intel_ringbuffer.c 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  35. * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  36. * to give some inclination as to some of the magic values used in the various
  37. * workarounds!
  38. */
  39. #define CACHELINE_BYTES 64
  40. static inline int ring_space(struct intel_ring_buffer *ring)
  41. {
  42. int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
  43. if (space < 0)
  44. space += ring->size;
  45. return space;
  46. }
  47. static bool intel_ring_stopped(struct intel_ring_buffer *ring)
  48. {
  49. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  50. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  51. }
  52. void __intel_ring_advance(struct intel_ring_buffer *ring)
  53. {
  54. ring->tail &= ring->size - 1;
  55. if (intel_ring_stopped(ring))
  56. return;
  57. ring->write_tail(ring, ring->tail);
  58. }
  59. static int
  60. gen2_render_ring_flush(struct intel_ring_buffer *ring,
  61. u32 invalidate_domains,
  62. u32 flush_domains)
  63. {
  64. u32 cmd;
  65. int ret;
  66. cmd = MI_FLUSH;
  67. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  68. cmd |= MI_NO_WRITE_FLUSH;
  69. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  70. cmd |= MI_READ_FLUSH;
  71. ret = intel_ring_begin(ring, 2);
  72. if (ret)
  73. return ret;
  74. intel_ring_emit(ring, cmd);
  75. intel_ring_emit(ring, MI_NOOP);
  76. intel_ring_advance(ring);
  77. return 0;
  78. }
  79. static int
  80. gen4_render_ring_flush(struct intel_ring_buffer *ring,
  81. u32 invalidate_domains,
  82. u32 flush_domains)
  83. {
  84. struct drm_device *dev = ring->dev;
  85. u32 cmd;
  86. int ret;
  87. /*
  88. * read/write caches:
  89. *
  90. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  91. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  92. * also flushed at 2d versus 3d pipeline switches.
  93. *
  94. * read-only caches:
  95. *
  96. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  97. * MI_READ_FLUSH is set, and is always flushed on 965.
  98. *
  99. * I915_GEM_DOMAIN_COMMAND may not exist?
  100. *
  101. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  102. * invalidated when MI_EXE_FLUSH is set.
  103. *
  104. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  105. * invalidated with every MI_FLUSH.
  106. *
  107. * TLBs:
  108. *
  109. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  110. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  111. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  112. * are flushed at any MI_FLUSH.
  113. */
  114. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  115. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  116. cmd &= ~MI_NO_WRITE_FLUSH;
  117. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  118. cmd |= MI_EXE_FLUSH;
  119. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  120. (IS_G4X(dev) || IS_GEN5(dev)))
  121. cmd |= MI_INVALIDATE_ISP;
  122. ret = intel_ring_begin(ring, 2);
  123. if (ret)
  124. return ret;
  125. intel_ring_emit(ring, cmd);
  126. intel_ring_emit(ring, MI_NOOP);
  127. intel_ring_advance(ring);
  128. return 0;
  129. }
  130. /**
  131. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  132. * implementing two workarounds on gen6. From section 1.4.7.1
  133. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  134. *
  135. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  136. * produced by non-pipelined state commands), software needs to first
  137. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  138. * 0.
  139. *
  140. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  141. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  142. *
  143. * And the workaround for these two requires this workaround first:
  144. *
  145. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  146. * BEFORE the pipe-control with a post-sync op and no write-cache
  147. * flushes.
  148. *
  149. * And this last workaround is tricky because of the requirements on
  150. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  151. * volume 2 part 1:
  152. *
  153. * "1 of the following must also be set:
  154. * - Render Target Cache Flush Enable ([12] of DW1)
  155. * - Depth Cache Flush Enable ([0] of DW1)
  156. * - Stall at Pixel Scoreboard ([1] of DW1)
  157. * - Depth Stall ([13] of DW1)
  158. * - Post-Sync Operation ([13] of DW1)
  159. * - Notify Enable ([8] of DW1)"
  160. *
  161. * The cache flushes require the workaround flush that triggered this
  162. * one, so we can't use it. Depth stall would trigger the same.
  163. * Post-sync nonzero is what triggered this second workaround, so we
  164. * can't use that one either. Notify enable is IRQs, which aren't
  165. * really our business. That leaves only stall at scoreboard.
  166. */
  167. static int
  168. intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
  169. {
  170. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  171. int ret;
  172. ret = intel_ring_begin(ring, 6);
  173. if (ret)
  174. return ret;
  175. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  176. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  177. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  178. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  179. intel_ring_emit(ring, 0); /* low dword */
  180. intel_ring_emit(ring, 0); /* high dword */
  181. intel_ring_emit(ring, MI_NOOP);
  182. intel_ring_advance(ring);
  183. ret = intel_ring_begin(ring, 6);
  184. if (ret)
  185. return ret;
  186. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  187. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  188. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  189. intel_ring_emit(ring, 0);
  190. intel_ring_emit(ring, 0);
  191. intel_ring_emit(ring, MI_NOOP);
  192. intel_ring_advance(ring);
  193. return 0;
  194. }
  195. static int
  196. gen6_render_ring_flush(struct intel_ring_buffer *ring,
  197. u32 invalidate_domains, u32 flush_domains)
  198. {
  199. u32 flags = 0;
  200. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  201. int ret;
  202. /* Force SNB workarounds for PIPE_CONTROL flushes */
  203. ret = intel_emit_post_sync_nonzero_flush(ring);
  204. if (ret)
  205. return ret;
  206. /* Just flush everything. Experiments have shown that reducing the
  207. * number of bits based on the write domains has little performance
  208. * impact.
  209. */
  210. if (flush_domains) {
  211. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  212. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  213. /*
  214. * Ensure that any following seqno writes only happen
  215. * when the render cache is indeed flushed.
  216. */
  217. flags |= PIPE_CONTROL_CS_STALL;
  218. }
  219. if (invalidate_domains) {
  220. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  221. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  222. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  223. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  224. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  225. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  226. /*
  227. * TLB invalidate requires a post-sync write.
  228. */
  229. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  230. }
  231. ret = intel_ring_begin(ring, 4);
  232. if (ret)
  233. return ret;
  234. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  235. intel_ring_emit(ring, flags);
  236. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  237. intel_ring_emit(ring, 0);
  238. intel_ring_advance(ring);
  239. return 0;
  240. }
  241. static int
  242. gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
  243. {
  244. int ret;
  245. ret = intel_ring_begin(ring, 4);
  246. if (ret)
  247. return ret;
  248. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  249. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  250. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  251. intel_ring_emit(ring, 0);
  252. intel_ring_emit(ring, 0);
  253. intel_ring_advance(ring);
  254. return 0;
  255. }
  256. static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
  257. {
  258. int ret;
  259. if (!ring->fbc_dirty)
  260. return 0;
  261. ret = intel_ring_begin(ring, 6);
  262. if (ret)
  263. return ret;
  264. /* WaFbcNukeOn3DBlt:ivb/hsw */
  265. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  266. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  267. intel_ring_emit(ring, value);
  268. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  269. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  270. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  271. intel_ring_advance(ring);
  272. ring->fbc_dirty = false;
  273. return 0;
  274. }
  275. static int
  276. gen7_render_ring_flush(struct intel_ring_buffer *ring,
  277. u32 invalidate_domains, u32 flush_domains)
  278. {
  279. u32 flags = 0;
  280. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  281. int ret;
  282. /*
  283. * Ensure that any following seqno writes only happen when the render
  284. * cache is indeed flushed.
  285. *
  286. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  287. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  288. * don't try to be clever and just set it unconditionally.
  289. */
  290. flags |= PIPE_CONTROL_CS_STALL;
  291. /* Just flush everything. Experiments have shown that reducing the
  292. * number of bits based on the write domains has little performance
  293. * impact.
  294. */
  295. if (flush_domains) {
  296. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  297. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  298. }
  299. if (invalidate_domains) {
  300. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  301. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  302. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  303. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  304. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  305. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  306. /*
  307. * TLB invalidate requires a post-sync write.
