encrypted.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064
  1. /*
  2. * Copyright (C) 2010 IBM Corporation
  3. * Copyright (C) 2010 Politecnico di Torino, Italy
  4. * TORSEC group -- http://security.polito.it
  5. *
  6. * Authors:
  7. * Mimi Zohar <zohar@us.ibm.com>
  8. * Roberto Sassu <roberto.sassu@polito.it>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation, version 2 of the License.
  13. *
  14. * See Documentation/security/keys-trusted-encrypted.txt
  15. */
  16. #include <linux/uaccess.h>
  17. #include <linux/module.h>
  18. #include <linux/init.h>
  19. #include <linux/slab.h>
  20. #include <linux/parser.h>
  21. #include <linux/string.h>
  22. #include <linux/err.h>
  23. #include <keys/user-type.h>
  24. #include <keys/trusted-type.h>
  25. #include <keys/encrypted-type.h>
  26. #include <linux/key-type.h>
  27. #include <linux/random.h>
  28. #include <linux/rcupdate.h>
  29. #include <linux/scatterlist.h>
  30. #include <linux/ctype.h>
  31. #include <crypto/aes.h>
  32. #include <crypto/hash.h>
  33. #include <crypto/sha.h>
  34. #include <crypto/skcipher.h>
  35. #include "encrypted.h"
  36. #include "ecryptfs_format.h"
  37. static const char KEY_TRUSTED_PREFIX[] = "trusted:";
  38. static const char KEY_USER_PREFIX[] = "user:";
  39. static const char hash_alg[] = "sha256";
  40. static const char hmac_alg[] = "hmac(sha256)";
  41. static const char blkcipher_alg[] = "cbc(aes)";
  42. static const char key_format_default[] = "default";
  43. static const char key_format_ecryptfs[] = "ecryptfs";
  44. static unsigned int ivsize;
  45. static int blksize;
  46. #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
  47. #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
  48. #define KEY_ECRYPTFS_DESC_LEN 16
  49. #define HASH_SIZE SHA256_DIGEST_SIZE
  50. #define MAX_DATA_SIZE 4096
  51. #define MIN_DATA_SIZE 20
  52. struct sdesc {
  53. struct shash_desc shash;
  54. char ctx[];
  55. };
  56. static struct crypto_shash *hashalg;
  57. static struct crypto_shash *hmacalg;
  58. enum {
  59. Opt_err = -1, Opt_new, Opt_load, Opt_update
  60. };
  61. enum {
  62. Opt_error = -1, Opt_default, Opt_ecryptfs
  63. };
  64. static const match_table_t key_format_tokens = {
  65. {Opt_default, "default"},
  66. {Opt_ecryptfs, "ecryptfs"},
  67. {Opt_error, NULL}
  68. };
  69. static const match_table_t key_tokens = {
  70. {Opt_new, "new"},
  71. {Opt_load, "load"},
  72. {Opt_update, "update"},
  73. {Opt_err, NULL}
  74. };
  75. static int aes_get_sizes(void)
  76. {
  77. struct crypto_skcipher *tfm;
  78. tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
  79. if (IS_ERR(tfm)) {
  80. pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
  81. PTR_ERR(tfm));
  82. return PTR_ERR(tfm);
  83. }
  84. ivsize = crypto_skcipher_ivsize(tfm);
  85. blksize = crypto_skcipher_blocksize(tfm);
  86. crypto_free_skcipher(tfm);
  87. return 0;
  88. }
  89. /*
  90. * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
  91. *
  92. * The description of a encrypted key with format 'ecryptfs' must contain
  93. * exactly 16 hexadecimal characters.
  94. *
  95. */
  96. static int valid_ecryptfs_desc(const char *ecryptfs_desc)
  97. {
  98. int i;
  99. if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
  100. pr_err("encrypted_key: key description must be %d hexadecimal "
  101. "characters long\n", KEY_ECRYPTFS_DESC_LEN);
  102. return -EINVAL;
  103. }
  104. for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
  105. if (!isxdigit(ecryptfs_desc[i])) {
  106. pr_err("encrypted_key: key description must contain "
  107. "only hexadecimal characters\n");
  108. return -EINVAL;
  109. }
  110. }
  111. return 0;
  112. }
  113. /*
  114. * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
  115. *
  116. * key-type:= "trusted:" | "user:"
  117. * desc:= master-key description
  118. *
  119. * Verify that 'key-type' is valid and that 'desc' exists. On key update,
  120. * only the master key description is permitted to change, not the key-type.
