core.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758
  1. /*
  2. * Core driver for the Synopsys DesignWare DMA Controller
  3. *
  4. * Copyright (C) 2007-2008 Atmel Corporation
  5. * Copyright (C) 2010-2011 ST Microelectronics
  6. * Copyright (C) 2013 Intel Corporation
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/bitops.h>
  13. #include <linux/delay.h>
  14. #include <linux/dmaengine.h>
  15. #include <linux/dma-mapping.h>
  16. #include <linux/dmapool.h>
  17. #include <linux/err.h>
  18. #include <linux/init.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/io.h>
  21. #include <linux/mm.h>
  22. #include <linux/module.h>
  23. #include <linux/slab.h>
  24. #include <linux/pm_runtime.h>
  25. #include "../dmaengine.h"
  26. #include "internal.h"
  27. /*
  28. * This supports the Synopsys "DesignWare AHB Central DMA Controller",
  29. * (DW_ahb_dmac) which is used with various AMBA 2.0 systems (not all
  30. * of which use ARM any more). See the "Databook" from Synopsys for
  31. * information beyond what licensees probably provide.
  32. *
  33. * The driver has been tested with the Atmel AT32AP7000, which does not
  34. * support descriptor writeback.
  35. */
  36. #define DWC_DEFAULT_CTLLO(_chan) ({ \
  37. struct dw_dma_chan *_dwc = to_dw_dma_chan(_chan); \
  38. struct dma_slave_config *_sconfig = &_dwc->dma_sconfig; \
  39. bool _is_slave = is_slave_direction(_dwc->direction); \
  40. u8 _smsize = _is_slave ? _sconfig->src_maxburst : \
  41. DW_DMA_MSIZE_16; \
  42. u8 _dmsize = _is_slave ? _sconfig->dst_maxburst : \
  43. DW_DMA_MSIZE_16; \
  44. u8 _dms = (_dwc->direction == DMA_MEM_TO_DEV) ? \
  45. _dwc->p_master : _dwc->m_master; \
  46. u8 _sms = (_dwc->direction == DMA_DEV_TO_MEM) ? \
  47. _dwc->p_master : _dwc->m_master; \
  48. \
  49. (DWC_CTLL_DST_MSIZE(_dmsize) \
  50. | DWC_CTLL_SRC_MSIZE(_smsize) \
  51. | DWC_CTLL_LLP_D_EN \
  52. | DWC_CTLL_LLP_S_EN \
  53. | DWC_CTLL_DMS(_dms) \
  54. | DWC_CTLL_SMS(_sms)); \
  55. })
  56. /*
  57. * Number of descriptors to allocate for each channel. This should be
  58. * made configurable somehow; preferably, the clients (at least the
  59. * ones using slave transfers) should be able to give us a hint.
  60. */
  61. #define NR_DESCS_PER_CHANNEL 64
  62. /* The set of bus widths supported by the DMA controller */
  63. #define DW_DMA_BUSWIDTHS \
  64. BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
  65. BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
  66. BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
  67. BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
  68. /*----------------------------------------------------------------------*/
  69. static struct device *chan2dev(struct dma_chan *chan)
  70. {
  71. return &chan->dev->device;
  72. }
  73. static struct dw_desc *dwc_first_active(struct dw_dma_chan *dwc)
  74. {
  75. return to_dw_desc(dwc->active_list.next);
  76. }
  77. static struct dw_desc *dwc_desc_get(struct dw_dma_chan *dwc)
  78. {
  79. struct dw_desc *desc, *_desc;
  80. struct dw_desc *ret = NULL;
  81. unsigned int i = 0;
  82. unsigned long flags;
  83. spin_lock_irqsave(&dwc->lock, flags);
  84. list_for_each_entry_safe(desc, _desc, &dwc->free_list, desc_node) {
  85. i++;
  86. if (async_tx_test_ack(&desc->txd)) {
  87. list_del(&desc->desc_node);
  88. ret = desc;
  89. break;
  90. }
  91. dev_dbg(chan2dev(&dwc->chan), "desc %p not ACKed\n", desc);
  92. }
  93. spin_unlock_irqrestore(&dwc->lock, flags);
  94. dev_vdbg(chan2dev(&dwc->chan), "scanned %u descriptors on freelist\n", i);
  95. return ret;
  96. }
  97. /*
  98. * Move a descriptor, including any children, to the free list.
