edma.c 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462
  1. /*
  2. * TI EDMA DMA engine driver
  3. *
  4. * Copyright 2012 Texas Instruments
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation version 2.
  9. *
  10. * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  11. * kind, whether express or implied; without even the implied warranty
  12. * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. */
  15. #include <linux/dmaengine.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/edma.h>
  18. #include <linux/err.h>
  19. #include <linux/init.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/list.h>
  22. #include <linux/module.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/slab.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/of.h>
  27. #include <linux/of_dma.h>
  28. #include <linux/of_irq.h>
  29. #include <linux/of_address.h>
  30. #include <linux/of_device.h>
  31. #include <linux/pm_runtime.h>
  32. #include <linux/platform_data/edma.h>
  33. #include "dmaengine.h"
  34. #include "virt-dma.h"
  35. /* Offsets matching "struct edmacc_param" */
  36. #define PARM_OPT 0x00
  37. #define PARM_SRC 0x04
  38. #define PARM_A_B_CNT 0x08
  39. #define PARM_DST 0x0c
  40. #define PARM_SRC_DST_BIDX 0x10
  41. #define PARM_LINK_BCNTRLD 0x14
  42. #define PARM_SRC_DST_CIDX 0x18
  43. #define PARM_CCNT 0x1c
  44. #define PARM_SIZE 0x20
  45. /* Offsets for EDMA CC global channel registers and their shadows */
  46. #define SH_ER 0x00 /* 64 bits */
  47. #define SH_ECR 0x08 /* 64 bits */
  48. #define SH_ESR 0x10 /* 64 bits */
  49. #define SH_CER 0x18 /* 64 bits */
  50. #define SH_EER 0x20 /* 64 bits */
  51. #define SH_EECR 0x28 /* 64 bits */
  52. #define SH_EESR 0x30 /* 64 bits */
  53. #define SH_SER 0x38 /* 64 bits */
  54. #define SH_SECR 0x40 /* 64 bits */
  55. #define SH_IER 0x50 /* 64 bits */
  56. #define SH_IECR 0x58 /* 64 bits */
  57. #define SH_IESR 0x60 /* 64 bits */
  58. #define SH_IPR 0x68 /* 64 bits */
  59. #define SH_ICR 0x70 /* 64 bits */
  60. #define SH_IEVAL 0x78
  61. #define SH_QER 0x80
  62. #define SH_QEER 0x84
  63. #define SH_QEECR 0x88
  64. #define SH_QEESR 0x8c
  65. #define SH_QSER 0x90
  66. #define SH_QSECR 0x94
  67. #define SH_SIZE 0x200
  68. /* Offsets for EDMA CC global registers */
  69. #define EDMA_REV 0x0000
  70. #define EDMA_CCCFG 0x0004
  71. #define EDMA_QCHMAP 0x0200 /* 8 registers */
  72. #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
  73. #define EDMA_QDMAQNUM 0x0260
  74. #define EDMA_QUETCMAP 0x0280
  75. #define EDMA_QUEPRI 0x0284
  76. #define EDMA_EMR 0x0300 /* 64 bits */
  77. #define EDMA_EMCR 0x0308 /* 64 bits */
  78. #define EDMA_QEMR 0x0310
  79. #define EDMA_QEMCR 0x0314
  80. #define EDMA_CCERR 0x0318
  81. #define EDMA_CCERRCLR 0x031c
  82. #define EDMA_EEVAL 0x0320
  83. #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
  84. #define EDMA_QRAE 0x0380 /* 4 registers */
  85. #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
  86. #define EDMA_QSTAT 0x0600 /* 2 registers */
  87. #define EDMA_QWMTHRA 0x0620
  88. #define EDMA_QWMTHRB 0x0624
  89. #define EDMA_CCSTAT 0x0640
  90. #define EDMA_M 0x1000 /* global channel registers */
  91. #define EDMA_ECR 0x1008
  92. #define EDMA_ECRH 0x100C
  93. #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */
  94. #define EDMA_PARM 0x4000 /* PaRAM entries */
  95. #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
  96. #define EDMA_DCHMAP 0x0100 /* 64 registers */
  97. /* CCCFG register */
  98. #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
  99. #define GET_NUM_QDMACH(x) (x & 0x70 >> 4) /* bits 4-6 */
  100. #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
  101. #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
  102. #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
  103. #define CHMAP_EXIST BIT(24)
  104. /*
  105. * Max of 20 segments per channel to conserve PaRAM slots
  106. * Also note that MAX_NR_SG should be atleast the no.of periods
  107. * that are required for ASoC, otherwise DMA prep calls will
  108. * fail. Today davinci-pcm is the only user of this driver and
  109. * requires atleast 17 slots, so we setup the default to 20.
  110. */
  111. #define MAX_NR_SG 20
  112. #define EDMA_MAX_SLOTS MAX_NR_SG
  113. #define EDMA_DESCRIPTORS 16
  114. #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */
  115. #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */
  116. #define EDMA_CONT_PARAMS_ANY 1001
  117. #define EDMA_CONT_PARAMS_FIXED_EXACT 1002
  118. #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
  119. /* PaRAM slots are laid out like this */
  120. struct edmacc_param {
  121. u32 opt;
  122. u32 src;
  123. u32 a_b_cnt;
  124. u32 dst;
  125. u32 src_dst_bidx;
  126. u32 link_bcntrld;
  127. u32 src_dst_cidx;
  128. u32 ccnt;
  129. } __packed;
  130. /* fields in edmacc_param.opt */
  131. #define SAM BIT(0)
  132. #define DAM BIT(1)
  133. #define SYNCDIM BIT(2)
  134. #define STATIC BIT(3)
  135. #define EDMA_FWID (0x07 << 8)
  136. #define TCCMODE BIT(11)
  137. #define EDMA_TCC(t) ((t) << 12)
  138. #define TCINTEN BIT(20)
  139. #define ITCINTEN BIT(21)
  140. #define TCCHEN BIT(22)
  141. #define ITCCHEN BIT(23)
  142. struct edma_pset {
  143. u32 len;
  144. dma_addr_t addr;
  145. struct edmacc_param param;
  146. };
  147. struct edma_desc {
  148. struct virt_dma_desc vdesc;
  149. struct list_head node;
  150. enum dma_transfer_direction direction;
  151. int cyclic;
  152. int absync;
  153. int pset_nr;
  154. struct edma_chan *echan;
  155. int processed;
  156. /*
  157. * The following 4 elements are used for residue accounting.
  158. *
  159. * - processed_stat: the number of SG elements we have traversed
  160. * so far to cover accounting. This is updated directly to processed
  161. * during edma_callback and is always <= processed, because processed
  162. * refers to the number of pending transfer (programmed to EDMA
  163. * controller), where as processed_stat tracks number of transfers
  164. * accounted for so far.
  165. *
  166. * - residue: The amount of bytes we have left to transfer for this desc
  167. *
  168. * - residue_stat: The residue in bytes of data we have covered
  169. * so far for accounting. This is updated directly to residue
  170. * during callbacks to keep it current.
  171. *
  172. * - sg_len: Tracks the length of the current intermediate transfer,
  173. * this is required to update the residue during intermediate transfer
  174. * completion callback.
  175. */
  176. int processed_stat;
  177. u32 sg_len;
  178. u32 residue;
  179. u32 residue_stat;
  180. struct edma_pset pset[0];
  181. };
  182. struct edma_cc;
  183. struct edma_tc {
  184. struct device_node *node;
  185. u16 id;
  186. };
  187. struct edma_chan {
  188. struct virt_dma_chan vchan;
  189. struct list_head node;
  190. struct edma_desc *edesc;
  191. struct edma_cc *ecc;
  192. struct edma_tc *tc;
  193. int ch_num;
  194. bool alloced;
  195. bool hw_triggered;
  196. int slot[EDMA_MAX_SLOTS];
  197. int missed;
  198. struct dma_slave_config cfg;
  199. };
  200. struct edma_cc {
  201. struct device *dev;
  202. struct edma_soc_info *info;
  203. void __iomem *base;
  204. int id;
  205. bool legacy_mode;
  206. /* eDMA3 resource information */
  207. unsigned num_channels;
  208. unsigned num_qchannels;
  209. unsigned num_region;
  210. unsigned num_slots;
  211. unsigned num_tc;
  212. bool chmap_exist;
  213. enum dma_event_q default_queue;
  214. /*
  215. * The slot_inuse bit for each PaRAM slot is clear unless the slot is
  216. * in use by Linux or if it is allocated to be used by DSP.
