intel_ddi.c 92 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include "i915_drv.h"
  28. #include "intel_drv.h"
  29. struct ddi_buf_trans {
  30. u32 trans1; /* balance leg enable, de-emph level */
  31. u32 trans2; /* vref sel, vswing */
  32. u8 i_boost; /* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
  33. };
  34. /* HDMI/DVI modes ignore everything but the last 2 items. So we share
  35. * them for both DP and FDI transports, allowing those ports to
  36. * automatically adapt to HDMI connections as well
  37. */
  38. static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
  39. { 0x00FFFFFF, 0x0006000E, 0x0 },
  40. { 0x00D75FFF, 0x0005000A, 0x0 },
  41. { 0x00C30FFF, 0x00040006, 0x0 },
  42. { 0x80AAAFFF, 0x000B0000, 0x0 },
  43. { 0x00FFFFFF, 0x0005000A, 0x0 },
  44. { 0x00D75FFF, 0x000C0004, 0x0 },
  45. { 0x80C30FFF, 0x000B0000, 0x0 },
  46. { 0x00FFFFFF, 0x00040006, 0x0 },
  47. { 0x80D75FFF, 0x000B0000, 0x0 },
  48. };
  49. static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
  50. { 0x00FFFFFF, 0x0007000E, 0x0 },
  51. { 0x00D75FFF, 0x000F000A, 0x0 },
  52. { 0x00C30FFF, 0x00060006, 0x0 },
  53. { 0x00AAAFFF, 0x001E0000, 0x0 },
  54. { 0x00FFFFFF, 0x000F000A, 0x0 },
  55. { 0x00D75FFF, 0x00160004, 0x0 },
  56. { 0x00C30FFF, 0x001E0000, 0x0 },
  57. { 0x00FFFFFF, 0x00060006, 0x0 },
  58. { 0x00D75FFF, 0x001E0000, 0x0 },
  59. };
  60. static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
  61. /* Idx NT mV d T mV d db */
  62. { 0x00FFFFFF, 0x0006000E, 0x0 },/* 0: 400 400 0 */
  63. { 0x00E79FFF, 0x000E000C, 0x0 },/* 1: 400 500 2 */
  64. { 0x00D75FFF, 0x0005000A, 0x0 },/* 2: 400 600 3.5 */
  65. { 0x00FFFFFF, 0x0005000A, 0x0 },/* 3: 600 600 0 */
  66. { 0x00E79FFF, 0x001D0007, 0x0 },/* 4: 600 750 2 */
  67. { 0x00D75FFF, 0x000C0004, 0x0 },/* 5: 600 900 3.5 */
  68. { 0x00FFFFFF, 0x00040006, 0x0 },/* 6: 800 800 0 */
  69. { 0x80E79FFF, 0x00030002, 0x0 },/* 7: 800 1000 2 */
  70. { 0x00FFFFFF, 0x00140005, 0x0 },/* 8: 850 850 0 */
  71. { 0x00FFFFFF, 0x000C0004, 0x0 },/* 9: 900 900 0 */
  72. { 0x00FFFFFF, 0x001C0003, 0x0 },/* 10: 950 950 0 */
  73. { 0x80FFFFFF, 0x00030002, 0x0 },/* 11: 1000 1000 0 */
  74. };
  75. static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
  76. { 0x00FFFFFF, 0x00000012, 0x0 },
  77. { 0x00EBAFFF, 0x00020011, 0x0 },
  78. { 0x00C71FFF, 0x0006000F, 0x0 },
  79. { 0x00AAAFFF, 0x000E000A, 0x0 },
  80. { 0x00FFFFFF, 0x00020011, 0x0 },
  81. { 0x00DB6FFF, 0x0005000F, 0x0 },
  82. { 0x00BEEFFF, 0x000A000C, 0x0 },
  83. { 0x00FFFFFF, 0x0005000F, 0x0 },
  84. { 0x00DB6FFF, 0x000A000C, 0x0 },
  85. };
  86. static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
  87. { 0x00FFFFFF, 0x0007000E, 0x0 },
  88. { 0x00D75FFF, 0x000E000A, 0x0 },
  89. { 0x00BEFFFF, 0x00140006, 0x0 },
  90. { 0x80B2CFFF, 0x001B0002, 0x0 },
  91. { 0x00FFFFFF, 0x000E000A, 0x0 },
  92. { 0x00DB6FFF, 0x00160005, 0x0 },
  93. { 0x80C71FFF, 0x001A0002, 0x0 },
  94. { 0x00F7DFFF, 0x00180004, 0x0 },
  95. { 0x80D75FFF, 0x001B0002, 0x0 },
  96. };
  97. static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
  98. { 0x00FFFFFF, 0x0001000E, 0x0 },
  99. { 0x00D75FFF, 0x0004000A, 0x0 },
  100. { 0x00C30FFF, 0x00070006, 0x0 },
  101. { 0x00AAAFFF, 0x000C0000, 0x0 },
  102. { 0x00FFFFFF, 0x0004000A, 0x0 },
  103. { 0x00D75FFF, 0x00090004, 0x0 },
  104. { 0x00C30FFF, 0x000C0000, 0x0 },
  105. { 0x00FFFFFF, 0x00070006, 0x0 },
  106. { 0x00D75FFF, 0x000C0000, 0x0 },
  107. };
  108. static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
  109. /* Idx NT mV d T mV df db */
  110. { 0x00FFFFFF, 0x0007000E, 0x0 },/* 0: 400 400 0 */
  111. { 0x00D75FFF, 0x000E000A, 0x0 },/* 1: 400 600 3.5 */
  112. { 0x00BEFFFF, 0x00140006, 0x0 },/* 2: 400 800 6 */
  113. { 0x00FFFFFF, 0x0009000D, 0x0 },/* 3: 450 450 0 */
  114. { 0x00FFFFFF, 0x000E000A, 0x0 },/* 4: 600 600 0 */
  115. { 0x00D7FFFF, 0x00140006, 0x0 },/* 5: 600 800 2.5 */
  116. { 0x80CB2FFF, 0x001B0002, 0x0 },/* 6: 600 1000 4.5 */
  117. { 0x00FFFFFF, 0x00140006, 0x0 },/* 7: 800 800 0 */
  118. { 0x80E79FFF, 0x001B0002, 0x0 },/* 8: 800 1000 2 */
  119. { 0x80FFFFFF, 0x001B0002, 0x0 },/* 9: 1000 1000 0 */
  120. };
  121. /* Skylake H and S */
  122. static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
  123. { 0x00002016, 0x000000A0, 0x0 },
  124. { 0x00005012, 0x0000009B, 0x0 },
  125. { 0x00007011, 0x00000088, 0x0 },
  126. { 0x80009010, 0x000000C0, 0x1 },
  127. { 0x00002016, 0x0000009B, 0x0 },
  128. { 0x00005012, 0x00000088, 0x0 },
  129. { 0x80007011, 0x000000C0, 0x1 },
  130. { 0x00002016, 0x000000DF, 0x0 },
  131. { 0x80005012, 0x000000C0, 0x1 },
  132. };
  133. /* Skylake U */
  134. static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
  135. { 0x0000201B, 0x000000A2, 0x0 },
  136. { 0x00005012, 0x00000088, 0x0 },
  137. { 0x80007011, 0x000000CD, 0x0 },
  138. { 0x80009010, 0x000000C0, 0x1 },
  139. { 0x0000201B, 0x0000009D, 0x0 },
  140. { 0x80005012, 0x000000C0, 0x1 },
  141. { 0x80007011, 0x000000C0, 0x1 },
  142. { 0x00002016, 0x00000088, 0x0 },
  143. { 0x80005012, 0x000000C0, 0x1 },
  144. };
  145. /* Skylake Y */
  146. static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
  147. { 0x00000018, 0x000000A2, 0x0 },
  148. { 0x00005012, 0x00000088, 0x0 },
  149. { 0x80007011, 0x000000CD, 0x0 },
  150. { 0x80009010, 0x000000C0, 0x3 },
  151. { 0x00000018, 0x0000009D, 0x0 },
  152. { 0x80005012, 0x000000C0, 0x3 },
  153. { 0x80007011, 0x000000C0, 0x3 },
  154. { 0x00000018, 0x00000088, 0x0 },
  155. { 0x80005012, 0x000000C0, 0x3 },
  156. };
  157. /*
  158. * Skylake H and S
  159. * eDP 1.4 low vswing translation parameters
  160. */
  161. static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
  162. { 0x00000018, 0x000000A8, 0x0 },
  163. { 0x00004013, 0x000000A9, 0x0 },
  164. { 0x00007011, 0x000000A2, 0x0 },
  165. { 0x00009010, 0x0000009C, 0x0 },
  166. { 0x00000018, 0x000000A9, 0x0 },
  167. { 0x00006013, 0x000000A2, 0x0 },
  168. { 0x00007011, 0x000000A6, 0x0 },
  169. { 0x00000018, 0x000000AB, 0x0 },
  170. { 0x00007013, 0x0000009F, 0x0 },
  171. { 0x00000018, 0x000000DF, 0x0 },
  172. };
  173. /*
  174. * Skylake U
  175. * eDP 1.4 low vswing translation parameters
  176. */
  177. static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
  178. { 0x00000018, 0x000000A8, 0x0 },
  179. { 0x00004013, 0x000000A9, 0x0 },
  180. { 0x00007011, 0x000000A2, 0x0 },
  181. { 0x00009010, 0x0000009C, 0x0 },
  182. { 0x00000018, 0x000000A9, 0x0 },
  183. { 0x00006013, 0x000000A2, 0x0 },
  184. { 0x00007011, 0x000000A6, 0x0 },
  185. { 0x00002016, 0x000000AB, 0x0 },
  186. { 0x00005013, 0x0000009F, 0x0 },
  187. { 0x00000018, 0x000000DF, 0x0 },
  188. };
  189. /*
  190. * Skylake Y
  191. * eDP 1.4 low vswing translation parameters
  192. */
  193. static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
  194. { 0x00000018, 0x000000A8, 0x0 },
  195. { 0x00004013, 0x000000AB, 0x0 },
  196. { 0x00007011, 0x000000A4, 0x0 },
  197. { 0x00009010, 0x000000DF, 0x0 },
  198. { 0x00000018, 0x000000AA, 0x0 },
  199. { 0x00006013, 0x000000A4, 0x0 },
  200. { 0x00007011, 0x0000009D, 0x0 },
  201. { 0x00000018, 0x000000A0, 0x0 },
  202. { 0x00006012, 0x000000DF, 0x0 },
  203. { 0x00000018, 0x0000008A, 0x0 },
  204. };
  205. /* Skylake U, H and S */
  206. static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
  207. { 0x00000018, 0x000000AC, 0x0 },
  208. { 0x00005012, 0x0000009D, 0x0 },
  209. { 0x00007011, 0x00000088, 0x0 },
  210. { 0x00000018, 0x000000A1, 0x0 },
  211. { 0x00000018, 0x00000098, 0x0 },
  212. { 0x00004013, 0x00000088, 0x0 },
  213. { 0x80006012, 0x000000CD, 0x1 },
  214. { 0x00000018, 0x000000DF, 0x0 },
  215. { 0x80003015, 0x000000CD, 0x1 }, /* Default */
  216. { 0x80003015, 0x000000C0, 0x1 },
  217. { 0x80000018, 0x000000C0, 0x1 },
  218. };
  219. /* Skylake Y */
  220. static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
  221. { 0x00000018, 0x000000A1, 0x0 },
  222. { 0x00005012, 0x000000DF, 0x0 },
  223. { 0x80007011, 0x000000CB, 0x3 },
  224. { 0x00000018, 0x000000A4, 0x0 },
  225. { 0x00000018, 0x0000009D, 0x0 },
  226. { 0x00004013, 0x00000080, 0x0 },
  227. { 0x80006013, 0x000000C0, 0x3 },
  228. { 0x00000018, 0x0000008A, 0x0 },
  229. { 0x80003015, 0x000000C0, 0x3 }, /* Default */
  230. { 0x80003015, 0x000000C0, 0x3 },
  231. { 0x80000018, 0x000000C0, 0x3 },
  232. };
  233. struct bxt_ddi_buf_trans {
  234. u32 margin; /* swing value */
  235. u32 scale; /* scale value */
  236. u32 enable; /* scale enable */
  237. u32 deemphasis;
  238. bool default_index; /* true if the entry represents default value */
  239. };
  240. static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
  241. /* Idx NT mV diff db */
  242. { 52, 0x9A, 0, 128, true }, /* 0: 400 0 */
  243. { 78, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
  244. { 104, 0x9A, 0, 64, false }, /* 2: 400 6 */
  245. { 154, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
  246. { 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
  247. { 116, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
  248. { 154, 0x9A, 0, 64, false }, /* 6: 600 6 */
  249. { 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
  250. { 154, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
  251. { 154, 0x9A, 1, 128, false }, /* 9: 1200 0 */
  252. };
  253. static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = {
  254. /* Idx NT mV diff db */
  255. { 26, 0, 0, 128, false }, /* 0: 200 0 */
  256. { 38, 0, 0, 112, false }, /* 1: 200 1.5 */
  257. { 48, 0, 0, 96, false }, /* 2: 200 4 */
  258. { 54, 0, 0, 69, false }, /* 3: 200 6 */
  259. { 32, 0, 0, 128, false }, /* 4: 250 0 */
  260. { 48, 0, 0, 104, false }, /* 5: 250 1.5 */
  261. { 54, 0, 0, 85, false }, /* 6: 250 4 */
  262. { 43, 0, 0, 128, false }, /* 7: 300 0 */
  263. { 54, 0, 0, 101, false }, /* 8: 300 1.5 */
  264. { 48, 0, 0, 128, false }, /* 9: 300 0 */
  265. };
  266. /* BSpec has 2 recommended values - entries 0 and 8.
  267. * Using the entry with higher vswing.
