perf_event.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821
  1. #undef DEBUG
  2. /*
  3. * ARM performance counter support.
  4. *
  5. * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  6. * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
  7. *
  8. * This code is based on the sparc64 perf event code, which is in turn based
  9. * on the x86 code. Callchain code is based on the ARM OProfile backtrace
  10. * code.
  11. */
  12. #define pr_fmt(fmt) "hw perfevents: " fmt
  13. #include <linux/interrupt.h>
  14. #include <linux/kernel.h>
  15. #include <linux/module.h>
  16. #include <linux/perf_event.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/uaccess.h>
  20. #include <asm/cputype.h>
  21. #include <asm/irq.h>
  22. #include <asm/irq_regs.h>
  23. #include <asm/pmu.h>
  24. #include <asm/stacktrace.h>
  25. static struct platform_device *pmu_device;
  26. /*
  27. * Hardware lock to serialize accesses to PMU registers. Needed for the
  28. * read/modify/write sequences.
  29. */
  30. static DEFINE_RAW_SPINLOCK(pmu_lock);
  31. /*
  32. * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
  33. * another platform that supports more, we need to increase this to be the
  34. * largest of all platforms.
  35. *
  36. * ARMv7 supports up to 32 events:
  37. * cycle counter CCNT + 31 events counters CNT0..30.
  38. * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
  39. */
  40. #define ARMPMU_MAX_HWEVENTS 32
  41. /* The events for a given CPU. */
  42. struct cpu_hw_events {
  43. /*
  44. * The events that are active on the CPU for the given index.
  45. */
  46. struct perf_event *events[ARMPMU_MAX_HWEVENTS];
  47. /*
  48. * A 1 bit for an index indicates that the counter is being used for
  49. * an event. A 0 means that the counter can be used.
  50. */
  51. unsigned long used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
  52. /*
  53. * A 1 bit for an index indicates that the counter is actively being
  54. * used.
  55. */
  56. unsigned long active_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
  57. };
  58. static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  59. struct arm_pmu {
  60. enum arm_perf_pmu_ids id;
  61. cpumask_t active_irqs;
  62. const char *name;
  63. irqreturn_t (*handle_irq)(int irq_num, void *dev);
  64. void (*enable)(struct hw_perf_event *evt, int idx);
  65. void (*disable)(struct hw_perf_event *evt, int idx);
  66. int (*get_event_idx)(struct cpu_hw_events *cpuc,
  67. struct hw_perf_event *hwc);
  68. int (*set_event_filter)(struct hw_perf_event *evt,
  69. struct perf_event_attr *attr);
  70. u32 (*read_counter)(int idx);
  71. void (*write_counter)(int idx, u32 val);
  72. void (*start)(void);
  73. void (*stop)(void);
  74. void (*reset)(void *);
  75. const unsigned (*cache_map)[PERF_COUNT_HW_CACHE_MAX]
  76. [PERF_COUNT_HW_CACHE_OP_MAX]
  77. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  78. const unsigned (*event_map)[PERF_COUNT_HW_MAX];
  79. u32 raw_event_mask;
  80. int num_events;
  81. u64 max_period;
  82. };
  83. /* Set at runtime when we know what CPU type we are. */
  84. static struct arm_pmu *armpmu;
  85. enum arm_perf_pmu_ids
  86. armpmu_get_pmu_id(void)
  87. {
  88. int id = -ENODEV;
  89. if (armpmu != NULL)
  90. id = armpmu->id;
  91. return id;
  92. }
  93. EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
  94. int
  95. armpmu_get_max_events(void)
  96. {
  97. int max_events = 0;
  98. if (armpmu != NULL)
  99. max_events = armpmu->num_events;
  100. return max_events;
  101. }
  102. EXPORT_SYMBOL_GPL(armpmu_get_max_events);
  103. int perf_num_counters(void)
  104. {
  105. return armpmu_get_max_events();
  106. }
  107. EXPORT_SYMBOL_GPL(perf_num_counters);