  217. */
  218. unsigned long *slot_inuse;
  219. struct dma_device dma_slave;
  220. struct dma_device *dma_memcpy;
  221. struct edma_chan *slave_chans;
  222. struct edma_tc *tc_list;
  223. int dummy_slot;
  224. };
  225. /* dummy param set used to (re)initialize parameter RAM slots */
  226. static const struct edmacc_param dummy_paramset = {
  227. .link_bcntrld = 0xffff,
  228. .ccnt = 1,
  229. };
  230. #define EDMA_BINDING_LEGACY 0
  231. #define EDMA_BINDING_TPCC 1
  232. static const struct of_device_id edma_of_ids[] = {
  233. {
  234. .compatible = "ti,edma3",
  235. .data = (void *)EDMA_BINDING_LEGACY,
  236. },
  237. {
  238. .compatible = "ti,edma3-tpcc",
  239. .data = (void *)EDMA_BINDING_TPCC,
  240. },
  241. {}
  242. };
  243. static const struct of_device_id edma_tptc_of_ids[] = {
  244. { .compatible = "ti,edma3-tptc", },
  245. {}
  246. };
  247. static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
  248. {
  249. return (unsigned int)__raw_readl(ecc->base + offset);
  250. }
  251. static inline void edma_write(struct edma_cc *ecc, int offset, int val)
  252. {
  253. __raw_writel(val, ecc->base + offset);
  254. }
  255. static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
  256. unsigned or)
  257. {
  258. unsigned val = edma_read(ecc, offset);
  259. val &= and;
  260. val |= or;
  261. edma_write(ecc, offset, val);
  262. }
  263. static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
  264. {
  265. unsigned val = edma_read(ecc, offset);
  266. val &= and;
  267. edma_write(ecc, offset, val);
  268. }
  269. static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
  270. {
  271. unsigned val = edma_read(ecc, offset);
  272. val |= or;
  273. edma_write(ecc, offset, val);
  274. }
  275. static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
  276. int i)
  277. {
  278. return edma_read(ecc, offset + (i << 2));
  279. }
  280. static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
  281. unsigned val)
  282. {
  283. edma_write(ecc, offset + (i << 2), val);
  284. }
  285. static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
  286. unsigned and, unsigned or)
  287. {
  288. edma_modify(ecc, offset + (i << 2), and, or);
  289. }
  290. static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
  291. unsigned or)
  292. {
  293. edma_or(ecc, offset + (i << 2), or);
  294. }
  295. static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
  296. unsigned or)
  297. {
  298. edma_or(ecc, offset + ((i * 2 + j) << 2), or);
  299. }
  300. static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
  301. int j, unsigned val)
  302. {
  303. edma_write(ecc, offset + ((i * 2 + j) << 2), val);
  304. }
  305. static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
  306. {
  307. return edma_read(ecc, EDMA_SHADOW0 + offset);
  308. }
  309. static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
  310. int offset, int i)
  311. {
  312. return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
  313. }
  314. static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
  315. unsigned val)
  316. {
  317. edma_write(ecc, EDMA_SHADOW0 + offset, val);
  318. }
  319. static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
  320. int i, unsigned val)
  321. {
  322. edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
  323. }
  324. static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
  325. int param_no)
  326. {
  327. return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
  328. }
  329. static inline void edma_param_write(struct edma_cc *ecc, int offset,
  330. int param_no, unsigned val)
  331. {
  332. edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
  333. }
  334. static inline void edma_param_modify(struct edma_cc *ecc, int offset,
  335. int param_no, unsigned and, unsigned or)
  336. {
  337. edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
  338. }
  339. static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
  340. unsigned and)
  341. {
  342. edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
  343. }
  344. static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
  345. unsigned or)
  346. {
  347. edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
  348. }
  349. static inline void set_bits(int offset, int len, unsigned long *p)
  350. {
  351. for (; len > 0; len--)
  352. set_bit(offset + (len - 1), p);
  353. }
  354. static inline void clear_bits(int offset, int len, unsigned long *p)
  355. {
  356. for (; len > 0; len--)
  357. clear_bit(offset + (len - 1), p);
  358. }
  359. static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
  360. int priority)
  361. {
  362. int bit = queue_no * 4;
  363. edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
  364. }
  365. static void edma_set_chmap(struct edma_chan *echan, int slot)
  366. {
  367. struct edma_cc *ecc = echan->ecc;
  368. int channel = EDMA_CHAN_SLOT(echan->ch_num);
  369. if (ecc->chmap_exist) {
  370. slot = EDMA_CHAN_SLOT(slot);
  371. edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
  372. }
  373. }
  374. static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
  375. {
  376. struct edma_cc *ecc = echan->ecc;
  377. int channel = EDMA_CHAN_SLOT(echan->ch_num);
  378. if (enable) {
  379. edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
  380. BIT(channel & 0x1f));
  381. edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
  382. BIT(channel & 0x1f));
  383. } else {
  384. edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
  385. BIT(channel & 0x1f));
  386. }
  387. }
  388. /*
  389. * paRAM slot management functions
  390. */
  391. static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
  392. const struct edmacc_param *param)
  393. {
  394. slot = EDMA_CHAN_SLOT(slot);
  395. if (slot >= ecc->num_slots)
  396. return;
  397. memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
  398. }
  399. static void edma_read_slot(struct edma_cc *ecc, unsigned slot,
  400. struct edmacc_param *param)
  401. {
  402. slot = EDMA_CHAN_SLOT(slot);
  403. if (slot >= ecc->num_slots)
  404. return;
  405. memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
  406. }
  407. /**
  408. * edma_alloc_slot - allocate DMA parameter RAM
  409. * @ecc: pointer to edma_cc struct
  410. * @slot: specific slot to allocate; negative for "any unused slot"
  411. *
  412. * This allocates a parameter RAM slot, initializing it to hold a
  413. * dummy transfer. Slots allocated using this routine have not been
  414. * mapped to a hardware DMA channel, and will normally be used by
  415. * linking to them from a slot associated with a DMA channel.
  416. *
  417. * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
  418. * slots may be allocated on behalf of DSP firmware.
  419. *
  420. * Returns the number of the slot, else negative errno.
  421. */
  422. static int edma_alloc_slot(struct edma_cc *ecc, int slot)
  423. {
  424. if (slot > 0) {
  425. slot = EDMA_CHAN_SLOT(slot);
  426. /* Requesting entry paRAM slot for a HW triggered channel. */
  427. if (ecc->chmap_exist && slot < ecc->num_channels)
  428. slot = EDMA_SLOT_ANY;
  429. }
  430. if (slot < 0) {
  431. if (ecc->chmap_exist)
  432. slot = 0;
  433. else
  434. slot = ecc->num_channels;
  435. for (;;) {
  436. slot = find_next_zero_bit(ecc->slot_inuse,
  437. ecc->num_slots,
  438. slot);
  439. if (slot == ecc->num_slots)
  440. return -ENOMEM;
  441. if (!test_and_set_bit(slot, ecc->slot_inuse))
  442. break;
  443. }
  444. } else if (slot >= ecc->num_slots) {
  445. return -EINVAL;
  446. } else if (test_and_set_bit(slot, ecc->slot_inuse)) {
  447. return -EBUSY;
  448. }
  449. edma_write_slot(ecc, slot, &dummy_paramset);
  450. return EDMA_CTLR_CHAN(ecc->id, slot);
  451. }
  452. static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
  453. {
  454. slot = EDMA_CHAN_SLOT(slot);
  455. if (slot >= ecc->num_slots)
  456. return;
  457. edma_write_slot(ecc, slot, &dummy_paramset);
  458. clear_bit(slot, ecc->slot_inuse);
  459. }
  460. /**
  461. * edma_link - link one parameter RAM slot to another
  462. * @ecc: pointer to edma_cc struct
  463. * @from: parameter RAM slot originating the link
  464. * @to: parameter RAM slot which is the link target
  465. *
  466. * The originating slot should not be part of any active DMA transfer.
  467. */
  468. static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
  469. {
  470. if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
  471. dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
  472. from = EDMA_CHAN_SLOT(from);
  473. to = EDMA_CHAN_SLOT(to);
  474. if (from >= ecc->num_slots || to >= ecc->num_slots)
  475. return;
  476. edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
  477. PARM_OFFSET(to));
  478. }
  479. /**
  480. * edma_get_position - returns the current transfer point
  481. * @ecc: pointer to edma_cc struct
  482. * @slot: parameter RAM slot being examined
  483. * @dst: true selects the dest position, false the source
  484. *
  485. * Returns the position of the current active slot
  486. */
  487. static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
  488. bool dst)
  489. {
  490. u32 offs;
  491. slot = EDMA_CHAN_SLOT(slot);
  492. offs = PARM_OFFSET(slot);
  493. offs += dst ? PARM_DST : PARM_SRC;
  494. return edma_read(ecc, offs);
  495. }
  496. /*
  497. * Channels with event associations will be triggered by their hardware
  498. * events, and channels without such associations will be triggered by
  499. * software. (At this writing there is no interface for using software
  500. * triggers except with channels that don't support hardware triggers.)
  501. */
  502. static void edma_start(struct edma_chan *echan)
  503. {
  504. struct edma_cc *ecc = echan->ecc;
  505. int channel = EDMA_CHAN_SLOT(echan->ch_num);
  506. int j = (channel >> 5);
  507. unsigned int mask = BIT(channel & 0x1f);
  508. if (!echan->hw_triggered) {
  509. /* EDMA channels without event association */
  510. dev_dbg(ecc->dev, "ESR%d %08x\n", j,
  511. edma_shadow0_read_array(ecc, SH_ESR, j));
  512. edma_shadow0_write_array(ecc, SH_ESR, j, mask);
  513. } else {
  514. /* EDMA channel with event association */
  515. dev_dbg(ecc->dev, "ER%d %08x\n", j,
  516. edma_shadow0_read_array(ecc, SH_ER, j));
  517. /* Clear any pending event or error */
  518. edma_write_array(ecc, EDMA_ECR, j, mask);
  519. edma_write_array(ecc, EDMA_EMCR, j, mask);
  520. /* Clear any SER */
  521. edma_shadow0_write_array(ecc, SH_SECR, j, mask);
  522. edma_shadow0_write_array(ecc, SH_EESR, j, mask);
  523. dev_dbg(ecc->dev, "EER%d %08x\n", j,
  524. edma_shadow0_read_array(ecc, SH_EER, j));
  525. }
  526. }
  527. static void edma_stop(struct edma_chan *echan)
  528. {
  529. struct edma_cc *ecc = echan->ecc;
  530. int channel = EDMA_CHAN_SLOT(echan->ch_num);
  531. int j = (channel >> 5);
  532. unsigned int mask = BIT(channel & 0x1f);
  533. edma_shadow0_write_array(ecc, SH_EECR, j, mask);
  534. edma_shadow0_write_array(ecc, SH_ECR, j, mask);
  535. edma_shadow0_write_array(ecc, SH_SECR, j, mask);
  536. edma_write_array(ecc, EDMA_EMCR, j, mask);
  537. /* clear possibly pending completion interrupt */
  538. edma_shadow0_write_array(ecc, SH_ICR, j, mask);
  539. dev_dbg(ecc->dev, "EER%d %08x\n", j,
  540. edma_shadow0_read_array(ecc, SH_EER, j));
  541. /* REVISIT: consider guarding against inappropriate event
  542. * chaining by overwriting with dummy_paramset.
