mmzone.h 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifndef __ASSEMBLY__
  4. #ifndef __GENERATING_BOUNDS_H
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/bitops.h>
  9. #include <linux/cache.h>
  10. #include <linux/threads.h>
  11. #include <linux/numa.h>
  12. #include <linux/init.h>
  13. #include <linux/seqlock.h>
  14. #include <linux/nodemask.h>
  15. #include <linux/pageblock-flags.h>
  16. #include <linux/page-flags-layout.h>
  17. #include <linux/atomic.h>
  18. #include <asm/page.h>
  19. /* Free memory management - zoned buddy allocator. */
  20. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  21. #define MAX_ORDER 11
  22. #else
  23. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  24. #endif
  25. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  26. /*
  27. * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  28. * costly to service. That is between allocation orders which should
  29. * coalesce naturally under reasonable reclaim pressure and those which
  30. * will not.
  31. */
  32. #define PAGE_ALLOC_COSTLY_ORDER 3
  33. enum {
  34. MIGRATE_UNMOVABLE,
  35. MIGRATE_MOVABLE,
  36. MIGRATE_RECLAIMABLE,
  37. MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
  38. MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
  39. #ifdef CONFIG_CMA
  40. /*
  41. * MIGRATE_CMA migration type is designed to mimic the way
  42. * ZONE_MOVABLE works. Only movable pages can be allocated
  43. * from MIGRATE_CMA pageblocks and page allocator never
  44. * implicitly change migration type of MIGRATE_CMA pageblock.
  45. *
  46. * The way to use it is to change migratetype of a range of
  47. * pageblocks to MIGRATE_CMA which can be done by
  48. * __free_pageblock_cma() function. What is important though
  49. * is that a range of pageblocks must be aligned to
  50. * MAX_ORDER_NR_PAGES should biggest page be bigger then
  51. * a single pageblock.
  52. */
  53. MIGRATE_CMA,
  54. #endif
  55. #ifdef CONFIG_MEMORY_ISOLATION
  56. MIGRATE_ISOLATE, /* can't allocate from here */
  57. #endif
  58. MIGRATE_TYPES
  59. };
  60. /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
  61. extern char * const migratetype_names[MIGRATE_TYPES];
  62. #ifdef CONFIG_CMA
  63. # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  64. #else
  65. # define is_migrate_cma(migratetype) false
  66. #endif
  67. #define for_each_migratetype_order(order, type) \
  68. for (order = 0; order < MAX_ORDER; order++) \
  69. for (type = 0; type < MIGRATE_TYPES; type++)
  70. extern int page_group_by_mobility_disabled;
  71. #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
  72. #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
  73. #define get_pageblock_migratetype(page) \
  74. get_pfnblock_flags_mask(page, page_to_pfn(page), \
  75. PB_migrate_end, MIGRATETYPE_MASK)
  76. struct free_area {
  77. struct list_head free_list[MIGRATE_TYPES];
  78. unsigned long nr_free;
  79. };
  80. struct pglist_data;
  81. /*
  82. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  83. * So add a wild amount of padding here to ensure that they fall into separate
  84. * cachelines. There are very few zone structures in the machine, so space
  85. * consumption is not a concern here.
  86. */
  87. #if defined(CONFIG_SMP)
  88. struct zone_padding {
  89. char x[0];
  90. } ____cacheline_internodealigned_in_smp;
  91. #define ZONE_PADDING(name) struct zone_padding name;
  92. #else
  93. #define ZONE_PADDING(name)
  94. #endif
  95. enum zone_stat_item {
  96. /* First 128 byte cacheline (assuming 64 bit words) */
  97. NR_FREE_PAGES,
  98. NR_ALLOC_BATCH,
  99. NR_LRU_BASE,
  100. NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
  101. NR_ACTIVE_ANON, /* " " " " " */
  102. NR_INACTIVE_FILE, /* " " " " " */
  103. NR_ACTIVE_FILE, /* " " " " " */
  104. NR_UNEVICTABLE, /* " " " " " */
  105. NR_MLOCK, /* mlock()ed pages found and moved off LRU */
  106. NR_ANON_PAGES, /* Mapped anonymous pages */
  107. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  108. only modified from process context */
  109. NR_FILE_PAGES,
  110. NR_FILE_DIRTY,
  111. NR_WRITEBACK,
  112. NR_SLAB_RECLAIMABLE,
  113. NR_SLAB_UNRECLAIMABLE,
  114. NR_PAGETABLE, /* used for pagetables */
  115. NR_KERNEL_STACK,
  116. /* Second 128 byte cacheline */
  117. NR_UNSTABLE_NFS, /* NFS unstable pages */
  118. NR_BOUNCE,
  119. NR_VMSCAN_WRITE,
  120. NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
  121. NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
  122. NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
  123. NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
  124. NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
  125. NR_DIRTIED, /* page dirtyings since bootup */
  126. NR_WRITTEN, /* page writings since bootup */
  127. NR_PAGES_SCANNED, /* pages scanned since last reclaim */
  128. #ifdef CONFIG_NUMA
  129. NUMA_HIT, /* allocated in intended node */
  130. NUMA_MISS, /* allocated in non intended node */
