918. bytenr);
  2919. errors++;
  2920. continue;
  2921. }
  2922. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2923. /* one reference for submit_bh */
  2924. get_bh(bh);
  2925. set_buffer_uptodate(bh);
  2926. lock_buffer(bh);
  2927. bh->b_end_io = btrfs_end_buffer_write_sync;
  2928. bh->b_private = device;
  2929. }
  2930. /*
  2931. * we fua the first super. The others we allow
  2932. * to go down lazy.
  2933. */
  2934. if (i == 0)
  2935. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2936. else
  2937. ret = btrfsic_submit_bh(WRITE_SYNC, bh);
  2938. if (ret)
  2939. errors++;
  2940. }
  2941. return errors < i ? 0 : -1;
  2942. }
  2943. /*
  2944. * endio for the write_dev_flush, this will wake anyone waiting
  2945. * for the barrier when it is done
  2946. */
  2947. static void btrfs_end_empty_barrier(struct bio *bio)
  2948. {
  2949. if (bio->bi_private)
  2950. complete(bio->bi_private);
  2951. bio_put(bio);
  2952. }
  2953. /*
  2954. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2955. * sent down. With wait == 1, it waits for the previous flush.
  2956. *
  2957. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2958. * capable
  2959. */
  2960. static int write_dev_flush(struct btrfs_device *device, int wait)
  2961. {
  2962. struct bio *bio;
  2963. int ret = 0;
  2964. if (device->nobarriers)
  2965. return 0;
  2966. if (wait) {
  2967. bio = device->flush_bio;
  2968. if (!bio)
  2969. return 0;
  2970. wait_for_completion(&device->flush_wait);
  2971. if (bio->bi_error) {
  2972. ret = bio->bi_error;
  2973. btrfs_dev_stat_inc_and_print(device,
  2974. BTRFS_DEV_STAT_FLUSH_ERRS);
  2975. }
  2976. /* drop the reference from the wait == 0 run */
  2977. bio_put(bio);
  2978. device->flush_bio = NULL;
  2979. return ret;
  2980. }
  2981. /*
  2982. * one reference for us, and we leave it for the
  2983. * caller
  2984. */
  2985. device->flush_bio = NULL;
  2986. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2987. if (!bio)
  2988. return -ENOMEM;
  2989. bio->bi_end_io = btrfs_end_empty_barrier;
  2990. bio->bi_bdev = device->bdev;
  2991. init_completion(&device->flush_wait);
  2992. bio->bi_private = &device->flush_wait;
  2993. device->flush_bio = bio;
  2994. bio_get(bio);
  2995. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2996. return 0;
  2997. }
  2998. /*
  2999. * send an empty flush down to each device in parallel,
  3000. * then wait for them
  3001. */
  3002. static int barrier_all_devices(struct btrfs_fs_info *info)
  3003. {
  3004. struct list_head *head;
  3005. struct btrfs_device *dev;
  3006. int errors_send = 0;
  3007. int errors_wait = 0;
  3008. int ret;
  3009. /* send down all the barriers */
  3010. head = &info->fs_devices->devices;
  3011. list_for_each_entry_rcu(dev, head, dev_list) {
  3012. if (dev->missing)
  3013. continue;
  3014. if (!dev->bdev) {
  3015. errors_send++;
  3016. continue;
  3017. }
  3018. if (!dev->in_fs_metadata || !dev->writeable)
  3019. continue;
  3020. ret = write_dev_flush(dev, 0);
  3021. if (ret)
  3022. errors_send++;
  3023. }
  3024. /* wait for all the barriers */
  3025. list_for_each_entry_rcu(dev, head, dev_list) {
  3026. if (dev->missing)
  3027. continue;
  3028. if (!dev->bdev) {
  3029. errors_wait++;
  3030. continue;
  3031. }
  3032. if (!dev->in_fs_metadata || !dev->writeable)
  3033. continue;
  3034. ret = write_dev_flush(dev, 1);
  3035. if (ret)
  3036. errors_wait++;
  3037. }
  3038. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  3039. errors_wait > info->num_tolerated_disk_barrier_failures)
  3040. return -EIO;
  3041. return 0;
  3042. }
  3043. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  3044. {
  3045. int raid_type;
  3046. int min_tolerated = INT_MAX;
  3047. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  3048. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  3049. min_tolerated = min(min_tolerated,
  3050. btrfs_raid_array[BTRFS_RAID_SINGLE].