  268. */
  269. static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
  270. /* Idx NT mV diff db */
  271. { 52, 0x9A, 0, 128, false }, /* 0: 400 0 */
  272. { 52, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
  273. { 52, 0x9A, 0, 64, false }, /* 2: 400 6 */
  274. { 42, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
  275. { 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
  276. { 77, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
  277. { 77, 0x9A, 0, 64, false }, /* 6: 600 6 */
  278. { 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
  279. { 102, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
  280. { 154, 0x9A, 1, 128, true }, /* 9: 1200 0 */
  281. };
  282. static void bxt_ddi_vswing_sequence(struct drm_i915_private *dev_priv,
  283. u32 level, enum port port, int type);
  284. static void ddi_get_encoder_port(struct intel_encoder *intel_encoder,
  285. struct intel_digital_port **dig_port,
  286. enum port *port)
  287. {
  288. struct drm_encoder *encoder = &intel_encoder->base;
  289. switch (intel_encoder->type) {
  290. case INTEL_OUTPUT_DP_MST:
  291. *dig_port = enc_to_mst(encoder)->primary;
  292. *port = (*dig_port)->port;
  293. break;
  294. case INTEL_OUTPUT_DISPLAYPORT:
  295. case INTEL_OUTPUT_EDP:
  296. case INTEL_OUTPUT_HDMI:
  297. case INTEL_OUTPUT_UNKNOWN:
  298. *dig_port = enc_to_dig_port(encoder);
  299. *port = (*dig_port)->port;
  300. break;
  301. case INTEL_OUTPUT_ANALOG:
  302. *dig_port = NULL;
  303. *port = PORT_E;
  304. break;
  305. default:
  306. WARN(1, "Invalid DDI encoder type %d\n", intel_encoder->type);
  307. break;
  308. }
  309. }
  310. enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
  311. {
  312. struct intel_digital_port *dig_port;
  313. enum port port;
  314. ddi_get_encoder_port(intel_encoder, &dig_port, &port);
  315. return port;
  316. }
  317. static const struct ddi_buf_trans *
  318. skl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
  319. {
  320. if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
  321. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
  322. return skl_y_ddi_translations_dp;
  323. } else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv)) {
  324. *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
  325. return skl_u_ddi_translations_dp;
  326. } else {
  327. *n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
  328. return skl_ddi_translations_dp;
  329. }
  330. }
  331. static const struct ddi_buf_trans *
  332. skl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
  333. {
  334. if (dev_priv->edp_low_vswing) {
  335. if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
  336. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
  337. return skl_y_ddi_translations_edp;
  338. } else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv)) {
  339. *n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
  340. return skl_u_ddi_translations_edp;
  341. } else {
  342. *n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
  343. return skl_ddi_translations_edp;
  344. }
  345. }
  346. return skl_get_buf_trans_dp(dev_priv, n_entries);
  347. }
  348. static const struct ddi_buf_trans *
  349. skl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
  350. {
  351. if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
  352. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
  353. return skl_y_ddi_translations_hdmi;
  354. } else {
  355. *n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
  356. return skl_ddi_translations_hdmi;
  357. }
  358. }
  359. /*
  360. * Starting with Haswell, DDI port buffers must be programmed with correct
  361. * values in advance. The buffer values are different for FDI and DP modes,
  362. * but the HDMI/DVI fields are shared among those. So we program the DDI
  363. * in either FDI or DP modes only, as HDMI connections will work with both
  364. * of those
  365. */
  366. void intel_prepare_ddi_buffer(struct intel_encoder *encoder)
  367. {
  368. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  369. u32 iboost_bit = 0;
  370. int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
  371. size;
  372. int hdmi_level;
  373. enum port port;
  374. const struct ddi_buf_trans *ddi_translations_fdi;
  375. const struct ddi_buf_trans *ddi_translations_dp;
  376. const struct ddi_buf_trans *ddi_translations_edp;
  377. const struct ddi_buf_trans *ddi_translations_hdmi;
  378. const struct ddi_buf_trans *ddi_translations;
  379. port = intel_ddi_get_encoder_port(encoder);
  380. hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
  381. if (IS_BROXTON(dev_priv)) {
  382. if (encoder->type != INTEL_OUTPUT_HDMI)
  383. return;
  384. /* Vswing programming for HDMI */
  385. bxt_ddi_vswing_sequence(dev_priv, hdmi_level, port,
  386. INTEL_OUTPUT_HDMI);
  387. return;
  388. }
  389. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
  390. ddi_translations_fdi = NULL;
  391. ddi_translations_dp =
  392. skl_get_buf_trans_dp(dev_priv, &n_dp_entries);
  393. ddi_translations_edp =
  394. skl_get_buf_trans_edp(dev_priv, &n_edp_entries);
  395. ddi_translations_hdmi =
  396. skl_get_buf_trans_hdmi(dev_priv, &n_hdmi_entries);
  397. hdmi_default_entry = 8;
  398. /* If we're boosting the current, set bit 31 of trans1 */
  399. if (dev_priv->vbt.ddi_port_info[port].hdmi_boost_level ||
  400. dev_priv->vbt.ddi_port_info[port].dp_boost_level)
  401. iboost_bit = 1<<31;
  402. if (WARN_ON(encoder->type == INTEL_OUTPUT_EDP &&
  403. port != PORT_A && port != PORT_E &&
  404. n_edp_entries > 9))
  405. n_edp_entries = 9;
  406. } else if (IS_BROADWELL(dev_priv)) {
  407. ddi_translations_fdi = bdw_ddi_translations_fdi;
  408. ddi_translations_dp = bdw_ddi_translations_dp;
  409. if (dev_priv->edp_low_vswing) {
  410. ddi_translations_edp = bdw_ddi_translations_edp;
  411. n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
  412. } else {
  413. ddi_translations_edp = bdw_ddi_translations_dp;
  414. n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
  415. }
  416. ddi_translations_hdmi = bdw_ddi_translations_hdmi;
  417. n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
  418. n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  419. hdmi_default_entry = 7;
  420. } else if (IS_HASWELL(dev_priv)) {
  421. ddi_translations_fdi = hsw_ddi_translations_fdi;
  422. ddi_translations_dp = hsw_ddi_translations_dp;
  423. ddi_translations_edp = hsw_ddi_translations_dp;
  424. ddi_translations_hdmi = hsw_ddi_translations_hdmi;
  425. n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
  426. n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
  427. hdmi_default_entry = 6;
  428. } else {
  429. WARN(1, "ddi translation table missing\n");
  430. ddi_translations_edp = bdw_ddi_translations_dp;
  431. ddi_translations_fdi = bdw_ddi_translations_fdi;
  432. ddi_translations_dp = bdw_ddi_translations_dp;
  433. ddi_translations_hdmi = bdw_ddi_translations_hdmi;
  434. n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
  435. n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
  436. n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  437. hdmi_default_entry = 7;
  438. }
  439. switch (encoder->type) {
  440. case INTEL_OUTPUT_EDP:
  441. ddi_translations = ddi_translations_edp;
  442. size = n_edp_entries;
  443. break;
  444. case INTEL_OUTPUT_DISPLAYPORT:
  445. case INTEL_OUTPUT_HDMI:
  446. ddi_translations = ddi_translations_dp;
  447. size = n_dp_entries;
  448. break;
  449. case INTEL_OUTPUT_ANALOG:
  450. ddi_translations = ddi_translations_fdi;
  451. size = n_dp_entries;
  452. break;
  453. default:
  454. BUG();
  455. }
  456. for (i = 0; i < size; i++) {
  457. I915_WRITE(DDI_BUF_TRANS_LO(port, i),
  458. ddi_translations[i].trans1 | iboost_bit);
  459. I915_WRITE(DDI_BUF_TRANS_HI(port, i),
  460. ddi_translations[i].trans2);
  461. }
  462. if (encoder->type != INTEL_OUTPUT_HDMI)
  463. return;
  464. /* Choose a good default if VBT is badly populated */
  465. if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
  466. hdmi_level >= n_hdmi_entries)
  467. hdmi_level = hdmi_default_entry;
  468. /* Entry 9 is for HDMI: */
  469. I915_WRITE(DDI_BUF_TRANS_LO(port, i),
  470. ddi_translations_hdmi[hdmi_level].trans1 | iboost_bit);
  471. I915_WRITE(DDI_BUF_TRANS_HI(port, i),
  472. ddi_translations_hdmi[hdmi_level].trans2);
  473. }
  474. static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
  475. enum port port)
  476. {
  477. i915_reg_t reg = DDI_BUF_CTL(port);
  478. int i;
  479. for (i = 0; i < 16; i++) {
  480. udelay(1);
  481. if (I915_READ(reg) & DDI_BUF_IS_IDLE)
  482. return;
  483. }
  484. DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
  485. }
  486. /* Starting with Haswell, different DDI ports can work in FDI mode for
  487. * connection to the PCH-located connectors. For this, it is necessary to train
  488. * both the DDI port and PCH receiver for the desired DDI buffer settings.
  489. *
  490. * The recommended port to work in FDI mode is DDI E, which we use here. Also,
  491. * please note that when FDI mode is active on DDI E, it shares 2 lines with
  492. * DDI A (which is used for eDP)
  493. */
  494. void hsw_fdi_link_train(struct drm_crtc *crtc)
  495. {
  496. struct drm_device *dev = crtc->dev;
  497. struct drm_i915_private *dev_priv = dev->dev_private;
  498. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  499. struct intel_encoder *encoder;
  500. u32 temp, i, rx_ctl_val;
  501. for_each_encoder_on_crtc(dev, crtc, encoder) {
  502. WARN_ON(encoder->type != INTEL_OUTPUT_ANALOG);
  503. intel_prepare_ddi_buffer(encoder);
  504. }
  505. /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
  506. * mode set "sequence for CRT port" document:
  507. * - TP1 to TP2 time with the default value
  508. * - FDI delay to 90h
  509. *
  510. * WaFDIAutoLinkSetTimingOverrride:hsw
  511. */
  512. I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) |
  513. FDI_RX_PWRDN_LANE0_VAL(2) |
  514. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  515. /* Enable the PCH Receiver FDI PLL */
  516. rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
  517. FDI_RX_PLL_ENABLE |
  518. FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
  519. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  520. POSTING_READ(FDI_RX_CTL(PIPE_A));
  521. udelay(220);
  522. /* Switch from Rawclk to PCDclk */
  523. rx_ctl_val |= FDI_PCDCLK;
  524. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  525. /* Configure Port Clock Select */
  526. I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
  527. WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
  528. /* Start the training iterating through available voltages and emphasis,
  529. * testing each value twice. */
  530. for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
  531. /* Configure DP_TP_CTL with auto-training */
  532. I915_WRITE(DP_TP_CTL(PORT_E),
  533. DP_TP_CTL_FDI_AUTOTRAIN |
  534. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  535. DP_TP_CTL_LINK_TRAIN_PAT1 |
  536. DP_TP_CTL_ENABLE);
  537. /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
  538. * DDI E does not support port reversal, the functionality is
  539. * achieved on the PCH side in FDI_RX_CTL, so no need to set the
  540. * port reversal bit */
  541. I915_WRITE(DDI_BUF_CTL(PORT_E),
  542. DDI_BUF_CTL_ENABLE |
  543. ((intel_crtc->config->fdi_lanes - 1) << 1) |
  544. DDI_BUF_TRANS_SELECT(i / 2));
  545. POSTING_READ(DDI_BUF_CTL(PORT_E));
  546. udelay(600);
  547. /* Program PCH FDI Receiver TU */
  548. I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
  549. /* Enable PCH FDI Receiver with auto-training */
  550. rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
  551. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  552. POSTING_READ(FDI_RX_CTL(PIPE_A));
  553. /* Wait for FDI receiver lane calibration */
  554. udelay(30);
  555. /* Unset FDI_RX_MISC pwrdn lanes */
  556. temp = I915_READ(FDI_RX_MISC(PIPE_A));
  557. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  558. I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
  559. POSTING_READ(FDI_RX_MISC(PIPE_A));
  560. /* Wait for FDI auto training time */
  561. udelay(5);
  562. temp = I915_READ(DP_TP_STATUS(PORT_E));
  563. if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
  564. DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
  565. break;
  566. }
  567. /*
  568. * Leave things enabled even if we failed to train FDI.
  569. * Results in less fireworks from the state checker.