  121. * The key-type remains constant.
  122. *
  123. * On success returns 0, otherwise -EINVAL.
  124. */
  125. static int valid_master_desc(const char *new_desc, const char *orig_desc)
  126. {
  127. int prefix_len;
  128. if (!strncmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN))
  129. prefix_len = KEY_TRUSTED_PREFIX_LEN;
  130. else if (!strncmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN))
  131. prefix_len = KEY_USER_PREFIX_LEN;
  132. else
  133. return -EINVAL;
  134. if (!new_desc[prefix_len])
  135. return -EINVAL;
  136. if (orig_desc && strncmp(new_desc, orig_desc, prefix_len))
  137. return -EINVAL;
  138. return 0;
  139. }
  140. /*
  141. * datablob_parse - parse the keyctl data
  142. *
  143. * datablob format:
  144. * new [<format>] <master-key name> <decrypted data length>
  145. * load [<format>] <master-key name> <decrypted data length>
  146. * <encrypted iv + data>
  147. * update <new-master-key name>
  148. *
  149. * Tokenizes a copy of the keyctl data, returning a pointer to each token,
  150. * which is null terminated.
  151. *
  152. * On success returns 0, otherwise -EINVAL.
  153. */
  154. static int datablob_parse(char *datablob, const char **format,
  155. char **master_desc, char **decrypted_datalen,
  156. char **hex_encoded_iv)
  157. {
  158. substring_t args[MAX_OPT_ARGS];
  159. int ret = -EINVAL;
  160. int key_cmd;
  161. int key_format;
  162. char *p, *keyword;
  163. keyword = strsep(&datablob, " \t");
  164. if (!keyword) {
  165. pr_info("encrypted_key: insufficient parameters specified\n");
  166. return ret;
  167. }
  168. key_cmd = match_token(keyword, key_tokens, args);
  169. /* Get optional format: default | ecryptfs */
  170. p = strsep(&datablob, " \t");
  171. if (!p) {
  172. pr_err("encrypted_key: insufficient parameters specified\n");
  173. return ret;
  174. }
  175. key_format = match_token(p, key_format_tokens, args);
  176. switch (key_format) {
  177. case Opt_ecryptfs:
  178. case Opt_default:
  179. *format = p;
  180. *master_desc = strsep(&datablob, " \t");
  181. break;
  182. case Opt_error:
  183. *master_desc = p;
  184. break;
  185. }
  186. if (!*master_desc) {
  187. pr_info("encrypted_key: master key parameter is missing\n");
  188. goto out;
  189. }
  190. if (valid_master_desc(*master_desc, NULL) < 0) {
  191. pr_info("encrypted_key: master key parameter \'%s\' "
  192. "is invalid\n", *master_desc);
  193. goto out;
  194. }
  195. if (decrypted_datalen) {
  196. *decrypted_datalen = strsep(&datablob, " \t");
  197. if (!*decrypted_datalen) {
  198. pr_info("encrypted_key: keylen parameter is missing\n");
  199. goto out;
  200. }
  201. }
  202. switch (key_cmd) {
  203. case Opt_new:
  204. if (!decrypted_datalen) {
  205. pr_info("encrypted_key: keyword \'%s\' not allowed "
  206. "when called from .update method\n", keyword);
  207. break;
  208. }
  209. ret = 0;
  210. break;
  211. case Opt_load:
  212. if (!decrypted_datalen) {
  213. pr_info("encrypted_key: keyword \'%s\' not allowed "
  214. "when called from .update method\n", keyword);
  215. break;
  216. }
  217. *hex_encoded_iv = strsep(&datablob, " \t");
  218. if (!*hex_encoded_iv) {
  219. pr_info("encrypted_key: hex blob is missing\n");
  220. break;
  221. }
  222. ret = 0;
  223. break;
  224. case Opt_update:
  225. if (decrypted_datalen) {
  226. pr_info("encrypted_key: keyword \'%s\' not allowed "
  227. "when called from .instantiate method\n",
  228. keyword);
  229. break;
  230. }
  231. ret = 0;
  232. break;
  233. case Opt_err:
  234. pr_info("encrypted_key: keyword \'%s\' not recognized\n",
  235. keyword);
  236. break;
  237. }
  238. out:
  239. return ret;
  240. }
  241. /*
  242. * datablob_format - format as an ascii string, before copying to userspace
  243. */
  244. static char *datablob_format(struct encrypted_key_payload *epayload,
  245. size_t asciiblob_len)
  246. {
  247. char *ascii_buf, *bufp;
  248. u8 *iv = epayload->iv;
  249. int len;
  250. int i;
  251. ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
  252. if (!ascii_buf)
  253. goto out;
  254. ascii_buf[asciiblob_len] = '\0';
  255. /* copy datablob master_desc and datalen strings */
  256. len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
  257. epayload->master_desc, epayload->datalen);
  258. /* convert the hex encoded iv, encrypted-data and HMAC to ascii */
  259. bufp = &ascii_buf[len];
  260. for (i = 0; i < (asciiblob_len - len) / 2; i++)
  261. bufp = hex_byte_pack(bufp, iv[i]);
  262. out:
  263. return ascii_buf;
  264. }
  265. /*
  266. * request_user_key - request the user key
  267. *
  268. * Use a user provided key to encrypt/decrypt an encrypted-key.