  99. * `desc' must not be on any lists.
  100. */
  101. static void dwc_desc_put(struct dw_dma_chan *dwc, struct dw_desc *desc)
  102. {
  103. unsigned long flags;
  104. if (desc) {
  105. struct dw_desc *child;
  106. spin_lock_irqsave(&dwc->lock, flags);
  107. list_for_each_entry(child, &desc->tx_list, desc_node)
  108. dev_vdbg(chan2dev(&dwc->chan),
  109. "moving child desc %p to freelist\n",
  110. child);
  111. list_splice_init(&desc->tx_list, &dwc->free_list);
  112. dev_vdbg(chan2dev(&dwc->chan), "moving desc %p to freelist\n", desc);
  113. list_add(&desc->desc_node, &dwc->free_list);
  114. spin_unlock_irqrestore(&dwc->lock, flags);
  115. }
  116. }
  117. static void dwc_initialize(struct dw_dma_chan *dwc)
  118. {
  119. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  120. u32 cfghi = DWC_CFGH_FIFO_MODE;
  121. u32 cfglo = DWC_CFGL_CH_PRIOR(dwc->priority);
  122. if (dwc->initialized == true)
  123. return;
  124. cfghi |= DWC_CFGH_DST_PER(dwc->dst_id);
  125. cfghi |= DWC_CFGH_SRC_PER(dwc->src_id);
  126. channel_writel(dwc, CFG_LO, cfglo);
  127. channel_writel(dwc, CFG_HI, cfghi);
  128. /* Enable interrupts */
  129. channel_set_bit(dw, MASK.XFER, dwc->mask);
  130. channel_set_bit(dw, MASK.ERROR, dwc->mask);
  131. dwc->initialized = true;
  132. }
  133. /*----------------------------------------------------------------------*/
  134. static inline unsigned int dwc_fast_ffs(unsigned long long v)
  135. {
  136. /*
  137. * We can be a lot more clever here, but this should take care
  138. * of the most common optimization.
  139. */
  140. if (!(v & 7))
  141. return 3;
  142. else if (!(v & 3))
  143. return 2;
  144. else if (!(v & 1))
  145. return 1;
  146. return 0;
  147. }
  148. static inline void dwc_dump_chan_regs(struct dw_dma_chan *dwc)
  149. {
  150. dev_err(chan2dev(&dwc->chan),
  151. " SAR: 0x%x DAR: 0x%x LLP: 0x%x CTL: 0x%x:%08x\n",
  152. channel_readl(dwc, SAR),
  153. channel_readl(dwc, DAR),
  154. channel_readl(dwc, LLP),
  155. channel_readl(dwc, CTL_HI),
  156. channel_readl(dwc, CTL_LO));
  157. }
  158. static inline void dwc_chan_disable(struct dw_dma *dw, struct dw_dma_chan *dwc)
  159. {
  160. channel_clear_bit(dw, CH_EN, dwc->mask);
  161. while (dma_readl(dw, CH_EN) & dwc->mask)
  162. cpu_relax();
  163. }
  164. /*----------------------------------------------------------------------*/
  165. /* Perform single block transfer */
  166. static inline void dwc_do_single_block(struct dw_dma_chan *dwc,
  167. struct dw_desc *desc)
  168. {
  169. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  170. u32 ctllo;
  171. /*
  172. * Software emulation of LLP mode relies on interrupts to continue
  173. * multi block transfer.
