mcpm_entry.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452
  1. /*
  2. * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM
  3. *
  4. * Created by: Nicolas Pitre, March 2012
  5. * Copyright: (C) 2012-2013 Linaro Limited
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/init.h>
  13. #include <linux/irqflags.h>
  14. #include <linux/cpu_pm.h>
  15. #include <asm/mcpm.h>
  16. #include <asm/cacheflush.h>
  17. #include <asm/idmap.h>
  18. #include <asm/cputype.h>
  19. #include <asm/suspend.h>
  20. struct sync_struct mcpm_sync;
  21. /*
  22. * __mcpm_cpu_going_down: Indicates that the cpu is being torn down.
  23. * This must be called at the point of committing to teardown of a CPU.
  24. * The CPU cache (SCTRL.C bit) is expected to still be active.
  25. */
  26. static void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster)
  27. {
  28. mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN;
  29. sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
  30. }
  31. /*
  32. * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the
  33. * cluster can be torn down without disrupting this CPU.
  34. * To avoid deadlocks, this must be called before a CPU is powered down.
  35. * The CPU cache (SCTRL.C bit) is expected to be off.
  36. * However L2 cache might or might not be active.
  37. */
  38. static void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster)
  39. {
  40. dmb();
  41. mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN;
  42. sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
  43. sev();
  44. }
  45. /*
  46. * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section.
  47. * @state: the final state of the cluster:
  48. * CLUSTER_UP: no destructive teardown was done and the cluster has been
  49. * restored to the previous state (CPU cache still active); or
  50. * CLUSTER_DOWN: the cluster has been torn-down, ready for power-off
  51. * (CPU cache disabled, L2 cache either enabled or disabled).
  52. */
  53. static void __mcpm_outbound_leave_critical(unsigned int cluster, int state)
  54. {
  55. dmb();
  56. mcpm_sync.clusters[cluster].cluster = state;
  57. sync_cache_w(&mcpm_sync.clusters[cluster].cluster);
  58. sev();
  59. }
  60. /*
  61. * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section.
  62. * This function should be called by the last man, after local CPU teardown
  63. * is complete. CPU cache expected to be active.
  64. *
  65. * Returns:
  66. * false: the critical section was not entered because an inbound CPU was
  67. * observed, or the cluster is already being set up;
  68. * true: the critical section was entered: it is now safe to tear down the
  69. * cluster.
  70. */
  71. static bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster)
  72. {
  73. unsigned int i;
  74. struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster];
  75. /* Warn inbound CPUs that the cluster is being torn down: */
  76. c->cluster = CLUSTER_GOING_DOWN;
  77. sync_cache_w(&c->cluster);
  78. /* Back out if the inbound cluster is already in the critical region: */
  79. sync_cache_r(&c->inbound);
  80. if (c->inbound == INBOUND_COMING_UP)
  81. goto abort;
  82. /*
  83. * Wait for all CPUs to get out of the GOING_DOWN state, so that local
  84. * teardown is complete on each CPU before tearing down the cluster.
  85. *
  86. * If any CPU has been woken up again from the DOWN state, then we
  87. * shouldn't be taking the cluster down at all: abort in that case.
  88. */
  89. sync_cache_r(&c->cpus);
  90. for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) {
  91. int cpustate;
  92. if (i == cpu)
  93. continue;
  94. while (1) {
  95. cpustate = c->cpus[i].cpu;
  96. if (cpustate != CPU_GOING_DOWN)
  97. break;
  98. wfe();
  99. sync_cache_r(&c->cpus[i].cpu);
  100. }
  101. switch (cpustate) {
  102. case CPU_DOWN:
  103. continue;
  104. default:
  105. goto abort;
  106. }
  107. }
  108. return true;
  109. abort:
  110. __mcpm_outbound_leave_critical(cluster, CLUSTER_UP);
  111. return false;
  112. }
  113. static int __mcpm_cluster_state(unsigned int cluster)
  114. {
  115. sync_cache_r(&mcpm_sync.clusters[cluster].cluster);
  116. return mcpm_sync.clusters[cluster].cluster;
  117. }
  118. extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
  119. void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr)
  120. {
  121. unsigned long val = ptr ? virt_to_phys(ptr) : 0;
  122. mcpm_entry_vectors[cluster][cpu] = val;
  123. sync_cache_w(&mcpm_entry_vectors[cluster][cpu]);
  124. }
  125. extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2];
  126. void mcpm_set_early_poke(unsigned cpu, unsigned cluster,
  127. unsigned long poke_phys_addr, unsigned long poke_val)
  128. {
  129. unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0];
  130. poke[0] = poke_phys_addr;
  131. poke[1] = poke_val;
  132. __sync_cache_range_w(poke, 2 * sizeof(*poke));
  133. }
  134. static const struct mcpm_platform_ops *platform_ops;
  135. int __init mcpm_platform_register(const struct mcpm_platform_ops *ops)
  136. {
  137. if (platform_ops)
  138. return -EBUSY;
  139. platform_ops = ops;
  140. return 0;
  141. }
  142. bool mcpm_is_available(void)
  143. {
  144. return (platform_ops) ? true : false;
  145. }
  146. /*
  147. * We can't use regular spinlocks. In the switcher case, it is possible
  148. * for an outbound CPU to call power_down() after its inbound counterpart
  149. * is already live using the same logical CPU number which trips lockdep
  150. * debugging.