  269. */
  270. static struct key *request_user_key(const char *master_desc, const u8 **master_key,
  271. size_t *master_keylen)
  272. {
  273. const struct user_key_payload *upayload;
  274. struct key *ukey;
  275. ukey = request_key(&key_type_user, master_desc, NULL);
  276. if (IS_ERR(ukey))
  277. goto error;
  278. down_read(&ukey->sem);
  279. upayload = user_key_payload_locked(ukey);
  280. *master_key = upayload->data;
  281. *master_keylen = upayload->datalen;
  282. error:
  283. return ukey;
  284. }
  285. static struct sdesc *alloc_sdesc(struct crypto_shash *alg)
  286. {
  287. struct sdesc *sdesc;
  288. int size;
  289. size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
  290. sdesc = kmalloc(size, GFP_KERNEL);
  291. if (!sdesc)
  292. return ERR_PTR(-ENOMEM);
  293. sdesc->shash.tfm = alg;
  294. sdesc->shash.flags = 0x0;
  295. return sdesc;
  296. }
  297. static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
  298. const u8 *buf, unsigned int buflen)
  299. {
  300. struct sdesc *sdesc;
  301. int ret;
  302. sdesc = alloc_sdesc(hmacalg);
  303. if (IS_ERR(sdesc)) {
  304. pr_info("encrypted_key: can't alloc %s\n", hmac_alg);
  305. return PTR_ERR(sdesc);
  306. }
  307. ret = crypto_shash_setkey(hmacalg, key, keylen);
  308. if (!ret)
  309. ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
  310. kfree(sdesc);
  311. return ret;
  312. }
  313. static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen)
  314. {
  315. struct sdesc *sdesc;
  316. int ret;
  317. sdesc = alloc_sdesc(hashalg);
  318. if (IS_ERR(sdesc)) {
  319. pr_info("encrypted_key: can't alloc %s\n", hash_alg);
  320. return PTR_ERR(sdesc);
  321. }
  322. ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
  323. kfree(sdesc);
  324. return ret;
  325. }
  326. enum derived_key_type { ENC_KEY, AUTH_KEY };
  327. /* Derive authentication/encryption key from trusted key */
  328. static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
  329. const u8 *master_key, size_t master_keylen)
  330. {
  331. u8 *derived_buf;
  332. unsigned int derived_buf_len;
  333. int ret;
  334. derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
  335. if (derived_buf_len < HASH_SIZE)
  336. derived_buf_len = HASH_SIZE;
  337. derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
  338. if (!derived_buf)
  339. return -ENOMEM;
  340. if (key_type)
  341. strcpy(derived_buf, "AUTH_KEY");
  342. else
  343. strcpy(derived_buf, "ENC_KEY");
  344. memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
  345. master_keylen);
  346. ret = calc_hash(derived_key, derived_buf, derived_buf_len);
  347. kfree(derived_buf);
  348. return ret;
  349. }
  350. static struct skcipher_request *init_skcipher_req(const u8 *key,
  351. unsigned int key_len)
  352. {
  353. struct skcipher_request *req;
  354. struct crypto_skcipher *tfm;
  355. int ret;
  356. tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
  357. if (IS_ERR(tfm)) {
  358. pr_err("encrypted_key: failed to load %s transform (%ld)\n",
  359. blkcipher_alg, PTR_ERR(tfm));
  360. return ERR_CAST(tfm);
  361. }
  362. ret = crypto_skcipher_setkey(tfm, key, key_len);
  363. if (ret < 0) {
  364. pr_err("encrypted_key: failed to setkey (%d)\n", ret);
  365. crypto_free_skcipher(tfm);
  366. return ERR_PTR(ret);
  367. }
  368. req = skcipher_request_alloc(tfm, GFP_KERNEL);
  369. if (!req) {
  370. pr_err("encrypted_key: failed to allocate request for %s\n",
  371. blkcipher_alg);
  372. crypto_free_skcipher(tfm);
  373. return ERR_PTR(-ENOMEM);
  374. }
  375. skcipher_request_set_callback(req, 0, NULL, NULL);
  376. return req;
  377. }
  378. static struct key *request_master_key(struct encrypted_key_payload *epayload,
  379. const u8 **master_key, size_t *master_keylen)