  174. */
  175. ctllo = lli_read(desc, ctllo) | DWC_CTLL_INT_EN;
  176. channel_writel(dwc, SAR, lli_read(desc, sar));
  177. channel_writel(dwc, DAR, lli_read(desc, dar));
  178. channel_writel(dwc, CTL_LO, ctllo);
  179. channel_writel(dwc, CTL_HI, lli_read(desc, ctlhi));
  180. channel_set_bit(dw, CH_EN, dwc->mask);
  181. /* Move pointer to next descriptor */
  182. dwc->tx_node_active = dwc->tx_node_active->next;
  183. }
  184. /* Called with dwc->lock held and bh disabled */
  185. static void dwc_dostart(struct dw_dma_chan *dwc, struct dw_desc *first)
  186. {
  187. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  188. u8 lms = DWC_LLP_LMS(dwc->m_master);
  189. unsigned long was_soft_llp;
  190. /* ASSERT: channel is idle */
  191. if (dma_readl(dw, CH_EN) & dwc->mask) {
  192. dev_err(chan2dev(&dwc->chan),
  193. "%s: BUG: Attempted to start non-idle channel\n",
  194. __func__);
  195. dwc_dump_chan_regs(dwc);
  196. /* The tasklet will hopefully advance the queue... */
  197. return;
  198. }
  199. if (dwc->nollp) {
  200. was_soft_llp = test_and_set_bit(DW_DMA_IS_SOFT_LLP,
  201. &dwc->flags);
  202. if (was_soft_llp) {
  203. dev_err(chan2dev(&dwc->chan),
  204. "BUG: Attempted to start new LLP transfer inside ongoing one\n");
  205. return;
  206. }
  207. dwc_initialize(dwc);
  208. dwc->residue = first->total_len;
  209. dwc->tx_node_active = &first->tx_list;
  210. /* Submit first block */
  211. dwc_do_single_block(dwc, first);
  212. return;
  213. }
  214. dwc_initialize(dwc);
  215. channel_writel(dwc, LLP, first->txd.phys | lms);
  216. channel_writel(dwc, CTL_LO, DWC_CTLL_LLP_D_EN | DWC_CTLL_LLP_S_EN);
  217. channel_writel(dwc, CTL_HI, 0);
  218. channel_set_bit(dw, CH_EN, dwc->mask);
  219. }
  220. static void dwc_dostart_first_queued(struct dw_dma_chan *dwc)
  221. {
  222. struct dw_desc *desc;
  223. if (list_empty(&dwc->queue))
  224. return;
  225. list_move(dwc->queue.next, &dwc->active_list);
  226. desc = dwc_first_active(dwc);
  227. dev_vdbg(chan2dev(&dwc->chan), "%s: started %u\n", __func__, desc->txd.cookie);
  228. dwc_dostart(dwc, desc);
  229. }
  230. /*----------------------------------------------------------------------*/
  231. static void
  232. dwc_descriptor_complete(struct dw_dma_chan *dwc, struct dw_desc *desc,
  233. bool callback_required)
  234. {
  235. dma_async_tx_callback callback = NULL;
  236. void *param = NULL;
  237. struct dma_async_tx_descriptor *txd = &desc->txd;
  238. struct dw_desc *child;
  239. unsigned long flags;
  240. dev_vdbg(chan2dev(&dwc->chan), "descriptor %u complete\n", txd->cookie);
  241. spin_lock_irqsave(&dwc->lock, flags);
  242. dma_cookie_complete(txd);
  243. if (callback_required) {
  244. callback = txd->callback;
  245. param = txd->callback_param;
  246. }
  247. /* async_tx_ack */
  248. list_for_each_entry(child, &desc->tx_list, desc_node)
  249. async_tx_ack(&child->txd);
  250. async_tx_ack(&desc->txd);
  251. list_splice_init(&desc->tx_list, &dwc->free_list);
  252. list_move(&desc->desc_node, &dwc->free_list);
  253. dma_descriptor_unmap(txd);
  254. spin_unlock_irqrestore(&dwc->lock, flags);
  255. if (callback)
  256. callback(param);
  257. }
  258. static void dwc_complete_all(struct dw_dma *dw, struct dw_dma_chan *dwc)
  259. {
  260. struct dw_desc *desc, *_desc;
  261. LIST_HEAD(list);
  262. unsigned long flags;
  263. spin_lock_irqsave(&dwc->lock, flags);
  264. if (dma_readl(dw, CH_EN) & dwc->mask) {
  265. dev_err(chan2dev(&dwc->chan),
  266. "BUG: XFER bit set, but channel not idle!\n");
  267. /* Try to continue after resetting the channel... */
  268. dwc_chan_disable(dw, dwc);
  269. }
  270. /*
  271. * Submit queued descriptors ASAP, i.e. before we go through
  272. * the completed ones.