  108. #define HW_OP_UNSUPPORTED 0xFFFF
  109. #define C(_x) \
  110. PERF_COUNT_HW_CACHE_##_x
  111. #define CACHE_OP_UNSUPPORTED 0xFFFF
  112. static int
  113. armpmu_map_cache_event(u64 config)
  114. {
  115. unsigned int cache_type, cache_op, cache_result, ret;
  116. cache_type = (config >> 0) & 0xff;
  117. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  118. return -EINVAL;
  119. cache_op = (config >> 8) & 0xff;
  120. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  121. return -EINVAL;
  122. cache_result = (config >> 16) & 0xff;
  123. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  124. return -EINVAL;
  125. ret = (int)(*armpmu->cache_map)[cache_type][cache_op][cache_result];
  126. if (ret == CACHE_OP_UNSUPPORTED)
  127. return -ENOENT;
  128. return ret;
  129. }
  130. static int
  131. armpmu_map_event(u64 config)
  132. {
  133. int mapping = (*armpmu->event_map)[config];
  134. return mapping == HW_OP_UNSUPPORTED ? -EOPNOTSUPP : mapping;
  135. }
  136. static int
  137. armpmu_map_raw_event(u64 config)
  138. {
  139. return (int)(config & armpmu->raw_event_mask);
  140. }
  141. static int
  142. armpmu_event_set_period(struct perf_event *event,
  143. struct hw_perf_event *hwc,
  144. int idx)
  145. {
  146. s64 left = local64_read(&hwc->period_left);
  147. s64 period = hwc->sample_period;
  148. int ret = 0;
  149. if (unlikely(left <= -period)) {
  150. left = period;
  151. local64_set(&hwc->period_left, left);
  152. hwc->last_period = period;
  153. ret = 1;
  154. }
  155. if (unlikely(left <= 0)) {
  156. left += period;
  157. local64_set(&hwc->period_left, left);
  158. hwc->last_period = period;
  159. ret = 1;
  160. }
  161. if (left > (s64)armpmu->max_period)
  162. left = armpmu->max_period;
  163. local64_set(&hwc->prev_count, (u64)-left);
  164. armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
  165. perf_event_update_userpage(event);
  166. return ret;
  167. }
  168. static u64
  169. armpmu_event_update(struct perf_event *event,
  170. struct hw_perf_event *hwc,
  171. int idx, int overflow)
  172. {
  173. u64 delta, prev_raw_count, new_raw_count;
  174. again:
  175. prev_raw_count = local64_read(&hwc->prev_count);
  176. new_raw_count = armpmu->read_counter(idx);
  177. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  178. new_raw_count) != prev_raw_count)
  179. goto again;
  180. new_raw_count &= armpmu->max_period;
  181. prev_raw_count &= armpmu->max_period;
  182. if (overflow)
  183. delta = armpmu->max_period - prev_raw_count + new_raw_count + 1;
  184. else
  185. delta = new_raw_count - prev_raw_count;
  186. local64_add(delta, &event->count);
  187. local64_sub(delta, &hwc->period_left);
  188. return new_raw_count;
  189. }
  190. static void
  191. armpmu_read(struct perf_event *event)
  192. {
  193. struct hw_perf_event *hwc = &event->hw;
  194. /* Don't read disabled counters! */
  195. if (hwc->idx < 0)
  196. return;
  197. armpmu_event_update(event, hwc, hwc->idx, 0);
  198. }
  199. static void
  200. armpmu_stop(struct perf_event *event, int flags)
  201. {
  202. struct hw_perf_event *hwc = &event->hw;
  203. /*
  204. * ARM pmu always has to update the counter, so ignore
  205. * PERF_EF_UPDATE, see comments in armpmu_start().
  206. */
  207. if (!(hwc->state & PERF_HES_STOPPED)) {
  208. armpmu->disable(hwc, hwc->idx);
  209. barrier(); /* why? */
  210. armpmu_event_update(event, hwc, hwc->idx, 0);
  211. hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
  212. }
  213. }
  214. static void
  215. armpmu_start(struct perf_event *event, int flags)
  216. {
  217. struct hw_perf_event *hwc = &event->hw;
  218. /*
  219. * ARM pmu always has to reprogram the period, so ignore
  220. * PERF_EF_RELOAD, see the comment below.