  543. */
  544. }
  545. /*
  546. * Temporarily disable EDMA hardware events on the specified channel,
  547. * preventing them from triggering new transfers
  548. */
  549. static void edma_pause(struct edma_chan *echan)
  550. {
  551. int channel = EDMA_CHAN_SLOT(echan->ch_num);
  552. unsigned int mask = BIT(channel & 0x1f);
  553. edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
  554. }
  555. /* Re-enable EDMA hardware events on the specified channel. */
  556. static void edma_resume(struct edma_chan *echan)
  557. {
  558. int channel = EDMA_CHAN_SLOT(echan->ch_num);
  559. unsigned int mask = BIT(channel & 0x1f);
  560. edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
  561. }
  562. static void edma_trigger_channel(struct edma_chan *echan)
  563. {
  564. struct edma_cc *ecc = echan->ecc;
  565. int channel = EDMA_CHAN_SLOT(echan->ch_num);
  566. unsigned int mask = BIT(channel & 0x1f);
  567. edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
  568. dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
  569. edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
  570. }
  571. static void edma_clean_channel(struct edma_chan *echan)
  572. {
  573. struct edma_cc *ecc = echan->ecc;
  574. int channel = EDMA_CHAN_SLOT(echan->ch_num);
  575. int j = (channel >> 5);
  576. unsigned int mask = BIT(channel & 0x1f);
  577. dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
  578. edma_shadow0_write_array(ecc, SH_ECR, j, mask);
  579. /* Clear the corresponding EMR bits */
  580. edma_write_array(ecc, EDMA_EMCR, j, mask);
  581. /* Clear any SER */
  582. edma_shadow0_write_array(ecc, SH_SECR, j, mask);
  583. edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
  584. }
  585. /* Move channel to a specific event queue */
  586. static void edma_assign_channel_eventq(struct edma_chan *echan,
  587. enum dma_event_q eventq_no)
  588. {
  589. struct edma_cc *ecc = echan->ecc;
  590. int channel = EDMA_CHAN_SLOT(echan->ch_num);
  591. int bit = (channel & 0x7) * 4;
  592. /* default to low priority queue */
  593. if (eventq_no == EVENTQ_DEFAULT)
  594. eventq_no = ecc->default_queue;
  595. if (eventq_no >= ecc->num_tc)
  596. return;
  597. eventq_no &= 7;
  598. edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
  599. eventq_no << bit);
  600. }
  601. static int edma_alloc_channel(struct edma_chan *echan,
  602. enum dma_event_q eventq_no)
  603. {
  604. struct edma_cc *ecc = echan->ecc;
  605. int channel = EDMA_CHAN_SLOT(echan->ch_num);
  606. /* ensure access through shadow region 0 */
  607. edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
  608. /* ensure no events are pending */
  609. edma_stop(echan);
  610. edma_setup_interrupt(echan, true);
  611. edma_assign_channel_eventq(echan, eventq_no);
  612. return 0;
  613. }
  614. static void edma_free_channel(struct edma_chan *echan)
  615. {
  616. /* ensure no events are pending */
  617. edma_stop(echan);
  618. /* REVISIT should probably take out of shadow region 0 */
  619. edma_setup_interrupt(echan, false);
  620. }
  621. static inline struct edma_cc *to_edma_cc(struct dma_device *d)
  622. {
  623. return container_of(d, struct edma_cc, dma_slave);
  624. }
  625. static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
  626. {
  627. return container_of(c, struct edma_chan, vchan.chan);
  628. }
  629. static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
  630. {
  631. return container_of(tx, struct edma_desc, vdesc.tx);
  632. }
  633. static void edma_desc_free(struct virt_dma_desc *vdesc)
  634. {
  635. kfree(container_of(vdesc, struct edma_desc, vdesc));
  636. }
  637. /* Dispatch a queued descriptor to the controller (caller holds lock) */
  638. static void edma_execute(struct edma_chan *echan)
  639. {
  640. struct edma_cc *ecc = echan->ecc;
  641. struct virt_dma_desc *vdesc;
  642. struct edma_desc *edesc;
  643. struct device *dev = echan->vchan.chan.device->dev;
  644. int i, j, left, nslots;
  645. if (!echan->edesc) {
  646. /* Setup is needed for the first transfer */
  647. vdesc = vchan_next_desc(&echan->vchan);
  648. if (!vdesc)
  649. return;
  650. list_del(&vdesc->node);
  651. echan->edesc = to_edma_desc(&vdesc->tx);
  652. }
  653. edesc = echan->edesc;
  654. /* Find out how many left */
  655. left = edesc->pset_nr - edesc->processed;
  656. nslots = min(MAX_NR_SG, left);
  657. edesc->sg_len = 0;
  658. /* Write descriptor PaRAM set(s) */
  659. for (i = 0; i < nslots; i++) {
  660. j = i + edesc->processed;
  661. edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
  662. edesc->sg_len += edesc->pset[j].len;
  663. dev_vdbg(dev,
  664. "\n pset[%d]:\n"
  665. " chnum\t%d\n"
  666. " slot\t%d\n"
  667. " opt\t%08x\n"
  668. " src\t%08x\n"
  669. " dst\t%08x\n"
  670. " abcnt\t%08x\n"
  671. " ccnt\t%08x\n"
  672. " bidx\t%08x\n"
  673. " cidx\t%08x\n"
  674. " lkrld\t%08x\n",
  675. j, echan->ch_num, echan->slot[i],
  676. edesc->pset[j].param.opt,
  677. edesc->pset[j].param.src,
  678. edesc->pset[j].param.dst,
  679. edesc->pset[j].param.a_b_cnt,
  680. edesc->pset[j].param.ccnt,
  681. edesc->pset[j].param.src_dst_bidx,
  682. edesc->pset[j].param.src_dst_cidx,
  683. edesc->pset[j].param.link_bcntrld);
  684. /* Link to the previous slot if not the last set */
  685. if (i != (nslots - 1))
  686. edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
  687. }
  688. edesc->processed += nslots;
  689. /*
  690. * If this is either the last set in a set of SG-list transactions
  691. * then setup a link to the dummy slot, this results in all future
  692. * events being absorbed and that's OK because we're done
  693. */
  694. if (edesc->processed == edesc->pset_nr) {
  695. if (edesc->cyclic)
  696. edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
  697. else
  698. edma_link(ecc, echan->slot[nslots - 1],
  699. echan->ecc->dummy_slot);
  700. }
  701. if (echan->missed) {
  702. /*
  703. * This happens due to setup times between intermediate
  704. * transfers in long SG lists which have to be broken up into
  705. * transfers of MAX_NR_SG
  706. */
  707. dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
  708. edma_clean_channel(echan);
  709. edma_stop(echan);
  710. edma_start(echan);
  711. edma_trigger_channel(echan);
  712. echan->missed = 0;
  713. } else if (edesc->processed <= MAX_NR_SG) {
  714. dev_dbg(dev, "first transfer starting on channel %d\n",
  715. echan->ch_num);
  716. edma_start(echan);
  717. } else {
  718. dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
  719. echan->ch_num, edesc->processed);
  720. edma_resume(echan);
  721. }
  722. }
  723. static int edma_terminate_all(struct dma_chan *chan)
  724. {
  725. struct edma_chan *echan = to_edma_chan(chan);
  726. unsigned long flags;
  727. LIST_HEAD(head);
  728. spin_lock_irqsave(&echan->vchan.lock, flags);
  729. /*
  730. * Stop DMA activity: we assume the callback will not be called
  731. * after edma_dma() returns (even if it does, it will see
  732. * echan->edesc is NULL and exit.)
  733. */
  734. if (echan->edesc) {
  735. edma_stop(echan);
  736. /* Move the cyclic channel back to default queue */
  737. if (!echan->tc && echan->edesc->cyclic)
  738. edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
  739. /*
  740. * free the running request descriptor
  741. * since it is not in any of the vdesc lists
  742. */
  743. edma_desc_free(&echan->edesc->vdesc);
  744. echan->edesc = NULL;
  745. }
  746. vchan_get_all_descriptors(&echan->vchan, &head);
  747. spin_unlock_irqrestore(&echan->vchan.lock, flags);
  748. vchan_dma_desc_free_list(&echan->vchan, &head);
  749. return 0;
  750. }
  751. static int edma_slave_config(struct dma_chan *chan,
  752. struct dma_slave_config *cfg)
  753. {
  754. struct edma_chan *echan = to_edma_chan(chan);
  755. if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
  756. cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
  757. return -EINVAL;
  758. memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
  759. return 0;
  760. }
  761. static int edma_dma_pause(struct dma_chan *chan)
  762. {
  763. struct edma_chan *echan = to_edma_chan(chan);
  764. if (!echan->edesc)
  765. return -EINVAL;
  766. edma_pause(echan);
  767. return 0;
  768. }
  769. static int edma_dma_resume(struct dma_chan *chan)
  770. {
  771. struct edma_chan *echan = to_edma_chan(chan);
  772. edma_resume(echan);
  773. return 0;
  774. }
  775. /*
  776. * A PaRAM set configuration abstraction used by other modes
  777. * @chan: Channel who's PaRAM set we're configuring
  778. * @pset: PaRAM set to initialize and setup.
  779. * @src_addr: Source address of the DMA
  780. * @dst_addr: Destination address of the DMA
  781. * @burst: In units of dev_width, how much to send
  782. * @dev_width: How much is the dev_width
  783. * @dma_length: Total length of the DMA transfer
  784. * @direction: Direction of the transfer
  785. */
  786. static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
  787. dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
  788. unsigned int acnt, unsigned int dma_length,
  789. enum dma_transfer_direction direction)
  790. {
  791. struct edma_chan *echan = to_edma_chan(chan);
  792. struct device *dev = chan->device->dev;
  793. struct edmacc_param *param = &epset->param;
  794. int bcnt, ccnt, cidx;
  795. int src_bidx, dst_bidx, src_cidx, dst_cidx;
  796. int absync;
  797. /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
  798. if (!burst)
  799. burst = 1;
  800. /*
  801. * If the maxburst is equal to the fifo width, use
  802. * A-synced transfers. This allows for large contiguous
  803. * buffer transfers using only one PaRAM set.
  804. */
  805. if (burst == 1) {
  806. /*
  807. * For the A-sync case, bcnt and ccnt are the remainder
  808. * and quotient respectively of the division of:
  809. * (dma_length / acnt) by (SZ_64K -1). This is so
  810. * that in case bcnt over flows, we have ccnt to use.
  811. * Note: In A-sync tranfer only, bcntrld is used, but it
  812. * only applies for sg_dma_len(sg) >= SZ_64K.