  131. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  132. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  133. NUMA_LOCAL, /* allocation from local node */
  134. NUMA_OTHER, /* allocation from other node */
  135. #endif
  136. WORKINGSET_REFAULT,
  137. WORKINGSET_ACTIVATE,
  138. WORKINGSET_NODERECLAIM,
  139. NR_ANON_TRANSPARENT_HUGEPAGES,
  140. NR_FREE_CMA_PAGES,
  141. NR_VM_ZONE_STAT_ITEMS };
  142. /*
  143. * We do arithmetic on the LRU lists in various places in the code,
  144. * so it is important to keep the active lists LRU_ACTIVE higher in
  145. * the array than the corresponding inactive lists, and to keep
  146. * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
  147. *
  148. * This has to be kept in sync with the statistics in zone_stat_item
  149. * above and the descriptions in vmstat_text in mm/vmstat.c
  150. */
  151. #define LRU_BASE 0
  152. #define LRU_ACTIVE 1
  153. #define LRU_FILE 2
  154. enum lru_list {
  155. LRU_INACTIVE_ANON = LRU_BASE,
  156. LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
  157. LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
  158. LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
  159. LRU_UNEVICTABLE,
  160. NR_LRU_LISTS
  161. };
  162. #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
  163. #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
  164. static inline int is_file_lru(enum lru_list lru)
  165. {
  166. return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
  167. }
  168. static inline int is_active_lru(enum lru_list lru)
  169. {
  170. return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
  171. }
  172. struct zone_reclaim_stat {
  173. /*
  174. * The pageout code in vmscan.c keeps track of how many of the
  175. * mem/swap backed and file backed pages are referenced.
  176. * The higher the rotated/scanned ratio, the more valuable
  177. * that cache is.
  178. *
  179. * The anon LRU stats live in [0], file LRU stats in [1]
  180. */
  181. unsigned long recent_rotated[2];
  182. unsigned long recent_scanned[2];
  183. };
  184. struct lruvec {
  185. struct list_head lists[NR_LRU_LISTS];
  186. struct zone_reclaim_stat reclaim_stat;
  187. /* Evictions & activations on the inactive file list */
  188. atomic_long_t inactive_age;
  189. #ifdef CONFIG_MEMCG
  190. struct zone *zone;
  191. #endif
  192. };
  193. /* Mask used at gathering information at once (see memcontrol.c) */
  194. #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
  195. #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
  196. #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
  197. /* Isolate clean file */
  198. #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
  199. /* Isolate unmapped file */
  200. #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
  201. /* Isolate for asynchronous migration */
  202. #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
  203. /* Isolate unevictable pages */
  204. #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
  205. /* LRU Isolation modes. */
  206. typedef unsigned __bitwise__ isolate_mode_t;
  207. enum zone_watermarks {
  208. WMARK_MIN,
  209. WMARK_LOW,
  210. WMARK_HIGH,
  211. NR_WMARK
  212. };
  213. #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
  214. #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
  215. #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
  216. struct per_cpu_pages {
  217. int count; /* number of pages in the list */
  218. int high; /* high watermark, emptying needed */
  219. int batch; /* chunk size for buddy add/remove */
  220. /* Lists of pages, one per migrate type stored on the pcp-lists */
  221. struct list_head lists[MIGRATE_PCPTYPES];
  222. };
  223. struct per_cpu_pageset {
  224. struct per_cpu_pages pcp;
  225. #ifdef CONFIG_NUMA
  226. s8 expire;
  227. #endif
  228. #ifdef CONFIG_SMP
  229. s8 stat_threshold;
  230. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  231. #endif
  232. };
  233. #endif /* !__GENERATING_BOUNDS.H */
  234. enum zone_type {
  235. #ifdef CONFIG_ZONE_DMA
  236. /*
  237. * ZONE_DMA is used when there are devices that are not able
  238. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  239. * carve out the portion of memory that is needed for these devices.
  240. * The range is arch specific.
  241. *
  242. * Some examples
  243. *
  244. * Architecture Limit
  245. * ---------------------------
  246. * parisc, ia64, sparc <4G
  247. * s390 <2G
  248. * arm Various
  249. * alpha Unlimited or 0-16MB.
  250. *
  251. * i386, x86_64 and multiple other arches
  252. * <16M.
  253. */
  254. ZONE_DMA,
  255. #endif
  256. #ifdef CONFIG_ZONE_DMA32
  257. /*
  258. * x86_64 needs two ZONE_DMAs because it supports devices that are
  259. * only able to do DMA to the lower 16M but also 32 bit devices that
  260. * can only do DMA areas below 4G.
  261. */
  262. ZONE_DMA32,
  263. #endif
  264. /*
  265. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  266. * performed on pages in ZONE_NORMAL if the DMA devices support
  267. * transfers to all addressable memory.
