hugetlb.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615
  1. /*
  2. * Generic hugetlb support.
  3. * (C) William Irwin, April 2004
  4. */
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/init.h>
  8. #include <linux/module.h>
  9. #include <linux/mm.h>
  10. #include <linux/sysctl.h>
  11. #include <linux/highmem.h>
  12. #include <linux/nodemask.h>
  13. #include <linux/pagemap.h>
  14. #include <linux/mempolicy.h>
  15. #include <linux/cpuset.h>
  16. #include <asm/page.h>
  17. #include <asm/pgtable.h>
  18. #include <linux/hugetlb.h>
  19. #include "internal.h"
  20. const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  21. static unsigned long nr_huge_pages, free_huge_pages;
  22. unsigned long max_huge_pages;
  23. static struct list_head hugepage_freelists[MAX_NUMNODES];
  24. static unsigned int nr_huge_pages_node[MAX_NUMNODES];
  25. static unsigned int free_huge_pages_node[MAX_NUMNODES];
  26. static void clear_huge_page(struct page *page, unsigned long addr)
  27. {
  28. int i;
  29. might_sleep();
  30. for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
  31. cond_resched();
  32. clear_user_highpage(page + i, addr);
  33. }
  34. }
  35. static void copy_huge_page(struct page *dst, struct page *src,
  36. unsigned long addr)
  37. {
  38. int i;
  39. might_sleep();
  40. for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
  41. cond_resched();
  42. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE);
  43. }
  44. }
  45. /*
  46. * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
  47. */
  48. static DEFINE_SPINLOCK(hugetlb_lock);
  49. static void enqueue_huge_page(struct page *page)
  50. {
  51. int nid = page_to_nid(page);
  52. list_add(&page->lru, &hugepage_freelists[nid]);
  53. free_huge_pages++;
  54. free_huge_pages_node[nid]++;
  55. }
  56. static struct page *dequeue_huge_page(struct vm_area_struct *vma,
  57. unsigned long address)
  58. {
  59. int nid = numa_node_id();
  60. struct page *page = NULL;
  61. struct zonelist *zonelist = huge_zonelist(vma, address);
  62. struct zone **z;
  63. for (z = zonelist->zones; *z; z++) {
  64. nid = (*z)->zone_pgdat->node_id;
  65. if (cpuset_zone_allowed(*z, GFP_HIGHUSER) &&
  66. !list_empty(&hugepage_freelists[nid]))
  67. break;
  68. }
  69. if (*z) {
  70. page = list_entry(hugepage_freelists[nid].next,
  71. struct page, lru);
  72. list_del(&page->lru);
  73. free_huge_pages--;
  74. free_huge_pages_node[nid]--;
  75. }
  76. return page;
  77. }
  78. static int alloc_fresh_huge_page(void)
  79. {
  80. static int nid = 0;
  81. struct page *page;
  82. page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
  83. HUGETLB_PAGE_ORDER);
  84. nid = (nid + 1) % num_online_nodes();
  85. if (page) {
  86. page[1].lru.next = (void *)free_huge_page; /* dtor */
  87. spin_lock(&hugetlb_lock);
  88. nr_huge_pages++;
  89. nr_huge_pages_node[page_to_nid(page)]++;
  90. spin_unlock(&hugetlb_lock);
  91. put_page(page); /* free it into the hugepage allocator */
  92. return 1;
  93. }
  94. return 0;
  95. }
  96. void free_huge_page(struct page *page)
  97. {
  98. BUG_ON(page_count(page));
  99. INIT_LIST_HEAD(&page->lru);
  100. spin_lock(&hugetlb_lock);
  101. enqueue_huge_page(page);
  102. spin_unlock(&hugetlb_lock);
  103. }
  104. struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr)
  105. {
  106. struct page *page;
  107. spin_lock(&hugetlb_lock);
  108. page = dequeue_huge_page(vma, addr);
  109. if (!page) {
  110. spin_unlock(&hugetlb_lock);
  111. return NULL;
  112. }
  113. spin_unlock(&hugetlb_lock);
  114. set_page_refcounted(page);
  115. return page;
  116. }
  117. static int __init hugetlb_init(void)
  118. {
  119. unsigned long i;
  120. if (HPAGE_SHIFT == 0)
  121. return 0;