  380. {
  381. struct key *mkey = ERR_PTR(-EINVAL);
  382. if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
  383. KEY_TRUSTED_PREFIX_LEN)) {
  384. mkey = request_trusted_key(epayload->master_desc +
  385. KEY_TRUSTED_PREFIX_LEN,
  386. master_key, master_keylen);
  387. } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
  388. KEY_USER_PREFIX_LEN)) {
  389. mkey = request_user_key(epayload->master_desc +
  390. KEY_USER_PREFIX_LEN,
  391. master_key, master_keylen);
  392. } else
  393. goto out;
  394. if (IS_ERR(mkey)) {
  395. int ret = PTR_ERR(mkey);
  396. if (ret == -ENOTSUPP)
  397. pr_info("encrypted_key: key %s not supported",
  398. epayload->master_desc);
  399. else
  400. pr_info("encrypted_key: key %s not found",
  401. epayload->master_desc);
  402. goto out;
  403. }
  404. dump_master_key(*master_key, *master_keylen);
  405. out:
  406. return mkey;
  407. }
  408. /* Before returning data to userspace, encrypt decrypted data. */
  409. static int derived_key_encrypt(struct encrypted_key_payload *epayload,
  410. const u8 *derived_key,
  411. unsigned int derived_keylen)
  412. {
  413. struct scatterlist sg_in[2];
  414. struct scatterlist sg_out[1];
  415. struct crypto_skcipher *tfm;
  416. struct skcipher_request *req;
  417. unsigned int encrypted_datalen;
  418. u8 iv[AES_BLOCK_SIZE];
  419. int ret;
  420. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  421. req = init_skcipher_req(derived_key, derived_keylen);
  422. ret = PTR_ERR(req);
  423. if (IS_ERR(req))
  424. goto out;
  425. dump_decrypted_data(epayload);
  426. sg_init_table(sg_in, 2);
  427. sg_set_buf(&sg_in[0], epayload->decrypted_data,
  428. epayload->decrypted_datalen);
  429. sg_set_page(&sg_in[1], ZERO_PAGE(0), AES_BLOCK_SIZE, 0);
  430. sg_init_table(sg_out, 1);
  431. sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
  432. memcpy(iv, epayload->iv, sizeof(iv));
  433. skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
  434. ret = crypto_skcipher_encrypt(req);
  435. tfm = crypto_skcipher_reqtfm(req);
  436. skcipher_request_free(req);
  437. crypto_free_skcipher(tfm);
  438. if (ret < 0)
  439. pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
  440. else
  441. dump_encrypted_data(epayload, encrypted_datalen);
  442. out:
  443. return ret;
  444. }
  445. static int datablob_hmac_append(struct encrypted_key_payload *epayload,
  446. const u8 *master_key, size_t master_keylen)
  447. {
  448. u8 derived_key[HASH_SIZE];
  449. u8 *digest;
  450. int ret;
  451. ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
  452. if (ret < 0)
  453. goto out;
  454. digest = epayload->format + epayload->datablob_len;
  455. ret = calc_hmac(digest, derived_key, sizeof derived_key,
  456. epayload->format, epayload->datablob_len);
  457. if (!ret)
  458. dump_hmac(NULL, digest, HASH_SIZE);
  459. out:
  460. return ret;
  461. }
  462. /* verify HMAC before decrypting encrypted key */
  463. static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
  464. const u8 *format, const u8 *master_key,
  465. size_t master_keylen)
  466. {
  467. u8 derived_key[HASH_SIZE];
  468. u8 digest[HASH_SIZE];
  469. int ret;
  470. char *p;
  471. unsigned short len;
  472. ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
  473. if (ret < 0)
  474. goto out;
  475. len = epayload->datablob_len;
  476. if (!format) {
  477. p = epayload->master_desc;
  478. len -= strlen(epayload->format) + 1;
  479. } else
  480. p = epayload->format;
  481. ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
  482. if (ret < 0)
  483. goto out;
  484. ret = memcmp(digest, epayload->format + epayload->datablob_len,
  485. sizeof digest);
  486. if (ret) {
  487. ret = -EINVAL;