  268. */
  269. ZONE_NORMAL,
  270. #ifdef CONFIG_HIGHMEM
  271. /*
  272. * A memory area that is only addressable by the kernel through
  273. * mapping portions into its own address space. This is for example
  274. * used by i386 to allow the kernel to address the memory beyond
  275. * 900MB. The kernel will set up special mappings (page
  276. * table entries on i386) for each page that the kernel needs to
  277. * access.
  278. */
  279. ZONE_HIGHMEM,
  280. #endif
  281. ZONE_MOVABLE,
  282. #ifdef CONFIG_ZONE_DEVICE
  283. ZONE_DEVICE,
  284. #endif
  285. __MAX_NR_ZONES
  286. };
  287. #ifndef __GENERATING_BOUNDS_H
  288. struct zone {
  289. /* Read-mostly fields */
  290. /* zone watermarks, access with *_wmark_pages(zone) macros */
  291. unsigned long watermark[NR_WMARK];
  292. unsigned long nr_reserved_highatomic;
  293. /*
  294. * We don't know if the memory that we're going to allocate will be
  295. * freeable or/and it will be released eventually, so to avoid totally
  296. * wasting several GB of ram we must reserve some of the lower zone
  297. * memory (otherwise we risk to run OOM on the lower zones despite
  298. * there being tons of freeable ram on the higher zones). This array is
  299. * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
  300. * changes.
  301. */
  302. long lowmem_reserve[MAX_NR_ZONES];
  303. #ifdef CONFIG_NUMA
  304. int node;
  305. #endif
  306. /*
  307. * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
  308. * this zone's LRU. Maintained by the pageout code.
  309. */
  310. unsigned int inactive_ratio;
  311. struct pglist_data *zone_pgdat;
  312. struct per_cpu_pageset __percpu *pageset;
  313. /*
  314. * This is a per-zone reserve of pages that are not available
  315. * to userspace allocations.
  316. */
  317. unsigned long totalreserve_pages;
  318. #ifndef CONFIG_SPARSEMEM
  319. /*
  320. * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
  321. * In SPARSEMEM, this map is stored in struct mem_section
  322. */
  323. unsigned long *pageblock_flags;
  324. #endif /* CONFIG_SPARSEMEM */
  325. #ifdef CONFIG_NUMA
  326. /*
  327. * zone reclaim becomes active if more unmapped pages exist.
  328. */
  329. unsigned long min_unmapped_pages;
  330. unsigned long min_slab_pages;
  331. #endif /* CONFIG_NUMA */
  332. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  333. unsigned long zone_start_pfn;
  334. /*
  335. * spanned_pages is the total pages spanned by the zone, including
  336. * holes, which is calculated as:
  337. * spanned_pages = zone_end_pfn - zone_start_pfn;
  338. *
  339. * present_pages is physical pages existing within the zone, which
  340. * is calculated as:
  341. * present_pages = spanned_pages - absent_pages(pages in holes);
  342. *
  343. * managed_pages is present pages managed by the buddy system, which
  344. * is calculated as (reserved_pages includes pages allocated by the
  345. * bootmem allocator):
  346. * managed_pages = present_pages - reserved_pages;
  347. *
  348. * So present_pages may be used by memory hotplug or memory power
  349. * management logic to figure out unmanaged pages by checking
  350. * (present_pages - managed_pages). And managed_pages should be used
  351. * by page allocator and vm scanner to calculate all kinds of watermarks
  352. * and thresholds.
  353. *
  354. * Locking rules:
  355. *
  356. * zone_start_pfn and spanned_pages are protected by span_seqlock.
  357. * It is a seqlock because it has to be read outside of zone->lock,
  358. * and it is done in the main allocator path. But, it is written
  359. * quite infrequently.
  360. *
  361. * The span_seq lock is declared along with zone->lock because it is
  362. * frequently read in proximity to zone->lock. It's good to
  363. * give them a chance of being in the same cacheline.
  364. *
  365. * Write access to present_pages at runtime should be protected by
  366. * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
  367. * present_pages should get_online_mems() to get a stable value.
  368. *
  369. * Read access to managed_pages should be safe because it's unsigned
  370. * long. Write access to zone->managed_pages and totalram_pages are
  371. * protected by managed_page_count_lock at runtime. Idealy only
  372. * adjust_managed_page_count() should be used instead of directly
  373. * touching zone->managed_pages and totalram_pages.
  374. */
  375. unsigned long managed_pages;
  376. unsigned long spanned_pages;
  377. unsigned long present_pages;
  378. const char *name;
  379. #ifdef CONFIG_MEMORY_ISOLATION
  380. /*
  381. * Number of isolated pageblock. It is used to solve incorrect
  382. * freepage counting problem due to racy retrieving migratetype
  383. * of pageblock. Protected by zone->lock.
