mips.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * KVM/MIPS: MIPS specific KVM APIs
  7. *
  8. * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
  9. * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10. */
  11. #include <linux/errno.h>
  12. #include <linux/err.h>
  13. #include <linux/kdebug.h>
  14. #include <linux/module.h>
  15. #include <linux/vmalloc.h>
  16. #include <linux/fs.h>
  17. #include <linux/bootmem.h>
  18. #include <asm/fpu.h>
  19. #include <asm/page.h>
  20. #include <asm/cacheflush.h>
  21. #include <asm/mmu_context.h>
  22. #include <asm/pgtable.h>
  23. #include <linux/kvm_host.h>
  24. #include "interrupt.h"
  25. #include "commpage.h"
  26. #define CREATE_TRACE_POINTS
  27. #include "trace.h"
  28. #ifndef VECTORSPACING
  29. #define VECTORSPACING 0x100 /* for EI/VI mode */
  30. #endif
  31. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
  32. struct kvm_stats_debugfs_item debugfs_entries[] = {
  33. { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
  34. { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
  35. { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
  36. { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
  37. { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
  38. { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
  39. { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
  40. { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
  41. { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
  42. { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
  43. { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
  44. { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
  45. { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
  46. { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
  47. { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
  48. { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
  49. { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
  50. { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
  51. { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
  52. { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
  53. { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
  54. { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
  55. {NULL}
  56. };
  57. static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
  58. {
  59. int i;
  60. for_each_possible_cpu(i) {
  61. vcpu->arch.guest_kernel_asid[i] = 0;
  62. vcpu->arch.guest_user_asid[i] = 0;
  63. }
  64. return 0;
  65. }
  66. /*
  67. * XXXKYMA: We are simulatoring a processor that has the WII bit set in
  68. * Config7, so we are "runnable" if interrupts are pending
  69. */
  70. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  71. {
  72. return !!(vcpu->arch.pending_exceptions);
  73. }
  74. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  75. {
  76. return 1;
  77. }
  78. int kvm_arch_hardware_enable(void)
  79. {
  80. return 0;
  81. }
  82. int kvm_arch_hardware_setup(void)
  83. {
  84. return 0;
  85. }
  86. void kvm_arch_check_processor_compat(void *rtn)
  87. {
  88. *(int *)rtn = 0;
  89. }
  90. static void kvm_mips_init_tlbs(struct kvm *kvm)
  91. {
  92. unsigned long wired;
  93. /*
  94. * Add a wired entry to the TLB, it is used to map the commpage to
  95. * the Guest kernel
  96. */
  97. wired = read_c0_wired();
  98. write_c0_wired(wired + 1);
  99. mtc0_tlbw_hazard();
  100. kvm->arch.commpage_tlb = wired;
  101. kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
  102. kvm->arch.commpage_tlb);
  103. }
  104. static void kvm_mips_init_vm_percpu(void *arg)
  105. {
  106. struct kvm *kvm = (struct kvm *)arg;
  107. kvm_mips_init_tlbs(kvm);
  108. kvm_mips_callbacks->vm_init(kvm);
  109. }
  110. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  111. {
  112. if (atomic_inc_return(&kvm_mips_instance) == 1) {
  113. kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
  114. __func__);
  115. on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
  116. }
  117. return 0;
  118. }
  119. void kvm_mips_free_vcpus(struct kvm *kvm)
  120. {
  121. unsigned int i;
  122. struct kvm_vcpu *vcpu;
  123. /* Put the pages we reserved for the guest pmap */
  124. for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
  125. if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
  126. kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
  127. }
  128. kfree(kvm->arch.guest_pmap);
  129. kvm_for_each_vcpu(i, vcpu, kvm) {
  130. kvm_arch_vcpu_free(vcpu);
  131. }
  132. mutex_lock(&kvm->lock);
  133. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  134. kvm->vcpus[i] = NULL;
  135. atomic_set(&kvm->online_vcpus, 0);
  136. mutex_unlock(&kvm->lock);
  137. }
  138. static void kvm_mips_uninit_tlbs(void *arg)
  139. {
  140. /* Restore wired count */
  141. write_c0_wired(0);
  142. mtc0_tlbw_hazard();
  143. /* Clear out all the TLBs */
  144. kvm_local_flush_tlb_all();
  145. }
  146. void kvm_arch_destroy_vm(struct kvm *kvm)
  147. {
  148. kvm_mips_free_vcpus(kvm);
  149. /* If this is the last instance, restore wired count */
  150. if (atomic_dec_return(&kvm_mips_instance) == 0) {
  151. kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
  152. __func__);
  153. on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
  154. }
  155. }
  156. long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
  157. unsigned long arg)
  158. {
  159. return -ENOIOCTLCMD;
  160. }
  161. int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
  162. unsigned long npages)
  163. {
  164. return 0;
  165. }
  166. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  167. struct kvm_memory_slot *memslot,
  168. const struct kvm_userspace_memory_region *mem,
  169. enum kvm_mr_change change)
  170. {
  171. return 0;
  172. }
  173. void kvm_arch_commit_memory_region(struct kvm *kvm,
  174. const struct kvm_userspace_memory_region *mem,
  175. const struct kvm_memory_slot *old,
  176. const struct kvm_memory_slot *new,
  177. enum kvm_mr_change change)
  178. {
  179. unsigned long npages = 0;
  180. int i;
  181. kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