  122. for (i = 0; i < MAX_NUMNODES; ++i)
  123. INIT_LIST_HEAD(&hugepage_freelists[i]);
  124. for (i = 0; i < max_huge_pages; ++i) {
  125. if (!alloc_fresh_huge_page())
  126. break;
  127. }
  128. max_huge_pages = free_huge_pages = nr_huge_pages = i;
  129. printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
  130. return 0;
  131. }
  132. module_init(hugetlb_init);
  133. static int __init hugetlb_setup(char *s)
  134. {
  135. if (sscanf(s, "%lu", &max_huge_pages) <= 0)
  136. max_huge_pages = 0;
  137. return 1;
  138. }
  139. __setup("hugepages=", hugetlb_setup);
  140. #ifdef CONFIG_SYSCTL
  141. static void update_and_free_page(struct page *page)
  142. {
  143. int i;
  144. nr_huge_pages--;
  145. nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
  146. for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
  147. page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
  148. 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
  149. 1 << PG_private | 1<< PG_writeback);
  150. }
  151. page[1].lru.next = NULL;
  152. set_page_refcounted(page);
  153. __free_pages(page, HUGETLB_PAGE_ORDER);
  154. }
  155. #ifdef CONFIG_HIGHMEM
  156. static void try_to_free_low(unsigned long count)
  157. {
  158. int i, nid;
  159. for (i = 0; i < MAX_NUMNODES; ++i) {
  160. struct page *page, *next;
  161. list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
  162. if (PageHighMem(page))
  163. continue;
  164. list_del(&page->lru);
  165. update_and_free_page(page);
  166. nid = page_zone(page)->zone_pgdat->node_id;
  167. free_huge_pages--;
  168. free_huge_pages_node[nid]--;
  169. if (count >= nr_huge_pages)
  170. return;
  171. }
  172. }
  173. }
  174. #else
  175. static inline void try_to_free_low(unsigned long count)
  176. {
  177. }
  178. #endif
  179. static unsigned long set_max_huge_pages(unsigned long count)
  180. {
  181. while (count > nr_huge_pages) {
  182. if (!alloc_fresh_huge_page())
  183. return nr_huge_pages;
  184. }
  185. if (count >= nr_huge_pages)
  186. return nr_huge_pages;
  187. spin_lock(&hugetlb_lock);
  188. try_to_free_low(count);
  189. while (count < nr_huge_pages) {
  190. struct page *page = dequeue_huge_page(NULL, 0);
  191. if (!page)
  192. break;
  193. update_and_free_page(page);
  194. }
  195. spin_unlock(&hugetlb_lock);
  196. return nr_huge_pages;
  197. }
  198. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  199. struct file *file, void __user *buffer,
  200. size_t *length, loff_t *ppos)
  201. {
  202. proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
  203. max_huge_pages = set_max_huge_pages(max_huge_pages);
  204. return 0;
  205. }
  206. #endif /* CONFIG_SYSCTL */
  207. int hugetlb_report_meminfo(char *buf)
  208. {
  209. return sprintf(buf,
  210. "HugePages_Total: %5lu\n"
  211. "HugePages_Free: %5lu\n"
  212. "Hugepagesize: %5lu kB\n",
  213. nr_huge_pages,
  214. free_huge_pages,
  215. HPAGE_SIZE/1024);
  216. }
  217. int hugetlb_report_node_meminfo(int nid, char *buf)
  218. {
  219. return sprintf(buf,
  220. "Node %d HugePages_Total: %5u\n"
  221. "Node %d HugePages_Free: %5u\n",
  222. nid, nr_huge_pages_node[nid],
  223. nid, free_huge_pages_node[nid]);
  224. }
  225. int is_hugepage_mem_enough(size_t size)
  226. {
  227. return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
  228. }
  229. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  230. unsigned long hugetlb_total_pages(void)
  231. {
  232. return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
  233. }
  234. /*
  235. * We cannot handle pagefaults against hugetlb pages at all. They cause
  236. * handle_mm_fault() to try to instantiate regular-sized pages in the
  237. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  238. * this far.