  384. */
  385. unsigned long nr_isolate_pageblock;
  386. #endif
  387. #ifdef CONFIG_MEMORY_HOTPLUG
  388. /* see spanned/present_pages for more description */
  389. seqlock_t span_seqlock;
  390. #endif
  391. /*
  392. * wait_table -- the array holding the hash table
  393. * wait_table_hash_nr_entries -- the size of the hash table array
  394. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  395. *
  396. * The purpose of all these is to keep track of the people
  397. * waiting for a page to become available and make them
  398. * runnable again when possible. The trouble is that this
  399. * consumes a lot of space, especially when so few things
  400. * wait on pages at a given time. So instead of using
  401. * per-page waitqueues, we use a waitqueue hash table.
  402. *
  403. * The bucket discipline is to sleep on the same queue when
  404. * colliding and wake all in that wait queue when removing.
  405. * When something wakes, it must check to be sure its page is
  406. * truly available, a la thundering herd. The cost of a
  407. * collision is great, but given the expected load of the
  408. * table, they should be so rare as to be outweighed by the
  409. * benefits from the saved space.
  410. *
  411. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  412. * primary users of these fields, and in mm/page_alloc.c
  413. * free_area_init_core() performs the initialization of them.
  414. */
  415. wait_queue_head_t *wait_table;
  416. unsigned long wait_table_hash_nr_entries;
  417. unsigned long wait_table_bits;
  418. ZONE_PADDING(_pad1_)
  419. /* free areas of different sizes */
  420. struct free_area free_area[MAX_ORDER];
  421. /* zone flags, see below */
  422. unsigned long flags;
  423. /* Write-intensive fields used from the page allocator */
  424. spinlock_t lock;
  425. ZONE_PADDING(_pad2_)
  426. /* Write-intensive fields used by page reclaim */
  427. /* Fields commonly accessed by the page reclaim scanner */
  428. spinlock_t lru_lock;
  429. struct lruvec lruvec;
  430. /*
  431. * When free pages are below this point, additional steps are taken
  432. * when reading the number of free pages to avoid per-cpu counter
  433. * drift allowing watermarks to be breached
  434. */
  435. unsigned long percpu_drift_mark;
  436. #if defined CONFIG_COMPACTION || defined CONFIG_CMA
  437. /* pfn where compaction free scanner should start */
  438. unsigned long compact_cached_free_pfn;
  439. /* pfn where async and sync compaction migration scanner should start */
  440. unsigned long compact_cached_migrate_pfn[2];
  441. #endif
  442. #ifdef CONFIG_COMPACTION
  443. /*
  444. * On compaction failure, 1<<compact_defer_shift compactions
  445. * are skipped before trying again. The number attempted since
  446. * last failure is tracked with compact_considered.
  447. */
  448. unsigned int compact_considered;
  449. unsigned int compact_defer_shift;
  450. int compact_order_failed;
  451. #endif
  452. #if defined CONFIG_COMPACTION || defined CONFIG_CMA
  453. /* Set to true when the PG_migrate_skip bits should be cleared */
  454. bool compact_blockskip_flush;
  455. #endif
  456. bool contiguous;
  457. ZONE_PADDING(_pad3_)
  458. /* Zone statistics */
  459. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  460. } ____cacheline_internodealigned_in_smp;
  461. enum zone_flags {
  462. ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
  463. ZONE_CONGESTED, /* zone has many dirty pages backed by
  464. * a congested BDI
  465. */
  466. ZONE_DIRTY, /* reclaim scanning has recently found
  467. * many dirty file pages at the tail
  468. * of the LRU.
  469. */
  470. ZONE_WRITEBACK, /* reclaim scanning has recently found
  471. * many pages under writeback
  472. */
  473. ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */
  474. };
  475. static inline unsigned long zone_end_pfn(const struct zone *zone)
  476. {
  477. return zone->zone_start_pfn + zone->spanned_pages;
  478. }
  479. static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
  480. {
  481. return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
  482. }
  483. static inline bool zone_is_initialized(struct zone *zone)
  484. {
  485. return !!zone->wait_table;
  486. }
  487. static inline bool zone_is_empty(struct zone *zone)
  488. {
  489. return zone->spanned_pages == 0;
  490. }
  491. /*
  492. * The "priority" of VM scanning is how much of the queues we will scan in one
  493. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  494. * queues ("queue_length >> 12") during an aging round.
  495. */
  496. #define DEF_PRIORITY 12
  497. /* Maximum number of zones on a zonelist */
  498. #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
  499. enum {
  500. ZONELIST_FALLBACK, /* zonelist with fallback */
  501. #ifdef CONFIG_NUMA
  502. /*
  503. * The NUMA zonelists are doubled because we need zonelists that
  504. * restrict the allocations to a single node for __GFP_THISNODE.
  505. */
  506. ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
  507. #endif
  508. MAX_ZONELISTS
  509. };
  510. /*
  511. * This struct contains information about a zone in a zonelist. It is stored
  512. * here to avoid dereferences into large structures and lookups of tables
  513. */
  514. struct zoneref {
  515. struct zone *zone; /* Pointer to actual zone */
  516. int zone_idx; /* zone_idx(zoneref->zone) */
  517. };
  518. /*
  519. * One allocation request operates on a zonelist. A zonelist
  520. * is a list of zones, the first one is the 'goal' of the
  521. * allocation, the other zones are fallback zones, in decreasing
  522. * priority.