  182. __func__, kvm, mem->slot, mem->guest_phys_addr,
  183. mem->memory_size, mem->userspace_addr);
  184. /* Setup Guest PMAP table */
  185. if (!kvm->arch.guest_pmap) {
  186. if (mem->slot == 0)
  187. npages = mem->memory_size >> PAGE_SHIFT;
  188. if (npages) {
  189. kvm->arch.guest_pmap_npages = npages;
  190. kvm->arch.guest_pmap =
  191. kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
  192. if (!kvm->arch.guest_pmap) {
  193. kvm_err("Failed to allocate guest PMAP\n");
  194. return;
  195. }
  196. kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
  197. npages, kvm->arch.guest_pmap);
  198. /* Now setup the page table */
  199. for (i = 0; i < npages; i++)
  200. kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
  201. }
  202. }
  203. }
  204. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
  205. {
  206. int err, size, offset;
  207. void *gebase;
  208. int i;
  209. struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
  210. if (!vcpu) {
  211. err = -ENOMEM;
  212. goto out;
  213. }
  214. err = kvm_vcpu_init(vcpu, kvm, id);
  215. if (err)
  216. goto out_free_cpu;
  217. kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
  218. /*
  219. * Allocate space for host mode exception handlers that handle
  220. * guest mode exits
  221. */
  222. if (cpu_has_veic || cpu_has_vint)
  223. size = 0x200 + VECTORSPACING * 64;
  224. else
  225. size = 0x4000;
  226. /* Save Linux EBASE */
  227. vcpu->arch.host_ebase = (void *)read_c0_ebase();
  228. gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
  229. if (!gebase) {
  230. err = -ENOMEM;
  231. goto out_uninit_cpu;
  232. }
  233. kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
  234. ALIGN(size, PAGE_SIZE), gebase);
  235. /* Save new ebase */
  236. vcpu->arch.guest_ebase = gebase;
  237. /* Copy L1 Guest Exception handler to correct offset */
  238. /* TLB Refill, EXL = 0 */
  239. memcpy(gebase, mips32_exception,
  240. mips32_exceptionEnd - mips32_exception);
  241. /* General Exception Entry point */
  242. memcpy(gebase + 0x180, mips32_exception,
  243. mips32_exceptionEnd - mips32_exception);
  244. /* For vectored interrupts poke the exception code @ all offsets 0-7 */
  245. for (i = 0; i < 8; i++) {
  246. kvm_debug("L1 Vectored handler @ %p\n",
  247. gebase + 0x200 + (i * VECTORSPACING));
  248. memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
  249. mips32_exceptionEnd - mips32_exception);
  250. }
  251. /* General handler, relocate to unmapped space for sanity's sake */
  252. offset = 0x2000;
  253. kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
  254. gebase + offset,
  255. mips32_GuestExceptionEnd - mips32_GuestException);
  256. memcpy(gebase + offset, mips32_GuestException,
  257. mips32_GuestExceptionEnd - mips32_GuestException);
  258. /* Invalidate the icache for these ranges */
  259. local_flush_icache_range((unsigned long)gebase,
  260. (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
  261. /*
  262. * Allocate comm page for guest kernel, a TLB will be reserved for
  263. * mapping GVA @ 0xFFFF8000 to this page
  264. */
  265. vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
  266. if (!vcpu->arch.kseg0_commpage) {
  267. err = -ENOMEM;
  268. goto out_free_gebase;
  269. }
  270. kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
  271. kvm_mips_commpage_init(vcpu);
  272. /* Init */
  273. vcpu->arch.last_sched_cpu = -1;
  274. /* Start off the timer */
  275. kvm_mips_init_count(vcpu);
  276. return vcpu;
  277. out_free_gebase:
  278. kfree(gebase);
  279. out_uninit_cpu:
  280. kvm_vcpu_uninit(vcpu);
  281. out_free_cpu:
  282. kfree(vcpu);
  283. out:
  284. return ERR_PTR(err);
  285. }
  286. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  287. {
  288. hrtimer_cancel(&vcpu->arch.comparecount_timer);
  289. kvm_vcpu_uninit(vcpu);
  290. kvm_mips_dump_stats(vcpu);
  291. kfree(vcpu->arch.guest_ebase);
  292. kfree(vcpu->arch.kseg0_commpage);
  293. kfree(vcpu);
  294. }
  295. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  296. {
  297. kvm_arch_vcpu_free(vcpu);
  298. }
  299. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  300. struct kvm_guest_debug *dbg)
  301. {
  302. return -ENOIOCTLCMD;
  303. }
  304. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
  305. {
  306. int r = 0;
  307. sigset_t sigsaved;
  308. if (vcpu->sigset_active)
  309. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  310. if (vcpu->mmio_needed) {
  311. if (!vcpu->mmio_is_write)
  312. kvm_mips_complete_mmio_load(vcpu, run);
  313. vcpu->mmio_needed = 0;
  314. }
  315. lose_fpu(1);
  316. local_irq_disable();
  317. /* Check if we have any exceptions/interrupts pending */
  318. kvm_mips_deliver_interrupts(vcpu,
  319. kvm_read_c0_guest_cause(vcpu->arch.cop0));
  320. __kvm_guest_enter();
  321. /* Disable hardware page table walking while in guest */
  322. htw_stop();
  323. r = __kvm_mips_vcpu_run(run, vcpu);
  324. /* Re-enable HTW before enabling interrupts */
  325. htw_start();
  326. __kvm_guest_exit();
  327. local_irq_enable();
  328. if (vcpu->sigset_active)
  329. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  330. return r;
  331. }
  332. int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  333. struct kvm_mips_interrupt *irq)
  334. {
  335. int intr = (int)irq->irq;
  336. struct kvm_vcpu *dvcpu = NULL;
  337. if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
  338. kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
  339. (int)intr);
  340. if (irq->cpu == -1)
  341. dvcpu = vcpu;
  342. else
  343. dvcpu = vcpu->kvm->vcpus[irq->cpu];
  344. if (intr == 2 || intr == 3 || intr == 4) {
  345. kvm_mips_callbacks->queue_io_int(dvcpu, irq);
  346. } else if (intr == -2 || intr == -3 || intr == -4) {
  347. kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
  348. } else {
  349. kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
  350. irq->cpu, irq->irq);
  351. return -EINVAL;
  352. }
  353. dvcpu->arch.wait = 0;
  354. if (swait_active(&dvcpu->wq))
  355. swake_up(&dvcpu->wq);
  356. return 0;
  357. }
  358. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  359. struct kvm_mp_state *mp_state)