  151. */
  152. static arch_spinlock_t mcpm_lock = __ARCH_SPIN_LOCK_UNLOCKED;
  153. static int mcpm_cpu_use_count[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
  154. static inline bool mcpm_cluster_unused(unsigned int cluster)
  155. {
  156. int i, cnt;
  157. for (i = 0, cnt = 0; i < MAX_CPUS_PER_CLUSTER; i++)
  158. cnt |= mcpm_cpu_use_count[cluster][i];
  159. return !cnt;
  160. }
  161. int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster)
  162. {
  163. bool cpu_is_down, cluster_is_down;
  164. int ret = 0;
  165. pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
  166. if (!platform_ops)
  167. return -EUNATCH; /* try not to shadow power_up errors */
  168. might_sleep();
  169. /*
  170. * Since this is called with IRQs enabled, and no arch_spin_lock_irq
  171. * variant exists, we need to disable IRQs manually here.
  172. */
  173. local_irq_disable();
  174. arch_spin_lock(&mcpm_lock);
  175. cpu_is_down = !mcpm_cpu_use_count[cluster][cpu];
  176. cluster_is_down = mcpm_cluster_unused(cluster);
  177. mcpm_cpu_use_count[cluster][cpu]++;
  178. /*
  179. * The only possible values are:
  180. * 0 = CPU down
  181. * 1 = CPU (still) up
  182. * 2 = CPU requested to be up before it had a chance
  183. * to actually make itself down.
  184. * Any other value is a bug.
  185. */
  186. BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 1 &&
  187. mcpm_cpu_use_count[cluster][cpu] != 2);
  188. if (cluster_is_down)
  189. ret = platform_ops->cluster_powerup(cluster);
  190. if (cpu_is_down && !ret)
  191. ret = platform_ops->cpu_powerup(cpu, cluster);
  192. arch_spin_unlock(&mcpm_lock);
  193. local_irq_enable();
  194. return ret;
  195. }
  196. typedef void (*phys_reset_t)(unsigned long);
  197. void mcpm_cpu_power_down(void)
  198. {
  199. unsigned int mpidr, cpu, cluster;
  200. bool cpu_going_down, last_man;
  201. phys_reset_t phys_reset;
  202. mpidr = read_cpuid_mpidr();
  203. cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
  204. cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
  205. pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
  206. if (WARN_ON_ONCE(!platform_ops))
  207. return;
  208. BUG_ON(!irqs_disabled());
  209. setup_mm_for_reboot();
  210. __mcpm_cpu_going_down(cpu, cluster);
  211. arch_spin_lock(&mcpm_lock);
  212. BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP);
  213. mcpm_cpu_use_count[cluster][cpu]--;
  214. BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 0 &&
  215. mcpm_cpu_use_count[cluster][cpu] != 1);
  216. cpu_going_down = !mcpm_cpu_use_count[cluster][cpu];
  217. last_man = mcpm_cluster_unused(cluster);
  218. if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) {
  219. platform_ops->cpu_powerdown_prepare(cpu, cluster);
  220. platform_ops->cluster_powerdown_prepare(cluster);
  221. arch_spin_unlock(&mcpm_lock);
  222. platform_ops->cluster_cache_disable();
  223. __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
  224. } else {
  225. if (cpu_going_down)
  226. platform_ops->cpu_powerdown_prepare(cpu, cluster);
  227. arch_spin_unlock(&mcpm_lock);
  228. /*
  229. * If cpu_going_down is false here, that means a power_up
  230. * request raced ahead of us. Even if we do not want to
  231. * shut this CPU down, the caller still expects execution
  232. * to return through the system resume entry path, like
  233. * when the WFI is aborted due to a new IRQ or the like..
  234. * So let's continue with cache cleaning in all cases.
  235. */
  236. platform_ops->cpu_cache_disable();
  237. }
  238. __mcpm_cpu_down(cpu, cluster);
  239. /* Now we are prepared for power-down, do it: */
  240. if (cpu_going_down)
  241. wfi();
  242. /*
  243. * It is possible for a power_up request to happen concurrently
  244. * with a power_down request for the same CPU. In this case the
  245. * CPU might not be able to actually enter a powered down state
  246. * with the WFI instruction if the power_up request has removed
  247. * the required reset condition. We must perform a re-entry in
  248. * the kernel as if the power_up method just had deasserted reset
  249. * on the CPU.