  523. *
  524. * To speed the reading of the zonelist, the zonerefs contain the zone index
  525. * of the entry being read. Helper functions to access information given
  526. * a struct zoneref are
  527. *
  528. * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
  529. * zonelist_zone_idx() - Return the index of the zone for an entry
  530. * zonelist_node_idx() - Return the index of the node for an entry
  531. */
  532. struct zonelist {
  533. struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
  534. };
  535. #ifndef CONFIG_DISCONTIGMEM
  536. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  537. extern struct page *mem_map;
  538. #endif
  539. /*
  540. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  541. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  542. * zone denotes.
  543. *
  544. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  545. * it's memory layout.
  546. *
  547. * Memory statistics and page replacement data structures are maintained on a
  548. * per-zone basis.
  549. */
  550. struct bootmem_data;
  551. typedef struct pglist_data {
  552. struct zone node_zones[MAX_NR_ZONES];
  553. struct zonelist node_zonelists[MAX_ZONELISTS];
  554. int nr_zones;
  555. #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
  556. struct page *node_mem_map;
  557. #ifdef CONFIG_PAGE_EXTENSION
  558. struct page_ext *node_page_ext;
  559. #endif
  560. #endif
  561. #ifndef CONFIG_NO_BOOTMEM
  562. struct bootmem_data *bdata;
  563. #endif
  564. #ifdef CONFIG_MEMORY_HOTPLUG
  565. /*
  566. * Must be held any time you expect node_start_pfn, node_present_pages
  567. * or node_spanned_pages stay constant. Holding this will also
  568. * guarantee that any pfn_valid() stays that way.
  569. *
  570. * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
  571. * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
  572. *
  573. * Nests above zone->lock and zone->span_seqlock
  574. */
  575. spinlock_t node_size_lock;
  576. #endif
  577. unsigned long node_start_pfn;
  578. unsigned long node_present_pages; /* total number of physical pages */
  579. unsigned long node_spanned_pages; /* total size of physical page
  580. range, including holes */
  581. int node_id;
  582. wait_queue_head_t kswapd_wait;
  583. wait_queue_head_t pfmemalloc_wait;
  584. struct task_struct *kswapd; /* Protected by
  585. mem_hotplug_begin/end() */
  586. int kswapd_max_order;
  587. enum zone_type classzone_idx;
  588. #ifdef CONFIG_COMPACTION
  589. int kcompactd_max_order;
  590. enum zone_type kcompactd_classzone_idx;
  591. wait_queue_head_t kcompactd_wait;
  592. struct task_struct *kcompactd;
  593. #endif
  594. #ifdef CONFIG_NUMA_BALANCING
  595. /* Lock serializing the migrate rate limiting window */
  596. spinlock_t numabalancing_migrate_lock;
  597. /* Rate limiting time interval */
  598. unsigned long numabalancing_migrate_next_window;
  599. /* Number of pages migrated during the rate limiting time interval */
  600. unsigned long numabalancing_migrate_nr_pages;
  601. #endif
  602. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  603. /*
  604. * If memory initialisation on large machines is deferred then this
  605. * is the first PFN that needs to be initialised.
  606. */
  607. unsigned long first_deferred_pfn;
  608. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  609. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  610. spinlock_t split_queue_lock;
  611. struct list_head split_queue;
  612. unsigned long split_queue_len;
  613. #endif
  614. } pg_data_t;
  615. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  616. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  617. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  618. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  619. #else
  620. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  621. #endif
  622. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  623. #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
  624. #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
  625. static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
  626. {
  627. return pgdat->node_start_pfn + pgdat->node_spanned_pages;
  628. }
  629. static inline bool pgdat_is_empty(pg_data_t *pgdat)
  630. {
  631. return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
  632. }
  633. static inline int zone_id(const struct zone *zone)
  634. {
  635. struct pglist_data *pgdat = zone->zone_pgdat;
  636. return zone - pgdat->node_zones;
  637. }
  638. #ifdef CONFIG_ZONE_DEVICE
  639. static inline bool is_dev_zone(const struct zone *zone)
  640. {
  641. return zone_id(zone) == ZONE_DEVICE;
  642. }
  643. #else
  644. static inline bool is_dev_zone(const struct zone *zone)
  645. {
  646. return false;
  647. }
  648. #endif
  649. #include <linux/memory_hotplug.h>
  650. extern struct mutex zonelists_mutex;
  651. void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
  652. void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
  653. bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  654. int classzone_idx, unsigned int alloc_flags,
  655. long free_pages);
  656. bool zone_watermark_ok(struct zone *z, unsigned int order,
  657. unsigned long mark, int classzone_idx,
  658. unsigned int alloc_flags);
  659. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  660. unsigned long mark, int classzone_idx);
  661. enum memmap_context {
  662. MEMMAP_EARLY,
  663. MEMMAP_HOTPLUG,
  664. };
  665. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  666. unsigned long size);
  667. extern void lruvec_init(struct lruvec *lruvec);
  668. static inline struct zone *lruvec_zone(struct lruvec *lruvec)
  669. {