  360. {
  361. return -ENOIOCTLCMD;
  362. }
  363. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  364. struct kvm_mp_state *mp_state)
  365. {
  366. return -ENOIOCTLCMD;
  367. }
  368. static u64 kvm_mips_get_one_regs[] = {
  369. KVM_REG_MIPS_R0,
  370. KVM_REG_MIPS_R1,
  371. KVM_REG_MIPS_R2,
  372. KVM_REG_MIPS_R3,
  373. KVM_REG_MIPS_R4,
  374. KVM_REG_MIPS_R5,
  375. KVM_REG_MIPS_R6,
  376. KVM_REG_MIPS_R7,
  377. KVM_REG_MIPS_R8,
  378. KVM_REG_MIPS_R9,
  379. KVM_REG_MIPS_R10,
  380. KVM_REG_MIPS_R11,
  381. KVM_REG_MIPS_R12,
  382. KVM_REG_MIPS_R13,
  383. KVM_REG_MIPS_R14,
  384. KVM_REG_MIPS_R15,
  385. KVM_REG_MIPS_R16,
  386. KVM_REG_MIPS_R17,
  387. KVM_REG_MIPS_R18,
  388. KVM_REG_MIPS_R19,
  389. KVM_REG_MIPS_R20,
  390. KVM_REG_MIPS_R21,
  391. KVM_REG_MIPS_R22,
  392. KVM_REG_MIPS_R23,
  393. KVM_REG_MIPS_R24,
  394. KVM_REG_MIPS_R25,
  395. KVM_REG_MIPS_R26,
  396. KVM_REG_MIPS_R27,
  397. KVM_REG_MIPS_R28,
  398. KVM_REG_MIPS_R29,
  399. KVM_REG_MIPS_R30,
  400. KVM_REG_MIPS_R31,
  401. KVM_REG_MIPS_HI,
  402. KVM_REG_MIPS_LO,
  403. KVM_REG_MIPS_PC,
  404. KVM_REG_MIPS_CP0_INDEX,
  405. KVM_REG_MIPS_CP0_CONTEXT,
  406. KVM_REG_MIPS_CP0_USERLOCAL,
  407. KVM_REG_MIPS_CP0_PAGEMASK,
  408. KVM_REG_MIPS_CP0_WIRED,
  409. KVM_REG_MIPS_CP0_HWRENA,
  410. KVM_REG_MIPS_CP0_BADVADDR,
  411. KVM_REG_MIPS_CP0_COUNT,
  412. KVM_REG_MIPS_CP0_ENTRYHI,
  413. KVM_REG_MIPS_CP0_COMPARE,
  414. KVM_REG_MIPS_CP0_STATUS,
  415. KVM_REG_MIPS_CP0_CAUSE,
  416. KVM_REG_MIPS_CP0_EPC,
  417. KVM_REG_MIPS_CP0_PRID,
  418. KVM_REG_MIPS_CP0_CONFIG,
  419. KVM_REG_MIPS_CP0_CONFIG1,
  420. KVM_REG_MIPS_CP0_CONFIG2,
  421. KVM_REG_MIPS_CP0_CONFIG3,
  422. KVM_REG_MIPS_CP0_CONFIG4,
  423. KVM_REG_MIPS_CP0_CONFIG5,
  424. KVM_REG_MIPS_CP0_CONFIG7,
  425. KVM_REG_MIPS_CP0_ERROREPC,
  426. KVM_REG_MIPS_COUNT_CTL,
  427. KVM_REG_MIPS_COUNT_RESUME,
  428. KVM_REG_MIPS_COUNT_HZ,
  429. };
  430. static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
  431. const struct kvm_one_reg *reg)
  432. {
  433. struct mips_coproc *cop0 = vcpu->arch.cop0;
  434. struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
  435. int ret;
  436. s64 v;
  437. s64 vs[2];
  438. unsigned int idx;
  439. switch (reg->id) {
  440. /* General purpose registers */
  441. case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
  442. v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
  443. break;
  444. case KVM_REG_MIPS_HI:
  445. v = (long)vcpu->arch.hi;
  446. break;
  447. case KVM_REG_MIPS_LO:
  448. v = (long)vcpu->arch.lo;
  449. break;
  450. case KVM_REG_MIPS_PC:
  451. v = (long)vcpu->arch.pc;
  452. break;
  453. /* Floating point registers */
  454. case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
  455. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  456. return -EINVAL;
  457. idx = reg->id - KVM_REG_MIPS_FPR_32(0);
  458. /* Odd singles in top of even double when FR=0 */
  459. if (kvm_read_c0_guest_status(cop0) & ST0_FR)
  460. v = get_fpr32(&fpu->fpr[idx], 0);
  461. else
  462. v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
  463. break;
  464. case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
  465. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  466. return -EINVAL;
  467. idx = reg->id - KVM_REG_MIPS_FPR_64(0);
  468. /* Can't access odd doubles in FR=0 mode */
  469. if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
  470. return -EINVAL;
  471. v = get_fpr64(&fpu->fpr[idx], 0);
  472. break;
  473. case KVM_REG_MIPS_FCR_IR:
  474. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  475. return -EINVAL;
  476. v = boot_cpu_data.fpu_id;
  477. break;
  478. case KVM_REG_MIPS_FCR_CSR:
  479. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  480. return -EINVAL;
  481. v = fpu->fcr31;
  482. break;
  483. /* MIPS SIMD Architecture (MSA) registers */
  484. case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
  485. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  486. return -EINVAL;
  487. /* Can't access MSA registers in FR=0 mode */
  488. if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
  489. return -EINVAL;
  490. idx = reg->id - KVM_REG_MIPS_VEC_128(0);
  491. #ifdef CONFIG_CPU_LITTLE_ENDIAN
  492. /* least significant byte first */
  493. vs[0] = get_fpr64(&fpu->fpr[idx], 0);
  494. vs[1] = get_fpr64(&fpu->fpr[idx], 1);
  495. #else
  496. /* most significant byte first */
  497. vs[0] = get_fpr64(&fpu->fpr[idx], 1);
  498. vs[1] = get_fpr64(&fpu->fpr[idx], 0);
  499. #endif
  500. break;
  501. case KVM_REG_MIPS_MSA_IR:
  502. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  503. return -EINVAL;
  504. v = boot_cpu_data.msa_id;
  505. break;
  506. case KVM_REG_MIPS_MSA_CSR:
  507. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  508. return -EINVAL;
  509. v = fpu->msacsr;
  510. break;
  511. /* Co-processor 0 registers */
  512. case KVM_REG_MIPS_CP0_INDEX:
  513. v = (long)kvm_read_c0_guest_index(cop0);
  514. break;
  515. case KVM_REG_MIPS_CP0_CONTEXT:
  516. v = (long)kvm_read_c0_guest_context(cop0);
  517. break;
  518. case KVM_REG_MIPS_CP0_USERLOCAL:
  519. v = (long)kvm_read_c0_guest_userlocal(cop0);
  520. break;
  521. case KVM_REG_MIPS_CP0_PAGEMASK:
  522. v = (long)kvm_read_c0_guest_pagemask(cop0);
  523. break;
  524. case KVM_REG_MIPS_CP0_WIRED:
  525. v = (long)kvm_read_c0_guest_wired(cop0);
  526. break;
  527. case KVM_REG_MIPS_CP0_HWRENA:
  528. v = (long)kvm_read_c0_guest_hwrena(cop0);
  529. break;
  530. case KVM_REG_MIPS_CP0_BADVADDR:
  531. v = (long)kvm_read_c0_guest_badvaddr(cop0);
  532. break;
  533. case KVM_REG_MIPS_CP0_ENTRYHI:
  534. v = (long)kvm_read_c0_guest_entryhi(cop0);
  535. break;
  536. case KVM_REG_MIPS_CP0_COMPARE:
  537. v = (long)kvm_read_c0_guest_compare(cop0);
  538. break;
  539. case KVM_REG_MIPS_CP0_STATUS:
  540. v = (long)kvm_read_c0_guest_status(cop0);
  541. break;
  542. case KVM_REG_MIPS_CP0_CAUSE:
  543. v = (long)kvm_read_c0_guest_cause(cop0);
  544. break;
  545. case KVM_REG_MIPS_CP0_EPC:
  546. v = (long)kvm_read_c0_guest_epc(cop0);
  547. break;
  548. case KVM_REG_MIPS_CP0_PRID:
  549. v = (long)kvm_read_c0_guest_prid(cop0);