  813. * In this case, the best way adopted is- bccnt for the
  814. * first frame will be the remainder below. Then for
  815. * every successive frame, bcnt will be SZ_64K-1. This
  816. * is assured as bcntrld = 0xffff in end of function.
  817. */
  818. absync = false;
  819. ccnt = dma_length / acnt / (SZ_64K - 1);
  820. bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
  821. /*
  822. * If bcnt is non-zero, we have a remainder and hence an
  823. * extra frame to transfer, so increment ccnt.
  824. */
  825. if (bcnt)
  826. ccnt++;
  827. else
  828. bcnt = SZ_64K - 1;
  829. cidx = acnt;
  830. } else {
  831. /*
  832. * If maxburst is greater than the fifo address_width,
  833. * use AB-synced transfers where A count is the fifo
  834. * address_width and B count is the maxburst. In this
  835. * case, we are limited to transfers of C count frames
  836. * of (address_width * maxburst) where C count is limited
  837. * to SZ_64K-1. This places an upper bound on the length
  838. * of an SG segment that can be handled.
  839. */
  840. absync = true;
  841. bcnt = burst;
  842. ccnt = dma_length / (acnt * bcnt);
  843. if (ccnt > (SZ_64K - 1)) {
  844. dev_err(dev, "Exceeded max SG segment size\n");
  845. return -EINVAL;
  846. }
  847. cidx = acnt * bcnt;
  848. }
  849. epset->len = dma_length;
  850. if (direction == DMA_MEM_TO_DEV) {
  851. src_bidx = acnt;
  852. src_cidx = cidx;
  853. dst_bidx = 0;
  854. dst_cidx = 0;
  855. epset->addr = src_addr;
  856. } else if (direction == DMA_DEV_TO_MEM) {
  857. src_bidx = 0;
  858. src_cidx = 0;
  859. dst_bidx = acnt;
  860. dst_cidx = cidx;
  861. epset->addr = dst_addr;
  862. } else if (direction == DMA_MEM_TO_MEM) {
  863. src_bidx = acnt;
  864. src_cidx = cidx;
  865. dst_bidx = acnt;
  866. dst_cidx = cidx;
  867. } else {
  868. dev_err(dev, "%s: direction not implemented yet\n", __func__);
  869. return -EINVAL;
  870. }
  871. param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
  872. /* Configure A or AB synchronized transfers */
  873. if (absync)
  874. param->opt |= SYNCDIM;
  875. param->src = src_addr;
  876. param->dst = dst_addr;
  877. param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
  878. param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
  879. param->a_b_cnt = bcnt << 16 | acnt;
  880. param->ccnt = ccnt;
  881. /*
  882. * Only time when (bcntrld) auto reload is required is for
  883. * A-sync case, and in this case, a requirement of reload value
  884. * of SZ_64K-1 only is assured. 'link' is initially set to NULL
  885. * and then later will be populated by edma_execute.
  886. */
  887. param->link_bcntrld = 0xffffffff;
  888. return absync;
  889. }
  890. static struct dma_async_tx_descriptor *edma_prep_slave_sg(
  891. struct dma_chan *chan, struct scatterlist *sgl,
  892. unsigned int sg_len, enum dma_transfer_direction direction,
  893. unsigned long tx_flags, void *context)
  894. {
  895. struct edma_chan *echan = to_edma_chan(chan);
  896. struct device *dev = chan->device->dev;
  897. struct edma_desc *edesc;
  898. dma_addr_t src_addr = 0, dst_addr = 0;
  899. enum dma_slave_buswidth dev_width;
  900. u32 burst;
  901. struct scatterlist *sg;
  902. int i, nslots, ret;
  903. if (unlikely(!echan || !sgl || !sg_len))
  904. return NULL;
  905. if (direction == DMA_DEV_TO_MEM) {
  906. src_addr = echan->cfg.src_addr;
  907. dev_width = echan->cfg.src_addr_width;
  908. burst = echan->cfg.src_maxburst;
  909. } else if (direction == DMA_MEM_TO_DEV) {
  910. dst_addr = echan->cfg.dst_addr;
  911. dev_width = echan->cfg.dst_addr_width;
  912. burst = echan->cfg.dst_maxburst;
  913. } else {
  914. dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
  915. return NULL;
  916. }
  917. if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
  918. dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
  919. return NULL;
  920. }
  921. edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
  922. GFP_ATOMIC);
  923. if (!edesc) {
  924. dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
  925. return NULL;
  926. }
  927. edesc->pset_nr = sg_len;
  928. edesc->residue = 0;
  929. edesc->direction = direction;
  930. edesc->echan = echan;
  931. /* Allocate a PaRAM slot, if needed */
  932. nslots = min_t(unsigned, MAX_NR_SG, sg_len);
  933. for (i = 0; i < nslots; i++) {
  934. if (echan->slot[i] < 0) {
  935. echan->slot[i] =
  936. edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
  937. if (echan->slot[i] < 0) {
  938. kfree(edesc);
  939. dev_err(dev, "%s: Failed to allocate slot\n",
  940. __func__);
  941. return NULL;
  942. }
  943. }
  944. }
  945. /* Configure PaRAM sets for each SG */
  946. for_each_sg(sgl, sg, sg_len, i) {
  947. /* Get address for each SG */
  948. if (direction == DMA_DEV_TO_MEM)
  949. dst_addr = sg_dma_address(sg);
  950. else
  951. src_addr = sg_dma_address(sg);
  952. ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
  953. dst_addr, burst, dev_width,
  954. sg_dma_len(sg), direction);
  955. if (ret < 0) {
  956. kfree(edesc);
  957. return NULL;
  958. }
  959. edesc->absync = ret;
  960. edesc->residue += sg_dma_len(sg);
  961. /* If this is the last in a current SG set of transactions,
  962. enable interrupts so that next set is processed */
  963. if (!((i+1) % MAX_NR_SG))
  964. edesc->pset[i].param.opt |= TCINTEN;
  965. /* If this is the last set, enable completion interrupt flag */
  966. if (i == sg_len - 1)
  967. edesc->pset[i].param.opt |= TCINTEN;
  968. }
  969. edesc->residue_stat = edesc->residue;
  970. return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
  971. }
  972. static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
  973. struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  974. size_t len, unsigned long tx_flags)
  975. {
  976. int ret, nslots;
  977. struct edma_desc *edesc;
  978. struct device *dev = chan->device->dev;
  979. struct edma_chan *echan = to_edma_chan(chan);
  980. unsigned int width, pset_len;
  981. if (unlikely(!echan || !len))
  982. return NULL;
  983. if (len < SZ_64K) {
  984. /*
  985. * Transfer size less than 64K can be handled with one paRAM
  986. * slot and with one burst.
  987. * ACNT = length
  988. */
  989. width = len;
  990. pset_len = len;
  991. nslots = 1;
  992. } else {
  993. /*
  994. * Transfer size bigger than 64K will be handled with maximum of
  995. * two paRAM slots.
  996. * slot1: (full_length / 32767) times 32767 bytes bursts.
  997. * ACNT = 32767, length1: (full_length / 32767) * 32767
  998. * slot2: the remaining amount of data after slot1.
  999. * ACNT = full_length - length1, length2 = ACNT
  1000. *
  1001. * When the full_length is multibple of 32767 one slot can be
  1002. * used to complete the transfer.
  1003. */
  1004. width = SZ_32K - 1;
  1005. pset_len = rounddown(len, width);
  1006. /* One slot is enough for lengths multiple of (SZ_32K -1) */
  1007. if (unlikely(pset_len == len))
  1008. nslots = 1;
  1009. else
  1010. nslots = 2;
  1011. }
  1012. edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
  1013. GFP_ATOMIC);
  1014. if (!edesc) {
  1015. dev_dbg(dev, "Failed to allocate a descriptor\n");
  1016. return NULL;
  1017. }
  1018. edesc->pset_nr = nslots;
  1019. edesc->residue = edesc->residue_stat = len;
  1020. edesc->direction = DMA_MEM_TO_MEM;
  1021. edesc->echan = echan;
  1022. ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
  1023. width, pset_len, DMA_MEM_TO_MEM);
  1024. if (ret < 0) {
  1025. kfree(edesc);
  1026. return NULL;
  1027. }
  1028. edesc->absync = ret;
  1029. edesc->pset[0].param.opt |= ITCCHEN;
  1030. if (nslots == 1) {
  1031. /* Enable transfer complete interrupt */
  1032. edesc->pset[0].param.opt |= TCINTEN;
  1033. } else {
  1034. /* Enable transfer complete chaining for the first slot */
  1035. edesc->pset[0].param.opt |= TCCHEN;
  1036. if (echan->slot[1] < 0) {
  1037. echan->slot[1] = edma_alloc_slot(echan->ecc,
  1038. EDMA_SLOT_ANY);
  1039. if (echan->slot[1] < 0) {
  1040. kfree(edesc);
  1041. dev_err(dev, "%s: Failed to allocate slot\n",
  1042. __func__);
  1043. return NULL;
  1044. }
  1045. }
  1046. dest += pset_len;
  1047. src += pset_len;
  1048. pset_len = width = len % (SZ_32K - 1);
  1049. ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
  1050. width, pset_len, DMA_MEM_TO_MEM);
  1051. if (ret < 0) {
  1052. kfree(edesc);
  1053. return NULL;
  1054. }
  1055. edesc->pset[1].param.opt |= ITCCHEN;
  1056. edesc->pset[1].param.opt |= TCINTEN;
  1057. }
  1058. return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
  1059. }
  1060. static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
  1061. struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  1062. size_t period_len, enum dma_transfer_direction direction,
  1063. unsigned long tx_flags)
  1064. {
  1065. struct edma_chan *echan = to_edma_chan(chan);
  1066. struct device *dev = chan->device->dev;
  1067. struct edma_desc *edesc;
  1068. dma_addr_t src_addr, dst_addr;
  1069. enum dma_slave_buswidth dev_width;
  1070. u32 burst;
  1071. int i, ret, nslots;
  1072. if (unlikely(!echan || !buf_len || !period_len))
  1073. return NULL;
  1074. if (direction == DMA_DEV_TO_MEM) {
  1075. src_addr = echan->cfg.src_addr;
  1076. dst_addr = buf_addr;
  1077. dev_width = echan->cfg.src_addr_width;
  1078. burst = echan->cfg.src_maxburst;
  1079. } else if (direction == DMA_MEM_TO_DEV) {
  1080. src_addr = buf_addr;
  1081. dst_addr = echan->cfg.dst_addr;
  1082. dev_width = echan->cfg.dst_addr_width;
  1083. burst = echan->cfg.dst_maxburst;
  1084. } else {
  1085. dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
  1086. return NULL;
  1087. }
  1088. if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
  1089. dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
  1090. return NULL;
  1091. }
  1092. if (unlikely(buf_len % period_len)) {
  1093. dev_err(dev, "Period should be multiple of Buffer length\n");
  1094. return NULL;
  1095. }
  1096. nslots = (buf_len / period_len) + 1;
  1097. /*
  1098. * Cyclic DMA users such as audio cannot tolerate delays introduced
  1099. * by cases where the number of periods is more than the maximum
  1100. * number of SGs the EDMA driver can handle at a time. For DMA types
  1101. * such as Slave SGs, such delays are tolerable and synchronized,
  1102. * but the synchronization is difficult to achieve with Cyclic and
  1103. * cannot be guaranteed, so we error out early.