  670. #ifdef CONFIG_MEMCG
  671. return lruvec->zone;
  672. #else
  673. return container_of(lruvec, struct zone, lruvec);
  674. #endif
  675. }
  676. extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru);
  677. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  678. void memory_present(int nid, unsigned long start, unsigned long end);
  679. #else
  680. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  681. #endif
  682. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  683. int local_memory_node(int node_id);
  684. #else
  685. static inline int local_memory_node(int node_id) { return node_id; };
  686. #endif
  687. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  688. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  689. #endif
  690. /*
  691. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  692. */
  693. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  694. static inline int populated_zone(struct zone *zone)
  695. {
  696. return (!!zone->present_pages);
  697. }
  698. extern int movable_zone;
  699. #ifdef CONFIG_HIGHMEM
  700. static inline int zone_movable_is_highmem(void)
  701. {
  702. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  703. return movable_zone == ZONE_HIGHMEM;
  704. #else
  705. return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
  706. #endif
  707. }
  708. #endif
  709. static inline int is_highmem_idx(enum zone_type idx)
  710. {
  711. #ifdef CONFIG_HIGHMEM
  712. return (idx == ZONE_HIGHMEM ||
  713. (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
  714. #else
  715. return 0;
  716. #endif
  717. }
  718. /**
  719. * is_highmem - helper function to quickly check if a struct zone is a
  720. * highmem zone or not. This is an attempt to keep references
  721. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  722. * @zone - pointer to struct zone variable
  723. */
  724. static inline int is_highmem(struct zone *zone)
  725. {
  726. #ifdef CONFIG_HIGHMEM
  727. return is_highmem_idx(zone_idx(zone));
  728. #else
  729. return 0;
  730. #endif
  731. }
  732. /* These two functions are used to setup the per zone pages min values */
  733. struct ctl_table;
  734. int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
  735. void __user *, size_t *, loff_t *);
  736. int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
  737. void __user *, size_t *, loff_t *);
  738. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  739. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
  740. void __user *, size_t *, loff_t *);
  741. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
  742. void __user *, size_t *, loff_t *);
  743. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  744. void __user *, size_t *, loff_t *);
  745. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  746. void __user *, size_t *, loff_t *);
  747. extern int numa_zonelist_order_handler(struct ctl_table *, int,
  748. void __user *, size_t *, loff_t *);
  749. extern char numa_zonelist_order[];
  750. #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
  751. #ifndef CONFIG_NEED_MULTIPLE_NODES
  752. extern struct pglist_data contig_page_data;
  753. #define NODE_DATA(nid) (&contig_page_data)
  754. #define NODE_MEM_MAP(nid) mem_map
  755. #else /* CONFIG_NEED_MULTIPLE_NODES */
  756. #include <asm/mmzone.h>
  757. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  758. extern struct pglist_data *first_online_pgdat(void);
  759. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  760. extern struct zone *next_zone(struct zone *zone);
  761. /**
  762. * for_each_online_pgdat - helper macro to iterate over all online nodes
  763. * @pgdat - pointer to a pg_data_t variable
  764. */
  765. #define for_each_online_pgdat(pgdat) \
  766. for (pgdat = first_online_pgdat(); \
  767. pgdat; \
  768. pgdat = next_online_pgdat(pgdat))
  769. /**
  770. * for_each_zone - helper macro to iterate over all memory zones
  771. * @zone - pointer to struct zone variable
  772. *
  773. * The user only needs to declare the zone variable, for_each_zone
  774. * fills it in.
  775. */
  776. #define for_each_zone(zone) \
  777. for (zone = (first_online_pgdat())->node_zones; \
  778. zone; \
  779. zone = next_zone(zone))
  780. #define for_each_populated_zone(zone) \
  781. for (zone = (first_online_pgdat())->node_zones; \
  782. zone; \
  783. zone = next_zone(zone)) \
  784. if (!populated_zone(zone)) \
  785. ; /* do nothing */ \
  786. else
  787. static inline struct zone *zonelist_zone(struct zoneref *zoneref)
  788. {
  789. return zoneref->zone;
  790. }
  791. static inline int zonelist_zone_idx(struct zoneref *zoneref)
  792. {
  793. return zoneref->zone_idx;
  794. }
  795. static inline int zonelist_node_idx(struct zoneref *zoneref)
  796. {
  797. #ifdef CONFIG_NUMA
  798. /* zone_to_nid not available in this context */
  799. return zoneref->zone->node;
  800. #else
  801. return 0;
  802. #endif /* CONFIG_NUMA */
  803. }
  804. struct zoneref *__next_zones_zonelist(struct zoneref *z,
  805. enum zone_type highest_zoneidx,
  806. nodemask_t *nodes);
  807. /**
  808. * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
  809. * @z - The cursor used as a starting point for the search
  810. * @highest_zoneidx - The zone index of the highest zone to return
  811. * @nodes - An optional nodemask to filter the zonelist with
  812. *
  813. * This function returns the next zone at or below a given zone index that is
  814. * within the allowed nodemask using a cursor as the starting point for the
  815. * search. The zoneref returned is a cursor that represents the current zone
  816. * being examined. It should be advanced by one before calling
  817. * next_zones_zonelist again.