  488. dump_hmac("datablob",
  489. epayload->format + epayload->datablob_len,
  490. HASH_SIZE);
  491. dump_hmac("calc", digest, HASH_SIZE);
  492. }
  493. out:
  494. return ret;
  495. }
  496. static int derived_key_decrypt(struct encrypted_key_payload *epayload,
  497. const u8 *derived_key,
  498. unsigned int derived_keylen)
  499. {
  500. struct scatterlist sg_in[1];
  501. struct scatterlist sg_out[2];
  502. struct crypto_skcipher *tfm;
  503. struct skcipher_request *req;
  504. unsigned int encrypted_datalen;
  505. u8 iv[AES_BLOCK_SIZE];
  506. u8 *pad;
  507. int ret;
  508. /* Throwaway buffer to hold the unused zero padding at the end */
  509. pad = kmalloc(AES_BLOCK_SIZE, GFP_KERNEL);
  510. if (!pad)
  511. return -ENOMEM;
  512. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  513. req = init_skcipher_req(derived_key, derived_keylen);
  514. ret = PTR_ERR(req);
  515. if (IS_ERR(req))
  516. goto out;
  517. dump_encrypted_data(epayload, encrypted_datalen);
  518. sg_init_table(sg_in, 1);
  519. sg_init_table(sg_out, 2);
  520. sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
  521. sg_set_buf(&sg_out[0], epayload->decrypted_data,
  522. epayload->decrypted_datalen);
  523. sg_set_buf(&sg_out[1], pad, AES_BLOCK_SIZE);
  524. memcpy(iv, epayload->iv, sizeof(iv));
  525. skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
  526. ret = crypto_skcipher_decrypt(req);
  527. tfm = crypto_skcipher_reqtfm(req);
  528. skcipher_request_free(req);
  529. crypto_free_skcipher(tfm);
  530. if (ret < 0)
  531. goto out;
  532. dump_decrypted_data(epayload);
  533. out:
  534. kfree(pad);
  535. return ret;
  536. }
  537. /* Allocate memory for decrypted key and datablob. */
  538. static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
  539. const char *format,
  540. const char *master_desc,
  541. const char *datalen)
  542. {
  543. struct encrypted_key_payload *epayload = NULL;
  544. unsigned short datablob_len;
  545. unsigned short decrypted_datalen;
  546. unsigned short payload_datalen;
  547. unsigned int encrypted_datalen;
  548. unsigned int format_len;
  549. long dlen;
  550. int ret;
  551. ret = kstrtol(datalen, 10, &dlen);
  552. if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
  553. return ERR_PTR(-EINVAL);
  554. format_len = (!format) ? strlen(key_format_default) : strlen(format);
  555. decrypted_datalen = dlen;
  556. payload_datalen = decrypted_datalen;
  557. if (format && !strcmp(format, key_format_ecryptfs)) {
  558. if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
  559. pr_err("encrypted_key: keylen for the ecryptfs format "
  560. "must be equal to %d bytes\n",
  561. ECRYPTFS_MAX_KEY_BYTES);
  562. return ERR_PTR(-EINVAL);
  563. }
  564. decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
  565. payload_datalen = sizeof(struct ecryptfs_auth_tok);
  566. }
  567. encrypted_datalen = roundup(decrypted_datalen, blksize);
  568. datablob_len = format_len + 1 + strlen(master_desc) + 1
  569. + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
  570. ret = key_payload_reserve(key, payload_datalen + datablob_len
  571. + HASH_SIZE + 1);
  572. if (ret < 0)
  573. return ERR_PTR(ret);
  574. epayload = kzalloc(sizeof(*epayload) + payload_datalen +
  575. datablob_len + HASH_SIZE + 1, GFP_KERNEL);
  576. if (!epayload)
  577. return ERR_PTR(-ENOMEM);
  578. epayload->payload_datalen = payload_datalen;
  579. epayload->decrypted_datalen = decrypted_datalen;
  580. epayload->datablob_len = datablob_len;
  581. return epayload;
  582. }
  583. static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
  584. const char *format, const char *hex_encoded_iv)
  585. {
  586. struct key *mkey;
  587. u8 derived_key[HASH_SIZE];
  588. const u8 *master_key;