  308. */
  309. flags |= PIPE_CONTROL_QW_WRITE;
  310. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  311. /* Workaround: we must issue a pipe_control with CS-stall bit
  312. * set before a pipe_control command that has the state cache
  313. * invalidate bit set. */
  314. gen7_render_ring_cs_stall_wa(ring);
  315. }
  316. ret = intel_ring_begin(ring, 4);
  317. if (ret)
  318. return ret;
  319. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  320. intel_ring_emit(ring, flags);
  321. intel_ring_emit(ring, scratch_addr);
  322. intel_ring_emit(ring, 0);
  323. intel_ring_advance(ring);
  324. if (!invalidate_domains && flush_domains)
  325. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  326. return 0;
  327. }
  328. static int
  329. gen8_render_ring_flush(struct intel_ring_buffer *ring,
  330. u32 invalidate_domains, u32 flush_domains)
  331. {
  332. u32 flags = 0;
  333. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  334. int ret;
  335. flags |= PIPE_CONTROL_CS_STALL;
  336. if (flush_domains) {
  337. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  338. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  339. }
  340. if (invalidate_domains) {
  341. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  342. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  343. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  344. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  345. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  346. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  347. flags |= PIPE_CONTROL_QW_WRITE;
  348. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  349. }
  350. ret = intel_ring_begin(ring, 6);
  351. if (ret)
  352. return ret;
  353. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  354. intel_ring_emit(ring, flags);
  355. intel_ring_emit(ring, scratch_addr);
  356. intel_ring_emit(ring, 0);
  357. intel_ring_emit(ring, 0);
  358. intel_ring_emit(ring, 0);
  359. intel_ring_advance(ring);
  360. return 0;
  361. }
  362. static void ring_write_tail(struct intel_ring_buffer *ring,
  363. u32 value)
  364. {
  365. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  366. I915_WRITE_TAIL(ring, value);
  367. }
  368. u64 intel_ring_get_active_head(struct intel_ring_buffer *ring)
  369. {
  370. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  371. u64 acthd;
  372. if (INTEL_INFO(ring->dev)->gen >= 8)
  373. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  374. RING_ACTHD_UDW(ring->mmio_base));
  375. else if (INTEL_INFO(ring->dev)->gen >= 4)
  376. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  377. else
  378. acthd = I915_READ(ACTHD);
  379. return acthd;
  380. }
  381. static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
  382. {
  383. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  384. u32 addr;
  385. addr = dev_priv->status_page_dmah->busaddr;
  386. if (INTEL_INFO(ring->dev)->gen >= 4)
  387. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  388. I915_WRITE(HWS_PGA, addr);
  389. }
  390. static bool stop_ring(struct intel_ring_buffer *ring)
  391. {
  392. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  393. if (!IS_GEN2(ring->dev)) {
  394. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  395. if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  396. DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
  397. return false;
  398. }
  399. }
  400. I915_WRITE_CTL(ring, 0);
  401. I915_WRITE_HEAD(ring, 0);
  402. ring->write_tail(ring, 0);
  403. if (!IS_GEN2(ring->dev)) {
  404. (void)I915_READ_CTL(ring);
  405. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  406. }
  407. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  408. }
  409. static int init_ring_common(struct intel_ring_buffer *ring)
  410. {
  411. struct drm_device *dev = ring->dev;
  412. struct drm_i915_private *dev_priv = dev->dev_private;
  413. struct drm_i915_gem_object *obj = ring->obj;
  414. int ret = 0;
  415. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  416. if (!stop_ring(ring)) {
  417. /* G45 ring initialization often fails to reset head to zero */
  418. DRM_DEBUG_KMS("%s head not reset to zero "
  419. "ctl %08x head %08x tail %08x start %08x\n",
  420. ring->name,
  421. I915_READ_CTL(ring),
  422. I915_READ_HEAD(ring),
  423. I915_READ_TAIL(ring),
  424. I915_READ_START(ring));
  425. if (!stop_ring(ring)) {
  426. DRM_ERROR("failed to set %s head to zero "
  427. "ctl %08x head %08x tail %08x start %08x\n",
  428. ring->name,
  429. I915_READ_CTL(ring),
  430. I915_READ_HEAD(ring),
  431. I915_READ_TAIL(ring),
  432. I915_READ_START(ring));
  433. ret = -EIO;
  434. goto out;
  435. }
  436. }
  437. if (I915_NEED_GFX_HWS(dev))
  438. intel_ring_setup_status_page(ring);
  439. else
  440. ring_setup_phys_status_page(ring);
  441. /* Initialize the ring. This must happen _after_ we've cleared the ring
  442. * registers with the above sequence (the readback of the HEAD registers
  443. * also enforces ordering), otherwise the hw might lose the new ring
  444. * register values. */
  445. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  446. I915_WRITE_CTL(ring,
  447. ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
  448. | RING_VALID);
  449. /* If the head is still not zero, the ring is dead */
  450. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  451. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  452. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  453. DRM_ERROR("%s initialization failed "
  454. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  455. ring->name,
  456. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  457. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  458. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  459. ret = -EIO;
  460. goto out;
  461. }
  462. if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
  463. i915_kernel_lost_context(ring->dev);
  464. else {
  465. ring->head = I915_READ_HEAD(ring);
  466. ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  467. ring->space = ring_space(ring);
  468. ring->last_retired_head = -1;
  469. }
  470. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  471. out:
  472. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  473. return ret;
  474. }
  475. static int
  476. init_pipe_control(struct intel_ring_buffer *ring)
  477. {
  478. int ret;
  479. if (ring->scratch.obj)
  480. return 0;
  481. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  482. if (ring->scratch.obj == NULL) {
  483. DRM_ERROR("Failed to allocate seqno page\n");
  484. ret = -ENOMEM;
  485. goto err;
  486. }
  487. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  488. if (ret)
  489. goto err_unref;
  490. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  491. if (ret)
  492. goto err_unref;
  493. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  494. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  495. if (ring->scratch.cpu_page == NULL) {
  496. ret = -ENOMEM;
  497. goto err_unpin;
  498. }
  499. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  500. ring->name, ring->scratch.gtt_offset);
  501. return 0;
  502. err_unpin:
  503. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  504. err_unref:
  505. drm_gem_object_unreference(&ring->scratch.obj->base);
  506. err:
  507. return ret;
  508. }
  509. static int init_render_ring(struct intel_ring_buffer *ring)
  510. {
  511. struct drm_device *dev = ring->dev;
  512. struct drm_i915_private *dev_priv = dev->dev_private;
  513. int ret = init_ring_common(ring);
  514. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  515. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  516. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  517. /* We need to disable the AsyncFlip performance optimisations in order
  518. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  519. * programmed to '1' on all products.
  520. *
  521. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw
  522. */
  523. if (INTEL_INFO(dev)->gen >= 6)
  524. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  525. /* Required for the hardware to program scanline values for waiting */
  526. /* WaEnableFlushTlbInvalidationMode:snb */
  527. if (INTEL_INFO(dev)->gen == 6)
  528. I915_WRITE(GFX_MODE,
  529. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  530. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  531. if (IS_GEN7(dev))
  532. I915_WRITE(GFX_MODE_GEN7,
  533. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  534. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  535. if (INTEL_INFO(dev)->gen >= 5) {
  536. ret = init_pipe_control(ring);
  537. if (ret)
  538. return ret;
  539. }
  540. if (IS_GEN6(dev)) {
  541. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  542. * "If this bit is set, STCunit will have LRA as replacement
  543. * policy. [...] This bit must be reset. LRA replacement
  544. * policy is not supported."
  545. */
  546. I915_WRITE(CACHE_MODE_0,
  547. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  548. }
  549. if (INTEL_INFO(dev)->gen >= 6)
  550. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  551. if (HAS_L3_DPF(dev))
  552. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  553. return ret;
  554. }
  555. static void render_ring_cleanup(struct intel_ring_buffer *ring)
  556. {
  557. struct drm_device *dev = ring->dev;
  558. if (ring->scratch.obj == NULL)
  559. return;
  560. if (INTEL_INFO(dev)->gen >= 5) {
  561. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  562. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  563. }
  564. drm_gem_object_unreference(&ring->scratch.obj->base);
  565. ring->scratch.obj = NULL;
  566. }
  567. static void gen6_signal(struct intel_ring_buffer *signaller)
  568. {
  569. struct drm_i915_private *dev_priv = signaller->dev->dev_private;
  570. struct intel_ring_buffer *useless;
  571. int i;
  572. /* NB: In order to be able to do semaphore MBOX updates for varying number
  573. * of rings, it's easiest if we round up each individual update to a
  574. * multiple of 2 (since ring updates must always be a multiple of 2)
  575. * even though the actual update only requires 3 dwords.