  273. */
  274. list_splice_init(&dwc->active_list, &list);
  275. dwc_dostart_first_queued(dwc);
  276. spin_unlock_irqrestore(&dwc->lock, flags);
  277. list_for_each_entry_safe(desc, _desc, &list, desc_node)
  278. dwc_descriptor_complete(dwc, desc, true);
  279. }
  280. /* Returns how many bytes were already received from source */
  281. static inline u32 dwc_get_sent(struct dw_dma_chan *dwc)
  282. {
  283. u32 ctlhi = channel_readl(dwc, CTL_HI);
  284. u32 ctllo = channel_readl(dwc, CTL_LO);
  285. return (ctlhi & DWC_CTLH_BLOCK_TS_MASK) * (1 << (ctllo >> 4 & 7));
  286. }
  287. static void dwc_scan_descriptors(struct dw_dma *dw, struct dw_dma_chan *dwc)
  288. {
  289. dma_addr_t llp;
  290. struct dw_desc *desc, *_desc;
  291. struct dw_desc *child;
  292. u32 status_xfer;
  293. unsigned long flags;
  294. spin_lock_irqsave(&dwc->lock, flags);
  295. llp = channel_readl(dwc, LLP);
  296. status_xfer = dma_readl(dw, RAW.XFER);
  297. if (status_xfer & dwc->mask) {
  298. /* Everything we've submitted is done */
  299. dma_writel(dw, CLEAR.XFER, dwc->mask);
  300. if (test_bit(DW_DMA_IS_SOFT_LLP, &dwc->flags)) {
  301. struct list_head *head, *active = dwc->tx_node_active;
  302. /*
  303. * We are inside first active descriptor.
  304. * Otherwise something is really wrong.
  305. */
  306. desc = dwc_first_active(dwc);
  307. head = &desc->tx_list;
  308. if (active != head) {
  309. /* Update desc to reflect last sent one */
  310. if (active != head->next)
  311. desc = to_dw_desc(active->prev);
  312. dwc->residue -= desc->len;
  313. child = to_dw_desc(active);
  314. /* Submit next block */
  315. dwc_do_single_block(dwc, child);
  316. spin_unlock_irqrestore(&dwc->lock, flags);
  317. return;
  318. }
  319. /* We are done here */
  320. clear_bit(DW_DMA_IS_SOFT_LLP, &dwc->flags);
  321. }
  322. dwc->residue = 0;
  323. spin_unlock_irqrestore(&dwc->lock, flags);
  324. dwc_complete_all(dw, dwc);
  325. return;
  326. }
  327. if (list_empty(&dwc->active_list)) {
  328. dwc->residue = 0;
  329. spin_unlock_irqrestore(&dwc->lock, flags);
  330. return;
  331. }
  332. if (test_bit(DW_DMA_IS_SOFT_LLP, &dwc->flags)) {
  333. dev_vdbg(chan2dev(&dwc->chan), "%s: soft LLP mode\n", __func__);
  334. spin_unlock_irqrestore(&dwc->lock, flags);
  335. return;
  336. }
  337. dev_vdbg(chan2dev(&dwc->chan), "%s: llp=%pad\n", __func__, &llp);
  338. list_for_each_entry_safe(desc, _desc, &dwc->active_list, desc_node) {
  339. /* Initial residue value */
  340. dwc->residue = desc->total_len;
  341. /* Check first descriptors addr */
  342. if (desc->txd.phys == DWC_LLP_LOC(llp)) {
  343. spin_unlock_irqrestore(&dwc->lock, flags);
  344. return;
  345. }
  346. /* Check first descriptors llp */
  347. if (lli_read(desc, llp) == llp) {
  348. /* This one is currently in progress */
  349. dwc->residue -= dwc_get_sent(dwc);
  350. spin_unlock_irqrestore(&dwc->lock, flags);
  351. return;
  352. }
  353. dwc->residue -= desc->len;
  354. list_for_each_entry(child, &desc->tx_list, desc_node) {
  355. if (lli_read(child, llp) == llp) {
  356. /* Currently in progress */
  357. dwc->residue -= dwc_get_sent(dwc);
  358. spin_unlock_irqrestore(&dwc->lock, flags);
  359. return;
  360. }
  361. dwc->residue -= child->len;
  362. }
  363. /*
  364. * No descriptors so far seem to be in progress, i.e.
  365. * this one must be done.