  570. */
  571. if (i == ARRAY_SIZE(hsw_ddi_translations_fdi) * 2 - 1) {
  572. DRM_ERROR("FDI link training failed!\n");
  573. break;
  574. }
  575. temp = I915_READ(DDI_BUF_CTL(PORT_E));
  576. temp &= ~DDI_BUF_CTL_ENABLE;
  577. I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
  578. POSTING_READ(DDI_BUF_CTL(PORT_E));
  579. /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
  580. temp = I915_READ(DP_TP_CTL(PORT_E));
  581. temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  582. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  583. I915_WRITE(DP_TP_CTL(PORT_E), temp);
  584. POSTING_READ(DP_TP_CTL(PORT_E));
  585. intel_wait_ddi_buf_idle(dev_priv, PORT_E);
  586. rx_ctl_val &= ~FDI_RX_ENABLE;
  587. I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
  588. POSTING_READ(FDI_RX_CTL(PIPE_A));
  589. /* Reset FDI_RX_MISC pwrdn lanes */
  590. temp = I915_READ(FDI_RX_MISC(PIPE_A));
  591. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  592. temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  593. I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
  594. POSTING_READ(FDI_RX_MISC(PIPE_A));
  595. }
  596. /* Enable normal pixel sending for FDI */
  597. I915_WRITE(DP_TP_CTL(PORT_E),
  598. DP_TP_CTL_FDI_AUTOTRAIN |
  599. DP_TP_CTL_LINK_TRAIN_NORMAL |
  600. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  601. DP_TP_CTL_ENABLE);
  602. }
  603. void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
  604. {
  605. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  606. struct intel_digital_port *intel_dig_port =
  607. enc_to_dig_port(&encoder->base);
  608. intel_dp->DP = intel_dig_port->saved_port_bits |
  609. DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
  610. intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
  611. }
  612. static struct intel_encoder *
  613. intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
  614. {
  615. struct drm_device *dev = crtc->dev;
  616. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  617. struct intel_encoder *intel_encoder, *ret = NULL;
  618. int num_encoders = 0;
  619. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  620. ret = intel_encoder;
  621. num_encoders++;
  622. }
  623. if (num_encoders != 1)
  624. WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
  625. pipe_name(intel_crtc->pipe));
  626. BUG_ON(ret == NULL);
  627. return ret;
  628. }
  629. struct intel_encoder *
  630. intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
  631. {
  632. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  633. struct intel_encoder *ret = NULL;
  634. struct drm_atomic_state *state;
  635. struct drm_connector *connector;
  636. struct drm_connector_state *connector_state;
  637. int num_encoders = 0;
  638. int i;
  639. state = crtc_state->base.state;
  640. for_each_connector_in_state(state, connector, connector_state, i) {
  641. if (connector_state->crtc != crtc_state->base.crtc)
  642. continue;
  643. ret = to_intel_encoder(connector_state->best_encoder);
  644. num_encoders++;
  645. }
  646. WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
  647. pipe_name(crtc->pipe));
  648. BUG_ON(ret == NULL);
  649. return ret;
  650. }
  651. #define LC_FREQ 2700
  652. #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
  653. #define P_MIN 2
  654. #define P_MAX 64
  655. #define P_INC 2
  656. /* Constraints for PLL good behavior */
  657. #define REF_MIN 48
  658. #define REF_MAX 400
  659. #define VCO_MIN 2400
  660. #define VCO_MAX 4800
  661. #define abs_diff(a, b) ({ \
  662. typeof(a) __a = (a); \
  663. typeof(b) __b = (b); \
  664. (void) (&__a == &__b); \
  665. __a > __b ? (__a - __b) : (__b - __a); })
  666. struct hsw_wrpll_rnp {
  667. unsigned p, n2, r2;
  668. };
  669. static unsigned hsw_wrpll_get_budget_for_freq(int clock)
  670. {
  671. unsigned budget;
  672. switch (clock) {
  673. case 25175000:
  674. case 25200000:
  675. case 27000000:
  676. case 27027000:
  677. case 37762500:
  678. case 37800000:
  679. case 40500000:
  680. case 40541000:
  681. case 54000000:
  682. case 54054000:
  683. case 59341000:
  684. case 59400000:
  685. case 72000000:
  686. case 74176000:
  687. case 74250000:
  688. case 81000000:
  689. case 81081000:
  690. case 89012000:
  691. case 89100000:
  692. case 108000000:
  693. case 108108000:
  694. case 111264000:
  695. case 111375000:
  696. case 148352000:
  697. case 148500000:
  698. case 162000000:
  699. case 162162000:
  700. case 222525000:
  701. case 222750000:
  702. case 296703000:
  703. case 297000000:
  704. budget = 0;
  705. break;
  706. case 233500000:
  707. case 245250000:
  708. case 247750000:
  709. case 253250000:
  710. case 298000000:
  711. budget = 1500;
  712. break;
  713. case 169128000:
  714. case 169500000:
  715. case 179500000:
  716. case 202000000:
  717. budget = 2000;
  718. break;
  719. case 256250000:
  720. case 262500000:
  721. case 270000000:
  722. case 272500000:
  723. case 273750000:
  724. case 280750000:
  725. case 281250000:
  726. case 286000000:
  727. case 291750000:
  728. budget = 4000;
  729. break;
  730. case 267250000:
  731. case 268500000:
  732. budget = 5000;
  733. break;
  734. default:
  735. budget = 1000;
  736. break;
  737. }
  738. return budget;
  739. }
  740. static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  741. unsigned r2, unsigned n2, unsigned p,
  742. struct hsw_wrpll_rnp *best)
  743. {
  744. uint64_t a, b, c, d, diff, diff_best;
  745. /* No best (r,n,p) yet */
  746. if (best->p == 0) {
  747. best->p = p;
  748. best->n2 = n2;
  749. best->r2 = r2;
  750. return;
  751. }
  752. /*
  753. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  754. * freq2k.
  755. *
  756. * delta = 1e6 *
  757. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  758. * freq2k;
  759. *
  760. * and we would like delta <= budget.
  761. *
  762. * If the discrepancy is above the PPM-based budget, always prefer to
  763. * improve upon the previous solution. However, if you're within the
  764. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  765. */
  766. a = freq2k * budget * p * r2;
  767. b = freq2k * budget * best->p * best->r2;
  768. diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
  769. diff_best = abs_diff(freq2k * best->p * best->r2,
  770. LC_FREQ_2K * best->n2);
  771. c = 1000000 * diff;
  772. d = 1000000 * diff_best;
  773. if (a < c && b < d) {
  774. /* If both are above the budget, pick the closer */
  775. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  776. best->p = p;
  777. best->n2 = n2;
  778. best->r2 = r2;
  779. }
  780. } else if (a >= c && b < d) {
  781. /* If A is below the threshold but B is above it? Update. */
  782. best->p = p;
  783. best->n2 = n2;
  784. best->r2 = r2;
  785. } else if (a >= c && b >= d) {
  786. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  787. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  788. best->p = p;
  789. best->n2 = n2;
  790. best->r2 = r2;
  791. }
  792. }
  793. /* Otherwise a < c && b >= d, do nothing */
  794. }
  795. static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
  796. i915_reg_t reg)
  797. {
  798. int refclk = LC_FREQ;
  799. int n, p, r;
  800. u32 wrpll;
  801. wrpll = I915_READ(reg);
  802. switch (wrpll & WRPLL_PLL_REF_MASK) {
  803. case WRPLL_PLL_SSC:
  804. case WRPLL_PLL_NON_SSC:
  805. /*
  806. * We could calculate spread here, but our checking
  807. * code only cares about 5% accuracy, and spread is a max of
  808. * 0.5% downspread.
  809. */
  810. refclk = 135;
  811. break;
  812. case WRPLL_PLL_LCPLL:
  813. refclk = LC_FREQ;
  814. break;
  815. default:
  816. WARN(1, "bad wrpll refclk\n");
  817. return 0;
  818. }
  819. r = wrpll & WRPLL_DIVIDER_REF_MASK;
  820. p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
  821. n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
  822. /* Convert to KHz, p & r have a fixed point portion */
  823. return (refclk * n * 100) / (p * r);
  824. }
  825. static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
  826. uint32_t dpll)
  827. {
  828. i915_reg_t cfgcr1_reg, cfgcr2_reg;
  829. uint32_t cfgcr1_val, cfgcr2_val;
  830. uint32_t p0, p1, p2, dco_freq;
  831. cfgcr1_reg = DPLL_CFGCR1(dpll);
  832. cfgcr2_reg = DPLL_CFGCR2(dpll);
  833. cfgcr1_val = I915_READ(cfgcr1_reg);
  834. cfgcr2_val = I915_READ(cfgcr2_reg);
  835. p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
  836. p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
  837. if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1))
  838. p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
  839. else
  840. p1 = 1;
  841. switch (p0) {
  842. case DPLL_CFGCR2_PDIV_1:
  843. p0 = 1;
  844. break;
  845. case DPLL_CFGCR2_PDIV_2:
  846. p0 = 2;
  847. break;
  848. case DPLL_CFGCR2_PDIV_3:
  849. p0 = 3;
  850. break;
  851. case DPLL_CFGCR2_PDIV_7:
  852. p0 = 7;
  853. break;
  854. }
  855. switch (p2) {
  856. case DPLL_CFGCR2_KDIV_5:
  857. p2 = 5;
  858. break;
  859. case DPLL_CFGCR2_KDIV_2:
  860. p2 = 2;
  861. break;
  862. case DPLL_CFGCR2_KDIV_3:
  863. p2 = 3;
  864. break;
  865. case DPLL_CFGCR2_KDIV_1:
  866. p2 = 1;
  867. break;
  868. }
  869. dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
  870. dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
  871. 1000) / 0x8000;
  872. return dco_freq / (p0 * p1 * p2 * 5);
  873. }
  874. static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
  875. {
  876. int dotclock;
  877. if (pipe_config->has_pch_encoder)
  878. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  879. &pipe_config->fdi_m_n);
  880. else if (pipe_config->has_dp_encoder)
  881. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  882. &pipe_config->dp_m_n);
  883. else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
  884. dotclock = pipe_config->port_clock * 2 / 3;
  885. else
  886. dotclock = pipe_config->port_clock;
  887. if (pipe_config->pixel_multiplier)
  888. dotclock /= pipe_config->pixel_multiplier;
  889. pipe_config->base.adjusted_mode.crtc_clock = dotclock;
  890. }
  891. static void skl_ddi_clock_get(struct intel_encoder *encoder,
  892. struct intel_crtc_state *pipe_config)
  893. {
  894. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  895. int link_clock = 0;
  896. uint32_t dpll_ctl1, dpll;
  897. dpll = pipe_config->ddi_pll_sel;
  898. dpll_ctl1 = I915_READ(DPLL_CTRL1);
  899. if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
  900. link_clock = skl_calc_wrpll_link(dev_priv, dpll);
  901. } else {
  902. link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
  903. link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
  904. switch (link_clock) {
  905. case DPLL_CTRL1_LINK_RATE_810:
  906. link_clock = 81000;
  907. break;
  908. case DPLL_CTRL1_LINK_RATE_1080:
  909. link_clock = 108000;
  910. break;
  911. case DPLL_CTRL1_LINK_RATE_1350:
  912. link_clock = 135000;
  913. break;
  914. case DPLL_CTRL1_LINK_RATE_1620:
  915. link_clock = 162000;
  916. break;
  917. case DPLL_CTRL1_LINK_RATE_2160:
  918. link_clock = 216000;
  919. break;
  920. case DPLL_CTRL1_LINK_RATE_2700:
  921. link_clock = 270000;
  922. break;
  923. default:
  924. WARN(1, "Unsupported link rate\n");
  925. break;
  926. }
  927. link_clock *= 2;
  928. }
  929. pipe_config->port_clock = link_clock;
  930. ddi_dotclock_get(pipe_config);
  931. }
  932. static void hsw_ddi_clock_get(struct intel_encoder *encoder,
  933. struct intel_crtc_state *pipe_config)
  934. {
  935. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  936. int link_clock = 0;
  937. u32 val, pll;
  938. val = pipe_config->ddi_pll_sel;
  939. switch (val & PORT_CLK_SEL_MASK) {
  940. case PORT_CLK_SEL_LCPLL_810:
  941. link_clock = 81000;
  942. break;
  943. case PORT_CLK_SEL_LCPLL_1350:
  944. link_clock = 135000;
  945. break;
  946. case PORT_CLK_SEL_LCPLL_2700:
  947. link_clock = 270000;
  948. break;
  949. case PORT_CLK_SEL_WRPLL1:
  950. link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0));
  951. break;
  952. case PORT_CLK_SEL_WRPLL2:
  953. link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1));
  954. break;
  955. case PORT_CLK_SEL_SPLL:
  956. pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
  957. if (pll == SPLL_PLL_FREQ_810MHz)
  958. link_clock = 81000;
  959. else if (pll == SPLL_PLL_FREQ_1350MHz)
  960. link_clock = 135000;
  961. else if (pll == SPLL_PLL_FREQ_2700MHz)
  962. link_clock = 270000;
  963. else {
  964. WARN(1, "bad spll freq\n");
  965. return;
  966. }
  967. break;
  968. default:
  969. WARN(1, "bad port clock sel\n");
  970. return;
  971. }
  972. pipe_config->port_clock = link_clock * 2;
  973. ddi_dotclock_get(pipe_config);
  974. }
  975. static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
  976. enum intel_dpll_id dpll)
  977. {
  978. struct intel_shared_dpll *pll;
  979. struct intel_dpll_hw_state *state;
  980. intel_clock_t clock;
  981. /* For DDI ports we always use a shared PLL. */
  982. if (WARN_ON(dpll == DPLL_ID_PRIVATE))
  983. return 0;
  984. pll = &dev_priv->shared_dplls[dpll];
  985. state = &pll->config.hw_state;
  986. clock.m1 = 2;
  987. clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
  988. if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
  989. clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
  990. clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
  991. clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
  992. clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;
  993. return chv_calc_dpll_params(100000, &clock);
  994. }
  995. static void bxt_ddi_clock_get(struct intel_encoder *encoder,
  996. struct intel_crtc_state *pipe_config)
  997. {
  998. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  999. enum port port = intel_ddi_get_encoder_port(encoder);
  1000. uint32_t dpll = port;
  1001. pipe_config->port_clock = bxt_calc_pll_link(dev_priv, dpll);
  1002. ddi_dotclock_get(pipe_config);
  1003. }
  1004. void intel_ddi_clock_get(struct intel_encoder *encoder,
  1005. struct intel_crtc_state *pipe_config)
  1006. {
  1007. struct drm_device *dev = encoder->base.dev;
  1008. if (INTEL_INFO(dev)->gen <= 8)
  1009. hsw_ddi_clock_get(encoder, pipe_config);
  1010. else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  1011. skl_ddi_clock_get(encoder, pipe_config);
  1012. else if (IS_BROXTON(dev))
  1013. bxt_ddi_clock_get(encoder, pipe_config);
  1014. }
  1015. static void
  1016. hsw_ddi_calculate_wrpll(int clock /* in Hz */,
  1017. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  1018. {
  1019. uint64_t freq2k;
  1020. unsigned p, n2, r2;
  1021. struct hsw_wrpll_rnp best = { 0, 0, 0 };
  1022. unsigned budget;
  1023. freq2k = clock / 100;
  1024. budget = hsw_wrpll_get_budget_for_freq(clock);
  1025. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  1026. * and directly pass the LC PLL to it. */
  1027. if (freq2k == 5400000) {
  1028. *n2_out = 2;
  1029. *p_out = 1;
  1030. *r2_out = 2;
  1031. return;
  1032. }
  1033. /*
  1034. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  1035. * the WR PLL.
  1036. *
  1037. * We want R so that REF_MIN <= Ref <= REF_MAX.