  576. */
  577. #define MBOX_UPDATE_DWORDS 4
  578. for_each_ring(useless, dev_priv, i) {
  579. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  580. if (mbox_reg != GEN6_NOSYNC) {
  581. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  582. intel_ring_emit(signaller, mbox_reg);
  583. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  584. intel_ring_emit(signaller, MI_NOOP);
  585. } else {
  586. intel_ring_emit(signaller, MI_NOOP);
  587. intel_ring_emit(signaller, MI_NOOP);
  588. intel_ring_emit(signaller, MI_NOOP);
  589. intel_ring_emit(signaller, MI_NOOP);
  590. }
  591. }
  592. }
  593. /**
  594. * gen6_add_request - Update the semaphore mailbox registers
  595. *
  596. * @ring - ring that is adding a request
  597. * @seqno - return seqno stuck into the ring
  598. *
  599. * Update the mailbox registers in the *other* rings with the current seqno.
  600. * This acts like a signal in the canonical semaphore.
  601. */
  602. static int
  603. gen6_add_request(struct intel_ring_buffer *ring)
  604. {
  605. struct drm_device *dev = ring->dev;
  606. int ret, num_dwords = 4;
  607. if (i915_semaphore_is_enabled(dev))
  608. num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
  609. #undef MBOX_UPDATE_DWORDS
  610. ret = intel_ring_begin(ring, num_dwords);
  611. if (ret)
  612. return ret;
  613. ring->semaphore.signal(ring);
  614. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  615. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  616. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  617. intel_ring_emit(ring, MI_USER_INTERRUPT);
  618. __intel_ring_advance(ring);
  619. return 0;
  620. }
  621. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  622. u32 seqno)
  623. {
  624. struct drm_i915_private *dev_priv = dev->dev_private;
  625. return dev_priv->last_seqno < seqno;
  626. }
  627. /**
  628. * intel_ring_sync - sync the waiter to the signaller on seqno
  629. *
  630. * @waiter - ring that is waiting
  631. * @signaller - ring which has, or will signal
  632. * @seqno - seqno which the waiter will block on
  633. */
  634. static int
  635. gen6_ring_sync(struct intel_ring_buffer *waiter,
  636. struct intel_ring_buffer *signaller,
  637. u32 seqno)
  638. {
  639. u32 dw1 = MI_SEMAPHORE_MBOX |
  640. MI_SEMAPHORE_COMPARE |
  641. MI_SEMAPHORE_REGISTER;
  642. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  643. int ret;
  644. /* Throughout all of the GEM code, seqno passed implies our current
  645. * seqno is >= the last seqno executed. However for hardware the
  646. * comparison is strictly greater than.
  647. */
  648. seqno -= 1;
  649. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  650. ret = intel_ring_begin(waiter, 4);
  651. if (ret)
  652. return ret;
  653. /* If seqno wrap happened, omit the wait with no-ops */
  654. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  655. intel_ring_emit(waiter, dw1 | wait_mbox);
  656. intel_ring_emit(waiter, seqno);
  657. intel_ring_emit(waiter, 0);
  658. intel_ring_emit(waiter, MI_NOOP);
  659. } else {
  660. intel_ring_emit(waiter, MI_NOOP);
  661. intel_ring_emit(waiter, MI_NOOP);
  662. intel_ring_emit(waiter, MI_NOOP);
  663. intel_ring_emit(waiter, MI_NOOP);
  664. }
  665. intel_ring_advance(waiter);
  666. return 0;
  667. }
  668. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  669. do { \
  670. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  671. PIPE_CONTROL_DEPTH_STALL); \
  672. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  673. intel_ring_emit(ring__, 0); \
  674. intel_ring_emit(ring__, 0); \
  675. } while (0)
  676. static int
  677. pc_render_add_request(struct intel_ring_buffer *ring)
  678. {
  679. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  680. int ret;
  681. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  682. * incoherent with writes to memory, i.e. completely fubar,
  683. * so we need to use PIPE_NOTIFY instead.
  684. *
  685. * However, we also need to workaround the qword write
  686. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  687. * memory before requesting an interrupt.
  688. */
  689. ret = intel_ring_begin(ring, 32);
  690. if (ret)
  691. return ret;
  692. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  693. PIPE_CONTROL_WRITE_FLUSH |
  694. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  695. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  696. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  697. intel_ring_emit(ring, 0);
  698. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  699. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  700. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  701. scratch_addr += 2 * CACHELINE_BYTES;
  702. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  703. scratch_addr += 2 * CACHELINE_BYTES;
  704. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  705. scratch_addr += 2 * CACHELINE_BYTES;
  706. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  707. scratch_addr += 2 * CACHELINE_BYTES;
  708. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  709. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  710. PIPE_CONTROL_WRITE_FLUSH |
  711. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  712. PIPE_CONTROL_NOTIFY);
  713. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  714. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  715. intel_ring_emit(ring, 0);
  716. __intel_ring_advance(ring);
  717. return 0;
  718. }
  719. static u32
  720. gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  721. {
  722. /* Workaround to force correct ordering between irq and seqno writes on
  723. * ivb (and maybe also on snb) by reading from a CS register (like
  724. * ACTHD) before reading the status page. */
  725. if (!lazy_coherency) {
  726. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  727. POSTING_READ(RING_ACTHD(ring->mmio_base));
  728. }
  729. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  730. }
  731. static u32
  732. ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  733. {
  734. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  735. }
  736. static void
  737. ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
  738. {
  739. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  740. }
  741. static u32
  742. pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  743. {
  744. return ring->scratch.cpu_page[0];
  745. }
  746. static void
  747. pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
  748. {
  749. ring->scratch.cpu_page[0] = seqno;
  750. }
  751. static bool
  752. gen5_ring_get_irq(struct intel_ring_buffer *ring)
  753. {
  754. struct drm_device *dev = ring->dev;
  755. struct drm_i915_private *dev_priv = dev->dev_private;
  756. unsigned long flags;
  757. if (!dev->irq_enabled)
  758. return false;
  759. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  760. if (ring->irq_refcount++ == 0)
  761. ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  762. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  763. return true;
  764. }
  765. static void
  766. gen5_ring_put_irq(struct intel_ring_buffer *ring)
  767. {
  768. struct drm_device *dev = ring->dev;
  769. struct drm_i915_private *dev_priv = dev->dev_private;
  770. unsigned long flags;
  771. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  772. if (--ring->irq_refcount == 0)
  773. ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  774. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  775. }
  776. static bool
  777. i9xx_ring_get_irq(struct intel_ring_buffer *ring)
  778. {
  779. struct drm_device *dev = ring->dev;
  780. struct drm_i915_private *dev_priv = dev->dev_private;
  781. unsigned long flags;
  782. if (!dev->irq_enabled)
  783. return false;
  784. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  785. if (ring->irq_refcount++ == 0) {
  786. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  787. I915_WRITE(IMR, dev_priv->irq_mask);
  788. POSTING_READ(IMR);
  789. }
  790. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  791. return true;
  792. }
  793. static void
  794. i9xx_ring_put_irq(struct intel_ring_buffer *ring)
  795. {
  796. struct drm_device *dev = ring->dev;
  797. struct drm_i915_private *dev_priv = dev->dev_private;
  798. unsigned long flags;
  799. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  800. if (--ring->irq_refcount == 0) {
  801. dev_priv->irq_mask |= ring->irq_enable_mask;
  802. I915_WRITE(IMR, dev_priv->irq_mask);
  803. POSTING_READ(IMR);
  804. }
  805. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  806. }
  807. static bool
  808. i8xx_ring_get_irq(struct intel_ring_buffer *ring)
  809. {
  810. struct drm_device *dev = ring->dev;
  811. struct drm_i915_private *dev_priv = dev->dev_private;
  812. unsigned long flags;
  813. if (!dev->irq_enabled)
  814. return false;
  815. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  816. if (ring->irq_refcount++ == 0) {
  817. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  818. I915_WRITE16(IMR, dev_priv->irq_mask);
  819. POSTING_READ16(IMR);
  820. }
  821. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  822. return true;
  823. }
  824. static void
  825. i8xx_ring_put_irq(struct intel_ring_buffer *ring)
  826. {
  827. struct drm_device *dev = ring->dev;
  828. struct drm_i915_private *dev_priv = dev->dev_private;
  829. unsigned long flags;
  830. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  831. if (--ring->irq_refcount == 0) {
  832. dev_priv->irq_mask |= ring->irq_enable_mask;
  833. I915_WRITE16(IMR, dev_priv->irq_mask);
  834. POSTING_READ16(IMR);
  835. }
  836. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  837. }
  838. void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
  839. {
  840. struct drm_device *dev = ring->dev;
  841. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  842. u32 mmio = 0;
  843. /* The ring status page addresses are no longer next to the rest of
  844. * the ring registers as of gen7.