  366. */
  367. spin_unlock_irqrestore(&dwc->lock, flags);
  368. dwc_descriptor_complete(dwc, desc, true);
  369. spin_lock_irqsave(&dwc->lock, flags);
  370. }
  371. dev_err(chan2dev(&dwc->chan),
  372. "BUG: All descriptors done, but channel not idle!\n");
  373. /* Try to continue after resetting the channel... */
  374. dwc_chan_disable(dw, dwc);
  375. dwc_dostart_first_queued(dwc);
  376. spin_unlock_irqrestore(&dwc->lock, flags);
  377. }
  378. static inline void dwc_dump_lli(struct dw_dma_chan *dwc, struct dw_desc *desc)
  379. {
  380. dev_crit(chan2dev(&dwc->chan), " desc: s0x%x d0x%x l0x%x c0x%x:%x\n",
  381. lli_read(desc, sar),
  382. lli_read(desc, dar),
  383. lli_read(desc, llp),
  384. lli_read(desc, ctlhi),
  385. lli_read(desc, ctllo));
  386. }
  387. static void dwc_handle_error(struct dw_dma *dw, struct dw_dma_chan *dwc)
  388. {
  389. struct dw_desc *bad_desc;
  390. struct dw_desc *child;
  391. unsigned long flags;
  392. dwc_scan_descriptors(dw, dwc);
  393. spin_lock_irqsave(&dwc->lock, flags);
  394. /*
  395. * The descriptor currently at the head of the active list is
  396. * borked. Since we don't have any way to report errors, we'll
  397. * just have to scream loudly and try to carry on.
  398. */
  399. bad_desc = dwc_first_active(dwc);
  400. list_del_init(&bad_desc->desc_node);
  401. list_move(dwc->queue.next, dwc->active_list.prev);
  402. /* Clear the error flag and try to restart the controller */
  403. dma_writel(dw, CLEAR.ERROR, dwc->mask);
  404. if (!list_empty(&dwc->active_list))
  405. dwc_dostart(dwc, dwc_first_active(dwc));
  406. /*
  407. * WARN may seem harsh, but since this only happens
  408. * when someone submits a bad physical address in a
  409. * descriptor, we should consider ourselves lucky that the
  410. * controller flagged an error instead of scribbling over
  411. * random memory locations.
  412. */
  413. dev_WARN(chan2dev(&dwc->chan), "Bad descriptor submitted for DMA!\n"
  414. " cookie: %d\n", bad_desc->txd.cookie);
  415. dwc_dump_lli(dwc, bad_desc);
  416. list_for_each_entry(child, &bad_desc->tx_list, desc_node)
  417. dwc_dump_lli(dwc, child);
  418. spin_unlock_irqrestore(&dwc->lock, flags);
  419. /* Pretend the descriptor completed successfully */
  420. dwc_descriptor_complete(dwc, bad_desc, true);
  421. }
  422. /* --------------------- Cyclic DMA API extensions -------------------- */
  423. dma_addr_t dw_dma_get_src_addr(struct dma_chan *chan)
  424. {
  425. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  426. return channel_readl(dwc, SAR);
  427. }
  428. EXPORT_SYMBOL(dw_dma_get_src_addr);
  429. dma_addr_t dw_dma_get_dst_addr(struct dma_chan *chan)
  430. {
  431. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  432. return channel_readl(dwc, DAR);
  433. }
  434. EXPORT_SYMBOL(dw_dma_get_dst_addr);
  435. /* Called with dwc->lock held and all DMAC interrupts disabled */
  436. static void dwc_handle_cyclic(struct dw_dma *dw, struct dw_dma_chan *dwc,
  437. u32 status_block, u32 status_err, u32 status_xfer)
  438. {
  439. unsigned long flags;
  440. if (status_block & dwc->mask) {
  441. void (*callback)(void *param);
  442. void *callback_param;
  443. dev_vdbg(chan2dev(&dwc->chan), "new cyclic period llp 0x%08x\n",
  444. channel_readl(dwc, LLP));
  445. dma_writel(dw, CLEAR.BLOCK, dwc->mask);
  446. callback = dwc->cdesc->period_callback;
  447. callback_param = dwc->cdesc->period_callback_param;
  448. if (callback)
  449. callback(callback_param);
  450. }
  451. /*
  452. * Error and transfer complete are highly unlikely, and will most
  453. * likely be due to a configuration error by the user.