  3051. tolerated_failures);
  3052. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  3053. if (raid_type == BTRFS_RAID_SINGLE)
  3054. continue;
  3055. if (!(flags & btrfs_raid_group[raid_type]))
  3056. continue;
  3057. min_tolerated = min(min_tolerated,
  3058. btrfs_raid_array[raid_type].
  3059. tolerated_failures);
  3060. }
  3061. if (min_tolerated == INT_MAX) {
  3062. pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
  3063. min_tolerated = 0;
  3064. }
  3065. return min_tolerated;
  3066. }
  3067. int btrfs_calc_num_tolerated_disk_barrier_failures(
  3068. struct btrfs_fs_info *fs_info)
  3069. {
  3070. struct btrfs_ioctl_space_info space;
  3071. struct btrfs_space_info *sinfo;
  3072. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  3073. BTRFS_BLOCK_GROUP_SYSTEM,
  3074. BTRFS_BLOCK_GROUP_METADATA,
  3075. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  3076. int i;
  3077. int c;
  3078. int num_tolerated_disk_barrier_failures =
  3079. (int)fs_info->fs_devices->num_devices;
  3080. for (i = 0; i < ARRAY_SIZE(types); i++) {
  3081. struct btrfs_space_info *tmp;
  3082. sinfo = NULL;
  3083. rcu_read_lock();
  3084. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  3085. if (tmp->flags == types[i]) {
  3086. sinfo = tmp;
  3087. break;
  3088. }
  3089. }
  3090. rcu_read_unlock();
  3091. if (!sinfo)
  3092. continue;
  3093. down_read(&sinfo->groups_sem);
  3094. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  3095. u64 flags;
  3096. if (list_empty(&sinfo->block_groups[c]))
  3097. continue;
  3098. btrfs_get_block_group_info(&sinfo->block_groups[c],
  3099. &space);
  3100. if (space.total_bytes == 0 || space.used_bytes == 0)
  3101. continue;
  3102. flags = space.flags;
  3103. num_tolerated_disk_barrier_failures = min(
  3104. num_tolerated_disk_barrier_failures,
  3105. btrfs_get_num_tolerated_disk_barrier_failures(
  3106. flags));
  3107. }
  3108. up_read(&sinfo->groups_sem);
  3109. }
  3110. return num_tolerated_disk_barrier_failures;
  3111. }
  3112. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  3113. {
  3114. struct list_head *head;
  3115. struct btrfs_device *dev;
  3116. struct btrfs_super_block *sb;
  3117. struct btrfs_dev_item *dev_item;
  3118. int ret;
  3119. int do_barriers;
  3120. int max_errors;
  3121. int total_errors = 0;
  3122. u64 flags;
  3123. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  3124. backup_super_roots(root->fs_info);
  3125. sb = root->fs_info->super_for_commit;
  3126. dev_item = &sb->dev_item;
  3127. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  3128. head = &root->fs_info->fs_devices->devices;
  3129. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  3130. if (do_barriers) {
  3131. ret = barrier_all_devices(root->fs_info);
  3132. if (ret) {
  3133. mutex_unlock(
  3134. &root->fs_info->fs_devices->device_list_mutex);
  3135. btrfs_std_error(root->fs_info, ret,
  3136. "errors while submitting device barriers.");
  3137. return ret;
  3138. }
  3139. }
  3140. list_for_each_entry_rcu(dev, head, dev_list) {
  3141. if (!dev->bdev) {
  3142. total_errors++;
  3143. continue;
  3144. }
  3145. if (!dev->in_fs_metadata || !dev->writeable)
  3146. continue;
  3147. btrfs_set_stack_device_generation(dev_item, 0);
  3148. btrfs_set_stack_device_type(dev_item, dev->type);
  3149. btrfs_set_stack_device_id(dev_item, dev->devid);
  3150. btrfs_set_stack_device_total_bytes(dev_item,
  3151. dev->commit_total_bytes);
  3152. btrfs_set_stack_device_bytes_used(dev_item,
  3153. dev->commit_bytes_used);
  3154. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3155. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3156. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3157. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3158. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3159. flags = btrfs_super_flags(sb);
  3160. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3161. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  3162. if (ret)
  3163. total_errors++;
  3164. }
  3165. if (total_errors > max_errors) {
  3166. btrfs_err(root->fs_info, "%d errors while writing supers",
  3167. total_errors);
  3168. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3169. /* FUA is masked off if unsupported and can't be the reason */
  3170. btrfs_std_error(root->fs_info, -EIO,