  845. */
  846. if (IS_GEN7(dev)) {
  847. switch (ring->id) {
  848. case RCS:
  849. mmio = RENDER_HWS_PGA_GEN7;
  850. break;
  851. case BCS:
  852. mmio = BLT_HWS_PGA_GEN7;
  853. break;
  854. /*
  855. * VCS2 actually doesn't exist on Gen7. Only shut up
  856. * gcc switch check warning
  857. */
  858. case VCS2:
  859. case VCS:
  860. mmio = BSD_HWS_PGA_GEN7;
  861. break;
  862. case VECS:
  863. mmio = VEBOX_HWS_PGA_GEN7;
  864. break;
  865. }
  866. } else if (IS_GEN6(ring->dev)) {
  867. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  868. } else {
  869. /* XXX: gen8 returns to sanity */
  870. mmio = RING_HWS_PGA(ring->mmio_base);
  871. }
  872. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  873. POSTING_READ(mmio);
  874. /*
  875. * Flush the TLB for this page
  876. *
  877. * FIXME: These two bits have disappeared on gen8, so a question
  878. * arises: do we still need this and if so how should we go about
  879. * invalidating the TLB?
  880. */
  881. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  882. u32 reg = RING_INSTPM(ring->mmio_base);
  883. /* ring should be idle before issuing a sync flush*/
  884. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  885. I915_WRITE(reg,
  886. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  887. INSTPM_SYNC_FLUSH));
  888. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  889. 1000))
  890. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  891. ring->name);
  892. }
  893. }
  894. static int
  895. bsd_ring_flush(struct intel_ring_buffer *ring,
  896. u32 invalidate_domains,
  897. u32 flush_domains)
  898. {
  899. int ret;
  900. ret = intel_ring_begin(ring, 2);
  901. if (ret)
  902. return ret;
  903. intel_ring_emit(ring, MI_FLUSH);
  904. intel_ring_emit(ring, MI_NOOP);
  905. intel_ring_advance(ring);
  906. return 0;
  907. }
  908. static int
  909. i9xx_add_request(struct intel_ring_buffer *ring)
  910. {
  911. int ret;
  912. ret = intel_ring_begin(ring, 4);
  913. if (ret)
  914. return ret;
  915. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  916. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  917. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  918. intel_ring_emit(ring, MI_USER_INTERRUPT);
  919. __intel_ring_advance(ring);
  920. return 0;
  921. }
  922. static bool
  923. gen6_ring_get_irq(struct intel_ring_buffer *ring)
  924. {
  925. struct drm_device *dev = ring->dev;
  926. struct drm_i915_private *dev_priv = dev->dev_private;
  927. unsigned long flags;
  928. if (!dev->irq_enabled)
  929. return false;
  930. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  931. if (ring->irq_refcount++ == 0) {
  932. if (HAS_L3_DPF(dev) && ring->id == RCS)
  933. I915_WRITE_IMR(ring,
  934. ~(ring->irq_enable_mask |
  935. GT_PARITY_ERROR(dev)));
  936. else
  937. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  938. ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  939. }
  940. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  941. return true;
  942. }
  943. static void
  944. gen6_ring_put_irq(struct intel_ring_buffer *ring)
  945. {
  946. struct drm_device *dev = ring->dev;
  947. struct drm_i915_private *dev_priv = dev->dev_private;
  948. unsigned long flags;
  949. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  950. if (--ring->irq_refcount == 0) {
  951. if (HAS_L3_DPF(dev) && ring->id == RCS)
  952. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  953. else
  954. I915_WRITE_IMR(ring, ~0);
  955. ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  956. }
  957. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  958. }
  959. static bool
  960. hsw_vebox_get_irq(struct intel_ring_buffer *ring)
  961. {
  962. struct drm_device *dev = ring->dev;
  963. struct drm_i915_private *dev_priv = dev->dev_private;
  964. unsigned long flags;
  965. if (!dev->irq_enabled)
  966. return false;
  967. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  968. if (ring->irq_refcount++ == 0) {
  969. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  970. snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  971. }
  972. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  973. return true;
  974. }
  975. static void
  976. hsw_vebox_put_irq(struct intel_ring_buffer *ring)
  977. {
  978. struct drm_device *dev = ring->dev;
  979. struct drm_i915_private *dev_priv = dev->dev_private;
  980. unsigned long flags;
  981. if (!dev->irq_enabled)
  982. return;
  983. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  984. if (--ring->irq_refcount == 0) {
  985. I915_WRITE_IMR(ring, ~0);
  986. snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  987. }
  988. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  989. }
  990. static bool
  991. gen8_ring_get_irq(struct intel_ring_buffer *ring)
  992. {
  993. struct drm_device *dev = ring->dev;
  994. struct drm_i915_private *dev_priv = dev->dev_private;
  995. unsigned long flags;
  996. if (!dev->irq_enabled)
  997. return false;
  998. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  999. if (ring->irq_refcount++ == 0) {
  1000. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1001. I915_WRITE_IMR(ring,
  1002. ~(ring->irq_enable_mask |
  1003. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1004. } else {
  1005. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1006. }
  1007. POSTING_READ(RING_IMR(ring->mmio_base));
  1008. }
  1009. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1010. return true;
  1011. }
  1012. static void
  1013. gen8_ring_put_irq(struct intel_ring_buffer *ring)
  1014. {
  1015. struct drm_device *dev = ring->dev;
  1016. struct drm_i915_private *dev_priv = dev->dev_private;
  1017. unsigned long flags;
  1018. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1019. if (--ring->irq_refcount == 0) {
  1020. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1021. I915_WRITE_IMR(ring,
  1022. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1023. } else {
  1024. I915_WRITE_IMR(ring, ~0);
  1025. }
  1026. POSTING_READ(RING_IMR(ring->mmio_base));
  1027. }
  1028. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1029. }
  1030. static int
  1031. i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1032. u32 offset, u32 length,
  1033. unsigned flags)
  1034. {
  1035. int ret;
  1036. ret = intel_ring_begin(ring, 2);
  1037. if (ret)
  1038. return ret;
  1039. intel_ring_emit(ring,
  1040. MI_BATCH_BUFFER_START |
  1041. MI_BATCH_GTT |
  1042. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1043. intel_ring_emit(ring, offset);
  1044. intel_ring_advance(ring);
  1045. return 0;
  1046. }
  1047. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1048. #define I830_BATCH_LIMIT (256*1024)
  1049. static int
  1050. i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1051. u32 offset, u32 len,
  1052. unsigned flags)
  1053. {
  1054. int ret;
  1055. if (flags & I915_DISPATCH_PINNED) {
  1056. ret = intel_ring_begin(ring, 4);
  1057. if (ret)
  1058. return ret;
  1059. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1060. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1061. intel_ring_emit(ring, offset + len - 8);
  1062. intel_ring_emit(ring, MI_NOOP);
  1063. intel_ring_advance(ring);
  1064. } else {