  818. */
  819. static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
  820. enum zone_type highest_zoneidx,
  821. nodemask_t *nodes)
  822. {
  823. if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
  824. return z;
  825. return __next_zones_zonelist(z, highest_zoneidx, nodes);
  826. }
  827. /**
  828. * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
  829. * @zonelist - The zonelist to search for a suitable zone
  830. * @highest_zoneidx - The zone index of the highest zone to return
  831. * @nodes - An optional nodemask to filter the zonelist with
  832. * @zone - The first suitable zone found is returned via this parameter
  833. *
  834. * This function returns the first zone at or below a given zone index that is
  835. * within the allowed nodemask. The zoneref returned is a cursor that can be
  836. * used to iterate the zonelist with next_zones_zonelist by advancing it by
  837. * one before calling.
  838. */
  839. static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
  840. enum zone_type highest_zoneidx,
  841. nodemask_t *nodes)
  842. {
  843. return next_zones_zonelist(zonelist->_zonerefs,
  844. highest_zoneidx, nodes);
  845. }
  846. /**
  847. * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
  848. * @zone - The current zone in the iterator
  849. * @z - The current pointer within zonelist->zones being iterated
  850. * @zlist - The zonelist being iterated
  851. * @highidx - The zone index of the highest zone to return
  852. * @nodemask - Nodemask allowed by the allocator
  853. *
  854. * This iterator iterates though all zones at or below a given zone index and
  855. * within a given nodemask
  856. */
  857. #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
  858. for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
  859. zone; \
  860. z = next_zones_zonelist(++z, highidx, nodemask), \
  861. zone = zonelist_zone(z))
  862. #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
  863. for (zone = z->zone; \
  864. zone; \
  865. z = next_zones_zonelist(++z, highidx, nodemask), \
  866. zone = zonelist_zone(z))
  867. /**
  868. * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
  869. * @zone - The current zone in the iterator
  870. * @z - The current pointer within zonelist->zones being iterated
  871. * @zlist - The zonelist being iterated
  872. * @highidx - The zone index of the highest zone to return
  873. *
  874. * This iterator iterates though all zones at or below a given zone index.
  875. */
  876. #define for_each_zone_zonelist(zone, z, zlist, highidx) \
  877. for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
  878. #ifdef CONFIG_SPARSEMEM
  879. #include <asm/sparsemem.h>
  880. #endif
  881. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  882. !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  883. static inline unsigned long early_pfn_to_nid(unsigned long pfn)
  884. {
  885. return 0;
  886. }
  887. #endif
  888. #ifdef CONFIG_FLATMEM
  889. #define pfn_to_nid(pfn) (0)
  890. #endif
  891. #ifdef CONFIG_SPARSEMEM
  892. /*
  893. * SECTION_SHIFT #bits space required to store a section #
  894. *
  895. * PA_SECTION_SHIFT physical address to/from section number
  896. * PFN_SECTION_SHIFT pfn to/from section number
  897. */
  898. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  899. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  900. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  901. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  902. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  903. #define SECTION_BLOCKFLAGS_BITS \
  904. ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
  905. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  906. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  907. #endif
  908. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  909. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  910. #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
  911. #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
  912. struct page;
  913. struct page_ext;
  914. struct mem_section {
  915. /*
  916. * This is, logically, a pointer to an array of struct
  917. * pages. However, it is stored with some other magic.
  918. * (see sparse.c::sparse_init_one_section())
  919. *
  920. * Additionally during early boot we encode node id of
  921. * the location of the section here to guide allocation.
  922. * (see sparse.c::memory_present())
  923. *
  924. * Making it a UL at least makes someone do a cast
  925. * before using it wrong.
  926. */
  927. unsigned long section_mem_map;
  928. /* See declaration of similar field in struct zone */
  929. unsigned long *pageblock_flags;
  930. #ifdef CONFIG_PAGE_EXTENSION
  931. /*
  932. * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
  933. * section. (see page_ext.h about this.)
  934. */
  935. struct page_ext *page_ext;
  936. unsigned long pad;
  937. #endif
  938. /*
  939. * WARNING: mem_section must be a power-of-2 in size for the
  940. * calculation and use of SECTION_ROOT_MASK to make sense.