  589. u8 *hmac;
  590. const char *hex_encoded_data;
  591. unsigned int encrypted_datalen;
  592. size_t master_keylen;
  593. size_t asciilen;
  594. int ret;
  595. encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
  596. asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
  597. if (strlen(hex_encoded_iv) != asciilen)
  598. return -EINVAL;
  599. hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
  600. ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
  601. if (ret < 0)
  602. return -EINVAL;
  603. ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
  604. encrypted_datalen);
  605. if (ret < 0)
  606. return -EINVAL;
  607. hmac = epayload->format + epayload->datablob_len;
  608. ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
  609. HASH_SIZE);
  610. if (ret < 0)
  611. return -EINVAL;
  612. mkey = request_master_key(epayload, &master_key, &master_keylen);
  613. if (IS_ERR(mkey))
  614. return PTR_ERR(mkey);
  615. ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
  616. if (ret < 0) {
  617. pr_err("encrypted_key: bad hmac (%d)\n", ret);
  618. goto out;
  619. }
  620. ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
  621. if (ret < 0)
  622. goto out;
  623. ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
  624. if (ret < 0)
  625. pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
  626. out:
  627. up_read(&mkey->sem);
  628. key_put(mkey);
  629. return ret;
  630. }
  631. static void __ekey_init(struct encrypted_key_payload *epayload,
  632. const char *format, const char *master_desc,
  633. const char *datalen)
  634. {
  635. unsigned int format_len;
  636. format_len = (!format) ? strlen(key_format_default) : strlen(format);
  637. epayload->format = epayload->payload_data + epayload->payload_datalen;
  638. epayload->master_desc = epayload->format + format_len + 1;
  639. epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
  640. epayload->iv = epayload->datalen + strlen(datalen) + 1;
  641. epayload->encrypted_data = epayload->iv + ivsize + 1;
  642. epayload->decrypted_data = epayload->payload_data;
  643. if (!format)
  644. memcpy(epayload->format, key_format_default, format_len);
  645. else {
  646. if (!strcmp(format, key_format_ecryptfs))
  647. epayload->decrypted_data =
  648. ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
  649. memcpy(epayload->format, format, format_len);
  650. }
  651. memcpy(epayload->master_desc, master_desc, strlen(master_desc));
  652. memcpy(epayload->datalen, datalen, strlen(datalen));
  653. }
  654. /*
  655. * encrypted_init - initialize an encrypted key
  656. *
  657. * For a new key, use a random number for both the iv and data
  658. * itself. For an old key, decrypt the hex encoded data.
  659. */
  660. static int encrypted_init(struct encrypted_key_payload *epayload,
  661. const char *key_desc, const char *format,
  662. const char *master_desc, const char *datalen,
  663. const char *hex_encoded_iv)
  664. {
  665. int ret = 0;
  666. if (format && !strcmp(format, key_format_ecryptfs)) {
  667. ret = valid_ecryptfs_desc(key_desc);
  668. if (ret < 0)
  669. return ret;
  670. ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
  671. key_desc);
  672. }
  673. __ekey_init(epayload, format, master_desc, datalen);
  674. if (!hex_encoded_iv) {
  675. get_random_bytes(epayload->iv, ivsize);
  676. get_random_bytes(epayload->decrypted_data,
  677. epayload->decrypted_datalen);
  678. } else
  679. ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
  680. return ret;
  681. }
  682. /*
  683. * encrypted_instantiate - instantiate an encrypted key
  684. *
  685. * Decrypt an existing encrypted datablob or create a new encrypted key
  686. * based on a kernel random number.