  1065. u32 cs_offset = ring->scratch.gtt_offset;
  1066. if (len > I830_BATCH_LIMIT)
  1067. return -ENOSPC;
  1068. ret = intel_ring_begin(ring, 9+3);
  1069. if (ret)
  1070. return ret;
  1071. /* Blit the batch (which has now all relocs applied) to the stable batch
  1072. * scratch bo area (so that the CS never stumbles over its tlb
  1073. * invalidation bug) ... */
  1074. intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
  1075. XY_SRC_COPY_BLT_WRITE_ALPHA |
  1076. XY_SRC_COPY_BLT_WRITE_RGB);
  1077. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
  1078. intel_ring_emit(ring, 0);
  1079. intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
  1080. intel_ring_emit(ring, cs_offset);
  1081. intel_ring_emit(ring, 0);
  1082. intel_ring_emit(ring, 4096);
  1083. intel_ring_emit(ring, offset);
  1084. intel_ring_emit(ring, MI_FLUSH);
  1085. /* ... and execute it. */
  1086. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1087. intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1088. intel_ring_emit(ring, cs_offset + len - 8);
  1089. intel_ring_advance(ring);
  1090. }
  1091. return 0;
  1092. }
  1093. static int
  1094. i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1095. u32 offset, u32 len,
  1096. unsigned flags)
  1097. {
  1098. int ret;
  1099. ret = intel_ring_begin(ring, 2);
  1100. if (ret)
  1101. return ret;
  1102. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1103. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1104. intel_ring_advance(ring);
  1105. return 0;
  1106. }
  1107. static void cleanup_status_page(struct intel_ring_buffer *ring)
  1108. {
  1109. struct drm_i915_gem_object *obj;
  1110. obj = ring->status_page.obj;
  1111. if (obj == NULL)
  1112. return;
  1113. kunmap(sg_page(obj->pages->sgl));
  1114. i915_gem_object_ggtt_unpin(obj);
  1115. drm_gem_object_unreference(&obj->base);
  1116. ring->status_page.obj = NULL;
  1117. }
  1118. static int init_status_page(struct intel_ring_buffer *ring)
  1119. {
  1120. struct drm_i915_gem_object *obj;
  1121. if ((obj = ring->status_page.obj) == NULL) {
  1122. int ret;
  1123. obj = i915_gem_alloc_object(ring->dev, 4096);
  1124. if (obj == NULL) {
  1125. DRM_ERROR("Failed to allocate status page\n");
  1126. return -ENOMEM;
  1127. }
  1128. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1129. if (ret)
  1130. goto err_unref;
  1131. ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
  1132. if (ret) {
  1133. err_unref:
  1134. drm_gem_object_unreference(&obj->base);
  1135. return ret;
  1136. }
  1137. ring->status_page.obj = obj;
  1138. }
  1139. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1140. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1141. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1142. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1143. ring->name, ring->status_page.gfx_addr);
  1144. return 0;
  1145. }
  1146. static int init_phys_status_page(struct intel_ring_buffer *ring)
  1147. {
  1148. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1149. if (!dev_priv->status_page_dmah) {
  1150. dev_priv->status_page_dmah =
  1151. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1152. if (!dev_priv->status_page_dmah)
  1153. return -ENOMEM;
  1154. }
  1155. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1156. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1157. return 0;
  1158. }
  1159. static int allocate_ring_buffer(struct intel_ring_buffer *ring)
  1160. {
  1161. struct drm_device *dev = ring->dev;
  1162. struct drm_i915_private *dev_priv = to_i915(dev);
  1163. struct drm_i915_gem_object *obj;
  1164. int ret;
  1165. if (ring->obj)
  1166. return 0;
  1167. obj = NULL;
  1168. if (!HAS_LLC(dev))
  1169. obj = i915_gem_object_create_stolen(dev, ring->size);
  1170. if (obj == NULL)
  1171. obj = i915_gem_alloc_object(dev, ring->size);
  1172. if (obj == NULL)
  1173. return -ENOMEM;
  1174. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1175. if (ret)
  1176. goto err_unref;
  1177. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1178. if (ret)
  1179. goto err_unpin;
  1180. ring->virtual_start =
  1181. ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
  1182. ring->size);
  1183. if (ring->virtual_start == NULL) {
  1184. ret = -EINVAL;
  1185. goto err_unpin;
  1186. }
  1187. ring->obj = obj;
  1188. return 0;
  1189. err_unpin:
  1190. i915_gem_object_ggtt_unpin(obj);
  1191. err_unref:
  1192. drm_gem_object_unreference(&obj->base);
  1193. return ret;
  1194. }
  1195. static int intel_init_ring_buffer(struct drm_device *dev,
  1196. struct intel_ring_buffer *ring)
  1197. {
  1198. int ret;
  1199. ring->dev = dev;
  1200. INIT_LIST_HEAD(&ring->active_list);
  1201. INIT_LIST_HEAD(&ring->request_list);
  1202. ring->size = 32 * PAGE_SIZE;
  1203. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1204. init_waitqueue_head(&ring->irq_queue);
  1205. if (I915_NEED_GFX_HWS(dev)) {
  1206. ret = init_status_page(ring);
  1207. if (ret)
  1208. return ret;
  1209. } else {
  1210. BUG_ON(ring->id != RCS);
  1211. ret = init_phys_status_page(ring);
  1212. if (ret)
  1213. return ret;
  1214. }
  1215. ret = allocate_ring_buffer(ring);
  1216. if (ret) {
  1217. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
  1218. return ret;
  1219. }
  1220. /* Workaround an erratum on the i830 which causes a hang if
  1221. * the TAIL pointer points to within the last 2 cachelines
  1222. * of the buffer.
  1223. */
  1224. ring->effective_size = ring->size;
  1225. if (IS_I830(dev) || IS_845G(dev))
  1226. ring->effective_size -= 2 * CACHELINE_BYTES;
  1227. i915_cmd_parser_init_ring(ring);
  1228. return ring->init(ring);
  1229. }
  1230. void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
  1231. {
  1232. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  1233. if (ring->obj == NULL)
  1234. return;
  1235. intel_stop_ring_buffer(ring);
  1236. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1237. iounmap(ring->virtual_start);
  1238. i915_gem_object_ggtt_unpin(ring->obj);
  1239. drm_gem_object_unreference(&ring->obj->base);
  1240. ring->obj = NULL;
  1241. ring->preallocated_lazy_request = NULL;
  1242. ring->outstanding_lazy_seqno = 0;
  1243. if (ring->cleanup)
  1244. ring->cleanup(ring);
  1245. cleanup_status_page(ring);
  1246. }
  1247. static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
  1248. {
  1249. struct drm_i915_gem_request *request;
  1250. u32 seqno = 0, tail;
  1251. int ret;
  1252. if (ring->last_retired_head != -1) {
  1253. ring->head = ring->last_retired_head;
  1254. ring->last_retired_head = -1;
  1255. ring->space = ring_space(ring);
  1256. if (ring->space >= n)
  1257. return 0;
  1258. }
  1259. list_for_each_entry(request, &ring->request_list, list) {
  1260. int space;
  1261. if (request->tail == -1)
  1262. continue;
  1263. space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
  1264. if (space < 0)
  1265. space += ring->size;
  1266. if (space >= n) {
  1267. seqno = request->seqno;
  1268. tail = request->tail;
  1269. break;
  1270. }
  1271. /* Consume this request in case we need more space than
  1272. * is available and so need to prevent a race between
  1273. * updating last_retired_head and direct reads of
  1274. * I915_RING_HEAD. It also provides a nice sanity check.