  1104. */
  1105. if (nslots > MAX_NR_SG)
  1106. return NULL;
  1107. edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
  1108. GFP_ATOMIC);
  1109. if (!edesc) {
  1110. dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
  1111. return NULL;
  1112. }
  1113. edesc->cyclic = 1;
  1114. edesc->pset_nr = nslots;
  1115. edesc->residue = edesc->residue_stat = buf_len;
  1116. edesc->direction = direction;
  1117. edesc->echan = echan;
  1118. dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
  1119. __func__, echan->ch_num, nslots, period_len, buf_len);
  1120. for (i = 0; i < nslots; i++) {
  1121. /* Allocate a PaRAM slot, if needed */
  1122. if (echan->slot[i] < 0) {
  1123. echan->slot[i] =
  1124. edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
  1125. if (echan->slot[i] < 0) {
  1126. kfree(edesc);
  1127. dev_err(dev, "%s: Failed to allocate slot\n",
  1128. __func__);
  1129. return NULL;
  1130. }
  1131. }
  1132. if (i == nslots - 1) {
  1133. memcpy(&edesc->pset[i], &edesc->pset[0],
  1134. sizeof(edesc->pset[0]));
  1135. break;
  1136. }
  1137. ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
  1138. dst_addr, burst, dev_width, period_len,
  1139. direction);
  1140. if (ret < 0) {
  1141. kfree(edesc);
  1142. return NULL;
  1143. }
  1144. if (direction == DMA_DEV_TO_MEM)
  1145. dst_addr += period_len;
  1146. else
  1147. src_addr += period_len;
  1148. dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
  1149. dev_vdbg(dev,
  1150. "\n pset[%d]:\n"
  1151. " chnum\t%d\n"
  1152. " slot\t%d\n"
  1153. " opt\t%08x\n"
  1154. " src\t%08x\n"
  1155. " dst\t%08x\n"
  1156. " abcnt\t%08x\n"
  1157. " ccnt\t%08x\n"
  1158. " bidx\t%08x\n"
  1159. " cidx\t%08x\n"
  1160. " lkrld\t%08x\n",
  1161. i, echan->ch_num, echan->slot[i],
  1162. edesc->pset[i].param.opt,
  1163. edesc->pset[i].param.src,
  1164. edesc->pset[i].param.dst,
  1165. edesc->pset[i].param.a_b_cnt,
  1166. edesc->pset[i].param.ccnt,
  1167. edesc->pset[i].param.src_dst_bidx,
  1168. edesc->pset[i].param.src_dst_cidx,
  1169. edesc->pset[i].param.link_bcntrld);
  1170. edesc->absync = ret;
  1171. /*
  1172. * Enable period interrupt only if it is requested
  1173. */
  1174. if (tx_flags & DMA_PREP_INTERRUPT)
  1175. edesc->pset[i].param.opt |= TCINTEN;
  1176. }
  1177. /* Place the cyclic channel to highest priority queue */
  1178. if (!echan->tc)
  1179. edma_assign_channel_eventq(echan, EVENTQ_0);
  1180. return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
  1181. }
  1182. static void edma_completion_handler(struct edma_chan *echan)
  1183. {
  1184. struct device *dev = echan->vchan.chan.device->dev;
  1185. struct edma_desc *edesc = echan->edesc;
  1186. if (!edesc)
  1187. return;
  1188. spin_lock(&echan->vchan.lock);
  1189. if (edesc->cyclic) {
  1190. vchan_cyclic_callback(&edesc->vdesc);
  1191. spin_unlock(&echan->vchan.lock);
  1192. return;
  1193. } else if (edesc->processed == edesc->pset_nr) {
  1194. edesc->residue = 0;
  1195. edma_stop(echan);
  1196. vchan_cookie_complete(&edesc->vdesc);
  1197. echan->edesc = NULL;
  1198. dev_dbg(dev, "Transfer completed on channel %d\n",
  1199. echan->ch_num);
  1200. } else {
  1201. dev_dbg(dev, "Sub transfer completed on channel %d\n",
  1202. echan->ch_num);
  1203. edma_pause(echan);
  1204. /* Update statistics for tx_status */
  1205. edesc->residue -= edesc->sg_len;
  1206. edesc->residue_stat = edesc->residue;
  1207. edesc->processed_stat = edesc->processed;
  1208. }
  1209. edma_execute(echan);
  1210. spin_unlock(&echan->vchan.lock);
  1211. }
  1212. /* eDMA interrupt handler */
  1213. static irqreturn_t dma_irq_handler(int irq, void *data)
  1214. {
  1215. struct edma_cc *ecc = data;
  1216. int ctlr;
  1217. u32 sh_ier;
  1218. u32 sh_ipr;
  1219. u32 bank;
  1220. ctlr = ecc->id;
  1221. if (ctlr < 0)
  1222. return IRQ_NONE;
  1223. dev_vdbg(ecc->dev, "dma_irq_handler\n");
  1224. sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
  1225. if (!sh_ipr) {
  1226. sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
  1227. if (!sh_ipr)
  1228. return IRQ_NONE;
  1229. sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
  1230. bank = 1;
  1231. } else {
  1232. sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
  1233. bank = 0;
  1234. }
  1235. do {
  1236. u32 slot;
  1237. u32 channel;
  1238. slot = __ffs(sh_ipr);
  1239. sh_ipr &= ~(BIT(slot));
  1240. if (sh_ier & BIT(slot)) {
  1241. channel = (bank << 5) | slot;
  1242. /* Clear the corresponding IPR bits */
  1243. edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
  1244. edma_completion_handler(&ecc->slave_chans[channel]);
  1245. }
  1246. } while (sh_ipr);
  1247. edma_shadow0_write(ecc, SH_IEVAL, 1);
  1248. return IRQ_HANDLED;
  1249. }
  1250. static void edma_error_handler(struct edma_chan *echan)
  1251. {
  1252. struct edma_cc *ecc = echan->ecc;
  1253. struct device *dev = echan->vchan.chan.device->dev;
  1254. struct edmacc_param p;
  1255. if (!echan->edesc)
  1256. return;
  1257. spin_lock(&echan->vchan.lock);
  1258. edma_read_slot(ecc, echan->slot[0], &p);
  1259. /*
  1260. * Issue later based on missed flag which will be sure
  1261. * to happen as:
  1262. * (1) we finished transmitting an intermediate slot and
  1263. * edma_execute is coming up.
  1264. * (2) or we finished current transfer and issue will
  1265. * call edma_execute.
  1266. *
  1267. * Important note: issuing can be dangerous here and
  1268. * lead to some nasty recursion when we are in a NULL
  1269. * slot. So we avoid doing so and set the missed flag.
  1270. */
  1271. if (p.a_b_cnt == 0 && p.ccnt == 0) {
  1272. dev_dbg(dev, "Error on null slot, setting miss\n");
  1273. echan->missed = 1;
  1274. } else {
  1275. /*
  1276. * The slot is already programmed but the event got
  1277. * missed, so its safe to issue it here.