  1038. * Injecting R2 = 2 * R gives:
  1039. * REF_MAX * r2 > LC_FREQ * 2 and
  1040. * REF_MIN * r2 < LC_FREQ * 2
  1041. *
  1042. * Which means the desired boundaries for r2 are:
  1043. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  1044. *
  1045. */
  1046. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  1047. r2 <= LC_FREQ * 2 / REF_MIN;
  1048. r2++) {
  1049. /*
  1050. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  1051. *
  1052. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  1053. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  1054. * VCO_MAX * r2 > n2 * LC_FREQ and
  1055. * VCO_MIN * r2 < n2 * LC_FREQ)
  1056. *
  1057. * Which means the desired boundaries for n2 are:
  1058. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  1059. */
  1060. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  1061. n2 <= VCO_MAX * r2 / LC_FREQ;
  1062. n2++) {
  1063. for (p = P_MIN; p <= P_MAX; p += P_INC)
  1064. hsw_wrpll_update_rnp(freq2k, budget,
  1065. r2, n2, p, &best);
  1066. }
  1067. }
  1068. *n2_out = best.n2;
  1069. *p_out = best.p;
  1070. *r2_out = best.r2;
  1071. }
  1072. static bool
  1073. hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
  1074. struct intel_crtc_state *crtc_state,
  1075. struct intel_encoder *intel_encoder)
  1076. {
  1077. int clock = crtc_state->port_clock;
  1078. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  1079. struct intel_shared_dpll *pll;
  1080. uint32_t val;
  1081. unsigned p, n2, r2;
  1082. hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  1083. val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
  1084. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  1085. WRPLL_DIVIDER_POST(p);
  1086. memset(&crtc_state->dpll_hw_state, 0,
  1087. sizeof(crtc_state->dpll_hw_state));
  1088. crtc_state->dpll_hw_state.wrpll = val;
  1089. pll = intel_get_shared_dpll(intel_crtc, crtc_state);
  1090. if (pll == NULL) {
  1091. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  1092. pipe_name(intel_crtc->pipe));
  1093. return false;
  1094. }
  1095. crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
  1096. } else if (crtc_state->ddi_pll_sel == PORT_CLK_SEL_SPLL) {
  1097. struct drm_atomic_state *state = crtc_state->base.state;
  1098. struct intel_shared_dpll_config *spll =
  1099. &intel_atomic_get_shared_dpll_state(state)[DPLL_ID_SPLL];
  1100. if (spll->crtc_mask &&
  1101. WARN_ON(spll->hw_state.spll != crtc_state->dpll_hw_state.spll))
  1102. return false;
  1103. crtc_state->shared_dpll = DPLL_ID_SPLL;
  1104. spll->hw_state.spll = crtc_state->dpll_hw_state.spll;
  1105. spll->crtc_mask |= 1 << intel_crtc->pipe;
  1106. }
  1107. return true;
  1108. }
  1109. struct skl_wrpll_context {
  1110. uint64_t min_deviation; /* current minimal deviation */
  1111. uint64_t central_freq; /* chosen central freq */
  1112. uint64_t dco_freq; /* chosen dco freq */
  1113. unsigned int p; /* chosen divider */
  1114. };
  1115. static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
  1116. {
  1117. memset(ctx, 0, sizeof(*ctx));
  1118. ctx->min_deviation = U64_MAX;
  1119. }
  1120. /* DCO freq must be within +1%/-6% of the DCO central freq */
  1121. #define SKL_DCO_MAX_PDEVIATION 100
  1122. #define SKL_DCO_MAX_NDEVIATION 600
  1123. static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
  1124. uint64_t central_freq,
  1125. uint64_t dco_freq,
  1126. unsigned int divider)
  1127. {
  1128. uint64_t deviation;
  1129. deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
  1130. central_freq);
  1131. /* positive deviation */
  1132. if (dco_freq >= central_freq) {
  1133. if (deviation < SKL_DCO_MAX_PDEVIATION &&
  1134. deviation < ctx->min_deviation) {
  1135. ctx->min_deviation = deviation;
  1136. ctx->central_freq = central_freq;
  1137. ctx->dco_freq = dco_freq;
  1138. ctx->p = divider;
  1139. }
  1140. /* negative deviation */
  1141. } else if (deviation < SKL_DCO_MAX_NDEVIATION &&
  1142. deviation < ctx->min_deviation) {
  1143. ctx->min_deviation = deviation;
  1144. ctx->central_freq = central_freq;
  1145. ctx->dco_freq = dco_freq;
  1146. ctx->p = divider;
  1147. }
  1148. }
  1149. static void skl_wrpll_get_multipliers(unsigned int p,
  1150. unsigned int *p0 /* out */,
  1151. unsigned int *p1 /* out */,
  1152. unsigned int *p2 /* out */)
  1153. {
  1154. /* even dividers */
  1155. if (p % 2 == 0) {
  1156. unsigned int half = p / 2;
  1157. if (half == 1 || half == 2 || half == 3 || half == 5) {
  1158. *p0 = 2;
  1159. *p1 = 1;
  1160. *p2 = half;
  1161. } else if (half % 2 == 0) {
  1162. *p0 = 2;
  1163. *p1 = half / 2;
  1164. *p2 = 2;
  1165. } else if (half % 3 == 0) {
  1166. *p0 = 3;
  1167. *p1 = half / 3;
  1168. *p2 = 2;
  1169. } else if (half % 7 == 0) {
  1170. *p0 = 7;
  1171. *p1 = half / 7;
  1172. *p2 = 2;
  1173. }
  1174. } else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */
  1175. *p0 = 3;
  1176. *p1 = 1;
  1177. *p2 = p / 3;
  1178. } else if (p == 5 || p == 7) {
  1179. *p0 = p;
  1180. *p1 = 1;
  1181. *p2 = 1;
  1182. } else if (p == 15) {
  1183. *p0 = 3;
  1184. *p1 = 1;
  1185. *p2 = 5;
  1186. } else if (p == 21) {
  1187. *p0 = 7;
  1188. *p1 = 1;
  1189. *p2 = 3;
  1190. } else if (p == 35) {
  1191. *p0 = 7;
  1192. *p1 = 1;
  1193. *p2 = 5;
  1194. }
  1195. }
  1196. struct skl_wrpll_params {
  1197. uint32_t dco_fraction;
  1198. uint32_t dco_integer;
  1199. uint32_t qdiv_ratio;
  1200. uint32_t qdiv_mode;
  1201. uint32_t kdiv;
  1202. uint32_t pdiv;
  1203. uint32_t central_freq;
  1204. };
  1205. static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
  1206. uint64_t afe_clock,
  1207. uint64_t central_freq,
  1208. uint32_t p0, uint32_t p1, uint32_t p2)
  1209. {
  1210. uint64_t dco_freq;
  1211. switch (central_freq) {
  1212. case 9600000000ULL:
  1213. params->central_freq = 0;
  1214. break;
  1215. case 9000000000ULL:
  1216. params->central_freq = 1;
  1217. break;
  1218. case 8400000000ULL:
  1219. params->central_freq = 3;
  1220. }
  1221. switch (p0) {
  1222. case 1:
  1223. params->pdiv = 0;
  1224. break;
  1225. case 2:
  1226. params->pdiv = 1;
  1227. break;
  1228. case 3:
  1229. params->pdiv = 2;
  1230. break;
  1231. case 7:
  1232. params->pdiv = 4;
  1233. break;
  1234. default:
  1235. WARN(1, "Incorrect PDiv\n");
  1236. }
  1237. switch (p2) {
  1238. case 5:
  1239. params->kdiv = 0;
  1240. break;
  1241. case 2:
  1242. params->kdiv = 1;
  1243. break;
  1244. case 3:
  1245. params->kdiv = 2;
  1246. break;
  1247. case 1:
  1248. params->kdiv = 3;
  1249. break;
  1250. default:
  1251. WARN(1, "Incorrect KDiv\n");
  1252. }
  1253. params->qdiv_ratio = p1;
  1254. params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
  1255. dco_freq = p0 * p1 * p2 * afe_clock;
  1256. /*
  1257. * Intermediate values are in Hz.
  1258. * Divide by MHz to match bsepc
  1259. */
  1260. params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
  1261. params->dco_fraction =
  1262. div_u64((div_u64(dco_freq, 24) -
  1263. params->dco_integer * MHz(1)) * 0x8000, MHz(1));
  1264. }
  1265. static bool
  1266. skl_ddi_calculate_wrpll(int clock /* in Hz */,
  1267. struct skl_wrpll_params *wrpll_params)
  1268. {
  1269. uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
  1270. uint64_t dco_central_freq[3] = {8400000000ULL,
  1271. 9000000000ULL,
  1272. 9600000000ULL};
  1273. static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20,
  1274. 24, 28, 30, 32, 36, 40, 42, 44,
  1275. 48, 52, 54, 56, 60, 64, 66, 68,
  1276. 70, 72, 76, 78, 80, 84, 88, 90,
  1277. 92, 96, 98 };
  1278. static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
  1279. static const struct {
  1280. const int *list;
  1281. int n_dividers;
  1282. } dividers[] = {
  1283. { even_dividers, ARRAY_SIZE(even_dividers) },
  1284. { odd_dividers, ARRAY_SIZE(odd_dividers) },
  1285. };
  1286. struct skl_wrpll_context ctx;
  1287. unsigned int dco, d, i;
  1288. unsigned int p0, p1, p2;
  1289. skl_wrpll_context_init(&ctx);
  1290. for (d = 0; d < ARRAY_SIZE(dividers); d++) {
  1291. for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
  1292. for (i = 0; i < dividers[d].n_dividers; i++) {
  1293. unsigned int p = dividers[d].list[i];
  1294. uint64_t dco_freq = p * afe_clock;
  1295. skl_wrpll_try_divider(&ctx,
  1296. dco_central_freq[dco],
  1297. dco_freq,
  1298. p);
  1299. /*
  1300. * Skip the remaining dividers if we're sure to
  1301. * have found the definitive divider, we can't
  1302. * improve a 0 deviation.
  1303. */
  1304. if (ctx.min_deviation == 0)
  1305. goto skip_remaining_dividers;
  1306. }
  1307. }
  1308. skip_remaining_dividers:
  1309. /*
  1310. * If a solution is found with an even divider, prefer
  1311. * this one.
  1312. */
  1313. if (d == 0 && ctx.p)
  1314. break;
  1315. }
  1316. if (!ctx.p) {
  1317. DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
  1318. return false;
  1319. }
  1320. /*
  1321. * gcc incorrectly analyses that these can be used without being
  1322. * initialized. To be fair, it's hard to guess.
  1323. */
  1324. p0 = p1 = p2 = 0;
  1325. skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
  1326. skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
  1327. p0, p1, p2);
  1328. return true;
  1329. }
  1330. static bool
  1331. skl_ddi_pll_select(struct intel_crtc *intel_crtc,
  1332. struct intel_crtc_state *crtc_state,
  1333. struct intel_encoder *intel_encoder)
  1334. {
  1335. struct intel_shared_dpll *pll;
  1336. uint32_t ctrl1, cfgcr1, cfgcr2;
  1337. int clock = crtc_state->port_clock;
  1338. /*
  1339. * See comment in intel_dpll_hw_state to understand why we always use 0
  1340. * as the DPLL id in this function.