  1275. */
  1276. request->tail = -1;
  1277. }
  1278. if (seqno == 0)
  1279. return -ENOSPC;
  1280. ret = i915_wait_seqno(ring, seqno);
  1281. if (ret)
  1282. return ret;
  1283. ring->head = tail;
  1284. ring->space = ring_space(ring);
  1285. if (WARN_ON(ring->space < n))
  1286. return -ENOSPC;
  1287. return 0;
  1288. }
  1289. static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
  1290. {
  1291. struct drm_device *dev = ring->dev;
  1292. struct drm_i915_private *dev_priv = dev->dev_private;
  1293. unsigned long end;
  1294. int ret;
  1295. ret = intel_ring_wait_request(ring, n);
  1296. if (ret != -ENOSPC)
  1297. return ret;
  1298. /* force the tail write in case we have been skipping them */
  1299. __intel_ring_advance(ring);
  1300. trace_i915_ring_wait_begin(ring);
  1301. /* With GEM the hangcheck timer should kick us out of the loop,
  1302. * leaving it early runs the risk of corrupting GEM state (due
  1303. * to running on almost untested codepaths). But on resume
  1304. * timers don't work yet, so prevent a complete hang in that
  1305. * case by choosing an insanely large timeout. */
  1306. end = jiffies + 60 * HZ;
  1307. do {
  1308. ring->head = I915_READ_HEAD(ring);
  1309. ring->space = ring_space(ring);
  1310. if (ring->space >= n) {
  1311. trace_i915_ring_wait_end(ring);
  1312. return 0;
  1313. }
  1314. if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
  1315. dev->primary->master) {
  1316. struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
  1317. if (master_priv->sarea_priv)
  1318. master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
  1319. }
  1320. msleep(1);
  1321. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1322. dev_priv->mm.interruptible);
  1323. if (ret)
  1324. return ret;
  1325. } while (!time_after(jiffies, end));
  1326. trace_i915_ring_wait_end(ring);
  1327. return -EBUSY;
  1328. }
  1329. static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
  1330. {
  1331. uint32_t __iomem *virt;
  1332. int rem = ring->size - ring->tail;
  1333. if (ring->space < rem) {
  1334. int ret = ring_wait_for_space(ring, rem);
  1335. if (ret)
  1336. return ret;
  1337. }
  1338. virt = ring->virtual_start + ring->tail;
  1339. rem /= 4;
  1340. while (rem--)
  1341. iowrite32(MI_NOOP, virt++);
  1342. ring->tail = 0;
  1343. ring->space = ring_space(ring);
  1344. return 0;
  1345. }
  1346. int intel_ring_idle(struct intel_ring_buffer *ring)
  1347. {
  1348. u32 seqno;
  1349. int ret;
  1350. /* We need to add any requests required to flush the objects and ring */
  1351. if (ring->outstanding_lazy_seqno) {
  1352. ret = i915_add_request(ring, NULL);
  1353. if (ret)
  1354. return ret;
  1355. }
  1356. /* Wait upon the last request to be completed */
  1357. if (list_empty(&ring->request_list))
  1358. return 0;
  1359. seqno = list_entry(ring->request_list.prev,
  1360. struct drm_i915_gem_request,
  1361. list)->seqno;
  1362. return i915_wait_seqno(ring, seqno);
  1363. }
  1364. static int
  1365. intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
  1366. {
  1367. if (ring->outstanding_lazy_seqno)
  1368. return 0;
  1369. if (ring->preallocated_lazy_request == NULL) {
  1370. struct drm_i915_gem_request *request;
  1371. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1372. if (request == NULL)
  1373. return -ENOMEM;
  1374. ring->preallocated_lazy_request = request;
  1375. }
  1376. return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
  1377. }
  1378. static int __intel_ring_prepare(struct intel_ring_buffer *ring,
  1379. int bytes)
  1380. {
  1381. int ret;
  1382. if (unlikely(ring->tail + bytes > ring->effective_size)) {
  1383. ret = intel_wrap_ring_buffer(ring);
  1384. if (unlikely(ret))
  1385. return ret;
  1386. }
  1387. if (unlikely(ring->space < bytes)) {
  1388. ret = ring_wait_for_space(ring, bytes);
  1389. if (unlikely(ret))
  1390. return ret;
  1391. }
  1392. return 0;
  1393. }
  1394. int intel_ring_begin(struct intel_ring_buffer *ring,
  1395. int num_dwords)
  1396. {
  1397. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1398. int ret;
  1399. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1400. dev_priv->mm.interruptible);
  1401. if (ret)
  1402. return ret;
  1403. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1404. if (ret)
  1405. return ret;
  1406. /* Preallocate the olr before touching the ring */
  1407. ret = intel_ring_alloc_seqno(ring);
  1408. if (ret)
  1409. return ret;
  1410. ring->space -= num_dwords * sizeof(uint32_t);
  1411. return 0;
  1412. }
  1413. /* Align the ring tail to a cacheline boundary */
  1414. int intel_ring_cacheline_align(struct intel_ring_buffer *ring)
  1415. {
  1416. int num_dwords = (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1417. int ret;
  1418. if (num_dwords == 0)
  1419. return 0;
  1420. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1421. ret = intel_ring_begin(ring, num_dwords);
  1422. if (ret)
  1423. return ret;
  1424. while (num_dwords--)
  1425. intel_ring_emit(ring, MI_NOOP);
  1426. intel_ring_advance(ring);
  1427. return 0;
  1428. }
  1429. void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1430. {
  1431. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1432. BUG_ON(ring->outstanding_lazy_seqno);
  1433. if (INTEL_INFO(ring->dev)->gen >= 6) {
  1434. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1435. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1436. if (HAS_VEBOX(ring->dev))
  1437. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1438. }
  1439. ring->set_seqno(ring, seqno);
  1440. ring->hangcheck.seqno = seqno;
  1441. }
  1442. static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
  1443. u32 value)
  1444. {
  1445. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1446. /* Every tail move must follow the sequence below */
  1447. /* Disable notification that the ring is IDLE. The GT
  1448. * will then assume that it is busy and bring it out of rc6.
  1449. */
  1450. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1451. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1452. /* Clear the context id. Here be magic! */
  1453. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1454. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1455. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1456. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1457. 50))
  1458. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1459. /* Now that the ring is fully powered up, update the tail */
  1460. I915_WRITE_TAIL(ring, value);
  1461. POSTING_READ(RING_TAIL(ring->mmio_base));
  1462. /* Let the ring send IDLE messages to the GT again,
  1463. * and so let it sleep to conserve power when idle.
  1464. */
  1465. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1466. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1467. }
  1468. static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
  1469. u32 invalidate, u32 flush)
  1470. {
  1471. uint32_t cmd;
  1472. int ret;
  1473. ret = intel_ring_begin(ring, 4);
  1474. if (ret)
  1475. return ret;
  1476. cmd = MI_FLUSH_DW;
  1477. if (INTEL_INFO(ring->dev)->gen >= 8)
  1478. cmd += 1;
  1479. /*
  1480. * Bspec vol 1c.5 - video engine command streamer:
  1481. * "If ENABLED, all TLBs will be invalidated once the flush
  1482. * operation is complete. This bit is only valid when the
  1483. * Post-Sync Operation field is a value of 1h or 3h."
  1484. */
  1485. if (invalidate & I915_GEM_GPU_DOMAINS)
  1486. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1487. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1488. intel_ring_emit(ring, cmd);
  1489. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1490. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1491. intel_ring_emit(ring, 0); /* upper addr */
  1492. intel_ring_emit(ring, 0); /* value */
  1493. } else {
  1494. intel_ring_emit(ring, 0);
  1495. intel_ring_emit(ring, MI_NOOP);
  1496. }
  1497. intel_ring_advance(ring);
  1498. return 0;
  1499. }
  1500. static int
  1501. gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1502. u32 offset, u32 len,
  1503. unsigned flags)
  1504. {
  1505. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1506. bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
  1507. !(flags & I915_DISPATCH_SECURE);
  1508. int ret;
  1509. ret = intel_ring_begin(ring, 4);
  1510. if (ret)
  1511. return ret;
  1512. /* FIXME(BDW): Address space and security selectors. */
  1513. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1514. intel_ring_emit(ring, offset);
  1515. intel_ring_emit(ring, 0);
  1516. intel_ring_emit(ring, MI_NOOP);
  1517. intel_ring_advance(ring);
  1518. return 0;
  1519. }
  1520. static int
  1521. hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1522. u32 offset, u32 len,
  1523. unsigned flags)
  1524. {
  1525. int ret;
  1526. ret = intel_ring_begin(ring, 2);
  1527. if (ret)
  1528. return ret;
  1529. intel_ring_emit(ring,
  1530. MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
  1531. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
  1532. /* bit0-7 is the length on GEN6+ */
  1533. intel_ring_emit(ring, offset);
  1534. intel_ring_advance(ring);
  1535. return 0;
  1536. }
  1537. static int
  1538. gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1539. u32 offset, u32 len,
  1540. unsigned flags)
  1541. {
  1542. int ret;
  1543. ret = intel_ring_begin(ring, 2);
  1544. if (ret)
  1545. return ret;
  1546. intel_ring_emit(ring,
  1547. MI_BATCH_BUFFER_START |
  1548. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1549. /* bit0-7 is the length on GEN6+ */
  1550. intel_ring_emit(ring, offset);
  1551. intel_ring_advance(ring);
  1552. return 0;
  1553. }
  1554. /* Blitter support (SandyBridge+) */
  1555. static int gen6_ring_flush(struct intel_ring_buffer *ring,
  1556. u32 invalidate, u32 flush)
  1557. {
  1558. struct drm_device *dev = ring->dev;
  1559. uint32_t cmd;
  1560. int ret;
  1561. ret = intel_ring_begin(ring, 4);
  1562. if (ret)
  1563. return ret;
  1564. cmd = MI_FLUSH_DW;
  1565. if (INTEL_INFO(ring->dev)->gen >= 8)
  1566. cmd += 1;
  1567. /*
  1568. * Bspec vol 1c.3 - blitter engine command streamer:
  1569. * "If ENABLED, all TLBs will be invalidated once the flush
  1570. * operation is complete. This bit is only valid when the
  1571. * Post-Sync Operation field is a value of 1h or 3h."