  239. */
  240. static struct page *hugetlb_nopage(struct vm_area_struct *vma,
  241. unsigned long address, int *unused)
  242. {
  243. BUG();
  244. return NULL;
  245. }
  246. struct vm_operations_struct hugetlb_vm_ops = {
  247. .nopage = hugetlb_nopage,
  248. };
  249. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
  250. int writable)
  251. {
  252. pte_t entry;
  253. if (writable) {
  254. entry =
  255. pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
  256. } else {
  257. entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
  258. }
  259. entry = pte_mkyoung(entry);
  260. entry = pte_mkhuge(entry);
  261. return entry;
  262. }
  263. static void set_huge_ptep_writable(struct vm_area_struct *vma,
  264. unsigned long address, pte_t *ptep)
  265. {
  266. pte_t entry;
  267. entry = pte_mkwrite(pte_mkdirty(*ptep));
  268. ptep_set_access_flags(vma, address, ptep, entry, 1);
  269. update_mmu_cache(vma, address, entry);
  270. lazy_mmu_prot_update(entry);
  271. }
  272. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  273. struct vm_area_struct *vma)
  274. {
  275. pte_t *src_pte, *dst_pte, entry;
  276. struct page *ptepage;
  277. unsigned long addr;
  278. int cow;
  279. cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  280. for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
  281. src_pte = huge_pte_offset(src, addr);
  282. if (!src_pte)
  283. continue;
  284. dst_pte = huge_pte_alloc(dst, addr);
  285. if (!dst_pte)
  286. goto nomem;
  287. spin_lock(&dst->page_table_lock);
  288. spin_lock(&src->page_table_lock);
  289. if (!pte_none(*src_pte)) {
  290. if (cow)
  291. ptep_set_wrprotect(src, addr, src_pte);
  292. entry = *src_pte;
  293. ptepage = pte_page(entry);
  294. get_page(ptepage);
  295. add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
  296. set_huge_pte_at(dst, addr, dst_pte, entry);
  297. }
  298. spin_unlock(&src->page_table_lock);
  299. spin_unlock(&dst->page_table_lock);
  300. }
  301. return 0;
  302. nomem:
  303. return -ENOMEM;
  304. }
  305. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  306. unsigned long end)
  307. {
  308. struct mm_struct *mm = vma->vm_mm;
  309. unsigned long address;
  310. pte_t *ptep;
  311. pte_t pte;
  312. struct page *page;
  313. WARN_ON(!is_vm_hugetlb_page(vma));
  314. BUG_ON(start & ~HPAGE_MASK);
  315. BUG_ON(end & ~HPAGE_MASK);
  316. spin_lock(&mm->page_table_lock);
  317. /* Update high watermark before we lower rss */
  318. update_hiwater_rss(mm);
  319. for (address = start; address < end; address += HPAGE_SIZE) {
  320. ptep = huge_pte_offset(mm, address);
  321. if (!ptep)
  322. continue;
  323. pte = huge_ptep_get_and_clear(mm, address, ptep);
  324. if (pte_none(pte))
  325. continue;
  326. page = pte_page(pte);
  327. put_page(page);
  328. add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
  329. }
  330. spin_unlock(&mm->page_table_lock);
  331. flush_tlb_range(vma, start, end);
  332. }
  333. static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
  334. unsigned long address, pte_t *ptep, pte_t pte)
  335. {
  336. struct page *old_page, *new_page;
  337. int avoidcopy;
  338. old_page = pte_page(pte);
  339. /* If no-one else is actually using this page, avoid the copy
  340. * and just make the page writable */
  341. avoidcopy = (page_count(old_page) == 1);
  342. if (avoidcopy) {
  343. set_huge_ptep_writable(vma, address, ptep);
  344. return VM_FAULT_MINOR;
  345. }
  346. page_cache_get(old_page);
  347. new_page = alloc_huge_page(vma, address);
  348. if (!new_page) {
  349. page_cache_release(old_page);
  350. return VM_FAULT_OOM;
  351. }
  352. spin_unlock(&mm->page_table_lock);
  353. copy_huge_page(new_page, old_page, address);
  354. spin_lock(&mm->page_table_lock);
  355. ptep = huge_pte_offset(mm, address & HPAGE_MASK);
  356. if (likely(pte_same(*ptep, pte))) {
  357. /* Break COW */
  358. set_huge_pte_at(mm, address, ptep,
  359. make_huge_pte(vma, new_page, 1));
  360. /* Make the old page be freed below */
  361. new_page = old_page;
  362. }
  363. page_cache_release(new_page);
  364. page_cache_release(old_page);
  365. return VM_FAULT_MINOR;
  366. }
  367. int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  368. unsigned long address, pte_t *ptep, int write_access)
  369. {
  370. int ret = VM_FAULT_SIGBUS;
  371. unsigned long idx;
  372. unsigned long size;
  373. struct page *page;
  374. struct address_space *mapping;
  375. pte_t new_pte;
  376. mapping = vma->vm_file->f_mapping;
  377. idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
  378. + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
  379. /*
  380. * Use page lock to guard against racing truncation
  381. * before we get page_table_lock.