  1341. */
  1342. ctrl1 = DPLL_CTRL1_OVERRIDE(0);
  1343. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  1344. struct skl_wrpll_params wrpll_params = { 0, };
  1345. ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
  1346. if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
  1347. return false;
  1348. cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
  1349. DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
  1350. wrpll_params.dco_integer;
  1351. cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
  1352. DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
  1353. DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
  1354. DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
  1355. wrpll_params.central_freq;
  1356. } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  1357. intel_encoder->type == INTEL_OUTPUT_DP_MST) {
  1358. switch (crtc_state->port_clock / 2) {
  1359. case 81000:
  1360. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
  1361. break;
  1362. case 135000:
  1363. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
  1364. break;
  1365. case 270000:
  1366. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
  1367. break;
  1368. }
  1369. cfgcr1 = cfgcr2 = 0;
  1370. } else if (intel_encoder->type == INTEL_OUTPUT_EDP) {
  1371. return true;
  1372. } else
  1373. return false;
  1374. memset(&crtc_state->dpll_hw_state, 0,
  1375. sizeof(crtc_state->dpll_hw_state));
  1376. crtc_state->dpll_hw_state.ctrl1 = ctrl1;
  1377. crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
  1378. crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
  1379. pll = intel_get_shared_dpll(intel_crtc, crtc_state);
  1380. if (pll == NULL) {
  1381. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  1382. pipe_name(intel_crtc->pipe));
  1383. return false;
  1384. }
  1385. /* shared DPLL id 0 is DPLL 1 */
  1386. crtc_state->ddi_pll_sel = pll->id + 1;
  1387. return true;
  1388. }
  1389. /* bxt clock parameters */
  1390. struct bxt_clk_div {
  1391. int clock;
  1392. uint32_t p1;
  1393. uint32_t p2;
  1394. uint32_t m2_int;
  1395. uint32_t m2_frac;
  1396. bool m2_frac_en;
  1397. uint32_t n;
  1398. };
  1399. /* pre-calculated values for DP linkrates */
  1400. static const struct bxt_clk_div bxt_dp_clk_val[] = {
  1401. {162000, 4, 2, 32, 1677722, 1, 1},
  1402. {270000, 4, 1, 27, 0, 0, 1},
  1403. {540000, 2, 1, 27, 0, 0, 1},
  1404. {216000, 3, 2, 32, 1677722, 1, 1},
  1405. {243000, 4, 1, 24, 1258291, 1, 1},
  1406. {324000, 4, 1, 32, 1677722, 1, 1},
  1407. {432000, 3, 1, 32, 1677722, 1, 1}
  1408. };
  1409. static bool
  1410. bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
  1411. struct intel_crtc_state *crtc_state,
  1412. struct intel_encoder *intel_encoder)
  1413. {
  1414. struct intel_shared_dpll *pll;
  1415. struct bxt_clk_div clk_div = {0};
  1416. int vco = 0;
  1417. uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
  1418. uint32_t lanestagger;
  1419. int clock = crtc_state->port_clock;
  1420. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  1421. intel_clock_t best_clock;
  1422. /* Calculate HDMI div */
  1423. /*
  1424. * FIXME: tie the following calculation into
  1425. * i9xx_crtc_compute_clock
  1426. */
  1427. if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
  1428. DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
  1429. clock, pipe_name(intel_crtc->pipe));
  1430. return false;
  1431. }
  1432. clk_div.p1 = best_clock.p1;
  1433. clk_div.p2 = best_clock.p2;
  1434. WARN_ON(best_clock.m1 != 2);
  1435. clk_div.n = best_clock.n;
  1436. clk_div.m2_int = best_clock.m2 >> 22;
  1437. clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1);
  1438. clk_div.m2_frac_en = clk_div.m2_frac != 0;
  1439. vco = best_clock.vco;
  1440. } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  1441. intel_encoder->type == INTEL_OUTPUT_EDP) {
  1442. int i;
  1443. clk_div = bxt_dp_clk_val[0];
  1444. for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
  1445. if (bxt_dp_clk_val[i].clock == clock) {
  1446. clk_div = bxt_dp_clk_val[i];
  1447. break;
  1448. }
  1449. }
  1450. vco = clock * 10 / 2 * clk_div.p1 * clk_div.p2;
  1451. }
  1452. if (vco >= 6200000 && vco <= 6700000) {
  1453. prop_coef = 4;
  1454. int_coef = 9;
  1455. gain_ctl = 3;
  1456. targ_cnt = 8;
  1457. } else if ((vco > 5400000 && vco < 6200000) ||
  1458. (vco >= 4800000 && vco < 5400000)) {
  1459. prop_coef = 5;
  1460. int_coef = 11;
  1461. gain_ctl = 3;
  1462. targ_cnt = 9;
  1463. } else if (vco == 5400000) {
  1464. prop_coef = 3;
  1465. int_coef = 8;
  1466. gain_ctl = 1;
  1467. targ_cnt = 9;
  1468. } else {
  1469. DRM_ERROR("Invalid VCO\n");
  1470. return false;
  1471. }
  1472. memset(&crtc_state->dpll_hw_state, 0,
  1473. sizeof(crtc_state->dpll_hw_state));
  1474. if (clock > 270000)
  1475. lanestagger = 0x18;
  1476. else if (clock > 135000)
  1477. lanestagger = 0x0d;
  1478. else if (clock > 67000)
  1479. lanestagger = 0x07;
  1480. else if (clock > 33000)
  1481. lanestagger = 0x04;
  1482. else
  1483. lanestagger = 0x02;
  1484. crtc_state->dpll_hw_state.ebb0 =
  1485. PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2);
  1486. crtc_state->dpll_hw_state.pll0 = clk_div.m2_int;
  1487. crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n);
  1488. crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac;
  1489. if (clk_div.m2_frac_en)
  1490. crtc_state->dpll_hw_state.pll3 =
  1491. PORT_PLL_M2_FRAC_ENABLE;
  1492. crtc_state->dpll_hw_state.pll6 =
  1493. prop_coef | PORT_PLL_INT_COEFF(int_coef);
  1494. crtc_state->dpll_hw_state.pll6 |=
  1495. PORT_PLL_GAIN_CTL(gain_ctl);
  1496. crtc_state->dpll_hw_state.pll8 = targ_cnt;
  1497. crtc_state->dpll_hw_state.pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
  1498. crtc_state->dpll_hw_state.pll10 =
  1499. PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
  1500. | PORT_PLL_DCO_AMP_OVR_EN_H;
  1501. crtc_state->dpll_hw_state.ebb4 = PORT_PLL_10BIT_CLK_ENABLE;
  1502. crtc_state->dpll_hw_state.pcsdw12 =
  1503. LANESTAGGER_STRAP_OVRD | lanestagger;
  1504. pll = intel_get_shared_dpll(intel_crtc, crtc_state);
  1505. if (pll == NULL) {
  1506. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  1507. pipe_name(intel_crtc->pipe));
  1508. return false;
  1509. }
  1510. /* shared DPLL id 0 is DPLL A */
  1511. crtc_state->ddi_pll_sel = pll->id;
  1512. return true;
  1513. }
  1514. /*
  1515. * Tries to find a *shared* PLL for the CRTC and store it in
  1516. * intel_crtc->ddi_pll_sel.
  1517. *
  1518. * For private DPLLs, compute_config() should do the selection for us. This
  1519. * function should be folded into compute_config() eventually.
  1520. */
  1521. bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
  1522. struct intel_crtc_state *crtc_state)
  1523. {
  1524. struct drm_device *dev = intel_crtc->base.dev;
  1525. struct intel_encoder *intel_encoder =
  1526. intel_ddi_get_crtc_new_encoder(crtc_state);
  1527. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  1528. return skl_ddi_pll_select(intel_crtc, crtc_state,
  1529. intel_encoder);
  1530. else if (IS_BROXTON(dev))
  1531. return bxt_ddi_pll_select(intel_crtc, crtc_state,
  1532. intel_encoder);
  1533. else
  1534. return hsw_ddi_pll_select(intel_crtc, crtc_state,
  1535. intel_encoder);
  1536. }
  1537. void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
  1538. {
  1539. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1540. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1541. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1542. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1543. int type = intel_encoder->type;
  1544. uint32_t temp;
  1545. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
  1546. temp = TRANS_MSA_SYNC_CLK;
  1547. switch (intel_crtc->config->pipe_bpp) {
  1548. case 18:
  1549. temp |= TRANS_MSA_6_BPC;
  1550. break;
  1551. case 24:
  1552. temp |= TRANS_MSA_8_BPC;
  1553. break;
  1554. case 30:
  1555. temp |= TRANS_MSA_10_BPC;
  1556. break;
  1557. case 36:
  1558. temp |= TRANS_MSA_12_BPC;
  1559. break;
  1560. default:
  1561. BUG();
  1562. }
  1563. I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
  1564. }
  1565. }
  1566. void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
  1567. {
  1568. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1569. struct drm_device *dev = crtc->dev;
  1570. struct drm_i915_private *dev_priv = dev->dev_private;
  1571. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1572. uint32_t temp;
  1573. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1574. if (state == true)
  1575. temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  1576. else
  1577. temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  1578. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  1579. }
  1580. void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
  1581. {
  1582. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1583. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1584. struct drm_encoder *encoder = &intel_encoder->base;
  1585. struct drm_device *dev = crtc->dev;
  1586. struct drm_i915_private *dev_priv = dev->dev_private;
  1587. enum pipe pipe = intel_crtc->pipe;
  1588. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1589. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1590. int type = intel_encoder->type;
  1591. uint32_t temp;
  1592. /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
  1593. temp = TRANS_DDI_FUNC_ENABLE;
  1594. temp |= TRANS_DDI_SELECT_PORT(port);
  1595. switch (intel_crtc->config->pipe_bpp) {
  1596. case 18:
  1597. temp |= TRANS_DDI_BPC_6;
  1598. break;
  1599. case 24:
  1600. temp |= TRANS_DDI_BPC_8;
  1601. break;
  1602. case 30:
  1603. temp |= TRANS_DDI_BPC_10;
  1604. break;
  1605. case 36:
  1606. temp |= TRANS_DDI_BPC_12;
  1607. break;
  1608. default:
  1609. BUG();
  1610. }
  1611. if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
  1612. temp |= TRANS_DDI_PVSYNC;
  1613. if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
  1614. temp |= TRANS_DDI_PHSYNC;
  1615. if (cpu_transcoder == TRANSCODER_EDP) {
  1616. switch (pipe) {
  1617. case PIPE_A:
  1618. /* On Haswell, can only use the always-on power well for
  1619. * eDP when not using the panel fitter, and when not
  1620. * using motion blur mitigation (which we don't
  1621. * support). */
  1622. if (IS_HASWELL(dev) &&
  1623. (intel_crtc->config->pch_pfit.enabled ||
  1624. intel_crtc->config->pch_pfit.force_thru))
  1625. temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
  1626. else
  1627. temp |= TRANS_DDI_EDP_INPUT_A_ON;
  1628. break;
  1629. case PIPE_B:
  1630. temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
  1631. break;
  1632. case PIPE_C:
  1633. temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
  1634. break;
  1635. default:
  1636. BUG();
  1637. break;
  1638. }
  1639. }
  1640. if (type == INTEL_OUTPUT_HDMI) {
  1641. if (intel_crtc->config->has_hdmi_sink)
  1642. temp |= TRANS_DDI_MODE_SELECT_HDMI;
  1643. else
  1644. temp |= TRANS_DDI_MODE_SELECT_DVI;
  1645. } else if (type == INTEL_OUTPUT_ANALOG) {
  1646. temp |= TRANS_DDI_MODE_SELECT_FDI;
  1647. temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
  1648. } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
  1649. type == INTEL_OUTPUT_EDP) {
  1650. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1651. if (intel_dp->is_mst) {
  1652. temp |= TRANS_DDI_MODE_SELECT_DP_MST;
  1653. } else
  1654. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  1655. temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
  1656. } else if (type == INTEL_OUTPUT_DP_MST) {
  1657. struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
  1658. if (intel_dp->is_mst) {
  1659. temp |= TRANS_DDI_MODE_SELECT_DP_MST;
  1660. } else
  1661. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  1662. temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
  1663. } else {
  1664. WARN(1, "Invalid encoder type %d for pipe %c\n",
  1665. intel_encoder->type, pipe_name(pipe));
  1666. }
  1667. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  1668. }
  1669. void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
  1670. enum transcoder cpu_transcoder)
  1671. {
  1672. i915_reg_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  1673. uint32_t val = I915_READ(reg);
  1674. val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
  1675. val |= TRANS_DDI_PORT_NONE;
  1676. I915_WRITE(reg, val);
  1677. }
  1678. bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
  1679. {
  1680. struct drm_device *dev = intel_connector->base.dev;
  1681. struct drm_i915_private *dev_priv = dev->dev_private;
  1682. struct intel_encoder *intel_encoder = intel_connector->encoder;
  1683. int type = intel_connector->base.connector_type;
  1684. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1685. enum pipe pipe = 0;
  1686. enum transcoder cpu_transcoder;
  1687. enum intel_display_power_domain power_domain;
  1688. uint32_t tmp;
  1689. bool ret;
  1690. power_domain = intel_display_port_power_domain(intel_encoder);
  1691. if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
  1692. return false;
  1693. if (!intel_encoder->get_hw_state(intel_encoder, &pipe)) {
  1694. ret = false;
  1695. goto out;
  1696. }
  1697. if (port == PORT_A)
  1698. cpu_transcoder = TRANSCODER_EDP;
  1699. else
  1700. cpu_transcoder = (enum transcoder) pipe;
  1701. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1702. switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
  1703. case TRANS_DDI_MODE_SELECT_HDMI:
  1704. case TRANS_DDI_MODE_SELECT_DVI:
  1705. ret = type == DRM_MODE_CONNECTOR_HDMIA;
  1706. break;
  1707. case TRANS_DDI_MODE_SELECT_DP_SST:
  1708. ret = type == DRM_MODE_CONNECTOR_eDP ||
  1709. type == DRM_MODE_CONNECTOR_DisplayPort;
  1710. break;
  1711. case TRANS_DDI_MODE_SELECT_DP_MST:
  1712. /* if the transcoder is in MST state then
  1713. * connector isn't connected */
  1714. ret = false;
  1715. break;
  1716. case TRANS_DDI_MODE_SELECT_FDI:
  1717. ret = type == DRM_MODE_CONNECTOR_VGA;
  1718. break;
  1719. default:
  1720. ret = false;
  1721. break;
  1722. }
  1723. out:
  1724. intel_display_power_put(dev_priv, power_domain);
  1725. return ret;
  1726. }
  1727. bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
  1728. enum pipe *pipe)
  1729. {
  1730. struct drm_device *dev = encoder->base.dev;
  1731. struct drm_i915_private *dev_priv = dev->dev_private;
  1732. enum port port = intel_ddi_get_encoder_port(encoder);
  1733. enum intel_display_power_domain power_domain;
  1734. u32 tmp;
  1735. int i;
  1736. bool ret;
  1737. power_domain = intel_display_port_power_domain(encoder);
  1738. if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
  1739. return false;
  1740. ret = false;
  1741. tmp = I915_READ(DDI_BUF_CTL(port));
  1742. if (!(tmp & DDI_BUF_CTL_ENABLE))
  1743. goto out;
  1744. if (port == PORT_A) {
  1745. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  1746. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  1747. case TRANS_DDI_EDP_INPUT_A_ON:
  1748. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  1749. *pipe = PIPE_A;
  1750. break;
  1751. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  1752. *pipe = PIPE_B;
  1753. break;
  1754. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  1755. *pipe = PIPE_C;
  1756. break;
  1757. }
  1758. ret = true;
  1759. goto out;
  1760. }
  1761. for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
  1762. tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
  1763. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(port)) {
  1764. if ((tmp & TRANS_DDI_MODE_SELECT_MASK) ==
  1765. TRANS_DDI_MODE_SELECT_DP_MST)
  1766. goto out;
  1767. *pipe = i;
  1768. ret = true;
  1769. goto out;
  1770. }
  1771. }
  1772. DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
  1773. out:
  1774. intel_display_power_put(dev_priv, power_domain);
  1775. return ret;
  1776. }
  1777. void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
  1778. {
  1779. struct drm_crtc *crtc = &intel_crtc->base;
  1780. struct drm_device *dev = crtc->dev;
  1781. struct drm_i915_private *dev_priv = dev->dev_private;
  1782. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1783. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1784. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1785. if (cpu_transcoder != TRANSCODER_EDP)
  1786. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1787. TRANS_CLK_SEL_PORT(port));
  1788. }
  1789. void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
  1790. {
  1791. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1792. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1793. if (cpu_transcoder != TRANSCODER_EDP)
  1794. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1795. TRANS_CLK_SEL_DISABLED);
  1796. }
  1797. static void skl_ddi_set_iboost(struct drm_i915_private *dev_priv,
  1798. u32 level, enum port port, int type)
  1799. {
  1800. const struct ddi_buf_trans *ddi_translations;
  1801. uint8_t iboost;
  1802. uint8_t dp_iboost, hdmi_iboost;
  1803. int n_entries;
  1804. u32 reg;
  1805. /* VBT may override standard boost values */
  1806. dp_iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
  1807. hdmi_iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;
  1808. if (type == INTEL_OUTPUT_DISPLAYPORT) {
  1809. if (dp_iboost) {
  1810. iboost = dp_iboost;
  1811. } else {
  1812. ddi_translations = skl_get_buf_trans_dp(dev_priv, &n_entries);
  1813. iboost = ddi_translations[level].i_boost;
  1814. }
  1815. } else if (type == INTEL_OUTPUT_EDP) {
  1816. if (dp_iboost) {
  1817. iboost = dp_iboost;
  1818. } else {
  1819. ddi_translations = skl_get_buf_trans_edp(dev_priv, &n_entries);
  1820. if (WARN_ON(port != PORT_A &&
  1821. port != PORT_E && n_entries > 9))
  1822. n_entries = 9;
  1823. iboost = ddi_translations[level].i_boost;
  1824. }
  1825. } else if (type == INTEL_OUTPUT_HDMI) {
  1826. if (hdmi_iboost) {
  1827. iboost = hdmi_iboost;
  1828. } else {
  1829. ddi_translations = skl_get_buf_trans_hdmi(dev_priv, &n_entries);
  1830. iboost = ddi_translations[level].i_boost;
  1831. }
  1832. } else {
  1833. return;
  1834. }
  1835. /* Make sure that the requested I_boost is valid */
  1836. if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
  1837. DRM_ERROR("Invalid I_boost value %u\n", iboost);
  1838. return;
  1839. }
  1840. reg = I915_READ(DISPIO_CR_TX_BMU_CR0);
  1841. reg &= ~BALANCE_LEG_MASK(port);
  1842. reg &= ~(1 << (BALANCE_LEG_DISABLE_SHIFT + port));
  1843. if (iboost)
  1844. reg |= iboost << BALANCE_LEG_SHIFT(port);
  1845. else
  1846. reg |= 1 << (BALANCE_LEG_DISABLE_SHIFT + port);
  1847. I915_WRITE(DISPIO_CR_TX_BMU_CR0, reg);
  1848. }
  1849. static void bxt_ddi_vswing_sequence(struct drm_i915_private *dev_priv,
  1850. u32 level, enum port port, int type)
  1851. {
  1852. const struct bxt_ddi_buf_trans *ddi_translations;
  1853. u32 n_entries, i;
  1854. uint32_t val;
  1855. if (type == INTEL_OUTPUT_EDP && dev_priv->edp_low_vswing) {
  1856. n_entries = ARRAY_SIZE(bxt_ddi_translations_edp);
  1857. ddi_translations = bxt_ddi_translations_edp;
  1858. } else if (type == INTEL_OUTPUT_DISPLAYPORT
  1859. || type == INTEL_OUTPUT_EDP) {
  1860. n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
  1861. ddi_translations = bxt_ddi_translations_dp;
  1862. } else if (type == INTEL_OUTPUT_HDMI) {
  1863. n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
  1864. ddi_translations = bxt_ddi_translations_hdmi;
  1865. } else {
  1866. DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
  1867. type);
  1868. return;
  1869. }
  1870. /* Check if default value has to be used */
  1871. if (level >= n_entries ||
  1872. (type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
  1873. for (i = 0; i < n_entries; i++) {
  1874. if (ddi_translations[i].default_index) {
  1875. level = i;
  1876. break;
  1877. }
  1878. }
  1879. }
  1880. /*
  1881. * While we write to the group register to program all lanes at once we
  1882. * can read only lane registers and we pick lanes 0/1 for that.