  550. break;
  551. case KVM_REG_MIPS_CP0_CONFIG:
  552. v = (long)kvm_read_c0_guest_config(cop0);
  553. break;
  554. case KVM_REG_MIPS_CP0_CONFIG1:
  555. v = (long)kvm_read_c0_guest_config1(cop0);
  556. break;
  557. case KVM_REG_MIPS_CP0_CONFIG2:
  558. v = (long)kvm_read_c0_guest_config2(cop0);
  559. break;
  560. case KVM_REG_MIPS_CP0_CONFIG3:
  561. v = (long)kvm_read_c0_guest_config3(cop0);
  562. break;
  563. case KVM_REG_MIPS_CP0_CONFIG4:
  564. v = (long)kvm_read_c0_guest_config4(cop0);
  565. break;
  566. case KVM_REG_MIPS_CP0_CONFIG5:
  567. v = (long)kvm_read_c0_guest_config5(cop0);
  568. break;
  569. case KVM_REG_MIPS_CP0_CONFIG7:
  570. v = (long)kvm_read_c0_guest_config7(cop0);
  571. break;
  572. case KVM_REG_MIPS_CP0_ERROREPC:
  573. v = (long)kvm_read_c0_guest_errorepc(cop0);
  574. break;
  575. /* registers to be handled specially */
  576. case KVM_REG_MIPS_CP0_COUNT:
  577. case KVM_REG_MIPS_COUNT_CTL:
  578. case KVM_REG_MIPS_COUNT_RESUME:
  579. case KVM_REG_MIPS_COUNT_HZ:
  580. ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
  581. if (ret)
  582. return ret;
  583. break;
  584. default:
  585. return -EINVAL;
  586. }
  587. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  588. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  589. return put_user(v, uaddr64);
  590. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  591. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  592. u32 v32 = (u32)v;
  593. return put_user(v32, uaddr32);
  594. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
  595. void __user *uaddr = (void __user *)(long)reg->addr;
  596. return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
  597. } else {
  598. return -EINVAL;
  599. }
  600. }
  601. static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
  602. const struct kvm_one_reg *reg)
  603. {
  604. struct mips_coproc *cop0 = vcpu->arch.cop0;
  605. struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
  606. s64 v;
  607. s64 vs[2];
  608. unsigned int idx;
  609. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  610. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  611. if (get_user(v, uaddr64) != 0)
  612. return -EFAULT;
  613. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  614. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  615. s32 v32;
  616. if (get_user(v32, uaddr32) != 0)
  617. return -EFAULT;
  618. v = (s64)v32;
  619. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
  620. void __user *uaddr = (void __user *)(long)reg->addr;
  621. return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
  622. } else {
  623. return -EINVAL;
  624. }
  625. switch (reg->id) {
  626. /* General purpose registers */
  627. case KVM_REG_MIPS_R0:
  628. /* Silently ignore requests to set $0 */
  629. break;
  630. case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
  631. vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
  632. break;
  633. case KVM_REG_MIPS_HI:
  634. vcpu->arch.hi = v;
  635. break;
  636. case KVM_REG_MIPS_LO:
  637. vcpu->arch.lo = v;
  638. break;
  639. case KVM_REG_MIPS_PC:
  640. vcpu->arch.pc = v;
  641. break;
  642. /* Floating point registers */
  643. case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
  644. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  645. return -EINVAL;
  646. idx = reg->id - KVM_REG_MIPS_FPR_32(0);
  647. /* Odd singles in top of even double when FR=0 */
  648. if (kvm_read_c0_guest_status(cop0) & ST0_FR)
  649. set_fpr32(&fpu->fpr[idx], 0, v);
  650. else
  651. set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
  652. break;
  653. case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
  654. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  655. return -EINVAL;
  656. idx = reg->id - KVM_REG_MIPS_FPR_64(0);
  657. /* Can't access odd doubles in FR=0 mode */
  658. if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
  659. return -EINVAL;
  660. set_fpr64(&fpu->fpr[idx], 0, v);
  661. break;
  662. case KVM_REG_MIPS_FCR_IR:
  663. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  664. return -EINVAL;
  665. /* Read-only */
  666. break;
  667. case KVM_REG_MIPS_FCR_CSR:
  668. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  669. return -EINVAL;
  670. fpu->fcr31 = v;
  671. break;
  672. /* MIPS SIMD Architecture (MSA) registers */
  673. case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
  674. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  675. return -EINVAL;
  676. idx = reg->id - KVM_REG_MIPS_VEC_128(0);
  677. #ifdef CONFIG_CPU_LITTLE_ENDIAN
  678. /* least significant byte first */
  679. set_fpr64(&fpu->fpr[idx], 0, vs[0]);
  680. set_fpr64(&fpu->fpr[idx], 1, vs[1]);
  681. #else
  682. /* most significant byte first */
  683. set_fpr64(&fpu->fpr[idx], 1, vs[0]);
  684. set_fpr64(&fpu->fpr[idx], 0, vs[1]);
  685. #endif
  686. break;
  687. case KVM_REG_MIPS_MSA_IR:
  688. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  689. return -EINVAL;
  690. /* Read-only */
  691. break;
  692. case KVM_REG_MIPS_MSA_CSR:
  693. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  694. return -EINVAL;
  695. fpu->msacsr = v;
  696. break;
  697. /* Co-processor 0 registers */
  698. case KVM_REG_MIPS_CP0_INDEX:
  699. kvm_write_c0_guest_index(cop0, v);
  700. break;
  701. case KVM_REG_MIPS_CP0_CONTEXT:
  702. kvm_write_c0_guest_context(cop0, v);
  703. break;
  704. case KVM_REG_MIPS_CP0_USERLOCAL:
  705. kvm_write_c0_guest_userlocal(cop0, v);
  706. break;
  707. case KVM_REG_MIPS_CP0_PAGEMASK:
  708. kvm_write_c0_guest_pagemask(cop0, v);
  709. break;
  710. case KVM_REG_MIPS_CP0_WIRED:
  711. kvm_write_c0_guest_wired(cop0, v);
  712. break;
  713. case KVM_REG_MIPS_CP0_HWRENA:
  714. kvm_write_c0_guest_hwrena(cop0, v);
  715. break;
  716. case KVM_REG_MIPS_CP0_BADVADDR:
  717. kvm_write_c0_guest_badvaddr(cop0, v);
  718. break;
  719. case KVM_REG_MIPS_CP0_ENTRYHI:
  720. kvm_write_c0_guest_entryhi(cop0, v);
  721. break;
  722. case KVM_REG_MIPS_CP0_STATUS:
  723. kvm_write_c0_guest_status(cop0, v);
  724. break;
  725. case KVM_REG_MIPS_CP0_EPC:
  726. kvm_write_c0_guest_epc(cop0, v);