  941. */
  942. };
  943. #ifdef CONFIG_SPARSEMEM_EXTREME
  944. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  945. #else
  946. #define SECTIONS_PER_ROOT 1
  947. #endif
  948. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  949. #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
  950. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  951. #ifdef CONFIG_SPARSEMEM_EXTREME
  952. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  953. #else
  954. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  955. #endif
  956. static inline struct mem_section *__nr_to_section(unsigned long nr)
  957. {
  958. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  959. return NULL;
  960. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  961. }
  962. extern int __section_nr(struct mem_section* ms);
  963. extern unsigned long usemap_size(void);
  964. /*
  965. * We use the lower bits of the mem_map pointer to store
  966. * a little bit of information. There should be at least
  967. * 3 bits here due to 32-bit alignment.
  968. */
  969. #define SECTION_MARKED_PRESENT (1UL<<0)
  970. #define SECTION_HAS_MEM_MAP (1UL<<1)
  971. #define SECTION_MAP_LAST_BIT (1UL<<2)
  972. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  973. #define SECTION_NID_SHIFT 2
  974. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  975. {
  976. unsigned long map = section->section_mem_map;
  977. map &= SECTION_MAP_MASK;
  978. return (struct page *)map;
  979. }
  980. static inline int present_section(struct mem_section *section)
  981. {
  982. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  983. }
  984. static inline int present_section_nr(unsigned long nr)
  985. {
  986. return present_section(__nr_to_section(nr));
  987. }
  988. static inline int valid_section(struct mem_section *section)
  989. {
  990. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  991. }
  992. static inline int valid_section_nr(unsigned long nr)
  993. {
  994. return valid_section(__nr_to_section(nr));
  995. }
  996. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  997. {
  998. return __nr_to_section(pfn_to_section_nr(pfn));
  999. }
  1000. #ifndef CONFIG_HAVE_ARCH_PFN_VALID
  1001. static inline int pfn_valid(unsigned long pfn)
  1002. {
  1003. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  1004. return 0;
  1005. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  1006. }
  1007. #endif
  1008. static inline int pfn_present(unsigned long pfn)
  1009. {
  1010. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  1011. return 0;
  1012. return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
  1013. }
  1014. /*
  1015. * These are _only_ used during initialisation, therefore they
  1016. * can use __initdata ... They could have names to indicate
  1017. * this restriction.
  1018. */
  1019. #ifdef CONFIG_NUMA
  1020. #define pfn_to_nid(pfn) \
  1021. ({ \
  1022. unsigned long __pfn_to_nid_pfn = (pfn); \
  1023. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  1024. })
  1025. #else
  1026. #define pfn_to_nid(pfn) (0)
  1027. #endif
  1028. #define early_pfn_valid(pfn) pfn_valid(pfn)
  1029. void sparse_init(void);
  1030. #else
  1031. #define sparse_init() do {} while (0)
  1032. #define sparse_index_init(_sec, _nid) do {} while (0)
  1033. #endif /* CONFIG_SPARSEMEM */
  1034. /*
  1035. * During memory init memblocks map pfns to nids. The search is expensive and
  1036. * this caches recent lookups. The implementation of __early_pfn_to_nid
  1037. * may treat start/end as pfns or sections.
  1038. */
  1039. struct mminit_pfnnid_cache {
  1040. unsigned long last_start;
  1041. unsigned long last_end;
  1042. int last_nid;
  1043. };
  1044. #ifndef early_pfn_valid
  1045. #define early_pfn_valid(pfn) (1)
  1046. #endif
  1047. void memory_present(int nid, unsigned long start, unsigned long end);
  1048. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  1049. /*
  1050. * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
  1051. * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
  1052. * pfn_valid_within() should be used in this case; we optimise this away
  1053. * when we have no holes within a MAX_ORDER_NR_PAGES block.
  1054. */
  1055. #ifdef CONFIG_HOLES_IN_ZONE
  1056. #define pfn_valid_within(pfn) pfn_valid(pfn)
  1057. #else
  1058. #define pfn_valid_within(pfn) (1)
  1059. #endif
  1060. #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
  1061. /*
  1062. * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
  1063. * associated with it or not. In FLATMEM, it is expected that holes always
  1064. * have valid memmap as long as there is valid PFNs either side of the hole.
  1065. * In SPARSEMEM, it is assumed that a valid section has a memmap for the
  1066. * entire section.
  1067. *
  1068. * However, an ARM, and maybe other embedded architectures in the future
  1069. * free memmap backing holes to save memory on the assumption the memmap is
  1070. * never used. The page_zone linkages are then broken even though pfn_valid()
  1071. * returns true. A walker of the full memmap must then do this additional
  1072. * check to ensure the memmap they are looking at is sane by making sure
  1073. * the zone and PFN linkages are still valid. This is expensive, but walkers
  1074. * of the full memmap are extremely rare.
  1075. */
  1076. bool memmap_valid_within(unsigned long pfn,
  1077. struct page *page, struct zone *zone);
  1078. #else
  1079. static inline bool memmap_valid_within(unsigned long pfn,
  1080. struct page *page, struct zone *zone)
  1081. {
  1082. return true;
  1083. }
  1084. #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
  1085. #endif /* !__GENERATING_BOUNDS.H */
  1086. #endif /* !__ASSEMBLY__ */
  1087. #endif /* _LINUX_MMZONE_H */