  1883. */
  1884. val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
  1885. val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
  1886. I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
  1887. val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
  1888. val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
  1889. val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
  1890. ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
  1891. I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);
  1892. val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
  1893. val &= ~SCALE_DCOMP_METHOD;
  1894. if (ddi_translations[level].enable)
  1895. val |= SCALE_DCOMP_METHOD;
  1896. if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
  1897. DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");
  1898. I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);
  1899. val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
  1900. val &= ~DE_EMPHASIS;
  1901. val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
  1902. I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);
  1903. val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
  1904. val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
  1905. I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
  1906. }
  1907. static uint32_t translate_signal_level(int signal_levels)
  1908. {
  1909. uint32_t level;
  1910. switch (signal_levels) {
  1911. default:
  1912. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level: 0x%x\n",
  1913. signal_levels);
  1914. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1915. level = 0;
  1916. break;
  1917. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
  1918. level = 1;
  1919. break;
  1920. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
  1921. level = 2;
  1922. break;
  1923. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
  1924. level = 3;
  1925. break;
  1926. case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1927. level = 4;
  1928. break;
  1929. case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
  1930. level = 5;
  1931. break;
  1932. case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
  1933. level = 6;
  1934. break;
  1935. case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1936. level = 7;
  1937. break;
  1938. case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
  1939. level = 8;
  1940. break;
  1941. case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1942. level = 9;
  1943. break;
  1944. }
  1945. return level;
  1946. }
  1947. uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
  1948. {
  1949. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1950. struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
  1951. struct intel_encoder *encoder = &dport->base;
  1952. uint8_t train_set = intel_dp->train_set[0];
  1953. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1954. DP_TRAIN_PRE_EMPHASIS_MASK);
  1955. enum port port = dport->port;
  1956. uint32_t level;
  1957. level = translate_signal_level(signal_levels);
  1958. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
  1959. skl_ddi_set_iboost(dev_priv, level, port, encoder->type);
  1960. else if (IS_BROXTON(dev_priv))
  1961. bxt_ddi_vswing_sequence(dev_priv, level, port, encoder->type);
  1962. return DDI_BUF_TRANS_SELECT(level);
  1963. }
  1964. void intel_ddi_clk_select(struct intel_encoder *encoder,
  1965. const struct intel_crtc_state *pipe_config)
  1966. {
  1967. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  1968. enum port port = intel_ddi_get_encoder_port(encoder);
  1969. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
  1970. uint32_t dpll = pipe_config->ddi_pll_sel;
  1971. uint32_t val;
  1972. /*
  1973. * DPLL0 is used for eDP and is the only "private" DPLL (as
  1974. * opposed to shared) on SKL
  1975. */
  1976. if (encoder->type == INTEL_OUTPUT_EDP) {
  1977. WARN_ON(dpll != SKL_DPLL0);
  1978. val = I915_READ(DPLL_CTRL1);
  1979. val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
  1980. DPLL_CTRL1_SSC(dpll) |
  1981. DPLL_CTRL1_LINK_RATE_MASK(dpll));
  1982. val |= pipe_config->dpll_hw_state.ctrl1 << (dpll * 6);
  1983. I915_WRITE(DPLL_CTRL1, val);
  1984. POSTING_READ(DPLL_CTRL1);
  1985. }
  1986. /* DDI -> PLL mapping */
  1987. val = I915_READ(DPLL_CTRL2);
  1988. val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
  1989. DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
  1990. val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
  1991. DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
  1992. I915_WRITE(DPLL_CTRL2, val);
  1993. } else if (INTEL_INFO(dev_priv)->gen < 9) {
  1994. WARN_ON(pipe_config->ddi_pll_sel == PORT_CLK_SEL_NONE);
  1995. I915_WRITE(PORT_CLK_SEL(port), pipe_config->ddi_pll_sel);
  1996. }
  1997. }
  1998. static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
  1999. {
  2000. struct drm_encoder *encoder = &intel_encoder->base;
  2001. struct drm_i915_private *dev_priv = to_i915(encoder->dev);
  2002. struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
  2003. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  2004. int type = intel_encoder->type;
  2005. intel_prepare_ddi_buffer(intel_encoder);
  2006. if (type == INTEL_OUTPUT_EDP) {
  2007. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  2008. intel_edp_panel_on(intel_dp);
  2009. }
  2010. intel_ddi_clk_select(intel_encoder, crtc->config);
  2011. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  2012. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  2013. intel_dp_set_link_params(intel_dp, crtc->config);
  2014. intel_ddi_init_dp_buf_reg(intel_encoder);
  2015. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  2016. intel_dp_start_link_train(intel_dp);
  2017. if (port != PORT_A || INTEL_INFO(dev_priv)->gen >= 9)
  2018. intel_dp_stop_link_train(intel_dp);
  2019. } else if (type == INTEL_OUTPUT_HDMI) {
  2020. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  2021. intel_hdmi->set_infoframes(encoder,
  2022. crtc->config->has_hdmi_sink,
  2023. &crtc->config->base.adjusted_mode);
  2024. }
  2025. }
  2026. static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
  2027. {
  2028. struct drm_encoder *encoder = &intel_encoder->base;
  2029. struct drm_device *dev = encoder->dev;
  2030. struct drm_i915_private *dev_priv = dev->dev_private;
  2031. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  2032. int type = intel_encoder->type;
  2033. uint32_t val;
  2034. bool wait = false;
  2035. val = I915_READ(DDI_BUF_CTL(port));
  2036. if (val & DDI_BUF_CTL_ENABLE) {
  2037. val &= ~DDI_BUF_CTL_ENABLE;
  2038. I915_WRITE(DDI_BUF_CTL(port), val);
  2039. wait = true;
  2040. }
  2041. val = I915_READ(DP_TP_CTL(port));
  2042. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  2043. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  2044. I915_WRITE(DP_TP_CTL(port), val);
  2045. if (wait)
  2046. intel_wait_ddi_buf_idle(dev_priv, port);
  2047. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  2048. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  2049. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
  2050. intel_edp_panel_vdd_on(intel_dp);
  2051. intel_edp_panel_off(intel_dp);
  2052. }
  2053. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  2054. I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
  2055. DPLL_CTRL2_DDI_CLK_OFF(port)));
  2056. else if (INTEL_INFO(dev)->gen < 9)
  2057. I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
  2058. }
  2059. static void intel_enable_ddi(struct intel_encoder *intel_encoder)
  2060. {
  2061. struct drm_encoder *encoder = &intel_encoder->base;
  2062. struct drm_crtc *crtc = encoder->crtc;
  2063. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2064. struct drm_device *dev = encoder->dev;
  2065. struct drm_i915_private *dev_priv = dev->dev_private;
  2066. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  2067. int type = intel_encoder->type;
  2068. if (type == INTEL_OUTPUT_HDMI) {
  2069. struct intel_digital_port *intel_dig_port =
  2070. enc_to_dig_port(encoder);
  2071. /* In HDMI/DVI mode, the port width, and swing/emphasis values
  2072. * are ignored so nothing special needs to be done besides
  2073. * enabling the port.