  221. */
  222. if (flags & PERF_EF_RELOAD)
  223. WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
  224. hwc->state = 0;
  225. /*
  226. * Set the period again. Some counters can't be stopped, so when we
  227. * were stopped we simply disabled the IRQ source and the counter
  228. * may have been left counting. If we don't do this step then we may
  229. * get an interrupt too soon or *way* too late if the overflow has
  230. * happened since disabling.
  231. */
  232. armpmu_event_set_period(event, hwc, hwc->idx);
  233. armpmu->enable(hwc, hwc->idx);
  234. }
  235. static void
  236. armpmu_del(struct perf_event *event, int flags)
  237. {
  238. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  239. struct hw_perf_event *hwc = &event->hw;
  240. int idx = hwc->idx;
  241. WARN_ON(idx < 0);
  242. clear_bit(idx, cpuc->active_mask);
  243. armpmu_stop(event, PERF_EF_UPDATE);
  244. cpuc->events[idx] = NULL;
  245. clear_bit(idx, cpuc->used_mask);
  246. perf_event_update_userpage(event);
  247. }
  248. static int
  249. armpmu_add(struct perf_event *event, int flags)
  250. {
  251. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  252. struct hw_perf_event *hwc = &event->hw;
  253. int idx;
  254. int err = 0;
  255. perf_pmu_disable(event->pmu);
  256. /* If we don't have a space for the counter then finish early. */
  257. idx = armpmu->get_event_idx(cpuc, hwc);
  258. if (idx < 0) {
  259. err = idx;
  260. goto out;
  261. }
  262. /*
  263. * If there is an event in the counter we are going to use then make
  264. * sure it is disabled.
  265. */
  266. event->hw.idx = idx;
  267. armpmu->disable(hwc, idx);
  268. cpuc->events[idx] = event;
  269. set_bit(idx, cpuc->active_mask);
  270. hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
  271. if (flags & PERF_EF_START)
  272. armpmu_start(event, PERF_EF_RELOAD);
  273. /* Propagate our changes to the userspace mapping. */
  274. perf_event_update_userpage(event);
  275. out:
  276. perf_pmu_enable(event->pmu);
  277. return err;
  278. }
  279. static struct pmu pmu;
  280. static int
  281. validate_event(struct cpu_hw_events *cpuc,
  282. struct perf_event *event)
  283. {
  284. struct hw_perf_event fake_event = event->hw;
  285. struct pmu *leader_pmu = event->group_leader->pmu;
  286. if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
  287. return 1;
  288. return armpmu->get_event_idx(cpuc, &fake_event) >= 0;
  289. }
  290. static int
  291. validate_group(struct perf_event *event)
  292. {
  293. struct perf_event *sibling, *leader = event->group_leader;
  294. struct cpu_hw_events fake_pmu;
  295. memset(&fake_pmu, 0, sizeof(fake_pmu));
  296. if (!validate_event(&fake_pmu, leader))
  297. return -ENOSPC;
  298. list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
  299. if (!validate_event(&fake_pmu, sibling))
  300. return -ENOSPC;
  301. }
  302. if (!validate_event(&fake_pmu, event))
  303. return -ENOSPC;
  304. return 0;
  305. }
  306. static irqreturn_t armpmu_platform_irq(int irq, void *dev)
  307. {
  308. struct arm_pmu_platdata *plat = dev_get_platdata(&pmu_device->dev);
  309. return plat->handle_irq(irq, dev, armpmu->handle_irq);
  310. }
  311. static void
  312. armpmu_release_hardware(void)
  313. {
  314. int i, irq, irqs;
  315. irqs = min(pmu_device->num_resources, num_possible_cpus());
  316. for (i = 0; i < irqs; ++i) {
  317. if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
  318. continue;
  319. irq = platform_get_irq(pmu_device, i);
  320. if (irq >= 0)
  321. free_irq(irq, NULL);
  322. }
  323. armpmu->stop();
  324. release_pmu(ARM_PMU_DEVICE_CPU);
  325. }
  326. static int
  327. armpmu_reserve_hardware(void)
  328. {
  329. struct arm_pmu_platdata *plat;
  330. irq_handler_t handle_irq;
  331. int i, err, irq, irqs;
  332. err = reserve_pmu(ARM_PMU_DEVICE_CPU);
  333. if (err) {
  334. pr_warning("unable to reserve pmu\n");
  335. return err;
  336. }
  337. plat = dev_get_platdata(&pmu_device->dev);
  338. if (plat && plat->handle_irq)
  339. handle_irq = armpmu_platform_irq;
  340. else
  341. handle_irq = armpmu->handle_irq;
  342. irqs = min(pmu_device->num_resources, num_possible_cpus());
  343. if (irqs < 1) {
  344. pr_err("no irqs for PMUs defined\n");
  345. return -ENODEV;
  346. }
  347. for (i = 0; i < irqs; ++i) {
  348. err = 0;
  349. irq = platform_get_irq(pmu_device, i);
  350. if (irq < 0)
  351. continue;
  352. /*
  353. * If we have a single PMU interrupt that we can't shift,
  354. * assume that we're running on a uniprocessor machine and
  355. * continue. Otherwise, continue without this interrupt.