  454. */
  455. if (unlikely(status_err & dwc->mask) ||
  456. unlikely(status_xfer & dwc->mask)) {
  457. unsigned int i;
  458. dev_err(chan2dev(&dwc->chan),
  459. "cyclic DMA unexpected %s interrupt, stopping DMA transfer\n",
  460. status_xfer ? "xfer" : "error");
  461. spin_lock_irqsave(&dwc->lock, flags);
  462. dwc_dump_chan_regs(dwc);
  463. dwc_chan_disable(dw, dwc);
  464. /* Make sure DMA does not restart by loading a new list */
  465. channel_writel(dwc, LLP, 0);
  466. channel_writel(dwc, CTL_LO, 0);
  467. channel_writel(dwc, CTL_HI, 0);
  468. dma_writel(dw, CLEAR.BLOCK, dwc->mask);
  469. dma_writel(dw, CLEAR.ERROR, dwc->mask);
  470. dma_writel(dw, CLEAR.XFER, dwc->mask);
  471. for (i = 0; i < dwc->cdesc->periods; i++)
  472. dwc_dump_lli(dwc, dwc->cdesc->desc[i]);
  473. spin_unlock_irqrestore(&dwc->lock, flags);
  474. }
  475. /* Re-enable interrupts */
  476. channel_set_bit(dw, MASK.BLOCK, dwc->mask);
  477. }
  478. /* ------------------------------------------------------------------------- */
  479. static void dw_dma_tasklet(unsigned long data)
  480. {
  481. struct dw_dma *dw = (struct dw_dma *)data;
  482. struct dw_dma_chan *dwc;
  483. u32 status_block;
  484. u32 status_xfer;
  485. u32 status_err;
  486. unsigned int i;
  487. status_block = dma_readl(dw, RAW.BLOCK);
  488. status_xfer = dma_readl(dw, RAW.XFER);
  489. status_err = dma_readl(dw, RAW.ERROR);
  490. dev_vdbg(dw->dma.dev, "%s: status_err=%x\n", __func__, status_err);
  491. for (i = 0; i < dw->dma.chancnt; i++) {
  492. dwc = &dw->chan[i];
  493. if (test_bit(DW_DMA_IS_CYCLIC, &dwc->flags))
  494. dwc_handle_cyclic(dw, dwc, status_block, status_err,
  495. status_xfer);
  496. else if (status_err & (1 << i))
  497. dwc_handle_error(dw, dwc);
  498. else if (status_xfer & (1 << i))
  499. dwc_scan_descriptors(dw, dwc);
  500. }
  501. /* Re-enable interrupts */
  502. channel_set_bit(dw, MASK.XFER, dw->all_chan_mask);
  503. channel_set_bit(dw, MASK.ERROR, dw->all_chan_mask);
  504. }
  505. static irqreturn_t dw_dma_interrupt(int irq, void *dev_id)
  506. {
  507. struct dw_dma *dw = dev_id;
  508. u32 status;
  509. /* Check if we have any interrupt from the DMAC which is not in use */
  510. if (!dw->in_use)
  511. return IRQ_NONE;
  512. status = dma_readl(dw, STATUS_INT);
  513. dev_vdbg(dw->dma.dev, "%s: status=0x%x\n", __func__, status);
  514. /* Check if we have any interrupt from the DMAC */
  515. if (!status)
  516. return IRQ_NONE;
  517. /*
  518. * Just disable the interrupts. We'll turn them back on in the
  519. * softirq handler.
  520. */
  521. channel_clear_bit(dw, MASK.XFER, dw->all_chan_mask);
  522. channel_clear_bit(dw, MASK.BLOCK, dw->all_chan_mask);
  523. channel_clear_bit(dw, MASK.ERROR, dw->all_chan_mask);
  524. status = dma_readl(dw, STATUS_INT);
  525. if (status) {
  526. dev_err(dw->dma.dev,
  527. "BUG: Unexpected interrupts pending: 0x%x\n",
  528. status);
  529. /* Try to recover */
  530. channel_clear_bit(dw, MASK.XFER, (1 << 8) - 1);
  531. channel_clear_bit(dw, MASK.BLOCK, (1 << 8) - 1);
  532. channel_clear_bit(dw, MASK.SRC_TRAN, (1 << 8) - 1);
  533. channel_clear_bit(dw, MASK.DST_TRAN, (1 << 8) - 1);
  534. channel_clear_bit(dw, MASK.ERROR, (1 << 8) - 1);
  535. }
  536. tasklet_schedule(&dw->tasklet);
  537. return IRQ_HANDLED;
  538. }
  539. /*----------------------------------------------------------------------*/
  540. static dma_cookie_t dwc_tx_submit(struct dma_async_tx_descriptor *tx)
  541. {
  542. struct dw_desc *desc = txd_to_dw_desc(tx);
  543. struct dw_dma_chan *dwc = to_dw_dma_chan(tx->chan);
  544. dma_cookie_t cookie;
  545. unsigned long flags;
  546. spin_lock_irqsave(&dwc->lock, flags);
  547. cookie = dma_cookie_assign(tx);
  548. /*
  549. * REVISIT: We should attempt to chain as many descriptors as
  550. * possible, perhaps even appending to those already submitted
  551. * for DMA. But this is hard to do in a race-free manner.