  727. break;
  728. case KVM_REG_MIPS_CP0_PRID:
  729. kvm_write_c0_guest_prid(cop0, v);
  730. break;
  731. case KVM_REG_MIPS_CP0_ERROREPC:
  732. kvm_write_c0_guest_errorepc(cop0, v);
  733. break;
  734. /* registers to be handled specially */
  735. case KVM_REG_MIPS_CP0_COUNT:
  736. case KVM_REG_MIPS_CP0_COMPARE:
  737. case KVM_REG_MIPS_CP0_CAUSE:
  738. case KVM_REG_MIPS_CP0_CONFIG:
  739. case KVM_REG_MIPS_CP0_CONFIG1:
  740. case KVM_REG_MIPS_CP0_CONFIG2:
  741. case KVM_REG_MIPS_CP0_CONFIG3:
  742. case KVM_REG_MIPS_CP0_CONFIG4:
  743. case KVM_REG_MIPS_CP0_CONFIG5:
  744. case KVM_REG_MIPS_COUNT_CTL:
  745. case KVM_REG_MIPS_COUNT_RESUME:
  746. case KVM_REG_MIPS_COUNT_HZ:
  747. return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
  748. default:
  749. return -EINVAL;
  750. }
  751. return 0;
  752. }
  753. static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
  754. struct kvm_enable_cap *cap)
  755. {
  756. int r = 0;
  757. if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
  758. return -EINVAL;
  759. if (cap->flags)
  760. return -EINVAL;
  761. if (cap->args[0])
  762. return -EINVAL;
  763. switch (cap->cap) {
  764. case KVM_CAP_MIPS_FPU:
  765. vcpu->arch.fpu_enabled = true;
  766. break;
  767. case KVM_CAP_MIPS_MSA:
  768. vcpu->arch.msa_enabled = true;
  769. break;
  770. default:
  771. r = -EINVAL;
  772. break;
  773. }
  774. return r;
  775. }
  776. long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
  777. unsigned long arg)
  778. {
  779. struct kvm_vcpu *vcpu = filp->private_data;
  780. void __user *argp = (void __user *)arg;
  781. long r;
  782. switch (ioctl) {
  783. case KVM_SET_ONE_REG:
  784. case KVM_GET_ONE_REG: {
  785. struct kvm_one_reg reg;
  786. if (copy_from_user(&reg, argp, sizeof(reg)))
  787. return -EFAULT;
  788. if (ioctl == KVM_SET_ONE_REG)
  789. return kvm_mips_set_reg(vcpu, &reg);
  790. else
  791. return kvm_mips_get_reg(vcpu, &reg);
  792. }
  793. case KVM_GET_REG_LIST: {
  794. struct kvm_reg_list __user *user_list = argp;
  795. u64 __user *reg_dest;
  796. struct kvm_reg_list reg_list;
  797. unsigned n;
  798. if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
  799. return -EFAULT;
  800. n = reg_list.n;
  801. reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
  802. if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
  803. return -EFAULT;
  804. if (n < reg_list.n)
  805. return -E2BIG;
  806. reg_dest = user_list->reg;
  807. if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
  808. sizeof(kvm_mips_get_one_regs)))
  809. return -EFAULT;
  810. return 0;
  811. }
  812. case KVM_NMI:
  813. /* Treat the NMI as a CPU reset */
  814. r = kvm_mips_reset_vcpu(vcpu);
  815. break;
  816. case KVM_INTERRUPT:
  817. {
  818. struct kvm_mips_interrupt irq;
  819. r = -EFAULT;
  820. if (copy_from_user(&irq, argp, sizeof(irq)))
  821. goto out;
  822. kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
  823. irq.irq);
  824. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  825. break;
  826. }
  827. case KVM_ENABLE_CAP: {
  828. struct kvm_enable_cap cap;
  829. r = -EFAULT;
  830. if (copy_from_user(&cap, argp, sizeof(cap)))
  831. goto out;
  832. r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
  833. break;
  834. }
  835. default:
  836. r = -ENOIOCTLCMD;
  837. }
  838. out:
  839. return r;
  840. }
  841. /* Get (and clear) the dirty memory log for a memory slot. */
  842. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  843. {
  844. struct kvm_memslots *slots;
  845. struct kvm_memory_slot *memslot;
  846. unsigned long ga, ga_end;
  847. int is_dirty = 0;
  848. int r;
  849. unsigned long n;
  850. mutex_lock(&kvm->slots_lock);
  851. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  852. if (r)
  853. goto out;
  854. /* If nothing is dirty, don't bother messing with page tables. */
  855. if (is_dirty) {
  856. slots = kvm_memslots(kvm);
  857. memslot = id_to_memslot(slots, log->slot);
  858. ga = memslot->base_gfn << PAGE_SHIFT;
  859. ga_end = ga + (memslot->npages << PAGE_SHIFT);
  860. kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
  861. ga_end);
  862. n = kvm_dirty_bitmap_bytes(memslot);
  863. memset(memslot->dirty_bitmap, 0, n);
  864. }
  865. r = 0;
  866. out:
  867. mutex_unlock(&kvm->slots_lock);
  868. return r;
  869. }
  870. long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  871. {
  872. long r;
  873. switch (ioctl) {
  874. default:
  875. r = -ENOIOCTLCMD;
  876. }
  877. return r;
  878. }
  879. int kvm_arch_init(void *opaque)
  880. {
  881. if (kvm_mips_callbacks) {
  882. kvm_err("kvm: module already exists\n");
  883. return -EEXIST;
  884. }
  885. return kvm_mips_emulation_init(&kvm_mips_callbacks);
  886. }
  887. void kvm_arch_exit(void)
  888. {
  889. kvm_mips_callbacks = NULL;
  890. }
  891. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  892. struct kvm_sregs *sregs)
  893. {
  894. return -ENOIOCTLCMD;
  895. }
  896. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  897. struct kvm_sregs *sregs)
  898. {
  899. return -ENOIOCTLCMD;
  900. }
  901. void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  902. {
  903. }
  904. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  905. {
  906. return -ENOIOCTLCMD;
  907. }
  908. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  909. {
  910. return -ENOIOCTLCMD;
  911. }
  912. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  913. {
  914. return VM_FAULT_SIGBUS;
  915. }
  916. int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
  917. {
  918. int r;
  919. switch (ext) {
  920. case KVM_CAP_ONE_REG:
  921. case KVM_CAP_ENABLE_CAP:
  922. r = 1;
  923. break;
  924. case KVM_CAP_COALESCED_MMIO:
  925. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  926. break;
  927. case KVM_CAP_MIPS_FPU:
  928. /* We don't handle systems with inconsistent cpu_has_fpu */
  929. r = !!raw_cpu_has_fpu;
  930. break;
  931. case KVM_CAP_MIPS_MSA:
  932. /*
  933. * We don't support MSA vector partitioning yet:
  934. * 1) It would require explicit support which can't be tested
  935. * yet due to lack of support in current hardware.