  1572. */
  1573. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1574. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1575. MI_FLUSH_DW_OP_STOREDW;
  1576. intel_ring_emit(ring, cmd);
  1577. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1578. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1579. intel_ring_emit(ring, 0); /* upper addr */
  1580. intel_ring_emit(ring, 0); /* value */
  1581. } else {
  1582. intel_ring_emit(ring, 0);
  1583. intel_ring_emit(ring, MI_NOOP);
  1584. }
  1585. intel_ring_advance(ring);
  1586. if (IS_GEN7(dev) && !invalidate && flush)
  1587. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1588. return 0;
  1589. }
  1590. int intel_init_render_ring_buffer(struct drm_device *dev)
  1591. {
  1592. struct drm_i915_private *dev_priv = dev->dev_private;
  1593. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1594. ring->name = "render ring";
  1595. ring->id = RCS;
  1596. ring->mmio_base = RENDER_RING_BASE;
  1597. if (INTEL_INFO(dev)->gen >= 6) {
  1598. ring->add_request = gen6_add_request;
  1599. ring->flush = gen7_render_ring_flush;
  1600. if (INTEL_INFO(dev)->gen == 6)
  1601. ring->flush = gen6_render_ring_flush;
  1602. if (INTEL_INFO(dev)->gen >= 8) {
  1603. ring->flush = gen8_render_ring_flush;
  1604. ring->irq_get = gen8_ring_get_irq;
  1605. ring->irq_put = gen8_ring_put_irq;
  1606. } else {
  1607. ring->irq_get = gen6_ring_get_irq;
  1608. ring->irq_put = gen6_ring_put_irq;
  1609. }
  1610. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1611. ring->get_seqno = gen6_ring_get_seqno;
  1612. ring->set_seqno = ring_set_seqno;
  1613. ring->semaphore.sync_to = gen6_ring_sync;
  1614. ring->semaphore.signal = gen6_signal;
  1615. /*
  1616. * The current semaphore is only applied on pre-gen8 platform.
  1617. * And there is no VCS2 ring on the pre-gen8 platform. So the
  1618. * semaphore between RCS and VCS2 is initialized as INVALID.
  1619. * Gen8 will initialize the sema between VCS2 and RCS later.
  1620. */
  1621. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1622. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  1623. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  1624. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  1625. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1626. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  1627. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  1628. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  1629. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  1630. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1631. } else if (IS_GEN5(dev)) {
  1632. ring->add_request = pc_render_add_request;
  1633. ring->flush = gen4_render_ring_flush;
  1634. ring->get_seqno = pc_render_get_seqno;
  1635. ring->set_seqno = pc_render_set_seqno;
  1636. ring->irq_get = gen5_ring_get_irq;
  1637. ring->irq_put = gen5_ring_put_irq;
  1638. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  1639. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  1640. } else {
  1641. ring->add_request = i9xx_add_request;
  1642. if (INTEL_INFO(dev)->gen < 4)
  1643. ring->flush = gen2_render_ring_flush;
  1644. else
  1645. ring->flush = gen4_render_ring_flush;
  1646. ring->get_seqno = ring_get_seqno;
  1647. ring->set_seqno = ring_set_seqno;
  1648. if (IS_GEN2(dev)) {
  1649. ring->irq_get = i8xx_ring_get_irq;
  1650. ring->irq_put = i8xx_ring_put_irq;
  1651. } else {
  1652. ring->irq_get = i9xx_ring_get_irq;
  1653. ring->irq_put = i9xx_ring_put_irq;
  1654. }
  1655. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1656. }
  1657. ring->write_tail = ring_write_tail;
  1658. if (IS_HASWELL(dev))
  1659. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  1660. else if (IS_GEN8(dev))
  1661. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1662. else if (INTEL_INFO(dev)->gen >= 6)
  1663. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1664. else if (INTEL_INFO(dev)->gen >= 4)
  1665. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1666. else if (IS_I830(dev) || IS_845G(dev))
  1667. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1668. else
  1669. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1670. ring->init = init_render_ring;
  1671. ring->cleanup = render_ring_cleanup;
  1672. /* Workaround batchbuffer to combat CS tlb bug. */
  1673. if (HAS_BROKEN_CS_TLB(dev)) {
  1674. struct drm_i915_gem_object *obj;
  1675. int ret;
  1676. obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
  1677. if (obj == NULL) {
  1678. DRM_ERROR("Failed to allocate batch bo\n");
  1679. return -ENOMEM;
  1680. }
  1681. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  1682. if (ret != 0) {
  1683. drm_gem_object_unreference(&obj->base);
  1684. DRM_ERROR("Failed to ping batch bo\n");
  1685. return ret;
  1686. }
  1687. ring->scratch.obj = obj;
  1688. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  1689. }
  1690. return intel_init_ring_buffer(dev, ring);
  1691. }
  1692. int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
  1693. {
  1694. struct drm_i915_private *dev_priv = dev->dev_private;
  1695. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1696. int ret;
  1697. ring->name = "render ring";
  1698. ring->id = RCS;
  1699. ring->mmio_base = RENDER_RING_BASE;
  1700. if (INTEL_INFO(dev)->gen >= 6) {
  1701. /* non-kms not supported on gen6+ */
  1702. return -ENODEV;
  1703. }
  1704. /* Note: gem is not supported on gen5/ilk without kms (the corresponding
  1705. * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
  1706. * the special gen5 functions. */
  1707. ring->add_request = i9xx_add_request;
  1708. if (INTEL_INFO(dev)->gen < 4)
  1709. ring->flush = gen2_render_ring_flush;
  1710. else
  1711. ring->flush = gen4_render_ring_flush;
  1712. ring->get_seqno = ring_get_seqno;
  1713. ring->set_seqno = ring_set_seqno;
  1714. if (IS_GEN2(dev)) {
  1715. ring->irq_get = i8xx_ring_get_irq;
  1716. ring->irq_put = i8xx_ring_put_irq;
  1717. } else {
  1718. ring->irq_get = i9xx_ring_get_irq;
  1719. ring->irq_put = i9xx_ring_put_irq;
  1720. }
  1721. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1722. ring->write_tail = ring_write_tail;
  1723. if (INTEL_INFO(dev)->gen >= 4)
  1724. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1725. else if (IS_I830(dev) || IS_845G(dev))
  1726. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1727. else
  1728. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1729. ring->init = init_render_ring;
  1730. ring->cleanup = render_ring_cleanup;
  1731. ring->dev = dev;
  1732. INIT_LIST_HEAD(&ring->active_list);
  1733. INIT_LIST_HEAD(&ring->request_list);
  1734. ring->size = size;
  1735. ring->effective_size = ring->size;
  1736. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  1737. ring->effective_size -= 2 * CACHELINE_BYTES;
  1738. ring->virtual_start = ioremap_wc(start, size);
  1739. if (ring->virtual_start == NULL) {
  1740. DRM_ERROR("can not ioremap virtual address for"
  1741. " ring buffer\n");
  1742. return -ENOMEM;
  1743. }
  1744. if (!I915_NEED_GFX_HWS(dev)) {
  1745. ret = init_phys_status_page(ring);
  1746. if (ret)
  1747. return ret;
  1748. }
  1749. return 0;
  1750. }
  1751. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  1752. {
  1753. struct drm_i915_private *dev_priv = dev->dev_private;
  1754. struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
  1755. ring->name = "bsd ring";
  1756. ring->id = VCS;
  1757. ring->write_tail = ring_write_tail;
  1758. if (INTEL_INFO(dev)->gen >= 6) {
  1759. ring->mmio_base = GEN6_BSD_RING_BASE;
  1760. /* gen6 bsd needs a special wa for tail updates */
  1761. if (IS_GEN6(dev))
  1762. ring->write_tail = gen6_bsd_ring_write_tail;
  1763. ring->flush = gen6_bsd_ring_flush;
  1764. ring->add_request = gen6_add_request;
  1765. ring->get_seqno = gen6_ring_get_seqno;
  1766. ring->set_seqno = ring_set_seqno;
  1767. if (INTEL_INFO(dev)->gen >= 8) {
  1768. ring->irq_enable_mask =
  1769. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  1770. ring->irq_get = gen8_ring_get_irq;
  1771. ring->irq_put = gen8_ring_put_irq;
  1772. ring->dispatch_execbuffer =
  1773. gen8_ring_dispatch_execbuffer;
  1774. } else {
  1775. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  1776. ring->irq_get = gen6_ring_get_irq;
  1777. ring->irq_put = gen6_ring_put_irq;
  1778. ring->dispatch_execbuffer =
  1779. gen6_ring_dispatch_execbuffer;
  1780. }
  1781. ring->semaphore.sync_to = gen6_ring_sync;
  1782. ring->semaphore.signal = gen6_signal;
  1783. /*
  1784. * The current semaphore is only applied on pre-gen8 platform.