  356. */
  357. if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
  358. pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
  359. irq, i);
  360. continue;
  361. }
  362. err = request_irq(irq, handle_irq,
  363. IRQF_DISABLED | IRQF_NOBALANCING,
  364. "arm-pmu", NULL);
  365. if (err) {
  366. pr_err("unable to request IRQ%d for ARM PMU counters\n",
  367. irq);
  368. armpmu_release_hardware();
  369. return err;
  370. }
  371. cpumask_set_cpu(i, &armpmu->active_irqs);
  372. }
  373. return 0;
  374. }
  375. static atomic_t active_events = ATOMIC_INIT(0);
  376. static DEFINE_MUTEX(pmu_reserve_mutex);
  377. static void
  378. hw_perf_event_destroy(struct perf_event *event)
  379. {
  380. if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) {
  381. armpmu_release_hardware();
  382. mutex_unlock(&pmu_reserve_mutex);
  383. }
  384. }
  385. static int
  386. event_requires_mode_exclusion(struct perf_event_attr *attr)
  387. {
  388. return attr->exclude_idle || attr->exclude_user ||
  389. attr->exclude_kernel || attr->exclude_hv;
  390. }
  391. static int
  392. __hw_perf_event_init(struct perf_event *event)
  393. {
  394. struct hw_perf_event *hwc = &event->hw;
  395. int mapping, err;
  396. /* Decode the generic type into an ARM event identifier. */
  397. if (PERF_TYPE_HARDWARE == event->attr.type) {
  398. mapping = armpmu_map_event(event->attr.config);
  399. } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
  400. mapping = armpmu_map_cache_event(event->attr.config);
  401. } else if (PERF_TYPE_RAW == event->attr.type) {
  402. mapping = armpmu_map_raw_event(event->attr.config);
  403. } else {
  404. pr_debug("event type %x not supported\n", event->attr.type);
  405. return -EOPNOTSUPP;
  406. }
  407. if (mapping < 0) {
  408. pr_debug("event %x:%llx not supported\n", event->attr.type,
  409. event->attr.config);
  410. return mapping;
  411. }
  412. /*
  413. * We don't assign an index until we actually place the event onto
  414. * hardware. Use -1 to signify that we haven't decided where to put it
  415. * yet. For SMP systems, each core has it's own PMU so we can't do any
  416. * clever allocation or constraints checking at this point.
  417. */
  418. hwc->idx = -1;
  419. hwc->config_base = 0;
  420. hwc->config = 0;
  421. hwc->event_base = 0;
  422. /*
  423. * Check whether we need to exclude the counter from certain modes.
  424. */
  425. if ((!armpmu->set_event_filter ||
  426. armpmu->set_event_filter(hwc, &event->attr)) &&
  427. event_requires_mode_exclusion(&event->attr)) {
  428. pr_debug("ARM performance counters do not support "
  429. "mode exclusion\n");
  430. return -EPERM;
  431. }
  432. /*
  433. * Store the event encoding into the config_base field.