  936. * 2) It extends the state that would need to be saved/restored
  937. * by e.g. QEMU for migration.
  938. *
  939. * When vector partitioning hardware becomes available, support
  940. * could be added by requiring a flag when enabling
  941. * KVM_CAP_MIPS_MSA capability to indicate that userland knows
  942. * to save/restore the appropriate extra state.
  943. */
  944. r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
  945. break;
  946. default:
  947. r = 0;
  948. break;
  949. }
  950. return r;
  951. }
  952. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  953. {
  954. return kvm_mips_pending_timer(vcpu);
  955. }
  956. int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
  957. {
  958. int i;
  959. struct mips_coproc *cop0;
  960. if (!vcpu)
  961. return -1;
  962. kvm_debug("VCPU Register Dump:\n");
  963. kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
  964. kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
  965. for (i = 0; i < 32; i += 4) {
  966. kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
  967. vcpu->arch.gprs[i],
  968. vcpu->arch.gprs[i + 1],
  969. vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
  970. }
  971. kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
  972. kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
  973. cop0 = vcpu->arch.cop0;
  974. kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
  975. kvm_read_c0_guest_status(cop0),
  976. kvm_read_c0_guest_cause(cop0));
  977. kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
  978. return 0;
  979. }
  980. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  981. {
  982. int i;
  983. for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  984. vcpu->arch.gprs[i] = regs->gpr[i];
  985. vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
  986. vcpu->arch.hi = regs->hi;
  987. vcpu->arch.lo = regs->lo;
  988. vcpu->arch.pc = regs->pc;
  989. return 0;
  990. }
  991. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  992. {
  993. int i;
  994. for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  995. regs->gpr[i] = vcpu->arch.gprs[i];
  996. regs->hi = vcpu->arch.hi;
  997. regs->lo = vcpu->arch.lo;
  998. regs->pc = vcpu->arch.pc;
  999. return 0;
  1000. }
  1001. static void kvm_mips_comparecount_func(unsigned long data)
  1002. {
  1003. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
  1004. kvm_mips_callbacks->queue_timer_int(vcpu);
  1005. vcpu->arch.wait = 0;
  1006. if (swait_active(&vcpu->wq))
  1007. swake_up(&vcpu->wq);
  1008. }
  1009. /* low level hrtimer wake routine */
  1010. static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
  1011. {
  1012. struct kvm_vcpu *vcpu;
  1013. vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
  1014. kvm_mips_comparecount_func((unsigned long) vcpu);
  1015. return kvm_mips_count_timeout(vcpu);
  1016. }
  1017. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  1018. {
  1019. kvm_mips_callbacks->vcpu_init(vcpu);
  1020. hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
  1021. HRTIMER_MODE_REL);
  1022. vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
  1023. return 0;
  1024. }
  1025. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1026. struct kvm_translation *tr)
  1027. {
  1028. return 0;
  1029. }
  1030. /* Initial guest state */
  1031. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1032. {
  1033. return kvm_mips_callbacks->vcpu_setup(vcpu);
  1034. }
  1035. static void kvm_mips_set_c0_status(void)
  1036. {
  1037. uint32_t status = read_c0_status();
  1038. if (cpu_has_dsp)
  1039. status |= (ST0_MX);
  1040. write_c0_status(status);
  1041. ehb();
  1042. }
  1043. /*
  1044. * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
  1045. */
  1046. int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
  1047. {
  1048. uint32_t cause = vcpu->arch.host_cp0_cause;
  1049. uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
  1050. uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
  1051. unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
  1052. enum emulation_result er = EMULATE_DONE;
  1053. int ret = RESUME_GUEST;
  1054. /* re-enable HTW before enabling interrupts */
  1055. htw_start();
  1056. /* Set a default exit reason */
  1057. run->exit_reason = KVM_EXIT_UNKNOWN;
  1058. run->ready_for_interrupt_injection = 1;
  1059. /*
  1060. * Set the appropriate status bits based on host CPU features,
  1061. * before we hit the scheduler
  1062. */
  1063. kvm_mips_set_c0_status();
  1064. local_irq_enable();
  1065. kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
  1066. cause, opc, run, vcpu);
  1067. /*
  1068. * Do a privilege check, if in UM most of these exit conditions end up
  1069. * causing an exception to be delivered to the Guest Kernel
  1070. */
  1071. er = kvm_mips_check_privilege(cause, opc, run, vcpu);
  1072. if (er == EMULATE_PRIV_FAIL) {
  1073. goto skip_emul;
  1074. } else if (er == EMULATE_FAIL) {
  1075. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1076. ret = RESUME_HOST;
  1077. goto skip_emul;
  1078. }
  1079. switch (exccode) {
  1080. case EXCCODE_INT:
  1081. kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
  1082. ++vcpu->stat.int_exits;
  1083. trace_kvm_exit(vcpu, INT_EXITS);
  1084. if (need_resched())
  1085. cond_resched();
  1086. ret = RESUME_GUEST;
  1087. break;
  1088. case EXCCODE_CPU:
  1089. kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
  1090. ++vcpu->stat.cop_unusable_exits;
  1091. trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
  1092. ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
  1093. /* XXXKYMA: Might need to return to user space */
  1094. if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
  1095. ret = RESUME_HOST;
  1096. break;
  1097. case EXCCODE_MOD:
  1098. ++vcpu->stat.tlbmod_exits;
  1099. trace_kvm_exit(vcpu, TLBMOD_EXITS);
  1100. ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