  2074. */
  2075. I915_WRITE(DDI_BUF_CTL(port),
  2076. intel_dig_port->saved_port_bits |
  2077. DDI_BUF_CTL_ENABLE);
  2078. } else if (type == INTEL_OUTPUT_EDP) {
  2079. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  2080. if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
  2081. intel_dp_stop_link_train(intel_dp);
  2082. intel_edp_backlight_on(intel_dp);
  2083. intel_psr_enable(intel_dp);
  2084. intel_edp_drrs_enable(intel_dp);
  2085. }
  2086. if (intel_crtc->config->has_audio) {
  2087. intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
  2088. intel_audio_codec_enable(intel_encoder);
  2089. }
  2090. }
  2091. static void intel_disable_ddi(struct intel_encoder *intel_encoder)
  2092. {
  2093. struct drm_encoder *encoder = &intel_encoder->base;
  2094. struct drm_crtc *crtc = encoder->crtc;
  2095. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2096. int type = intel_encoder->type;
  2097. struct drm_device *dev = encoder->dev;
  2098. struct drm_i915_private *dev_priv = dev->dev_private;
  2099. if (intel_crtc->config->has_audio) {
  2100. intel_audio_codec_disable(intel_encoder);
  2101. intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
  2102. }
  2103. if (type == INTEL_OUTPUT_EDP) {
  2104. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  2105. intel_edp_drrs_disable(intel_dp);
  2106. intel_psr_disable(intel_dp);
  2107. intel_edp_backlight_off(intel_dp);
  2108. }
  2109. }
  2110. static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
  2111. struct intel_shared_dpll *pll)
  2112. {
  2113. I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
  2114. POSTING_READ(WRPLL_CTL(pll->id));
  2115. udelay(20);
  2116. }
  2117. static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
  2118. struct intel_shared_dpll *pll)
  2119. {
  2120. I915_WRITE(SPLL_CTL, pll->config.hw_state.spll);
  2121. POSTING_READ(SPLL_CTL);
  2122. udelay(20);
  2123. }
  2124. static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
  2125. struct intel_shared_dpll *pll)
  2126. {
  2127. uint32_t val;
  2128. val = I915_READ(WRPLL_CTL(pll->id));
  2129. I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
  2130. POSTING_READ(WRPLL_CTL(pll->id));
  2131. }
  2132. static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
  2133. struct intel_shared_dpll *pll)
  2134. {
  2135. uint32_t val;
  2136. val = I915_READ(SPLL_CTL);
  2137. I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
  2138. POSTING_READ(SPLL_CTL);
  2139. }
  2140. static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
  2141. struct intel_shared_dpll *pll,
  2142. struct intel_dpll_hw_state *hw_state)
  2143. {
  2144. uint32_t val;
  2145. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  2146. return false;
  2147. val = I915_READ(WRPLL_CTL(pll->id));
  2148. hw_state->wrpll = val;
  2149. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  2150. return val & WRPLL_PLL_ENABLE;
  2151. }
  2152. static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
  2153. struct intel_shared_dpll *pll,
  2154. struct intel_dpll_hw_state *hw_state)
  2155. {
  2156. uint32_t val;
  2157. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  2158. return false;
  2159. val = I915_READ(SPLL_CTL);
  2160. hw_state->spll = val;
  2161. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  2162. return val & SPLL_PLL_ENABLE;
  2163. }
  2164. static const char * const hsw_ddi_pll_names[] = {
  2165. "WRPLL 1",
  2166. "WRPLL 2",
  2167. "SPLL"
  2168. };
  2169. static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
  2170. {
  2171. int i;
  2172. dev_priv->num_shared_dpll = 3;
  2173. for (i = 0; i < 2; i++) {
  2174. dev_priv->shared_dplls[i].id = i;
  2175. dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
  2176. dev_priv->shared_dplls[i].disable = hsw_ddi_wrpll_disable;
  2177. dev_priv->shared_dplls[i].enable = hsw_ddi_wrpll_enable;
  2178. dev_priv->shared_dplls[i].get_hw_state =
  2179. hsw_ddi_wrpll_get_hw_state;
  2180. }
  2181. /* SPLL is special, but needs to be initialized anyway.. */
  2182. dev_priv->shared_dplls[i].id = i;
  2183. dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
  2184. dev_priv->shared_dplls[i].disable = hsw_ddi_spll_disable;
  2185. dev_priv->shared_dplls[i].enable = hsw_ddi_spll_enable;
  2186. dev_priv->shared_dplls[i].get_hw_state = hsw_ddi_spll_get_hw_state;
  2187. }
  2188. static const char * const skl_ddi_pll_names[] = {
  2189. "DPLL 1",
  2190. "DPLL 2",
  2191. "DPLL 3",
  2192. };
  2193. struct skl_dpll_regs {
  2194. i915_reg_t ctl, cfgcr1, cfgcr2;
  2195. };
  2196. /* this array is indexed by the *shared* pll id */
  2197. static const struct skl_dpll_regs skl_dpll_regs[3] = {
  2198. {
  2199. /* DPLL 1 */
  2200. .ctl = LCPLL2_CTL,
  2201. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
  2202. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
  2203. },
  2204. {
  2205. /* DPLL 2 */
  2206. .ctl = WRPLL_CTL(0),
  2207. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
  2208. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
  2209. },
  2210. {
  2211. /* DPLL 3 */
  2212. .ctl = WRPLL_CTL(1),
  2213. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
  2214. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
  2215. },
  2216. };
  2217. static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
  2218. struct intel_shared_dpll *pll)
  2219. {
  2220. uint32_t val;
  2221. unsigned int dpll;
  2222. const struct skl_dpll_regs *regs = skl_dpll_regs;
  2223. /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
  2224. dpll = pll->id + 1;
  2225. val = I915_READ(DPLL_CTRL1);
  2226. val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
  2227. DPLL_CTRL1_LINK_RATE_MASK(dpll));
  2228. val |= pll->config.hw_state.ctrl1 << (dpll * 6);
  2229. I915_WRITE(DPLL_CTRL1, val);
  2230. POSTING_READ(DPLL_CTRL1);
  2231. I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
  2232. I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
  2233. POSTING_READ(regs[pll->id].cfgcr1);
  2234. POSTING_READ(regs[pll->id].cfgcr2);
  2235. /* the enable bit is always bit 31 */
  2236. I915_WRITE(regs[pll->id].ctl,
  2237. I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
  2238. if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
  2239. DRM_ERROR("DPLL %d not locked\n", dpll);
  2240. }
  2241. static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
  2242. struct intel_shared_dpll *pll)
  2243. {
  2244. const struct skl_dpll_regs *regs = skl_dpll_regs;
  2245. /* the enable bit is always bit 31 */
  2246. I915_WRITE(regs[pll->id].ctl,
  2247. I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
  2248. POSTING_READ(regs[pll->id].ctl);
  2249. }
  2250. static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  2251. struct intel_shared_dpll *pll,
  2252. struct intel_dpll_hw_state *hw_state)
  2253. {
  2254. uint32_t val;
  2255. unsigned int dpll;
  2256. const struct skl_dpll_regs *regs = skl_dpll_regs;
  2257. bool ret;
  2258. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  2259. return false;
  2260. ret = false;
  2261. /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
  2262. dpll = pll->id + 1;
  2263. val = I915_READ(regs[pll->id].ctl);
  2264. if (!(val & LCPLL_PLL_ENABLE))
  2265. goto out;
  2266. val = I915_READ(DPLL_CTRL1);
  2267. hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;
  2268. /* avoid reading back stale values if HDMI mode is not enabled */
  2269. if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
  2270. hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
  2271. hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
  2272. }
  2273. ret = true;
  2274. out:
  2275. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  2276. return ret;
  2277. }
  2278. static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
  2279. {
  2280. int i;
  2281. dev_priv->num_shared_dpll = 3;
  2282. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2283. dev_priv->shared_dplls[i].id = i;
  2284. dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
  2285. dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
  2286. dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
  2287. dev_priv->shared_dplls[i].get_hw_state =
  2288. skl_ddi_pll_get_hw_state;
  2289. }
  2290. }
  2291. static void broxton_phy_init(struct drm_i915_private *dev_priv,
  2292. enum dpio_phy phy)
  2293. {
  2294. enum port port;
  2295. uint32_t val;
  2296. val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
  2297. val |= GT_DISPLAY_POWER_ON(phy);
  2298. I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
  2299. /* Considering 10ms timeout until BSpec is updated */
  2300. if (wait_for(I915_READ(BXT_PORT_CL1CM_DW0(phy)) & PHY_POWER_GOOD, 10))
  2301. DRM_ERROR("timeout during PHY%d power on\n", phy);
  2302. for (port = (phy == DPIO_PHY0 ? PORT_B : PORT_A);
  2303. port <= (phy == DPIO_PHY0 ? PORT_C : PORT_A); port++) {
  2304. int lane;
  2305. for (lane = 0; lane < 4; lane++) {
  2306. val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
  2307. /*
  2308. * Note that on CHV this flag is called UPAR, but has
  2309. * the same function.
  2310. */
  2311. val &= ~LATENCY_OPTIM;
  2312. if (lane != 1)
  2313. val |= LATENCY_OPTIM;
  2314. I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
  2315. }
  2316. }
  2317. /* Program PLL Rcomp code offset */
  2318. val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
  2319. val &= ~IREF0RC_OFFSET_MASK;
  2320. val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
  2321. I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
  2322. val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
  2323. val &= ~IREF1RC_OFFSET_MASK;
  2324. val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
  2325. I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
  2326. /* Program power gating */
  2327. val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
  2328. val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
  2329. SUS_CLK_CONFIG;
  2330. I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
  2331. if (phy == DPIO_PHY0) {
  2332. val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
  2333. val |= DW6_OLDO_DYN_PWR_DOWN_EN;
  2334. I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
  2335. }
  2336. val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
  2337. val &= ~OCL2_LDOFUSE_PWR_DIS;
  2338. /*
  2339. * On PHY1 disable power on the second channel, since no port is
  2340. * connected there. On PHY0 both channels have a port, so leave it
  2341. * enabled.
  2342. * TODO: port C is only connected on BXT-P, so on BXT0/1 we should
  2343. * power down the second channel on PHY0 as well.
  2344. */
  2345. if (phy == DPIO_PHY1)
  2346. val |= OCL2_LDOFUSE_PWR_DIS;
  2347. I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);
  2348. if (phy == DPIO_PHY0) {
  2349. uint32_t grc_code;
  2350. /*
  2351. * PHY0 isn't connected to an RCOMP resistor so copy over
  2352. * the corresponding calibrated value from PHY1, and disable
  2353. * the automatic calibration on PHY0.
  2354. */
  2355. if (wait_for(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE,
  2356. 10))
  2357. DRM_ERROR("timeout waiting for PHY1 GRC\n");
  2358. val = I915_READ(BXT_PORT_REF_DW6(DPIO_PHY1));
  2359. val = (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
  2360. grc_code = val << GRC_CODE_FAST_SHIFT |
  2361. val << GRC_CODE_SLOW_SHIFT |
  2362. val;
  2363. I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);
  2364. val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
  2365. val |= GRC_DIS | GRC_RDY_OVRD;
  2366. I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
  2367. }
  2368. val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
  2369. val |= COMMON_RESET_DIS;
  2370. I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
  2371. }
  2372. void broxton_ddi_phy_init(struct drm_device *dev)
  2373. {
  2374. /* Enable PHY1 first since it provides Rcomp for PHY0 */
  2375. broxton_phy_init(dev->dev_private, DPIO_PHY1);
  2376. broxton_phy_init(dev->dev_private, DPIO_PHY0);
  2377. }
  2378. static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
  2379. enum dpio_phy phy)
  2380. {
  2381. uint32_t val;
  2382. val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
  2383. val &= ~COMMON_RESET_DIS;
  2384. I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
  2385. }
  2386. void broxton_ddi_phy_uninit(struct drm_device *dev)
  2387. {
  2388. struct drm_i915_private *dev_priv = dev->dev_private;
  2389. broxton_phy_uninit(dev_priv, DPIO_PHY1);
  2390. broxton_phy_uninit(dev_priv, DPIO_PHY0);
  2391. /* FIXME: do this in broxton_phy_uninit per phy */
  2392. I915_WRITE(BXT_P_CR_GT_DISP_PWRON, 0);
  2393. }
  2394. static const char * const bxt_ddi_pll_names[] = {
  2395. "PORT PLL A",
  2396. "PORT PLL B",
  2397. "PORT PLL C",
  2398. };
  2399. static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
  2400. struct intel_shared_dpll *pll)
  2401. {
  2402. uint32_t temp;
  2403. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  2404. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  2405. temp &= ~PORT_PLL_REF_SEL;
  2406. /* Non-SSC reference */
  2407. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  2408. /* Disable 10 bit clock */
  2409. temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
  2410. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  2411. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  2412. /* Write P1 & P2 */
  2413. temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
  2414. temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
  2415. temp |= pll->config.hw_state.ebb0;
  2416. I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);
  2417. /* Write M2 integer */
  2418. temp = I915_READ(BXT_PORT_PLL(port, 0));
  2419. temp &= ~PORT_PLL_M2_MASK;
  2420. temp |= pll->config.hw_state.pll0;
  2421. I915_WRITE(BXT_PORT_PLL(port, 0), temp);
  2422. /* Write N */
  2423. temp = I915_READ(BXT_PORT_PLL(port, 1));
  2424. temp &= ~PORT_PLL_N_MASK;
  2425. temp |= pll->config.hw_state.pll1;
  2426. I915_WRITE(BXT_PORT_PLL(port, 1), temp);
  2427. /* Write M2 fraction */
  2428. temp = I915_READ(BXT_PORT_PLL(port, 2));
  2429. temp &= ~PORT_PLL_M2_FRAC_MASK;
  2430. temp |= pll->config.hw_state.pll2;
  2431. I915_WRITE(BXT_PORT_PLL(port, 2), temp);
  2432. /* Write M2 fraction enable */
  2433. temp = I915_READ(BXT_PORT_PLL(port, 3));
  2434. temp &= ~PORT_PLL_M2_FRAC_ENABLE;
  2435. temp |= pll->config.hw_state.pll3;
  2436. I915_WRITE(BXT_PORT_PLL(port, 3), temp);
  2437. /* Write coeff */
  2438. temp = I915_READ(BXT_PORT_PLL(port, 6));
  2439. temp &= ~PORT_PLL_PROP_COEFF_MASK;
  2440. temp &= ~PORT_PLL_INT_COEFF_MASK;
  2441. temp &= ~PORT_PLL_GAIN_CTL_MASK;
  2442. temp |= pll->config.hw_state.pll6;
  2443. I915_WRITE(BXT_PORT_PLL(port, 6), temp);
  2444. /* Write calibration val */
  2445. temp = I915_READ(BXT_PORT_PLL(port, 8));
  2446. temp &= ~PORT_PLL_TARGET_CNT_MASK;
  2447. temp |= pll->config.hw_state.pll8;
  2448. I915_WRITE(BXT_PORT_PLL(port, 8), temp);
  2449. temp = I915_READ(BXT_PORT_PLL(port, 9));
  2450. temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
  2451. temp |= pll->config.hw_state.pll9;
  2452. I915_WRITE(BXT_PORT_PLL(port, 9), temp);
  2453. temp = I915_READ(BXT_PORT_PLL(port, 10));
  2454. temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
  2455. temp &= ~PORT_PLL_DCO_AMP_MASK;
  2456. temp |= pll->config.hw_state.pll10;
  2457. I915_WRITE(BXT_PORT_PLL(port, 10), temp);
  2458. /* Recalibrate with new settings */
  2459. temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
  2460. temp |= PORT_PLL_RECALIBRATE;
  2461. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  2462. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  2463. temp |= pll->config.hw_state.ebb4;
  2464. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  2465. /* Enable PLL */
  2466. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  2467. temp |= PORT_PLL_ENABLE;
  2468. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  2469. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  2470. if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
  2471. PORT_PLL_LOCK), 200))
  2472. DRM_ERROR("PLL %d not locked\n", port);
  2473. /*
  2474. * While we write to the group register to program all lanes at once we
  2475. * can read only lane registers and we pick lanes 0/1 for that.