  434. */
  435. hwc->config_base |= (unsigned long)mapping;
  436. if (!hwc->sample_period) {
  437. hwc->sample_period = armpmu->max_period;
  438. hwc->last_period = hwc->sample_period;
  439. local64_set(&hwc->period_left, hwc->sample_period);
  440. }
  441. err = 0;
  442. if (event->group_leader != event) {
  443. err = validate_group(event);
  444. if (err)
  445. return -EINVAL;
  446. }
  447. return err;
  448. }
  449. static int armpmu_event_init(struct perf_event *event)
  450. {
  451. int err = 0;
  452. switch (event->attr.type) {
  453. case PERF_TYPE_RAW:
  454. case PERF_TYPE_HARDWARE:
  455. case PERF_TYPE_HW_CACHE:
  456. break;
  457. default:
  458. return -ENOENT;
  459. }
  460. event->destroy = hw_perf_event_destroy;
  461. if (!atomic_inc_not_zero(&active_events)) {
  462. mutex_lock(&pmu_reserve_mutex);
  463. if (atomic_read(&active_events) == 0) {
  464. err = armpmu_reserve_hardware();
  465. }
  466. if (!err)
  467. atomic_inc(&active_events);
  468. mutex_unlock(&pmu_reserve_mutex);
  469. }
  470. if (err)
  471. return err;
  472. err = __hw_perf_event_init(event);
  473. if (err)
  474. hw_perf_event_destroy(event);
  475. return err;
  476. }
  477. static void armpmu_enable(struct pmu *pmu)
  478. {
  479. /* Enable all of the perf events on hardware. */
  480. int idx, enabled = 0;
  481. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  482. for (idx = 0; idx < armpmu->num_events; ++idx) {
  483. struct perf_event *event = cpuc->events[idx];
  484. if (!event)
  485. continue;
  486. armpmu->enable(&event->hw, idx);
  487. enabled = 1;
  488. }
  489. if (enabled)
  490. armpmu->start();
  491. }
  492. static void armpmu_disable(struct pmu *pmu)
  493. {
  494. armpmu->stop();
  495. }
  496. static struct pmu pmu = {
  497. .pmu_enable = armpmu_enable,
  498. .pmu_disable = armpmu_disable,
  499. .event_init = armpmu_event_init,
  500. .add = armpmu_add,
  501. .del = armpmu_del,
  502. .start = armpmu_start,
  503. .stop = armpmu_stop,
  504. .read = armpmu_read,
  505. };
  506. /* Include the PMU-specific implementations. */
  507. #include "perf_event_xscale.c"
  508. #include "perf_event_v6.c"
  509. #include "perf_event_v7.c"
  510. /*
  511. * Ensure the PMU has sane values out of reset.
  512. * This requires SMP to be available, so exists as a separate initcall.
  513. */
  514. static int __init
  515. armpmu_reset(void)
  516. {
  517. if (armpmu && armpmu->reset)
  518. return on_each_cpu(armpmu->reset, NULL, 1);
  519. return 0;
  520. }
  521. arch_initcall(armpmu_reset);
  522. /*
  523. * PMU platform driver and devicetree bindings.
  524. */
  525. static struct of_device_id armpmu_of_device_ids[] = {
  526. {.compatible = "arm,cortex-a9-pmu"},
  527. {.compatible = "arm,cortex-a8-pmu"},
  528. {.compatible = "arm,arm1136-pmu"},
  529. {.compatible = "arm,arm1176-pmu"},
  530. {},
  531. };
  532. static struct platform_device_id armpmu_plat_device_ids[] = {
  533. {.name = "arm-pmu"},
  534. {},
  535. };
  536. static int __devinit armpmu_device_probe(struct platform_device *pdev)
  537. {
  538. pmu_device = pdev;
  539. return 0;
  540. }
  541. static struct platform_driver armpmu_driver = {
  542. .driver = {
  543. .name = "arm-pmu",
  544. .of_match_table = armpmu_of_device_ids,
  545. },
  546. .probe = armpmu_device_probe,
  547. .id_table = armpmu_plat_device_ids,
  548. };
  549. static int __init register_pmu_driver(void)
  550. {
  551. return platform_driver_register(&armpmu_driver);
  552. }
  553. device_initcall(register_pmu_driver);
  554. /*
  555. * CPU PMU identification and registration.