  1101. break;
  1102. case EXCCODE_TLBS:
  1103. kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
  1104. cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
  1105. badvaddr);
  1106. ++vcpu->stat.tlbmiss_st_exits;
  1107. trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
  1108. ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
  1109. break;
  1110. case EXCCODE_TLBL:
  1111. kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
  1112. cause, opc, badvaddr);
  1113. ++vcpu->stat.tlbmiss_ld_exits;
  1114. trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
  1115. ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
  1116. break;
  1117. case EXCCODE_ADES:
  1118. ++vcpu->stat.addrerr_st_exits;
  1119. trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
  1120. ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
  1121. break;
  1122. case EXCCODE_ADEL:
  1123. ++vcpu->stat.addrerr_ld_exits;
  1124. trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
  1125. ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
  1126. break;
  1127. case EXCCODE_SYS:
  1128. ++vcpu->stat.syscall_exits;
  1129. trace_kvm_exit(vcpu, SYSCALL_EXITS);
  1130. ret = kvm_mips_callbacks->handle_syscall(vcpu);
  1131. break;
  1132. case EXCCODE_RI:
  1133. ++vcpu->stat.resvd_inst_exits;
  1134. trace_kvm_exit(vcpu, RESVD_INST_EXITS);
  1135. ret = kvm_mips_callbacks->handle_res_inst(vcpu);
  1136. break;
  1137. case EXCCODE_BP:
  1138. ++vcpu->stat.break_inst_exits;
  1139. trace_kvm_exit(vcpu, BREAK_INST_EXITS);
  1140. ret = kvm_mips_callbacks->handle_break(vcpu);
  1141. break;
  1142. case EXCCODE_TR:
  1143. ++vcpu->stat.trap_inst_exits;
  1144. trace_kvm_exit(vcpu, TRAP_INST_EXITS);
  1145. ret = kvm_mips_callbacks->handle_trap(vcpu);
  1146. break;
  1147. case EXCCODE_MSAFPE:
  1148. ++vcpu->stat.msa_fpe_exits;
  1149. trace_kvm_exit(vcpu, MSA_FPE_EXITS);
  1150. ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
  1151. break;
  1152. case EXCCODE_FPE:
  1153. ++vcpu->stat.fpe_exits;
  1154. trace_kvm_exit(vcpu, FPE_EXITS);
  1155. ret = kvm_mips_callbacks->handle_fpe(vcpu);
  1156. break;
  1157. case EXCCODE_MSADIS:
  1158. ++vcpu->stat.msa_disabled_exits;
  1159. trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
  1160. ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
  1161. break;
  1162. default:
  1163. kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
  1164. exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
  1165. kvm_read_c0_guest_status(vcpu->arch.cop0));
  1166. kvm_arch_vcpu_dump_regs(vcpu);
  1167. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1168. ret = RESUME_HOST;
  1169. break;
  1170. }
  1171. skip_emul:
  1172. local_irq_disable();
  1173. if (er == EMULATE_DONE && !(ret & RESUME_HOST))
  1174. kvm_mips_deliver_interrupts(vcpu, cause);
  1175. if (!(ret & RESUME_HOST)) {
  1176. /* Only check for signals if not already exiting to userspace */
  1177. if (signal_pending(current)) {
  1178. run->exit_reason = KVM_EXIT_INTR;
  1179. ret = (-EINTR << 2) | RESUME_HOST;
  1180. ++vcpu->stat.signal_exits;
  1181. trace_kvm_exit(vcpu, SIGNAL_EXITS);
  1182. }
  1183. }
  1184. if (ret == RESUME_GUEST) {
  1185. /*
  1186. * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
  1187. * is live), restore FCR31 / MSACSR.
  1188. *
  1189. * This should be before returning to the guest exception
  1190. * vector, as it may well cause an [MSA] FP exception if there
  1191. * are pending exception bits unmasked. (see
  1192. * kvm_mips_csr_die_notifier() for how that is handled).
  1193. */
  1194. if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
  1195. read_c0_status() & ST0_CU1)
  1196. __kvm_restore_fcsr(&vcpu->arch);
  1197. if (kvm_mips_guest_has_msa(&vcpu->arch) &&
  1198. read_c0_config5() & MIPS_CONF5_MSAEN)
  1199. __kvm_restore_msacsr(&vcpu->arch);
  1200. }
  1201. /* Disable HTW before returning to guest or host */
  1202. htw_stop();
  1203. return ret;
  1204. }
  1205. /* Enable FPU for guest and restore context */
  1206. void kvm_own_fpu(struct kvm_vcpu *vcpu)
  1207. {
  1208. struct mips_coproc *cop0 = vcpu->arch.cop0;
  1209. unsigned int sr, cfg5;
  1210. preempt_disable();
  1211. sr = kvm_read_c0_guest_status(cop0);
  1212. /*
  1213. * If MSA state is already live, it is undefined how it interacts with
  1214. * FR=0 FPU state, and we don't want to hit reserved instruction
  1215. * exceptions trying to save the MSA state later when CU=1 && FR=1, so
  1216. * play it safe and save it first.
  1217. *
  1218. * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
  1219. * get called when guest CU1 is set, however we can't trust the guest
  1220. * not to clobber the status register directly via the commpage.
  1221. */
  1222. if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
  1223. vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
  1224. kvm_lose_fpu(vcpu);
  1225. /*
  1226. * Enable FPU for guest
  1227. * We set FR and FRE according to guest context
  1228. */
  1229. change_c0_status(ST0_CU1 | ST0_FR, sr);
  1230. if (cpu_has_fre) {
  1231. cfg5 = kvm_read_c0_guest_config5(cop0);
  1232. change_c0_config5(MIPS_CONF5_FRE, cfg5);
  1233. }
  1234. enable_fpu_hazard();
  1235. /* If guest FPU state not active, restore it now */
  1236. if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
  1237. __kvm_restore_fpu(&vcpu->arch);
  1238. vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
  1239. }
  1240. preempt_enable();
  1241. }
  1242. #ifdef CONFIG_CPU_HAS_MSA
  1243. /* Enable MSA for guest and restore context */
  1244. void kvm_own_msa(struct kvm_vcpu *vcpu)
  1245. {
  1246. struct mips_coproc *cop0 = vcpu->arch.cop0;
  1247. unsigned int sr, cfg5;
  1248. preempt_disable();
  1249. /*
  1250. * Enable FPU if enabled in guest, since we're restoring FPU context
  1251. * anyway. We set FR and FRE according to guest context.