  3171. "%d errors while writing supers", total_errors);
  3172. return -EIO;
  3173. }
  3174. total_errors = 0;
  3175. list_for_each_entry_rcu(dev, head, dev_list) {
  3176. if (!dev->bdev)
  3177. continue;
  3178. if (!dev->in_fs_metadata || !dev->writeable)
  3179. continue;
  3180. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3181. if (ret)
  3182. total_errors++;
  3183. }
  3184. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3185. if (total_errors > max_errors) {
  3186. btrfs_std_error(root->fs_info, -EIO,
  3187. "%d errors while writing supers", total_errors);
  3188. return -EIO;
  3189. }
  3190. return 0;
  3191. }
  3192. int write_ctree_super(struct btrfs_trans_handle *trans,
  3193. struct btrfs_root *root, int max_mirrors)
  3194. {
  3195. return write_all_supers(root, max_mirrors);
  3196. }
  3197. /* Drop a fs root from the radix tree and free it. */
  3198. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3199. struct btrfs_root *root)
  3200. {
  3201. spin_lock(&fs_info->fs_roots_radix_lock);
  3202. radix_tree_delete(&fs_info->fs_roots_radix,
  3203. (unsigned long)root->root_key.objectid);
  3204. spin_unlock(&fs_info->fs_roots_radix_lock);
  3205. if (btrfs_root_refs(&root->root_item) == 0)
  3206. synchronize_srcu(&fs_info->subvol_srcu);
  3207. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3208. btrfs_free_log(NULL, root);
  3209. if (root->free_ino_pinned)
  3210. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3211. if (root->free_ino_ctl)
  3212. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3213. free_fs_root(root);
  3214. }
  3215. static void free_fs_root(struct btrfs_root *root)
  3216. {
  3217. iput(root->ino_cache_inode);
  3218. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3219. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3220. root->orphan_block_rsv = NULL;
  3221. if (root->anon_dev)
  3222. free_anon_bdev(root->anon_dev);
  3223. if (root->subv_writers)
  3224. btrfs_free_subvolume_writers(root->subv_writers);
  3225. free_extent_buffer(root->node);
  3226. free_extent_buffer(root->commit_root);
  3227. kfree(root->free_ino_ctl);
  3228. kfree(root->free_ino_pinned);
  3229. kfree(root->name);
  3230. btrfs_put_fs_root(root);
  3231. }
  3232. void btrfs_free_fs_root(struct btrfs_root *root)
  3233. {
  3234. free_fs_root(root);
  3235. }
  3236. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3237. {
  3238. u64 root_objectid = 0;
  3239. struct btrfs_root *gang[8];
  3240. int i = 0;
  3241. int err = 0;
  3242. unsigned int ret = 0;
  3243. int index;
  3244. while (1) {
  3245. index = srcu_read_lock(&fs_info->subvol_srcu);
  3246. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3247. (void **)gang, root_objectid,
  3248. ARRAY_SIZE(gang));
  3249. if (!ret) {
  3250. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3251. break;
  3252. }
  3253. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3254. for (i = 0; i < ret; i++) {
  3255. /* Avoid to grab roots in dead_roots */
  3256. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3257. gang[i] = NULL;
  3258. continue;
  3259. }
  3260. /* grab all the search result for later use */
  3261. gang[i] = btrfs_grab_fs_root(gang[i]);
  3262. }
  3263. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3264. for (i = 0; i < ret; i++) {
  3265. if (!gang[i])
  3266. continue;
  3267. root_objectid = gang[i]->root_key.objectid;
  3268. err = btrfs_orphan_cleanup(gang[i]);
  3269. if (err)
  3270. break;
  3271. btrfs_put_fs_root(gang[i]);
  3272. }
  3273. root_objectid++;
  3274. }
  3275. /* release the uncleaned roots due to error */
  3276. for (; i < ret; i++) {
  3277. if (gang[i])
  3278. btrfs_put_fs_root(gang[i]);
  3279. }
  3280. return err;
  3281. }
  3282. int btrfs_commit_super(struct btrfs_root *root)
  3283. {
  3284. struct btrfs_trans_handle *trans;
  3285. mutex_lock(&root->fs_info->cleaner_mutex);
  3286. btrfs_run_delayed_iputs(root);
  3287. mutex_unlock(&root->fs_info->cleaner_mutex);
  3288. wake_up_process(root->fs_info->cleaner_kthread);
  3289. /* wait until ongoing cleanup work done */
  3290. down_write(&root->fs_info->cleanup_work_sem);
  3291. up_write(&root->fs_info->cleanup_work_sem);
  3292. trans = btrfs_join_transaction(root);
  3293. if (IS_ERR(trans))
  3294. return PTR_ERR(trans);