  250. */
  251. phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
  252. phys_reset(virt_to_phys(mcpm_entry_point));
  253. /* should never get here */
  254. BUG();
  255. }
  256. int mcpm_wait_for_cpu_powerdown(unsigned int cpu, unsigned int cluster)
  257. {
  258. int ret;
  259. if (WARN_ON_ONCE(!platform_ops || !platform_ops->wait_for_powerdown))
  260. return -EUNATCH;
  261. ret = platform_ops->wait_for_powerdown(cpu, cluster);
  262. if (ret)
  263. pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n",
  264. __func__, cpu, cluster, ret);
  265. return ret;
  266. }
  267. void mcpm_cpu_suspend(u64 expected_residency)
  268. {
  269. if (WARN_ON_ONCE(!platform_ops))
  270. return;
  271. /* Some platforms might have to enable special resume modes, etc. */
  272. if (platform_ops->cpu_suspend_prepare) {
  273. unsigned int mpidr = read_cpuid_mpidr();
  274. unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
  275. unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
  276. arch_spin_lock(&mcpm_lock);
  277. platform_ops->cpu_suspend_prepare(cpu, cluster);
  278. arch_spin_unlock(&mcpm_lock);
  279. }
  280. mcpm_cpu_power_down();
  281. }
  282. int mcpm_cpu_powered_up(void)
  283. {
  284. unsigned int mpidr, cpu, cluster;
  285. bool cpu_was_down, first_man;
  286. unsigned long flags;
  287. if (!platform_ops)
  288. return -EUNATCH;
  289. mpidr = read_cpuid_mpidr();
  290. cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
  291. cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
  292. local_irq_save(flags);
  293. arch_spin_lock(&mcpm_lock);
  294. cpu_was_down = !mcpm_cpu_use_count[cluster][cpu];
  295. first_man = mcpm_cluster_unused(cluster);
  296. if (first_man && platform_ops->cluster_is_up)
  297. platform_ops->cluster_is_up(cluster);
  298. if (cpu_was_down)
  299. mcpm_cpu_use_count[cluster][cpu] = 1;
  300. if (platform_ops->cpu_is_up)
  301. platform_ops->cpu_is_up(cpu, cluster);
  302. arch_spin_unlock(&mcpm_lock);
  303. local_irq_restore(flags);
  304. return 0;
  305. }
  306. #ifdef CONFIG_ARM_CPU_SUSPEND
  307. static int __init nocache_trampoline(unsigned long _arg)
  308. {
  309. void (*cache_disable)(void) = (void *)_arg;
  310. unsigned int mpidr = read_cpuid_mpidr();
  311. unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
  312. unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
  313. phys_reset_t phys_reset;
  314. mcpm_set_entry_vector(cpu, cluster, cpu_resume);
  315. setup_mm_for_reboot();
  316. __mcpm_cpu_going_down(cpu, cluster);
  317. BUG_ON(!__mcpm_outbound_enter_critical(cpu, cluster));
  318. cache_disable();
  319. __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
  320. __mcpm_cpu_down(cpu, cluster);
  321. phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
  322. phys_reset(virt_to_phys(mcpm_entry_point));
  323. BUG();
  324. }
  325. int __init mcpm_loopback(void (*cache_disable)(void))
  326. {
  327. int ret;
  328. /*
  329. * We're going to soft-restart the current CPU through the
  330. * low-level MCPM code by leveraging the suspend/resume
  331. * infrastructure. Let's play it safe by using cpu_pm_enter()
  332. * in case the CPU init code path resets the VFP or similar.
  333. */
  334. local_irq_disable();
  335. local_fiq_disable();
  336. ret = cpu_pm_enter();
  337. if (!ret) {
  338. ret = cpu_suspend((unsigned long)cache_disable, nocache_trampoline);
  339. cpu_pm_exit();
  340. }
  341. local_fiq_enable();
  342. local_irq_enable();
  343. if (ret)
  344. pr_err("%s returned %d\n", __func__, ret);
  345. return ret;
  346. }
  347. #endif
  348. extern unsigned long mcpm_power_up_setup_phys;
  349. int __init mcpm_sync_init(
  350. void (*power_up_setup)(unsigned int affinity_level))
  351. {
  352. unsigned int i, j, mpidr, this_cluster;
  353. BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync);
  354. BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1));
  355. /*
  356. * Set initial CPU and cluster states.
  357. * Only one cluster is assumed to be active at this point.
  358. */
  359. for (i = 0; i < MAX_NR_CLUSTERS; i++) {
  360. mcpm_sync.clusters[i].cluster = CLUSTER_DOWN;
  361. mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP;
  362. for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++)
  363. mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN;
  364. }
  365. mpidr = read_cpuid_mpidr();
  366. this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
  367. for_each_online_cpu(i) {
  368. mcpm_cpu_use_count[this_cluster][i] = 1;
  369. mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP;
  370. }
  371. mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP;
  372. sync_cache_w(&mcpm_sync);
  373. if (power_up_setup) {
  374. mcpm_power_up_setup_phys = virt_to_phys(power_up_setup);
  375. sync_cache_w(&mcpm_power_up_setup_phys);
  376. }
  377. return 0;
  378. }