  2476. */
  2477. temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
  2478. temp &= ~LANE_STAGGER_MASK;
  2479. temp &= ~LANESTAGGER_STRAP_OVRD;
  2480. temp |= pll->config.hw_state.pcsdw12;
  2481. I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
  2482. }
  2483. static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
  2484. struct intel_shared_dpll *pll)
  2485. {
  2486. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  2487. uint32_t temp;
  2488. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  2489. temp &= ~PORT_PLL_ENABLE;
  2490. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  2491. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  2492. }
  2493. static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  2494. struct intel_shared_dpll *pll,
  2495. struct intel_dpll_hw_state *hw_state)
  2496. {
  2497. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  2498. uint32_t val;
  2499. bool ret;
  2500. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  2501. return false;
  2502. ret = false;
  2503. val = I915_READ(BXT_PORT_PLL_ENABLE(port));
  2504. if (!(val & PORT_PLL_ENABLE))
  2505. goto out;
  2506. hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
  2507. hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;
  2508. hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(port));
  2509. hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;
  2510. hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
  2511. hw_state->pll0 &= PORT_PLL_M2_MASK;
  2512. hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
  2513. hw_state->pll1 &= PORT_PLL_N_MASK;
  2514. hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
  2515. hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;
  2516. hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
  2517. hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;
  2518. hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
  2519. hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
  2520. PORT_PLL_INT_COEFF_MASK |
  2521. PORT_PLL_GAIN_CTL_MASK;
  2522. hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
  2523. hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;
  2524. hw_state->pll9 = I915_READ(BXT_PORT_PLL(port, 9));
  2525. hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;
  2526. hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
  2527. hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
  2528. PORT_PLL_DCO_AMP_MASK;
  2529. /*
  2530. * While we write to the group register to program all lanes at once we
  2531. * can read only lane registers. We configure all lanes the same way, so
  2532. * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
  2533. */
  2534. hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
  2535. if (I915_READ(BXT_PORT_PCS_DW12_LN23(port)) != hw_state->pcsdw12)
  2536. DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
  2537. hw_state->pcsdw12,
  2538. I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
  2539. hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
  2540. ret = true;
  2541. out:
  2542. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  2543. return ret;
  2544. }
  2545. static void bxt_shared_dplls_init(struct drm_i915_private *dev_priv)
  2546. {
  2547. int i;
  2548. dev_priv->num_shared_dpll = 3;
  2549. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2550. dev_priv->shared_dplls[i].id = i;
  2551. dev_priv->shared_dplls[i].name = bxt_ddi_pll_names[i];
  2552. dev_priv->shared_dplls[i].disable = bxt_ddi_pll_disable;
  2553. dev_priv->shared_dplls[i].enable = bxt_ddi_pll_enable;
  2554. dev_priv->shared_dplls[i].get_hw_state =
  2555. bxt_ddi_pll_get_hw_state;
  2556. }
  2557. }
  2558. void intel_ddi_pll_init(struct drm_device *dev)
  2559. {
  2560. struct drm_i915_private *dev_priv = dev->dev_private;
  2561. uint32_t val = I915_READ(LCPLL_CTL);
  2562. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  2563. skl_shared_dplls_init(dev_priv);
  2564. else if (IS_BROXTON(dev))
  2565. bxt_shared_dplls_init(dev_priv);
  2566. else
  2567. hsw_shared_dplls_init(dev_priv);
  2568. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  2569. int cdclk_freq;
  2570. cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
  2571. dev_priv->skl_boot_cdclk = cdclk_freq;
  2572. if (skl_sanitize_cdclk(dev_priv))
  2573. DRM_DEBUG_KMS("Sanitized cdclk programmed by pre-os\n");
  2574. if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
  2575. DRM_ERROR("LCPLL1 is disabled\n");
  2576. } else if (IS_BROXTON(dev)) {
  2577. broxton_init_cdclk(dev);
  2578. broxton_ddi_phy_init(dev);
  2579. } else {
  2580. /*
  2581. * The LCPLL register should be turned on by the BIOS. For now
  2582. * let's just check its state and print errors in case
  2583. * something is wrong. Don't even try to turn it on.
  2584. */
  2585. if (val & LCPLL_CD_SOURCE_FCLK)
  2586. DRM_ERROR("CDCLK source is not LCPLL\n");
  2587. if (val & LCPLL_PLL_DISABLE)
  2588. DRM_ERROR("LCPLL is disabled\n");
  2589. }
  2590. }
  2591. void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp)
  2592. {
  2593. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2594. struct drm_i915_private *dev_priv =
  2595. to_i915(intel_dig_port->base.base.dev);
  2596. enum port port = intel_dig_port->port;
  2597. uint32_t val;
  2598. bool wait = false;
  2599. if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
  2600. val = I915_READ(DDI_BUF_CTL(port));
  2601. if (val & DDI_BUF_CTL_ENABLE) {
  2602. val &= ~DDI_BUF_CTL_ENABLE;
  2603. I915_WRITE(DDI_BUF_CTL(port), val);
  2604. wait = true;
  2605. }
  2606. val = I915_READ(DP_TP_CTL(port));
  2607. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  2608. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  2609. I915_WRITE(DP_TP_CTL(port), val);
  2610. POSTING_READ(DP_TP_CTL(port));
  2611. if (wait)
  2612. intel_wait_ddi_buf_idle(dev_priv, port);
  2613. }
  2614. val = DP_TP_CTL_ENABLE |
  2615. DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
  2616. if (intel_dp->is_mst)
  2617. val |= DP_TP_CTL_MODE_MST;
  2618. else {
  2619. val |= DP_TP_CTL_MODE_SST;
  2620. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  2621. val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
  2622. }
  2623. I915_WRITE(DP_TP_CTL(port), val);
  2624. POSTING_READ(DP_TP_CTL(port));
  2625. intel_dp->DP |= DDI_BUF_CTL_ENABLE;
  2626. I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
  2627. POSTING_READ(DDI_BUF_CTL(port));
  2628. udelay(600);
  2629. }
  2630. void intel_ddi_fdi_disable(struct drm_crtc *crtc)
  2631. {
  2632. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  2633. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  2634. uint32_t val;
  2635. intel_ddi_post_disable(intel_encoder);
  2636. val = I915_READ(FDI_RX_CTL(PIPE_A));
  2637. val &= ~FDI_RX_ENABLE;
  2638. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  2639. val = I915_READ(FDI_RX_MISC(PIPE_A));
  2640. val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  2641. val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  2642. I915_WRITE(FDI_RX_MISC(PIPE_A), val);
  2643. val = I915_READ(FDI_RX_CTL(PIPE_A));
  2644. val &= ~FDI_PCDCLK;
  2645. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  2646. val = I915_READ(FDI_RX_CTL(PIPE_A));
  2647. val &= ~FDI_RX_PLL_ENABLE;
  2648. I915_WRITE(FDI_RX_CTL(PIPE_A), val);
  2649. }
  2650. bool intel_ddi_is_audio_enabled(struct drm_i915_private *dev_priv,
  2651. struct intel_crtc *intel_crtc)
  2652. {
  2653. u32 temp;
  2654. if (intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
  2655. temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  2656. intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
  2657. if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
  2658. return true;
  2659. }
  2660. return false;
  2661. }
  2662. void intel_ddi_get_config(struct intel_encoder *encoder,
  2663. struct intel_crtc_state *pipe_config)
  2664. {
  2665. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  2666. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  2667. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  2668. struct intel_hdmi *intel_hdmi;
  2669. u32 temp, flags = 0;
  2670. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  2671. if (temp & TRANS_DDI_PHSYNC)
  2672. flags |= DRM_MODE_FLAG_PHSYNC;
  2673. else
  2674. flags |= DRM_MODE_FLAG_NHSYNC;
  2675. if (temp & TRANS_DDI_PVSYNC)
  2676. flags |= DRM_MODE_FLAG_PVSYNC;
  2677. else
  2678. flags |= DRM_MODE_FLAG_NVSYNC;
  2679. pipe_config->base.adjusted_mode.flags |= flags;
  2680. switch (temp & TRANS_DDI_BPC_MASK) {
  2681. case TRANS_DDI_BPC_6:
  2682. pipe_config->pipe_bpp = 18;
  2683. break;
  2684. case TRANS_DDI_BPC_8:
  2685. pipe_config->pipe_bpp = 24;
  2686. break;
  2687. case TRANS_DDI_BPC_10:
  2688. pipe_config->pipe_bpp = 30;
  2689. break;
  2690. case TRANS_DDI_BPC_12:
  2691. pipe_config->pipe_bpp = 36;
  2692. break;
  2693. default:
  2694. break;
  2695. }
  2696. switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
  2697. case TRANS_DDI_MODE_SELECT_HDMI:
  2698. pipe_config->has_hdmi_sink = true;
  2699. intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  2700. if (intel_hdmi->infoframe_enabled(&encoder->base, pipe_config))
  2701. pipe_config->has_infoframe = true;
  2702. break;
  2703. case TRANS_DDI_MODE_SELECT_DVI:
  2704. case TRANS_DDI_MODE_SELECT_FDI:
  2705. break;
  2706. case TRANS_DDI_MODE_SELECT_DP_SST:
  2707. case TRANS_DDI_MODE_SELECT_DP_MST:
  2708. pipe_config->has_dp_encoder = true;
  2709. pipe_config->lane_count =
  2710. ((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
  2711. intel_dp_get_m_n(intel_crtc, pipe_config);
  2712. break;
  2713. default:
  2714. break;
  2715. }
  2716. pipe_config->has_audio =
  2717. intel_ddi_is_audio_enabled(dev_priv, intel_crtc);
  2718. if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
  2719. pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
  2720. /*
  2721. * This is a big fat ugly hack.
  2722. *
  2723. * Some machines in UEFI boot mode provide us a VBT that has 18
  2724. * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
  2725. * unknown we fail to light up. Yet the same BIOS boots up with
  2726. * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
  2727. * max, not what it tells us to use.
  2728. *
  2729. * Note: This will still be broken if the eDP panel is not lit
  2730. * up by the BIOS, and thus we can't get the mode at module
  2731. * load.
  2732. */
  2733. DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
  2734. pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
  2735. dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
  2736. }
  2737. intel_ddi_clock_get(encoder, pipe_config);
  2738. }
  2739. static bool intel_ddi_compute_config(struct intel_encoder *encoder,
  2740. struct intel_crtc_state *pipe_config)
  2741. {
  2742. int type = encoder->type;
  2743. int port = intel_ddi_get_encoder_port(encoder);
  2744. WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
  2745. if (port == PORT_A)
  2746. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  2747. if (type == INTEL_OUTPUT_HDMI)
  2748. return intel_hdmi_compute_config(encoder, pipe_config);
  2749. else
  2750. return intel_dp_compute_config(encoder, pipe_config);
  2751. }
  2752. static const struct drm_encoder_funcs intel_ddi_funcs = {
  2753. .reset = intel_dp_encoder_reset,
  2754. .destroy = intel_dp_encoder_destroy,
  2755. };
  2756. static struct intel_connector *
  2757. intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
  2758. {
  2759. struct intel_connector *connector;
  2760. enum port port = intel_dig_port->port;
  2761. connector = intel_connector_alloc();
  2762. if (!connector)
  2763. return NULL;
  2764. intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
  2765. if (!intel_dp_init_connector(intel_dig_port, connector)) {
  2766. kfree(connector);
  2767. return NULL;
  2768. }
  2769. return connector;
  2770. }
  2771. static struct intel_connector *
  2772. intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
  2773. {
  2774. struct intel_connector *connector;
  2775. enum port port = intel_dig_port->port;
  2776. connector = intel_connector_alloc();
  2777. if (!connector)
  2778. return NULL;
  2779. intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
  2780. intel_hdmi_init_connector(intel_dig_port, connector);
  2781. return connector;
  2782. }
  2783. void intel_ddi_init(struct drm_device *dev, enum port port)
  2784. {
  2785. struct drm_i915_private *dev_priv = dev->dev_private;
  2786. struct intel_digital_port *intel_dig_port;
  2787. struct intel_encoder *intel_encoder;
  2788. struct drm_encoder *encoder;
  2789. bool init_hdmi, init_dp;
  2790. int max_lanes;
  2791. if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) {
  2792. switch (port) {
  2793. case PORT_A:
  2794. max_lanes = 4;
  2795. break;
  2796. case PORT_E:
  2797. max_lanes = 0;
  2798. break;
  2799. default:
  2800. max_lanes = 4;
  2801. break;
  2802. }
  2803. } else {
  2804. switch (port) {
  2805. case PORT_A:
  2806. max_lanes = 2;
  2807. break;
  2808. case PORT_E:
  2809. max_lanes = 2;
  2810. break;
  2811. default:
  2812. max_lanes = 4;
  2813. break;
  2814. }
  2815. }
  2816. init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
  2817. dev_priv->vbt.ddi_port_info[port].supports_hdmi);
  2818. init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
  2819. if (!init_dp && !init_hdmi) {
  2820. DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
  2821. port_name(port));
  2822. return;
  2823. }
  2824. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  2825. if (!intel_dig_port)
  2826. return;
  2827. intel_encoder = &intel_dig_port->base;
  2828. encoder = &intel_encoder->base;
  2829. drm_encoder_init(dev, encoder, &intel_ddi_funcs,
  2830. DRM_MODE_ENCODER_TMDS, NULL);
  2831. intel_encoder->compute_config = intel_ddi_compute_config;
  2832. intel_encoder->enable = intel_enable_ddi;
  2833. intel_encoder->pre_enable = intel_ddi_pre_enable;
  2834. intel_encoder->disable = intel_disable_ddi;
  2835. intel_encoder->post_disable = intel_ddi_post_disable;
  2836. intel_encoder->get_hw_state = intel_ddi_get_hw_state;
  2837. intel_encoder->get_config = intel_ddi_get_config;
  2838. intel_encoder->suspend = intel_dp_encoder_suspend;
  2839. intel_dig_port->port = port;
  2840. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  2841. (DDI_BUF_PORT_REVERSAL |
  2842. DDI_A_4_LANES);
  2843. /*
  2844. * Bspec says that DDI_A_4_LANES is the only supported configuration
  2845. * for Broxton. Yet some BIOS fail to set this bit on port A if eDP
  2846. * wasn't lit up at boot. Force this bit on in our internal
  2847. * configuration so that we use the proper lane count for our
  2848. * calculations.
  2849. */
  2850. if (IS_BROXTON(dev) && port == PORT_A) {
  2851. if (!(intel_dig_port->saved_port_bits & DDI_A_4_LANES)) {
  2852. DRM_DEBUG_KMS("BXT BIOS forgot to set DDI_A_4_LANES for port A; fixing\n");
  2853. intel_dig_port->saved_port_bits |= DDI_A_4_LANES;
  2854. max_lanes = 4;
  2855. }
  2856. }
  2857. intel_dig_port->max_lanes = max_lanes;
  2858. intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
  2859. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  2860. intel_encoder->cloneable = 0;
  2861. if (init_dp) {
  2862. if (!intel_ddi_init_dp_connector(intel_dig_port))
  2863. goto err;
  2864. intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
  2865. /*
  2866. * On BXT A0/A1, sw needs to activate DDIA HPD logic and
  2867. * interrupts to check the external panel connection.
  2868. */
  2869. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1) && port == PORT_B)
  2870. dev_priv->hotplug.irq_port[PORT_A] = intel_dig_port;
  2871. else
  2872. dev_priv->hotplug.irq_port[port] = intel_dig_port;
  2873. }
  2874. /* In theory we don't need the encoder->type check, but leave it just in
  2875. * case we have some really bad VBTs... */
  2876. if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
  2877. if (!intel_ddi_init_hdmi_connector(intel_dig_port))
  2878. goto err;
  2879. }
  2880. return;
  2881. err:
  2882. drm_encoder_cleanup(encoder);
  2883. kfree(intel_dig_port);
  2884. }