  3295. return btrfs_commit_transaction(trans, root);
  3296. }
  3297. void close_ctree(struct btrfs_root *root)
  3298. {
  3299. struct btrfs_fs_info *fs_info = root->fs_info;
  3300. int ret;
  3301. fs_info->closing = 1;
  3302. smp_mb();
  3303. /* wait for the qgroup rescan worker to stop */
  3304. btrfs_qgroup_wait_for_completion(fs_info);
  3305. /* wait for the uuid_scan task to finish */
  3306. down(&fs_info->uuid_tree_rescan_sem);
  3307. /* avoid complains from lockdep et al., set sem back to initial state */
  3308. up(&fs_info->uuid_tree_rescan_sem);
  3309. /* pause restriper - we want to resume on mount */
  3310. btrfs_pause_balance(fs_info);
  3311. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3312. btrfs_scrub_cancel(fs_info);
  3313. /* wait for any defraggers to finish */
  3314. wait_event(fs_info->transaction_wait,
  3315. (atomic_read(&fs_info->defrag_running) == 0));
  3316. /* clear out the rbtree of defraggable inodes */
  3317. btrfs_cleanup_defrag_inodes(fs_info);
  3318. cancel_work_sync(&fs_info->async_reclaim_work);
  3319. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3320. /*
  3321. * If the cleaner thread is stopped and there are
  3322. * block groups queued for removal, the deletion will be
  3323. * skipped when we quit the cleaner thread.
  3324. */
  3325. btrfs_delete_unused_bgs(root->fs_info);
  3326. ret = btrfs_commit_super(root);
  3327. if (ret)
  3328. btrfs_err(fs_info, "commit super ret %d", ret);
  3329. }
  3330. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3331. btrfs_error_commit_super(root);
  3332. kthread_stop(fs_info->transaction_kthread);
  3333. kthread_stop(fs_info->cleaner_kthread);
  3334. fs_info->closing = 2;
  3335. smp_mb();
  3336. btrfs_free_qgroup_config(fs_info);
  3337. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3338. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3339. percpu_counter_sum(&fs_info->delalloc_bytes));
  3340. }
  3341. btrfs_sysfs_remove_mounted(fs_info);
  3342. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3343. btrfs_free_fs_roots(fs_info);
  3344. btrfs_put_block_group_cache(fs_info);
  3345. btrfs_free_block_groups(fs_info);
  3346. /*
  3347. * we must make sure there is not any read request to
  3348. * submit after we stopping all workers.
  3349. */
  3350. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3351. btrfs_stop_all_workers(fs_info);
  3352. fs_info->open = 0;
  3353. free_root_pointers(fs_info, 1);
  3354. iput(fs_info->btree_inode);
  3355. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3356. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3357. btrfsic_unmount(root, fs_info->fs_devices);
  3358. #endif
  3359. btrfs_close_devices(fs_info->fs_devices);
  3360. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3361. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3362. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3363. percpu_counter_destroy(&fs_info->bio_counter);
  3364. bdi_destroy(&fs_info->bdi);
  3365. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3366. btrfs_free_stripe_hash_table(fs_info);
  3367. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3368. root->orphan_block_rsv = NULL;
  3369. lock_chunks(root);
  3370. while (!list_empty(&fs_info->pinned_chunks)) {
  3371. struct extent_map *em;
  3372. em = list_first_entry(&fs_info->pinned_chunks,
  3373. struct extent_map, list);
  3374. list_del_init(&em->list);
  3375. free_extent_map(em);
  3376. }
  3377. unlock_chunks(root);
  3378. }
  3379. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3380. int atomic)
  3381. {
  3382. int ret;
  3383. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3384. ret = extent_buffer_uptodate(buf);
  3385. if (!ret)
  3386. return ret;
  3387. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3388. parent_transid, atomic);
  3389. if (ret == -EAGAIN)
  3390. return ret;
  3391. return !ret;
  3392. }
  3393. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3394. {
  3395. struct btrfs_root *root;
  3396. u64 transid = btrfs_header_generation(buf);
  3397. int was_dirty;
  3398. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3399. /*
  3400. * This is a fast path so only do this check if we have sanity tests
  3401. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3402. * outside of the sanity tests.