  687. *
  688. * On success, return 0. Otherwise return errno.
  689. */
  690. static int encrypted_instantiate(struct key *key,
  691. struct key_preparsed_payload *prep)
  692. {
  693. struct encrypted_key_payload *epayload = NULL;
  694. char *datablob = NULL;
  695. const char *format = NULL;
  696. char *master_desc = NULL;
  697. char *decrypted_datalen = NULL;
  698. char *hex_encoded_iv = NULL;
  699. size_t datalen = prep->datalen;
  700. int ret;
  701. if (datalen <= 0 || datalen > 32767 || !prep->data)
  702. return -EINVAL;
  703. datablob = kmalloc(datalen + 1, GFP_KERNEL);
  704. if (!datablob)
  705. return -ENOMEM;
  706. datablob[datalen] = 0;
  707. memcpy(datablob, prep->data, datalen);
  708. ret = datablob_parse(datablob, &format, &master_desc,
  709. &decrypted_datalen, &hex_encoded_iv);
  710. if (ret < 0)
  711. goto out;
  712. epayload = encrypted_key_alloc(key, format, master_desc,
  713. decrypted_datalen);
  714. if (IS_ERR(epayload)) {
  715. ret = PTR_ERR(epayload);
  716. goto out;
  717. }
  718. ret = encrypted_init(epayload, key->description, format, master_desc,
  719. decrypted_datalen, hex_encoded_iv);
  720. if (ret < 0) {
  721. kfree(epayload);
  722. goto out;
  723. }
  724. rcu_assign_keypointer(key, epayload);
  725. out:
  726. kfree(datablob);
  727. return ret;
  728. }
  729. static void encrypted_rcu_free(struct rcu_head *rcu)
  730. {
  731. struct encrypted_key_payload *epayload;
  732. epayload = container_of(rcu, struct encrypted_key_payload, rcu);
  733. memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
  734. kfree(epayload);
  735. }
  736. /*
  737. * encrypted_update - update the master key description
  738. *
  739. * Change the master key description for an existing encrypted key.
  740. * The next read will return an encrypted datablob using the new
  741. * master key description.
  742. *
  743. * On success, return 0. Otherwise return errno.
  744. */
  745. static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
  746. {
  747. struct encrypted_key_payload *epayload = key->payload.data[0];
  748. struct encrypted_key_payload *new_epayload;
  749. char *buf;
  750. char *new_master_desc = NULL;
  751. const char *format = NULL;
  752. size_t datalen = prep->datalen;
  753. int ret = 0;
  754. if (test_bit(KEY_FLAG_NEGATIVE, &key->flags))
  755. return -ENOKEY;
  756. if (datalen <= 0 || datalen > 32767 || !prep->data)
  757. return -EINVAL;
  758. buf = kmalloc(datalen + 1, GFP_KERNEL);
  759. if (!buf)
  760. return -ENOMEM;
  761. buf[datalen] = 0;
  762. memcpy(buf, prep->data, datalen);
  763. ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
  764. if (ret < 0)
  765. goto out;
  766. ret = valid_master_desc(new_master_desc, epayload->master_desc);
  767. if (ret < 0)
  768. goto out;
  769. new_epayload = encrypted_key_alloc(key, epayload->format,
  770. new_master_desc, epayload->datalen);
  771. if (IS_ERR(new_epayload)) {
  772. ret = PTR_ERR(new_epayload);
  773. goto out;
  774. }
  775. __ekey_init(new_epayload, epayload->format, new_master_desc,
  776. epayload->datalen);
  777. memcpy(new_epayload->iv, epayload->iv, ivsize);
  778. memcpy(new_epayload->payload_data, epayload->payload_data,
  779. epayload->payload_datalen);
  780. rcu_assign_keypointer(key, new_epayload);
  781. call_rcu(&epayload->rcu, encrypted_rcu_free);
  782. out:
  783. kfree(buf);
  784. return ret;
  785. }
  786. /*
  787. * encrypted_read - format and copy the encrypted data to userspace
  788. *
  789. * The resulting datablob format is:
  790. * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
  791. *
  792. * On success, return to userspace the encrypted key datablob size.