  1278. */
  1279. dev_dbg(dev, "Missed event, TRIGGERING\n");
  1280. edma_clean_channel(echan);
  1281. edma_stop(echan);
  1282. edma_start(echan);
  1283. edma_trigger_channel(echan);
  1284. }
  1285. spin_unlock(&echan->vchan.lock);
  1286. }
  1287. static inline bool edma_error_pending(struct edma_cc *ecc)
  1288. {
  1289. if (edma_read_array(ecc, EDMA_EMR, 0) ||
  1290. edma_read_array(ecc, EDMA_EMR, 1) ||
  1291. edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
  1292. return true;
  1293. return false;
  1294. }
  1295. /* eDMA error interrupt handler */
  1296. static irqreturn_t dma_ccerr_handler(int irq, void *data)
  1297. {
  1298. struct edma_cc *ecc = data;
  1299. int i, j;
  1300. int ctlr;
  1301. unsigned int cnt = 0;
  1302. unsigned int val;
  1303. ctlr = ecc->id;
  1304. if (ctlr < 0)
  1305. return IRQ_NONE;
  1306. dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
  1307. if (!edma_error_pending(ecc))
  1308. return IRQ_NONE;
  1309. while (1) {
  1310. /* Event missed register(s) */
  1311. for (j = 0; j < 2; j++) {
  1312. unsigned long emr;
  1313. val = edma_read_array(ecc, EDMA_EMR, j);
  1314. if (!val)
  1315. continue;
  1316. dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
  1317. emr = val;
  1318. for (i = find_next_bit(&emr, 32, 0); i < 32;
  1319. i = find_next_bit(&emr, 32, i + 1)) {
  1320. int k = (j << 5) + i;
  1321. /* Clear the corresponding EMR bits */
  1322. edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
  1323. /* Clear any SER */
  1324. edma_shadow0_write_array(ecc, SH_SECR, j,
  1325. BIT(i));
  1326. edma_error_handler(&ecc->slave_chans[k]);
  1327. }
  1328. }
  1329. val = edma_read(ecc, EDMA_QEMR);
  1330. if (val) {
  1331. dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
  1332. /* Not reported, just clear the interrupt reason. */
  1333. edma_write(ecc, EDMA_QEMCR, val);
  1334. edma_shadow0_write(ecc, SH_QSECR, val);
  1335. }
  1336. val = edma_read(ecc, EDMA_CCERR);
  1337. if (val) {
  1338. dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
  1339. /* Not reported, just clear the interrupt reason. */
  1340. edma_write(ecc, EDMA_CCERRCLR, val);
  1341. }
  1342. if (!edma_error_pending(ecc))
  1343. break;
  1344. cnt++;
  1345. if (cnt > 10)
  1346. break;
  1347. }
  1348. edma_write(ecc, EDMA_EEVAL, 1);
  1349. return IRQ_HANDLED;
  1350. }
  1351. static void edma_tc_set_pm_state(struct edma_tc *tc, bool enable)
  1352. {
  1353. struct platform_device *tc_pdev;
  1354. int ret;
  1355. if (!tc)
  1356. return;
  1357. tc_pdev = of_find_device_by_node(tc->node);
  1358. if (!tc_pdev) {
  1359. pr_err("%s: TPTC device is not found\n", __func__);
  1360. return;
  1361. }
  1362. if (!pm_runtime_enabled(&tc_pdev->dev))
  1363. pm_runtime_enable(&tc_pdev->dev);
  1364. if (enable)
  1365. ret = pm_runtime_get_sync(&tc_pdev->dev);
  1366. else
  1367. ret = pm_runtime_put_sync(&tc_pdev->dev);
  1368. if (ret < 0)
  1369. pr_err("%s: pm_runtime_%s_sync() failed for %s\n", __func__,
  1370. enable ? "get" : "put", dev_name(&tc_pdev->dev));
  1371. }
  1372. /* Alloc channel resources */
  1373. static int edma_alloc_chan_resources(struct dma_chan *chan)
  1374. {
  1375. struct edma_chan *echan = to_edma_chan(chan);
  1376. struct edma_cc *ecc = echan->ecc;
  1377. struct device *dev = ecc->dev;
  1378. enum dma_event_q eventq_no = EVENTQ_DEFAULT;
  1379. int ret;
  1380. if (echan->tc) {
  1381. eventq_no = echan->tc->id;
  1382. } else if (ecc->tc_list) {
  1383. /* memcpy channel */
  1384. echan->tc = &ecc->tc_list[ecc->info->default_queue];
  1385. eventq_no = echan->tc->id;
  1386. }
  1387. ret = edma_alloc_channel(echan, eventq_no);
  1388. if (ret)
  1389. return ret;
  1390. echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
  1391. if (echan->slot[0] < 0) {
  1392. dev_err(dev, "Entry slot allocation failed for channel %u\n",
  1393. EDMA_CHAN_SLOT(echan->ch_num));
  1394. goto err_slot;
  1395. }
  1396. /* Set up channel -> slot mapping for the entry slot */
  1397. edma_set_chmap(echan, echan->slot[0]);
  1398. echan->alloced = true;
  1399. dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
  1400. EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
  1401. echan->hw_triggered ? "HW" : "SW");
  1402. edma_tc_set_pm_state(echan->tc, true);
  1403. return 0;
  1404. err_slot:
  1405. edma_free_channel(echan);
  1406. return ret;
  1407. }
  1408. /* Free channel resources */
  1409. static void edma_free_chan_resources(struct dma_chan *chan)
  1410. {
  1411. struct edma_chan *echan = to_edma_chan(chan);
  1412. struct device *dev = echan->ecc->dev;
  1413. int i;
  1414. /* Terminate transfers */
  1415. edma_stop(echan);
  1416. vchan_free_chan_resources(&echan->vchan);
  1417. /* Free EDMA PaRAM slots */
  1418. for (i = 0; i < EDMA_MAX_SLOTS; i++) {
  1419. if (echan->slot[i] >= 0) {
  1420. edma_free_slot(echan->ecc, echan->slot[i]);
  1421. echan->slot[i] = -1;
  1422. }
  1423. }
  1424. /* Set entry slot to the dummy slot */
  1425. edma_set_chmap(echan, echan->ecc->dummy_slot);
  1426. /* Free EDMA channel */
  1427. if (echan->alloced) {
  1428. edma_free_channel(echan);
  1429. echan->alloced = false;
  1430. }
  1431. edma_tc_set_pm_state(echan->tc, false);
  1432. echan->tc = NULL;
  1433. echan->hw_triggered = false;
  1434. dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
  1435. EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
  1436. }
  1437. /* Send pending descriptor to hardware */
  1438. static void edma_issue_pending(struct dma_chan *chan)
  1439. {
  1440. struct edma_chan *echan = to_edma_chan(chan);
  1441. unsigned long flags;
  1442. spin_lock_irqsave(&echan->vchan.lock, flags);
  1443. if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
  1444. edma_execute(echan);
  1445. spin_unlock_irqrestore(&echan->vchan.lock, flags);
  1446. }
  1447. static u32 edma_residue(struct edma_desc *edesc)
  1448. {
  1449. bool dst = edesc->direction == DMA_DEV_TO_MEM;
  1450. struct edma_pset *pset = edesc->pset;
  1451. dma_addr_t done, pos;
  1452. int i;
  1453. /*
  1454. * We always read the dst/src position from the first RamPar
  1455. * pset. That's the one which is active now.
  1456. */
  1457. pos = edma_get_position(edesc->echan->ecc, edesc->echan->slot[0], dst);
  1458. /*
  1459. * Cyclic is simple. Just subtract pset[0].addr from pos.
  1460. *
  1461. * We never update edesc->residue in the cyclic case, so we
  1462. * can tell the remaining room to the end of the circular
  1463. * buffer.
  1464. */
  1465. if (edesc->cyclic) {
  1466. done = pos - pset->addr;
  1467. edesc->residue_stat = edesc->residue - done;
  1468. return edesc->residue_stat;
  1469. }
  1470. /*
  1471. * For SG operation we catch up with the last processed
  1472. * status.
  1473. */
  1474. pset += edesc->processed_stat;
  1475. for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
  1476. /*
  1477. * If we are inside this pset address range, we know
  1478. * this is the active one. Get the current delta and
  1479. * stop walking the psets.
  1480. */
  1481. if (pos >= pset->addr && pos < pset->addr + pset->len)
  1482. return edesc->residue_stat - (pos - pset->addr);
  1483. /* Otherwise mark it done and update residue_stat. */
  1484. edesc->processed_stat++;
  1485. edesc->residue_stat -= pset->len;
  1486. }
  1487. return edesc->residue_stat;
  1488. }
  1489. /* Check request completion status */
  1490. static enum dma_status edma_tx_status(struct dma_chan *chan,
  1491. dma_cookie_t cookie,
  1492. struct dma_tx_state *txstate)
  1493. {
  1494. struct edma_chan *echan = to_edma_chan(chan);
  1495. struct virt_dma_desc *vdesc;
  1496. enum dma_status ret;
  1497. unsigned long flags;
  1498. ret = dma_cookie_status(chan, cookie, txstate);
  1499. if (ret == DMA_COMPLETE || !txstate)
  1500. return ret;
  1501. spin_lock_irqsave(&echan->vchan.lock, flags);
  1502. if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
  1503. txstate->residue = edma_residue(echan->edesc);
  1504. else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
  1505. txstate->residue = to_edma_desc(&vdesc->tx)->residue;
  1506. spin_unlock_irqrestore(&echan->vchan.lock, flags);
  1507. return ret;
  1508. }
  1509. static bool edma_is_memcpy_channel(int ch_num, u16 *memcpy_channels)
  1510. {
  1511. s16 *memcpy_ch = memcpy_channels;
  1512. if (!memcpy_channels)
  1513. return false;
  1514. while (*memcpy_ch != -1) {
  1515. if (*memcpy_ch == ch_num)
  1516. return true;
  1517. memcpy_ch++;
  1518. }
  1519. return false;
  1520. }
  1521. #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
  1522. BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
  1523. BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
  1524. BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
  1525. static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
  1526. {
  1527. struct dma_device *s_ddev = &ecc->dma_slave;
  1528. struct dma_device *m_ddev = NULL;
  1529. s16 *memcpy_channels = ecc->info->memcpy_channels;
  1530. int i, j;
  1531. dma_cap_zero(s_ddev->cap_mask);
  1532. dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
  1533. dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
  1534. if (ecc->legacy_mode && !memcpy_channels) {
  1535. dev_warn(ecc->dev,
  1536. "Legacy memcpy is enabled, things might not work\n");
  1537. dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
  1538. s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
  1539. s_ddev->directions = BIT(DMA_MEM_TO_MEM);
  1540. }
  1541. s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
  1542. s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
  1543. s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
  1544. s_ddev->device_free_chan_resources = edma_free_chan_resources;
  1545. s_ddev->device_issue_pending = edma_issue_pending;
  1546. s_ddev->device_tx_status = edma_tx_status;
  1547. s_ddev->device_config = edma_slave_config;
  1548. s_ddev->device_pause = edma_dma_pause;
  1549. s_ddev->device_resume = edma_dma_resume;
  1550. s_ddev->device_terminate_all = edma_terminate_all;
  1551. s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
  1552. s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
  1553. s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
  1554. s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
  1555. s_ddev->dev = ecc->dev;
  1556. INIT_LIST_HEAD(&s_ddev->channels);
  1557. if (memcpy_channels) {
  1558. m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
  1559. ecc->dma_memcpy = m_ddev;
  1560. dma_cap_zero(m_ddev->cap_mask);
  1561. dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
  1562. m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
  1563. m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
  1564. m_ddev->device_free_chan_resources = edma_free_chan_resources;
  1565. m_ddev->device_issue_pending = edma_issue_pending;
  1566. m_ddev->device_tx_status = edma_tx_status;
  1567. m_ddev->device_config = edma_slave_config;
  1568. m_ddev->device_pause = edma_dma_pause;
  1569. m_ddev->device_resume = edma_dma_resume;
  1570. m_ddev->device_terminate_all = edma_terminate_all;
  1571. m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
  1572. m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
  1573. m_ddev->directions = BIT(DMA_MEM_TO_MEM);
  1574. m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
  1575. m_ddev->dev = ecc->dev;
  1576. INIT_LIST_HEAD(&m_ddev->channels);
  1577. } else if (!ecc->legacy_mode) {
  1578. dev_info(ecc->dev, "memcpy is disabled\n");
  1579. }
  1580. for (i = 0; i < ecc->num_channels; i++) {
  1581. struct edma_chan *echan = &ecc->slave_chans[i];
  1582. echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
  1583. echan->ecc = ecc;
  1584. echan->vchan.desc_free = edma_desc_free;
  1585. if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
  1586. vchan_init(&echan->vchan, m_ddev);
  1587. else
  1588. vchan_init(&echan->vchan, s_ddev);
  1589. INIT_LIST_HEAD(&echan->node);
  1590. for (j = 0; j < EDMA_MAX_SLOTS; j++)
  1591. echan->slot[j] = -1;
  1592. }
  1593. }
  1594. static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
  1595. struct edma_cc *ecc)
  1596. {
  1597. int i;
  1598. u32 value, cccfg;
  1599. s8 (*queue_priority_map)[2];
  1600. /* Decode the eDMA3 configuration from CCCFG register */
  1601. cccfg = edma_read(ecc, EDMA_CCCFG);
  1602. value = GET_NUM_REGN(cccfg);
  1603. ecc->num_region = BIT(value);
  1604. value = GET_NUM_DMACH(cccfg);
  1605. ecc->num_channels = BIT(value + 1);
  1606. value = GET_NUM_QDMACH(cccfg);
  1607. ecc->num_qchannels = value * 2;
  1608. value = GET_NUM_PAENTRY(cccfg);
  1609. ecc->num_slots = BIT(value + 4);
  1610. value = GET_NUM_EVQUE(cccfg);
  1611. ecc->num_tc = value + 1;
  1612. ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
  1613. dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
  1614. dev_dbg(dev, "num_region: %u\n", ecc->num_region);
  1615. dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
  1616. dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
  1617. dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
  1618. dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
  1619. dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
  1620. /* Nothing need to be done if queue priority is provided */
  1621. if (pdata->queue_priority_mapping)
  1622. return 0;
  1623. /*
  1624. * Configure TC/queue priority as follows:
  1625. * Q0 - priority 0
  1626. * Q1 - priority 1
  1627. * Q2 - priority 2
  1628. * ...