  3403. */
  3404. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3405. return;
  3406. #endif
  3407. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3408. btrfs_assert_tree_locked(buf);
  3409. if (transid != root->fs_info->generation)
  3410. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3411. "found %llu running %llu\n",
  3412. buf->start, transid, root->fs_info->generation);
  3413. was_dirty = set_extent_buffer_dirty(buf);
  3414. if (!was_dirty)
  3415. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3416. buf->len,
  3417. root->fs_info->dirty_metadata_batch);
  3418. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3419. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3420. btrfs_print_leaf(root, buf);
  3421. ASSERT(0);
  3422. }
  3423. #endif
  3424. }
  3425. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3426. int flush_delayed)
  3427. {
  3428. /*
  3429. * looks as though older kernels can get into trouble with
  3430. * this code, they end up stuck in balance_dirty_pages forever
  3431. */
  3432. int ret;
  3433. if (current->flags & PF_MEMALLOC)
  3434. return;
  3435. if (flush_delayed)
  3436. btrfs_balance_delayed_items(root);
  3437. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3438. BTRFS_DIRTY_METADATA_THRESH);
  3439. if (ret > 0) {
  3440. balance_dirty_pages_ratelimited(
  3441. root->fs_info->btree_inode->i_mapping);
  3442. }
  3443. }
  3444. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3445. {
  3446. __btrfs_btree_balance_dirty(root, 1);
  3447. }
  3448. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3449. {
  3450. __btrfs_btree_balance_dirty(root, 0);
  3451. }
  3452. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3453. {
  3454. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3455. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3456. }
  3457. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3458. int read_only)
  3459. {
  3460. struct btrfs_super_block *sb = fs_info->super_copy;
  3461. u64 nodesize = btrfs_super_nodesize(sb);
  3462. u64 sectorsize = btrfs_super_sectorsize(sb);
  3463. int ret = 0;
  3464. if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
  3465. printk(KERN_ERR "BTRFS: no valid FS found\n");
  3466. ret = -EINVAL;
  3467. }
  3468. if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
  3469. printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
  3470. btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
  3471. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3472. printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
  3473. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3474. ret = -EINVAL;
  3475. }
  3476. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3477. printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
  3478. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3479. ret = -EINVAL;
  3480. }
  3481. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3482. printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
  3483. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3484. ret = -EINVAL;
  3485. }
  3486. /*
  3487. * Check sectorsize and nodesize first, other check will need it.