  793. */
  794. static long encrypted_read(const struct key *key, char __user *buffer,
  795. size_t buflen)
  796. {
  797. struct encrypted_key_payload *epayload;
  798. struct key *mkey;
  799. const u8 *master_key;
  800. size_t master_keylen;
  801. char derived_key[HASH_SIZE];
  802. char *ascii_buf;
  803. size_t asciiblob_len;
  804. int ret;
  805. epayload = dereference_key_locked(key);
  806. /* returns the hex encoded iv, encrypted-data, and hmac as ascii */
  807. asciiblob_len = epayload->datablob_len + ivsize + 1
  808. + roundup(epayload->decrypted_datalen, blksize)
  809. + (HASH_SIZE * 2);
  810. if (!buffer || buflen < asciiblob_len)
  811. return asciiblob_len;
  812. mkey = request_master_key(epayload, &master_key, &master_keylen);
  813. if (IS_ERR(mkey))
  814. return PTR_ERR(mkey);
  815. ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
  816. if (ret < 0)
  817. goto out;
  818. ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
  819. if (ret < 0)
  820. goto out;
  821. ret = datablob_hmac_append(epayload, master_key, master_keylen);
  822. if (ret < 0)
  823. goto out;
  824. ascii_buf = datablob_format(epayload, asciiblob_len);
  825. if (!ascii_buf) {
  826. ret = -ENOMEM;
  827. goto out;
  828. }
  829. up_read(&mkey->sem);
  830. key_put(mkey);
  831. if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0)
  832. ret = -EFAULT;
  833. kfree(ascii_buf);
  834. return asciiblob_len;
  835. out:
  836. up_read(&mkey->sem);
  837. key_put(mkey);
  838. return ret;
  839. }
  840. /*
  841. * encrypted_destroy - before freeing the key, clear the decrypted data
  842. *
  843. * Before freeing the key, clear the memory containing the decrypted
  844. * key data.
  845. */
  846. static void encrypted_destroy(struct key *key)
  847. {
  848. struct encrypted_key_payload *epayload = key->payload.data[0];
  849. if (!epayload)
  850. return;
  851. memzero_explicit(epayload->decrypted_data, epayload->decrypted_datalen);
  852. kfree(key->payload.data[0]);
  853. }
  854. struct key_type key_type_encrypted = {
  855. .name = "encrypted",
  856. .instantiate = encrypted_instantiate,
  857. .update = encrypted_update,
  858. .destroy = encrypted_destroy,
  859. .describe = user_describe,
  860. .read = encrypted_read,
  861. };
  862. EXPORT_SYMBOL_GPL(key_type_encrypted);
  863. static void encrypted_shash_release(void)
  864. {
  865. if (hashalg)
  866. crypto_free_shash(hashalg);
  867. if (hmacalg)
  868. crypto_free_shash(hmacalg);
  869. }
  870. static int __init encrypted_shash_alloc(void)
  871. {
  872. int ret;
  873. hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
  874. if (IS_ERR(hmacalg)) {
  875. pr_info("encrypted_key: could not allocate crypto %s\n",
  876. hmac_alg);
  877. return PTR_ERR(hmacalg);
  878. }
  879. hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
  880. if (IS_ERR(hashalg)) {
  881. pr_info("encrypted_key: could not allocate crypto %s\n",
  882. hash_alg);
  883. ret = PTR_ERR(hashalg);
  884. goto hashalg_fail;
  885. }
  886. return 0;
  887. hashalg_fail:
  888. crypto_free_shash(hmacalg);
  889. return ret;
  890. }
  891. static int __init init_encrypted(void)
  892. {
  893. int ret;
  894. ret = encrypted_shash_alloc();
  895. if (ret < 0)
  896. return ret;
  897. ret = aes_get_sizes();
  898. if (ret < 0)
  899. goto out;
  900. ret = register_key_type(&key_type_encrypted);
  901. if (ret < 0)
  902. goto out;
  903. return 0;
  904. out:
  905. encrypted_shash_release();
  906. return ret;
  907. }
  908. static void __exit cleanup_encrypted(void)
  909. {
  910. encrypted_shash_release();
  911. unregister_key_type(&key_type_encrypted);
  912. }
  913. late_initcall(init_encrypted);
  914. module_exit(cleanup_encrypted);
  915. MODULE_LICENSE("GPL");