  382. */
  383. retry:
  384. page = find_lock_page(mapping, idx);
  385. if (!page) {
  386. if (hugetlb_get_quota(mapping))
  387. goto out;
  388. page = alloc_huge_page(vma, address);
  389. if (!page) {
  390. hugetlb_put_quota(mapping);
  391. ret = VM_FAULT_OOM;
  392. goto out;
  393. }
  394. clear_huge_page(page, address);
  395. if (vma->vm_flags & VM_SHARED) {
  396. int err;
  397. err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
  398. if (err) {
  399. put_page(page);
  400. hugetlb_put_quota(mapping);
  401. if (err == -EEXIST)
  402. goto retry;
  403. goto out;
  404. }
  405. } else
  406. lock_page(page);
  407. }
  408. spin_lock(&mm->page_table_lock);
  409. size = i_size_read(mapping->host) >> HPAGE_SHIFT;
  410. if (idx >= size)
  411. goto backout;
  412. ret = VM_FAULT_MINOR;
  413. if (!pte_none(*ptep))
  414. goto backout;
  415. add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
  416. new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
  417. && (vma->vm_flags & VM_SHARED)));
  418. set_huge_pte_at(mm, address, ptep, new_pte);
  419. if (write_access && !(vma->vm_flags & VM_SHARED)) {
  420. /* Optimization, do the COW without a second fault */
  421. ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
  422. }
  423. spin_unlock(&mm->page_table_lock);
  424. unlock_page(page);
  425. out:
  426. return ret;
  427. backout:
  428. spin_unlock(&mm->page_table_lock);
  429. hugetlb_put_quota(mapping);
  430. unlock_page(page);
  431. put_page(page);
  432. goto out;
  433. }
  434. int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  435. unsigned long address, int write_access)
  436. {
  437. pte_t *ptep;
  438. pte_t entry;
  439. int ret;
  440. ptep = huge_pte_alloc(mm, address);
  441. if (!ptep)
  442. return VM_FAULT_OOM;
  443. entry = *ptep;
  444. if (pte_none(entry))
  445. return hugetlb_no_page(mm, vma, address, ptep, write_access);
  446. ret = VM_FAULT_MINOR;
  447. spin_lock(&mm->page_table_lock);
  448. /* Check for a racing update before calling hugetlb_cow */
  449. if (likely(pte_same(entry, *ptep)))
  450. if (write_access && !pte_write(entry))
  451. ret = hugetlb_cow(mm, vma, address, ptep, entry);
  452. spin_unlock(&mm->page_table_lock);
  453. return ret;
  454. }
  455. int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  456. struct page **pages, struct vm_area_struct **vmas,
  457. unsigned long *position, int *length, int i)
  458. {
  459. unsigned long vpfn, vaddr = *position;
  460. int remainder = *length;
  461. vpfn = vaddr/PAGE_SIZE;
  462. spin_lock(&mm->page_table_lock);
  463. while (vaddr < vma->vm_end && remainder) {
  464. pte_t *pte;
  465. struct page *page;
  466. /*
  467. * Some archs (sparc64, sh*) have multiple pte_ts to
  468. * each hugepage. We have to make * sure we get the
  469. * first, for the page indexing below to work.
  470. */
  471. pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
  472. if (!pte || pte_none(*pte)) {
  473. int ret;
  474. spin_unlock(&mm->page_table_lock);
  475. ret = hugetlb_fault(mm, vma, vaddr, 0);
  476. spin_lock(&mm->page_table_lock);
  477. if (ret == VM_FAULT_MINOR)
  478. continue;
  479. remainder = 0;
  480. if (!i)
  481. i = -EFAULT;
  482. break;
  483. }
  484. if (pages) {
  485. page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
  486. get_page(page);
  487. pages[i] = page;
  488. }
  489. if (vmas)
  490. vmas[i] = vma;
  491. vaddr += PAGE_SIZE;
  492. ++vpfn;
  493. --remainder;
  494. ++i;
  495. }
  496. spin_unlock(&mm->page_table_lock);
  497. *length = remainder;
  498. *position = vaddr;
  499. return i;
  500. }
  501. void hugetlb_change_protection(struct vm_area_struct *vma,
  502. unsigned long address, unsigned long end, pgprot_t newprot)
  503. {
  504. struct mm_struct *mm = vma->vm_mm;
  505. unsigned long start = address;
  506. pte_t *ptep;
  507. pte_t pte;
  508. BUG_ON(address >= end);
  509. flush_cache_range(vma, address, end);
  510. spin_lock(&mm->page_table_lock);
  511. for (; address < end; address += HPAGE_SIZE) {
  512. ptep = huge_pte_offset(mm, address);
  513. if (!ptep)
  514. continue;
  515. if (!pte_none(*ptep)) {
  516. pte = huge_ptep_get_and_clear(mm, address, ptep);
  517. pte = pte_mkhuge(pte_modify(pte, newprot));
  518. set_huge_pte_at(mm, address, ptep, pte);
  519. lazy_mmu_prot_update(pte);
  520. }
  521. }
  522. spin_unlock(&mm->page_table_lock);
  523. flush_tlb_range(vma, start, end);
  524. }