  3488. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
  3489. */
  3490. if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
  3491. sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3492. printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
  3493. ret = -EINVAL;
  3494. }
  3495. /* Only PAGE SIZE is supported yet */
  3496. if (sectorsize != PAGE_CACHE_SIZE) {
  3497. printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
  3498. sectorsize, PAGE_CACHE_SIZE);
  3499. ret = -EINVAL;
  3500. }
  3501. if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
  3502. nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3503. printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
  3504. ret = -EINVAL;
  3505. }
  3506. if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
  3507. printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
  3508. le32_to_cpu(sb->__unused_leafsize),
  3509. nodesize);
  3510. ret = -EINVAL;
  3511. }
  3512. /* Root alignment check */
  3513. if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
  3514. printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
  3515. btrfs_super_root(sb));
  3516. ret = -EINVAL;
  3517. }
  3518. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
  3519. printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
  3520. btrfs_super_chunk_root(sb));
  3521. ret = -EINVAL;
  3522. }
  3523. if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
  3524. printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
  3525. btrfs_super_log_root(sb));
  3526. ret = -EINVAL;
  3527. }
  3528. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
  3529. printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
  3530. fs_info->fsid, sb->dev_item.fsid);
  3531. ret = -EINVAL;
  3532. }
  3533. /*
  3534. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3535. * done later
  3536. */
  3537. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3538. printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
  3539. btrfs_super_num_devices(sb));
  3540. if (btrfs_super_num_devices(sb) == 0) {
  3541. printk(KERN_ERR "BTRFS: number of devices is 0\n");
  3542. ret = -EINVAL;
  3543. }
  3544. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3545. printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
  3546. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3547. ret = -EINVAL;
  3548. }
  3549. /*
  3550. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3551. * and one chunk
  3552. */
  3553. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3554. printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
  3555. btrfs_super_sys_array_size(sb),
  3556. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3557. ret = -EINVAL;
  3558. }
  3559. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3560. + sizeof(struct btrfs_chunk)) {
  3561. printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
  3562. btrfs_super_sys_array_size(sb),
  3563. sizeof(struct btrfs_disk_key)
  3564. + sizeof(struct btrfs_chunk));
  3565. ret = -EINVAL;
  3566. }
  3567. /*
  3568. * The generation is a global counter, we'll trust it more than the others
  3569. * but it's still possible that it's the one that's wrong.
  3570. */
  3571. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3572. printk(KERN_WARNING
  3573. "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
  3574. btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
  3575. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3576. && btrfs_super_cache_generation(sb) != (u64)-1)
  3577. printk(KERN_WARNING
  3578. "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
  3579. btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
  3580. return ret;
  3581. }
  3582. static void btrfs_error_commit_super(struct btrfs_root *root)
  3583. {
  3584. mutex_lock(&root->fs_info->cleaner_mutex);
  3585. btrfs_run_delayed_iputs(root);
  3586. mutex_unlock(&root->fs_info->cleaner_mutex);
  3587. down_write(&root->fs_info->cleanup_work_sem);
  3588. up_write(&root->fs_info->cleanup_work_sem);
  3589. /* cleanup FS via transaction */
  3590. btrfs_cleanup_transaction(root);
  3591. }
  3592. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3593. {
  3594. struct btrfs_ordered_extent *ordered;
  3595. spin_lock(&root->ordered_extent_lock);
  3596. /*
  3597. * This will just short circuit the ordered completion stuff which will
  3598. * make sure the ordered extent gets properly cleaned up.
  3599. */
  3600. list_for_each_entry(ordered, &root->ordered_extents,
  3601. root_extent_list)