  1252. */
  1253. if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
  1254. sr = kvm_read_c0_guest_status(cop0);
  1255. /*
  1256. * If FR=0 FPU state is already live, it is undefined how it
  1257. * interacts with MSA state, so play it safe and save it first.
  1258. */
  1259. if (!(sr & ST0_FR) &&
  1260. (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU |
  1261. KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU)
  1262. kvm_lose_fpu(vcpu);
  1263. change_c0_status(ST0_CU1 | ST0_FR, sr);
  1264. if (sr & ST0_CU1 && cpu_has_fre) {
  1265. cfg5 = kvm_read_c0_guest_config5(cop0);
  1266. change_c0_config5(MIPS_CONF5_FRE, cfg5);
  1267. }
  1268. }
  1269. /* Enable MSA for guest */
  1270. set_c0_config5(MIPS_CONF5_MSAEN);
  1271. enable_fpu_hazard();
  1272. switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) {
  1273. case KVM_MIPS_FPU_FPU:
  1274. /*
  1275. * Guest FPU state already loaded, only restore upper MSA state
  1276. */
  1277. __kvm_restore_msa_upper(&vcpu->arch);
  1278. vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
  1279. break;
  1280. case 0:
  1281. /* Neither FPU or MSA already active, restore full MSA state */
  1282. __kvm_restore_msa(&vcpu->arch);
  1283. vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
  1284. if (kvm_mips_guest_has_fpu(&vcpu->arch))
  1285. vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
  1286. break;
  1287. default:
  1288. break;
  1289. }
  1290. preempt_enable();
  1291. }
  1292. #endif
  1293. /* Drop FPU & MSA without saving it */
  1294. void kvm_drop_fpu(struct kvm_vcpu *vcpu)
  1295. {
  1296. preempt_disable();
  1297. if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
  1298. disable_msa();
  1299. vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA;
  1300. }
  1301. if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
  1302. clear_c0_status(ST0_CU1 | ST0_FR);
  1303. vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
  1304. }
  1305. preempt_enable();
  1306. }
  1307. /* Save and disable FPU & MSA */
  1308. void kvm_lose_fpu(struct kvm_vcpu *vcpu)
  1309. {
  1310. /*
  1311. * FPU & MSA get disabled in root context (hardware) when it is disabled
  1312. * in guest context (software), but the register state in the hardware
  1313. * may still be in use. This is why we explicitly re-enable the hardware
  1314. * before saving.
  1315. */
  1316. preempt_disable();
  1317. if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
  1318. set_c0_config5(MIPS_CONF5_MSAEN);
  1319. enable_fpu_hazard();
  1320. __kvm_save_msa(&vcpu->arch);
  1321. /* Disable MSA & FPU */
  1322. disable_msa();
  1323. if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
  1324. clear_c0_status(ST0_CU1 | ST0_FR);
  1325. disable_fpu_hazard();
  1326. }
  1327. vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA);
  1328. } else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
  1329. set_c0_status(ST0_CU1);
  1330. enable_fpu_hazard();
  1331. __kvm_save_fpu(&vcpu->arch);
  1332. vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
  1333. /* Disable FPU */
  1334. clear_c0_status(ST0_CU1 | ST0_FR);
  1335. disable_fpu_hazard();
  1336. }
  1337. preempt_enable();
  1338. }
  1339. /*
  1340. * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
  1341. * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
  1342. * exception if cause bits are set in the value being written.
  1343. */
  1344. static int kvm_mips_csr_die_notify(struct notifier_block *self,
  1345. unsigned long cmd, void *ptr)
  1346. {
  1347. struct die_args *args = (struct die_args *)ptr;
  1348. struct pt_regs *regs = args->regs;
  1349. unsigned long pc;
  1350. /* Only interested in FPE and MSAFPE */
  1351. if (cmd != DIE_FP && cmd != DIE_MSAFP)
  1352. return NOTIFY_DONE;
  1353. /* Return immediately if guest context isn't active */
  1354. if (!(current->flags & PF_VCPU))
  1355. return NOTIFY_DONE;
  1356. /* Should never get here from user mode */
  1357. BUG_ON(user_mode(regs));
  1358. pc = instruction_pointer(regs);
  1359. switch (cmd) {
  1360. case DIE_FP:
  1361. /* match 2nd instruction in __kvm_restore_fcsr */
  1362. if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
  1363. return NOTIFY_DONE;
  1364. break;
  1365. case DIE_MSAFP:
  1366. /* match 2nd/3rd instruction in __kvm_restore_msacsr */
  1367. if (!cpu_has_msa ||
  1368. pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
  1369. pc > (unsigned long)&__kvm_restore_msacsr + 8)
  1370. return NOTIFY_DONE;
  1371. break;
  1372. }
  1373. /* Move PC forward a little and continue executing */
  1374. instruction_pointer(regs) += 4;
  1375. return NOTIFY_STOP;
  1376. }
  1377. static struct notifier_block kvm_mips_csr_die_notifier = {
  1378. .notifier_call = kvm_mips_csr_die_notify,
  1379. };
  1380. static int __init kvm_mips_init(void)
  1381. {
  1382. int ret;
  1383. ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
  1384. if (ret)
  1385. return ret;
  1386. register_die_notifier(&kvm_mips_csr_die_notifier);
  1387. /*
  1388. * On MIPS, kernel modules are executed from "mapped space", which
  1389. * requires TLBs. The TLB handling code is statically linked with
  1390. * the rest of the kernel (tlb.c) to avoid the possibility of
  1391. * double faulting. The issue is that the TLB code references
  1392. * routines that are part of the the KVM module, which are only
  1393. * available once the module is loaded.
  1394. */
  1395. kvm_mips_gfn_to_pfn = gfn_to_pfn;
  1396. kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
  1397. kvm_mips_is_error_pfn = is_error_pfn;
  1398. return 0;
  1399. }
  1400. static void __exit kvm_mips_exit(void)
  1401. {
  1402. kvm_exit();
  1403. kvm_mips_gfn_to_pfn = NULL;
  1404. kvm_mips_release_pfn_clean = NULL;
  1405. kvm_mips_is_error_pfn = NULL;
  1406. unregister_die_notifier(&kvm_mips_csr_die_notifier);
  1407. }
  1408. module_init(kvm_mips_init);
  1409. module_exit(kvm_mips_exit);
  1410. EXPORT_TRACEPOINT_SYMBOL(kvm_exit);