  1785. * And there is no VCS2 ring on the pre-gen8 platform. So the
  1786. * semaphore between VCS and VCS2 is initialized as INVALID.
  1787. * Gen8 will initialize the sema between VCS2 and VCS later.
  1788. */
  1789. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  1790. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  1791. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  1792. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  1793. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1794. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  1795. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  1796. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  1797. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  1798. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1799. } else {
  1800. ring->mmio_base = BSD_RING_BASE;
  1801. ring->flush = bsd_ring_flush;
  1802. ring->add_request = i9xx_add_request;
  1803. ring->get_seqno = ring_get_seqno;
  1804. ring->set_seqno = ring_set_seqno;
  1805. if (IS_GEN5(dev)) {
  1806. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  1807. ring->irq_get = gen5_ring_get_irq;
  1808. ring->irq_put = gen5_ring_put_irq;
  1809. } else {
  1810. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  1811. ring->irq_get = i9xx_ring_get_irq;
  1812. ring->irq_put = i9xx_ring_put_irq;
  1813. }
  1814. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1815. }
  1816. ring->init = init_ring_common;
  1817. return intel_init_ring_buffer(dev, ring);
  1818. }
  1819. /**
  1820. * Initialize the second BSD ring for Broadwell GT3.
  1821. * It is noted that this only exists on Broadwell GT3.
  1822. */
  1823. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  1824. {
  1825. struct drm_i915_private *dev_priv = dev->dev_private;
  1826. struct intel_ring_buffer *ring = &dev_priv->ring[VCS2];
  1827. if ((INTEL_INFO(dev)->gen != 8)) {
  1828. DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
  1829. return -EINVAL;
  1830. }
  1831. ring->name = "bds2_ring";
  1832. ring->id = VCS2;
  1833. ring->write_tail = ring_write_tail;
  1834. ring->mmio_base = GEN8_BSD2_RING_BASE;
  1835. ring->flush = gen6_bsd_ring_flush;
  1836. ring->add_request = gen6_add_request;
  1837. ring->get_seqno = gen6_ring_get_seqno;
  1838. ring->set_seqno = ring_set_seqno;
  1839. ring->irq_enable_mask =
  1840. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  1841. ring->irq_get = gen8_ring_get_irq;
  1842. ring->irq_put = gen8_ring_put_irq;
  1843. ring->dispatch_execbuffer =
  1844. gen8_ring_dispatch_execbuffer;
  1845. ring->semaphore.sync_to = gen6_ring_sync;
  1846. /*
  1847. * The current semaphore is only applied on the pre-gen8. And there
  1848. * is no bsd2 ring on the pre-gen8. So now the semaphore_register
  1849. * between VCS2 and other ring is initialized as invalid.
  1850. * Gen8 will initialize the sema between VCS2 and other ring later.
  1851. */
  1852. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1853. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  1854. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  1855. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  1856. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1857. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  1858. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  1859. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  1860. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  1861. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1862. ring->init = init_ring_common;
  1863. return intel_init_ring_buffer(dev, ring);
  1864. }
  1865. int intel_init_blt_ring_buffer(struct drm_device *dev)
  1866. {
  1867. struct drm_i915_private *dev_priv = dev->dev_private;
  1868. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  1869. ring->name = "blitter ring";
  1870. ring->id = BCS;
  1871. ring->mmio_base = BLT_RING_BASE;
  1872. ring->write_tail = ring_write_tail;
  1873. ring->flush = gen6_ring_flush;
  1874. ring->add_request = gen6_add_request;
  1875. ring->get_seqno = gen6_ring_get_seqno;
  1876. ring->set_seqno = ring_set_seqno;
  1877. if (INTEL_INFO(dev)->gen >= 8) {
  1878. ring->irq_enable_mask =
  1879. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  1880. ring->irq_get = gen8_ring_get_irq;
  1881. ring->irq_put = gen8_ring_put_irq;
  1882. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1883. } else {
  1884. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  1885. ring->irq_get = gen6_ring_get_irq;
  1886. ring->irq_put = gen6_ring_put_irq;
  1887. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1888. }
  1889. ring->semaphore.sync_to = gen6_ring_sync;
  1890. ring->semaphore.signal = gen6_signal;
  1891. /*
  1892. * The current semaphore is only applied on pre-gen8 platform. And
  1893. * there is no VCS2 ring on the pre-gen8 platform. So the semaphore
  1894. * between BCS and VCS2 is initialized as INVALID.
  1895. * Gen8 will initialize the sema between BCS and VCS2 later.
  1896. */
  1897. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  1898. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  1899. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  1900. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  1901. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1902. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  1903. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  1904. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  1905. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  1906. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1907. ring->init = init_ring_common;
  1908. return intel_init_ring_buffer(dev, ring);
  1909. }
  1910. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  1911. {
  1912. struct drm_i915_private *dev_priv = dev->dev_private;
  1913. struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
  1914. ring->name = "video enhancement ring";
  1915. ring->id = VECS;
  1916. ring->mmio_base = VEBOX_RING_BASE;
  1917. ring->write_tail = ring_write_tail;
  1918. ring->flush = gen6_ring_flush;
  1919. ring->add_request = gen6_add_request;
  1920. ring->get_seqno = gen6_ring_get_seqno;
  1921. ring->set_seqno = ring_set_seqno;
  1922. if (INTEL_INFO(dev)->gen >= 8) {
  1923. ring->irq_enable_mask =
  1924. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  1925. ring->irq_get = gen8_ring_get_irq;
  1926. ring->irq_put = gen8_ring_put_irq;
  1927. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1928. } else {
  1929. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  1930. ring->irq_get = hsw_vebox_get_irq;
  1931. ring->irq_put = hsw_vebox_put_irq;
  1932. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1933. }
  1934. ring->semaphore.sync_to = gen6_ring_sync;
  1935. ring->semaphore.signal = gen6_signal;
  1936. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  1937. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  1938. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  1939. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  1940. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1941. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  1942. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  1943. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  1944. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  1945. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1946. ring->init = init_ring_common;
  1947. return intel_init_ring_buffer(dev, ring);
  1948. }
  1949. int
  1950. intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
  1951. {
  1952. int ret;
  1953. if (!ring->gpu_caches_dirty)
  1954. return 0;
  1955. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  1956. if (ret)
  1957. return ret;
  1958. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  1959. ring->gpu_caches_dirty = false;
  1960. return 0;
  1961. }
  1962. int
  1963. intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
  1964. {
  1965. uint32_t flush_domains;
  1966. int ret;
  1967. flush_domains = 0;
  1968. if (ring->gpu_caches_dirty)
  1969. flush_domains = I915_GEM_GPU_DOMAINS;
  1970. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  1971. if (ret)
  1972. return ret;
  1973. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  1974. ring->gpu_caches_dirty = false;
  1975. return 0;
  1976. }
  1977. void
  1978. intel_stop_ring_buffer(struct intel_ring_buffer *ring)
  1979. {
  1980. int ret;
  1981. if (!intel_ring_initialized(ring))
  1982. return;
  1983. ret = intel_ring_idle(ring);
  1984. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  1985. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  1986. ring->name, ret);
  1987. stop_ring(ring);
  1988. }