  3602. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3603. spin_unlock(&root->ordered_extent_lock);
  3604. }
  3605. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3606. {
  3607. struct btrfs_root *root;
  3608. struct list_head splice;
  3609. INIT_LIST_HEAD(&splice);
  3610. spin_lock(&fs_info->ordered_root_lock);
  3611. list_splice_init(&fs_info->ordered_roots, &splice);
  3612. while (!list_empty(&splice)) {
  3613. root = list_first_entry(&splice, struct btrfs_root,
  3614. ordered_root);
  3615. list_move_tail(&root->ordered_root,
  3616. &fs_info->ordered_roots);
  3617. spin_unlock(&fs_info->ordered_root_lock);
  3618. btrfs_destroy_ordered_extents(root);
  3619. cond_resched();
  3620. spin_lock(&fs_info->ordered_root_lock);
  3621. }
  3622. spin_unlock(&fs_info->ordered_root_lock);
  3623. }
  3624. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3625. struct btrfs_root *root)
  3626. {
  3627. struct rb_node *node;
  3628. struct btrfs_delayed_ref_root *delayed_refs;
  3629. struct btrfs_delayed_ref_node *ref;
  3630. int ret = 0;
  3631. delayed_refs = &trans->delayed_refs;
  3632. spin_lock(&delayed_refs->lock);
  3633. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3634. spin_unlock(&delayed_refs->lock);
  3635. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3636. return ret;
  3637. }
  3638. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3639. struct btrfs_delayed_ref_head *head;
  3640. struct btrfs_delayed_ref_node *tmp;
  3641. bool pin_bytes = false;
  3642. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3643. href_node);
  3644. if (!mutex_trylock(&head->mutex)) {
  3645. atomic_inc(&head->node.refs);
  3646. spin_unlock(&delayed_refs->lock);
  3647. mutex_lock(&head->mutex);
  3648. mutex_unlock(&head->mutex);
  3649. btrfs_put_delayed_ref(&head->node);
  3650. spin_lock(&delayed_refs->lock);
  3651. continue;
  3652. }
  3653. spin_lock(&head->lock);
  3654. list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
  3655. list) {
  3656. ref->in_tree = 0;
  3657. list_del(&ref->list);
  3658. atomic_dec(&delayed_refs->num_entries);
  3659. btrfs_put_delayed_ref(ref);
  3660. }
  3661. if (head->must_insert_reserved)
  3662. pin_bytes = true;
  3663. btrfs_free_delayed_extent_op(head->extent_op);
  3664. delayed_refs->num_heads--;
  3665. if (head->processing == 0)
  3666. delayed_refs->num_heads_ready--;
  3667. atomic_dec(&delayed_refs->num_entries);
  3668. head->node.in_tree = 0;
  3669. rb_erase(&head->href_node, &delayed_refs->href_root);
  3670. spin_unlock(&head->lock);
  3671. spin_unlock(&delayed_refs->lock);
  3672. mutex_unlock(&head->mutex);
  3673. if (pin_bytes)
  3674. btrfs_pin_extent(root, head->node.bytenr,
  3675. head->node.num_bytes, 1);
  3676. btrfs_put_delayed_ref(&head->node);
  3677. cond_resched();
  3678. spin_lock(&delayed_refs->lock);
  3679. }
  3680. spin_unlock(&delayed_refs->lock);
  3681. return ret;
  3682. }
  3683. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3684. {
  3685. struct btrfs_inode *btrfs_inode;
  3686. struct list_head splice;
  3687. INIT_LIST_HEAD(&splice);
  3688. spin_lock(&root->delalloc_lock);
  3689. list_splice_init(&root->delalloc_inodes, &splice);
  3690. while (!list_empty(&splice)) {
  3691. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3692. delalloc_inodes);
  3693. list_del_init(&btrfs_inode->delalloc_inodes);
  3694. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3695. &btrfs_inode->runtime_flags);
  3696. spin_unlock(&root->delalloc_lock);
  3697. btrfs_invalidate_inodes(btrfs_inode->root);
  3698. spin_lock(&root->delalloc_lock);
  3699. }
  3700. spin_unlock(&root->delalloc_lock);
  3701. }
  3702. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3703. {
  3704. struct btrfs_root *root;
  3705. struct list_head splice;
  3706. INIT_LIST_HEAD(&splice);
  3707. spin_lock(&fs_info->delalloc_root_lock);
  3708. list_splice_init(&fs_info->delalloc_roots, &splice);
  3709. while (!list_empty(&splice)) {
  3710. root = list_first_entry(&splice, struct btrfs_root,
  3711. delalloc_root);
  3712. list_del_init(&root->delalloc_root);
  3713. root = btrfs_grab_fs_root(root);
  3714. BUG_ON(!root);
  3715. spin_unlock(&fs_info->delalloc_root_lock);
  3716. btrfs_destroy_delalloc_inodes(root);
  3717. btrfs_put_fs_root(root);
  3718. spin_lock(&fs_info->delalloc_root_lock);
  3719. }
  3720. spin_unlock(&fs_info->delalloc_root_lock);
  3721. }
  3722. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3723. struct extent_io_tree *dirty_pages,
  3724. int mark)
  3725. {
  3726. int ret;
  3727. struct extent_buffer *eb;