  556. */
  557. static int __init
  558. init_hw_perf_events(void)
  559. {
  560. unsigned long cpuid = read_cpuid_id();
  561. unsigned long implementor = (cpuid & 0xFF000000) >> 24;
  562. unsigned long part_number = (cpuid & 0xFFF0);
  563. /* ARM Ltd CPUs. */
  564. if (0x41 == implementor) {
  565. switch (part_number) {
  566. case 0xB360: /* ARM1136 */
  567. case 0xB560: /* ARM1156 */
  568. case 0xB760: /* ARM1176 */
  569. armpmu = armv6pmu_init();
  570. break;
  571. case 0xB020: /* ARM11mpcore */
  572. armpmu = armv6mpcore_pmu_init();
  573. break;
  574. case 0xC080: /* Cortex-A8 */
  575. armpmu = armv7_a8_pmu_init();
  576. break;
  577. case 0xC090: /* Cortex-A9 */
  578. armpmu = armv7_a9_pmu_init();
  579. break;
  580. case 0xC050: /* Cortex-A5 */
  581. armpmu = armv7_a5_pmu_init();
  582. break;
  583. case 0xC0F0: /* Cortex-A15 */
  584. armpmu = armv7_a15_pmu_init();
  585. break;
  586. }
  587. /* Intel CPUs [xscale]. */
  588. } else if (0x69 == implementor) {
  589. part_number = (cpuid >> 13) & 0x7;
  590. switch (part_number) {
  591. case 1:
  592. armpmu = xscale1pmu_init();
  593. break;
  594. case 2:
  595. armpmu = xscale2pmu_init();
  596. break;
  597. }
  598. }
  599. if (armpmu) {
  600. pr_info("enabled with %s PMU driver, %d counters available\n",
  601. armpmu->name, armpmu->num_events);
  602. perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
  603. } else {
  604. pr_info("no hardware support available\n");
  605. }
  606. return 0;
  607. }
  608. early_initcall(init_hw_perf_events);
  609. /*
  610. * Callchain handling code.
  611. */
  612. /*
  613. * The registers we're interested in are at the end of the variable
  614. * length saved register structure. The fp points at the end of this
  615. * structure so the address of this struct is:
  616. * (struct frame_tail *)(xxx->fp)-1
  617. *
  618. * This code has been adapted from the ARM OProfile support.
  619. */
  620. struct frame_tail {
  621. struct frame_tail __user *fp;
  622. unsigned long sp;
  623. unsigned long lr;
  624. } __attribute__((packed));
  625. /*
  626. * Get the return address for a single stackframe and return a pointer to the
  627. * next frame tail.
  628. */
  629. static struct frame_tail __user *
  630. user_backtrace(struct frame_tail __user *tail,
  631. struct perf_callchain_entry *entry)
  632. {
  633. struct frame_tail buftail;
  634. /* Also check accessibility of one struct frame_tail beyond */
  635. if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
  636. return NULL;
  637. if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
  638. return NULL;
  639. perf_callchain_store(entry, buftail.lr);
  640. /*
  641. * Frame pointers should strictly progress back up the stack
  642. * (towards higher addresses).
  643. */
  644. if (tail + 1 >= buftail.fp)
  645. return NULL;
  646. return buftail.fp - 1;
  647. }
  648. void
  649. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  650. {
  651. struct frame_tail __user *tail;
  652. tail = (struct frame_tail __user *)regs->ARM_fp - 1;
  653. while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
  654. tail && !((unsigned long)tail & 0x3))
  655. tail = user_backtrace(tail, entry);
  656. }
  657. /*
  658. * Gets called by walk_stackframe() for every stackframe. This will be called
  659. * whist unwinding the stackframe and is like a subroutine return so we use
  660. * the PC.
  661. */
  662. static int
  663. callchain_trace(struct stackframe *fr,
  664. void *data)
  665. {
  666. struct perf_callchain_entry *entry = data;
  667. perf_callchain_store(entry, fr->pc);
  668. return 0;
  669. }
  670. void
  671. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  672. {
  673. struct stackframe fr;
  674. fr.fp = regs->ARM_fp;
  675. fr.sp = regs->ARM_sp;
  676. fr.lr = regs->ARM_lr;
  677. fr.pc = regs->ARM_pc;
  678. walk_stackframe(&fr, callchain_trace, entry);
  679. }