  1629. * The meaning of priority numbers: 0 highest priority, 7 lowest
  1630. * priority. So Q0 is the highest priority queue and the last queue has
  1631. * the lowest priority.
  1632. */
  1633. queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
  1634. GFP_KERNEL);
  1635. if (!queue_priority_map)
  1636. return -ENOMEM;
  1637. for (i = 0; i < ecc->num_tc; i++) {
  1638. queue_priority_map[i][0] = i;
  1639. queue_priority_map[i][1] = i;
  1640. }
  1641. queue_priority_map[i][0] = -1;
  1642. queue_priority_map[i][1] = -1;
  1643. pdata->queue_priority_mapping = queue_priority_map;
  1644. /* Default queue has the lowest priority */
  1645. pdata->default_queue = i - 1;
  1646. return 0;
  1647. }
  1648. #if IS_ENABLED(CONFIG_OF)
  1649. static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
  1650. size_t sz)
  1651. {
  1652. const char pname[] = "ti,edma-xbar-event-map";
  1653. struct resource res;
  1654. void __iomem *xbar;
  1655. s16 (*xbar_chans)[2];
  1656. size_t nelm = sz / sizeof(s16);
  1657. u32 shift, offset, mux;
  1658. int ret, i;
  1659. xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
  1660. if (!xbar_chans)
  1661. return -ENOMEM;
  1662. ret = of_address_to_resource(dev->of_node, 1, &res);
  1663. if (ret)
  1664. return -ENOMEM;
  1665. xbar = devm_ioremap(dev, res.start, resource_size(&res));
  1666. if (!xbar)
  1667. return -ENOMEM;
  1668. ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
  1669. nelm);
  1670. if (ret)
  1671. return -EIO;
  1672. /* Invalidate last entry for the other user of this mess */
  1673. nelm >>= 1;
  1674. xbar_chans[nelm][0] = -1;
  1675. xbar_chans[nelm][1] = -1;
  1676. for (i = 0; i < nelm; i++) {
  1677. shift = (xbar_chans[i][1] & 0x03) << 3;
  1678. offset = xbar_chans[i][1] & 0xfffffffc;
  1679. mux = readl(xbar + offset);
  1680. mux &= ~(0xff << shift);
  1681. mux |= xbar_chans[i][0] << shift;
  1682. writel(mux, (xbar + offset));
  1683. }
  1684. pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
  1685. return 0;
  1686. }
  1687. static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
  1688. bool legacy_mode)
  1689. {
  1690. struct edma_soc_info *info;
  1691. struct property *prop;
  1692. size_t sz;
  1693. int ret;
  1694. info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
  1695. if (!info)
  1696. return ERR_PTR(-ENOMEM);
  1697. if (legacy_mode) {
  1698. prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
  1699. &sz);
  1700. if (prop) {
  1701. ret = edma_xbar_event_map(dev, info, sz);
  1702. if (ret)
  1703. return ERR_PTR(ret);
  1704. }
  1705. return info;
  1706. }
  1707. /* Get the list of channels allocated to be used for memcpy */
  1708. prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
  1709. if (prop) {
  1710. const char pname[] = "ti,edma-memcpy-channels";
  1711. size_t nelm = sz / sizeof(s16);
  1712. s16 *memcpy_ch;
  1713. memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s16),
  1714. GFP_KERNEL);
  1715. if (!memcpy_ch)
  1716. return ERR_PTR(-ENOMEM);
  1717. ret = of_property_read_u16_array(dev->of_node, pname,
  1718. (u16 *)memcpy_ch, nelm);
  1719. if (ret)
  1720. return ERR_PTR(ret);
  1721. memcpy_ch[nelm] = -1;
  1722. info->memcpy_channels = memcpy_ch;
  1723. }
  1724. prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
  1725. &sz);
  1726. if (prop) {
  1727. const char pname[] = "ti,edma-reserved-slot-ranges";
  1728. s16 (*rsv_slots)[2];
  1729. size_t nelm = sz / sizeof(*rsv_slots);
  1730. struct edma_rsv_info *rsv_info;
  1731. if (!nelm)
  1732. return info;
  1733. rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
  1734. if (!rsv_info)
  1735. return ERR_PTR(-ENOMEM);
  1736. rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
  1737. GFP_KERNEL);
  1738. if (!rsv_slots)
  1739. return ERR_PTR(-ENOMEM);
  1740. ret = of_property_read_u16_array(dev->of_node, pname,
  1741. (u16 *)rsv_slots, nelm * 2);
  1742. if (ret)
  1743. return ERR_PTR(ret);
  1744. rsv_slots[nelm][0] = -1;
  1745. rsv_slots[nelm][1] = -1;
  1746. info->rsv = rsv_info;
  1747. info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
  1748. }
  1749. return info;
  1750. }
  1751. static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
  1752. struct of_dma *ofdma)
  1753. {
  1754. struct edma_cc *ecc = ofdma->of_dma_data;
  1755. struct dma_chan *chan = NULL;
  1756. struct edma_chan *echan;
  1757. int i;
  1758. if (!ecc || dma_spec->args_count < 1)
  1759. return NULL;
  1760. for (i = 0; i < ecc->num_channels; i++) {
  1761. echan = &ecc->slave_chans[i];
  1762. if (echan->ch_num == dma_spec->args[0]) {
  1763. chan = &echan->vchan.chan;
  1764. break;
  1765. }
  1766. }
  1767. if (!chan)
  1768. return NULL;
  1769. if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
  1770. goto out;
  1771. if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
  1772. dma_spec->args[1] < echan->ecc->num_tc) {
  1773. echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
  1774. goto out;
  1775. }
  1776. return NULL;
  1777. out:
  1778. /* The channel is going to be used as HW synchronized */
  1779. echan->hw_triggered = true;
  1780. return dma_get_slave_channel(chan);
  1781. }
  1782. #else
  1783. static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
  1784. bool legacy_mode)
  1785. {
  1786. return ERR_PTR(-EINVAL);
  1787. }
  1788. static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
  1789. struct of_dma *ofdma)
  1790. {
  1791. return NULL;
  1792. }
  1793. #endif
  1794. static int edma_probe(struct platform_device *pdev)
  1795. {
  1796. struct edma_soc_info *info = pdev->dev.platform_data;
  1797. s8 (*queue_priority_mapping)[2];
  1798. int i, off, ln;
  1799. const s16 (*rsv_slots)[2];
  1800. const s16 (*xbar_chans)[2];
  1801. int irq;
  1802. char *irq_name;
  1803. struct resource *mem;
  1804. struct device_node *node = pdev->dev.of_node;
  1805. struct device *dev = &pdev->dev;
  1806. struct edma_cc *ecc;
  1807. bool legacy_mode = true;
  1808. int ret;
  1809. if (node) {
  1810. const struct of_device_id *match;
  1811. match = of_match_node(edma_of_ids, node);
  1812. if (match && (u32)match->data == EDMA_BINDING_TPCC)
  1813. legacy_mode = false;
  1814. info = edma_setup_info_from_dt(dev, legacy_mode);
  1815. if (IS_ERR(info)) {
  1816. dev_err(dev, "failed to get DT data\n");
  1817. return PTR_ERR(info);
  1818. }
  1819. }
  1820. if (!info)
  1821. return -ENODEV;
  1822. pm_runtime_enable(dev);
  1823. ret = pm_runtime_get_sync(dev);
  1824. if (ret < 0) {
  1825. dev_err(dev, "pm_runtime_get_sync() failed\n");
  1826. return ret;
  1827. }
  1828. ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
  1829. if (ret)
  1830. return ret;
  1831. ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
  1832. if (!ecc) {
  1833. dev_err(dev, "Can't allocate controller\n");
  1834. return -ENOMEM;
  1835. }
  1836. ecc->dev = dev;
  1837. ecc->id = pdev->id;
  1838. ecc->legacy_mode = legacy_mode;
  1839. /* When booting with DT the pdev->id is -1 */
  1840. if (ecc->id < 0)
  1841. ecc->id = 0;
  1842. mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
  1843. if (!mem) {
  1844. dev_dbg(dev, "mem resource not found, using index 0\n");
  1845. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1846. if (!mem) {
  1847. dev_err(dev, "no mem resource?\n");
  1848. return -ENODEV;
  1849. }
  1850. }
  1851. ecc->base = devm_ioremap_resource(dev, mem);
  1852. if (IS_ERR(ecc->base))
  1853. return PTR_ERR(ecc->base);
  1854. platform_set_drvdata(pdev, ecc);
  1855. /* Get eDMA3 configuration from IP */
  1856. ret = edma_setup_from_hw(dev, info, ecc);
  1857. if (ret)
  1858. return ret;
  1859. /* Allocate memory based on the information we got from the IP */
  1860. ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
  1861. sizeof(*ecc->slave_chans), GFP_KERNEL);
  1862. if (!ecc->slave_chans)
  1863. return -ENOMEM;
  1864. ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
  1865. sizeof(unsigned long), GFP_KERNEL);