  3728. u64 start = 0;
  3729. u64 end;
  3730. while (1) {
  3731. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3732. mark, NULL);
  3733. if (ret)
  3734. break;
  3735. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3736. while (start <= end) {
  3737. eb = btrfs_find_tree_block(root->fs_info, start);
  3738. start += root->nodesize;
  3739. if (!eb)
  3740. continue;
  3741. wait_on_extent_buffer_writeback(eb);
  3742. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3743. &eb->bflags))
  3744. clear_extent_buffer_dirty(eb);
  3745. free_extent_buffer_stale(eb);
  3746. }
  3747. }
  3748. return ret;
  3749. }
  3750. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3751. struct extent_io_tree *pinned_extents)
  3752. {
  3753. struct extent_io_tree *unpin;
  3754. u64 start;
  3755. u64 end;
  3756. int ret;
  3757. bool loop = true;
  3758. unpin = pinned_extents;
  3759. again:
  3760. while (1) {
  3761. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3762. EXTENT_DIRTY, NULL);
  3763. if (ret)
  3764. break;
  3765. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3766. btrfs_error_unpin_extent_range(root, start, end);
  3767. cond_resched();
  3768. }
  3769. if (loop) {
  3770. if (unpin == &root->fs_info->freed_extents[0])
  3771. unpin = &root->fs_info->freed_extents[1];
  3772. else
  3773. unpin = &root->fs_info->freed_extents[0];
  3774. loop = false;
  3775. goto again;
  3776. }
  3777. return 0;
  3778. }
  3779. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3780. struct btrfs_root *root)
  3781. {
  3782. btrfs_destroy_delayed_refs(cur_trans, root);
  3783. cur_trans->state = TRANS_STATE_COMMIT_START;
  3784. wake_up(&root->fs_info->transaction_blocked_wait);
  3785. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3786. wake_up(&root->fs_info->transaction_wait);
  3787. btrfs_destroy_delayed_inodes(root);
  3788. btrfs_assert_delayed_root_empty(root);
  3789. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3790. EXTENT_DIRTY);
  3791. btrfs_destroy_pinned_extent(root,
  3792. root->fs_info->pinned_extents);
  3793. cur_trans->state =TRANS_STATE_COMPLETED;
  3794. wake_up(&cur_trans->commit_wait);
  3795. /*
  3796. memset(cur_trans, 0, sizeof(*cur_trans));
  3797. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3798. */
  3799. }
  3800. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3801. {
  3802. struct btrfs_transaction *t;
  3803. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3804. spin_lock(&root->fs_info->trans_lock);
  3805. while (!list_empty(&root->fs_info->trans_list)) {
  3806. t = list_first_entry(&root->fs_info->trans_list,
  3807. struct btrfs_transaction, list);
  3808. if (t->state >= TRANS_STATE_COMMIT_START) {
  3809. atomic_inc(&t->use_count);
  3810. spin_unlock(&root->fs_info->trans_lock);
  3811. btrfs_wait_for_commit(root, t->transid);
  3812. btrfs_put_transaction(t);
  3813. spin_lock(&root->fs_info->trans_lock);
  3814. continue;
  3815. }
  3816. if (t == root->fs_info->running_transaction) {
  3817. t->state = TRANS_STATE_COMMIT_DOING;
  3818. spin_unlock(&root->fs_info->trans_lock);
  3819. /*
  3820. * We wait for 0 num_writers since we don't hold a trans
  3821. * handle open currently for this transaction.
  3822. */
  3823. wait_event(t->writer_wait,
  3824. atomic_read(&t->num_writers) == 0);
  3825. } else {
  3826. spin_unlock(&root->fs_info->trans_lock);
  3827. }
  3828. btrfs_cleanup_one_transaction(t, root);
  3829. spin_lock(&root->fs_info->trans_lock);
  3830. if (t == root->fs_info->running_transaction)
  3831. root->fs_info->running_transaction = NULL;
  3832. list_del_init(&t->list);
  3833. spin_unlock(&root->fs_info->trans_lock);
  3834. btrfs_put_transaction(t);
  3835. trace_btrfs_transaction_commit(root);
  3836. spin_lock(&root->fs_info->trans_lock);
  3837. }
  3838. spin_unlock(&root->fs_info->trans_lock);
  3839. btrfs_destroy_all_ordered_extents(root->fs_info);
  3840. btrfs_destroy_delayed_inodes(root);
  3841. btrfs_assert_delayed_root_empty(root);
  3842. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3843. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3844. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3845. return 0;
  3846. }
  3847. static const struct extent_io_ops btree_extent_io_ops = {
  3848. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3849. .readpage_io_failed_hook = btree_io_failed_hook,
  3850. .submit_bio_hook = btree_submit_bio_hook,
  3851. /* note we're sharing with inode.c for the merge bio hook */
  3852. .merge_bio_hook = btrfs_merge_bio_hook,
  3853. };