  1866. if (!ecc->slot_inuse)
  1867. return -ENOMEM;
  1868. ecc->default_queue = info->default_queue;
  1869. for (i = 0; i < ecc->num_slots; i++)
  1870. edma_write_slot(ecc, i, &dummy_paramset);
  1871. if (info->rsv) {
  1872. /* Set the reserved slots in inuse list */
  1873. rsv_slots = info->rsv->rsv_slots;
  1874. if (rsv_slots) {
  1875. for (i = 0; rsv_slots[i][0] != -1; i++) {
  1876. off = rsv_slots[i][0];
  1877. ln = rsv_slots[i][1];
  1878. set_bits(off, ln, ecc->slot_inuse);
  1879. }
  1880. }
  1881. }
  1882. /* Clear the xbar mapped channels in unused list */
  1883. xbar_chans = info->xbar_chans;
  1884. if (xbar_chans) {
  1885. for (i = 0; xbar_chans[i][1] != -1; i++) {
  1886. off = xbar_chans[i][1];
  1887. }
  1888. }
  1889. irq = platform_get_irq_byname(pdev, "edma3_ccint");
  1890. if (irq < 0 && node)
  1891. irq = irq_of_parse_and_map(node, 0);
  1892. if (irq >= 0) {
  1893. irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
  1894. dev_name(dev));
  1895. ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
  1896. ecc);
  1897. if (ret) {
  1898. dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
  1899. return ret;
  1900. }
  1901. }
  1902. irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
  1903. if (irq < 0 && node)
  1904. irq = irq_of_parse_and_map(node, 2);
  1905. if (irq >= 0) {
  1906. irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
  1907. dev_name(dev));
  1908. ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
  1909. ecc);
  1910. if (ret) {
  1911. dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
  1912. return ret;
  1913. }
  1914. }
  1915. ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
  1916. if (ecc->dummy_slot < 0) {
  1917. dev_err(dev, "Can't allocate PaRAM dummy slot\n");
  1918. return ecc->dummy_slot;
  1919. }
  1920. queue_priority_mapping = info->queue_priority_mapping;
  1921. if (!ecc->legacy_mode) {
  1922. int lowest_priority = 0;
  1923. struct of_phandle_args tc_args;
  1924. ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
  1925. sizeof(*ecc->tc_list), GFP_KERNEL);
  1926. if (!ecc->tc_list)
  1927. return -ENOMEM;
  1928. for (i = 0;; i++) {
  1929. ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
  1930. 1, i, &tc_args);
  1931. if (ret || i == ecc->num_tc)
  1932. break;
  1933. ecc->tc_list[i].node = tc_args.np;
  1934. ecc->tc_list[i].id = i;
  1935. queue_priority_mapping[i][1] = tc_args.args[0];
  1936. if (queue_priority_mapping[i][1] > lowest_priority) {
  1937. lowest_priority = queue_priority_mapping[i][1];
  1938. info->default_queue = i;
  1939. }
  1940. }
  1941. }
  1942. /* Event queue priority mapping */
  1943. for (i = 0; queue_priority_mapping[i][0] != -1; i++)
  1944. edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
  1945. queue_priority_mapping[i][1]);
  1946. for (i = 0; i < ecc->num_region; i++) {
  1947. edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
  1948. edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
  1949. edma_write_array(ecc, EDMA_QRAE, i, 0x0);
  1950. }
  1951. ecc->info = info;
  1952. /* Init the dma device and channels */
  1953. edma_dma_init(ecc, legacy_mode);
  1954. for (i = 0; i < ecc->num_channels; i++) {
  1955. /* Assign all channels to the default queue */
  1956. edma_assign_channel_eventq(&ecc->slave_chans[i],
  1957. info->default_queue);
  1958. /* Set entry slot to the dummy slot */
  1959. edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
  1960. }
  1961. ecc->dma_slave.filter.map = info->slave_map;
  1962. ecc->dma_slave.filter.mapcnt = info->slavecnt;
  1963. ecc->dma_slave.filter.fn = edma_filter_fn;
  1964. ret = dma_async_device_register(&ecc->dma_slave);
  1965. if (ret) {
  1966. dev_err(dev, "slave ddev registration failed (%d)\n", ret);
  1967. goto err_reg1;
  1968. }
  1969. if (ecc->dma_memcpy) {
  1970. ret = dma_async_device_register(ecc->dma_memcpy);
  1971. if (ret) {
  1972. dev_err(dev, "memcpy ddev registration failed (%d)\n",
  1973. ret);
  1974. dma_async_device_unregister(&ecc->dma_slave);
  1975. goto err_reg1;
  1976. }
  1977. }
  1978. if (node)
  1979. of_dma_controller_register(node, of_edma_xlate, ecc);
  1980. dev_info(dev, "TI EDMA DMA engine driver\n");
  1981. return 0;
  1982. err_reg1:
  1983. edma_free_slot(ecc, ecc->dummy_slot);
  1984. return ret;
  1985. }
  1986. static int edma_remove(struct platform_device *pdev)
  1987. {
  1988. struct device *dev = &pdev->dev;
  1989. struct edma_cc *ecc = dev_get_drvdata(dev);
  1990. if (dev->of_node)
  1991. of_dma_controller_free(dev->of_node);
  1992. dma_async_device_unregister(&ecc->dma_slave);
  1993. if (ecc->dma_memcpy)
  1994. dma_async_device_unregister(ecc->dma_memcpy);
  1995. edma_free_slot(ecc, ecc->dummy_slot);
  1996. return 0;
  1997. }
  1998. #ifdef CONFIG_PM_SLEEP
  1999. static int edma_pm_suspend(struct device *dev)
  2000. {
  2001. struct edma_cc *ecc = dev_get_drvdata(dev);
  2002. struct edma_chan *echan = ecc->slave_chans;
  2003. int i;
  2004. for (i = 0; i < ecc->num_channels; i++) {
  2005. if (echan[i].alloced) {
  2006. edma_setup_interrupt(&echan[i], false);
  2007. edma_tc_set_pm_state(echan[i].tc, false);
  2008. }
  2009. }
  2010. return 0;
  2011. }
  2012. static int edma_pm_resume(struct device *dev)
  2013. {
  2014. struct edma_cc *ecc = dev_get_drvdata(dev);
  2015. struct edma_chan *echan = ecc->slave_chans;
  2016. int i;
  2017. s8 (*queue_priority_mapping)[2];
  2018. queue_priority_mapping = ecc->info->queue_priority_mapping;
  2019. /* Event queue priority mapping */
  2020. for (i = 0; queue_priority_mapping[i][0] != -1; i++)
  2021. edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
  2022. queue_priority_mapping[i][1]);
  2023. for (i = 0; i < ecc->num_channels; i++) {
  2024. if (echan[i].alloced) {
  2025. /* ensure access through shadow region 0 */
  2026. edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
  2027. BIT(i & 0x1f));
  2028. edma_setup_interrupt(&echan[i], true);
  2029. /* Set up channel -> slot mapping for the entry slot */
  2030. edma_set_chmap(&echan[i], echan[i].slot[0]);
  2031. edma_tc_set_pm_state(echan[i].tc, true);
  2032. }
  2033. }
  2034. return 0;
  2035. }
  2036. #endif
  2037. static const struct dev_pm_ops edma_pm_ops = {
  2038. SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
  2039. };
  2040. static struct platform_driver edma_driver = {
  2041. .probe = edma_probe,
  2042. .remove = edma_remove,
  2043. .driver = {
  2044. .name = "edma",
  2045. .pm = &edma_pm_ops,
  2046. .of_match_table = edma_of_ids,
  2047. },
  2048. };
  2049. static int edma_tptc_probe(struct platform_device *pdev)
  2050. {
  2051. return 0;
  2052. }
  2053. static struct platform_driver edma_tptc_driver = {
  2054. .probe = edma_tptc_probe,
  2055. .driver = {
  2056. .name = "edma3-tptc",
  2057. .of_match_table = edma_tptc_of_ids,
  2058. },
  2059. };
  2060. bool edma_filter_fn(struct dma_chan *chan, void *param)
  2061. {
  2062. bool match = false;
  2063. if (chan->device->dev->driver == &edma_driver.driver) {
  2064. struct edma_chan *echan = to_edma_chan(chan);
  2065. unsigned ch_req = *(unsigned *)param;
  2066. if (ch_req == echan->ch_num) {
  2067. /* The channel is going to be used as HW synchronized */
  2068. echan->hw_triggered = true;
  2069. match = true;
  2070. }
  2071. }
  2072. return match;
  2073. }
  2074. EXPORT_SYMBOL(edma_filter_fn);
  2075. static int edma_init(void)
  2076. {
  2077. int ret;
  2078. ret = platform_driver_register(&edma_tptc_driver);
  2079. if (ret)
  2080. return ret;
  2081. return platform_driver_register(&edma_driver);
  2082. }
  2083. subsys_initcall(edma_init);
  2084. static void __exit edma_exit(void)
  2085. {
  2086. platform_driver_unregister(&edma_driver);
  2087. platform_driver_unregister(&edma_tptc_driver);
  2088. }
  2089. module_exit(edma_exit);
  2090. MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
  2091. MODULE_DESCRIPTION("TI EDMA DMA engine driver");
  2092. MODULE_LICENSE("GPL v2");