  552. */
  553. dev_vdbg(chan2dev(tx->chan), "%s: queued %u\n", __func__, desc->txd.cookie);
  554. list_add_tail(&desc->desc_node, &dwc->queue);
  555. spin_unlock_irqrestore(&dwc->lock, flags);
  556. return cookie;
  557. }
  558. static struct dma_async_tx_descriptor *
  559. dwc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  560. size_t len, unsigned long flags)
  561. {
  562. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  563. struct dw_dma *dw = to_dw_dma(chan->device);
  564. struct dw_desc *desc;
  565. struct dw_desc *first;
  566. struct dw_desc *prev;
  567. size_t xfer_count;
  568. size_t offset;
  569. unsigned int src_width;
  570. unsigned int dst_width;
  571. unsigned int data_width;
  572. u32 ctllo;
  573. u8 lms = DWC_LLP_LMS(dwc->m_master);
  574. dev_vdbg(chan2dev(chan),
  575. "%s: d%pad s%pad l0x%zx f0x%lx\n", __func__,
  576. &dest, &src, len, flags);
  577. if (unlikely(!len)) {
  578. dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
  579. return NULL;
  580. }
  581. dwc->direction = DMA_MEM_TO_MEM;
  582. data_width = dw->data_width[dwc->m_master];
  583. src_width = dst_width = min_t(unsigned int, data_width,
  584. dwc_fast_ffs(src | dest | len));
  585. ctllo = DWC_DEFAULT_CTLLO(chan)
  586. | DWC_CTLL_DST_WIDTH(dst_width)
  587. | DWC_CTLL_SRC_WIDTH(src_width)
  588. | DWC_CTLL_DST_INC
  589. | DWC_CTLL_SRC_INC
  590. | DWC_CTLL_FC_M2M;
  591. prev = first = NULL;
  592. for (offset = 0; offset < len; offset += xfer_count << src_width) {
  593. xfer_count = min_t(size_t, (len - offset) >> src_width,
  594. dwc->block_size);
  595. desc = dwc_desc_get(dwc);
  596. if (!desc)
  597. goto err_desc_get;
  598. lli_write(desc, sar, src + offset);
  599. lli_write(desc, dar, dest + offset);
  600. lli_write(desc, ctllo, ctllo);
  601. lli_write(desc, ctlhi, xfer_count);
  602. desc->len = xfer_count << src_width;
  603. if (!first) {
  604. first = desc;
  605. } else {
  606. lli_write(prev, llp, desc->txd.phys | lms);
  607. list_add_tail(&desc->desc_node, &first->tx_list);
  608. }
  609. prev = desc;
  610. }
  611. if (flags & DMA_PREP_INTERRUPT)
  612. /* Trigger interrupt after last block */
  613. lli_set(prev, ctllo, DWC_CTLL_INT_EN);
  614. prev->lli.llp = 0;
  615. lli_clear(prev, ctllo, DWC_CTLL_LLP_D_EN | DWC_CTLL_LLP_S_EN);
  616. first->txd.flags = flags;
  617. first->total_len = len;
  618. return &first->txd;
  619. err_desc_get:
  620. dwc_desc_put(dwc, first);
  621. return NULL;
  622. }
  623. static struct dma_async_tx_descriptor *
  624. dwc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
  625. unsigned int sg_len, enum dma_transfer_direction direction,
  626. unsigned long flags, void *context)
  627. {
  628. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  629. struct dw_dma *dw = to_dw_dma(chan->device);
  630. struct dma_slave_config *sconfig = &dwc->dma_sconfig;
  631. struct dw_desc *prev;
  632. struct dw_desc *first;
  633. u32 ctllo;
  634. u8 lms = DWC_LLP_LMS(dwc->m_master);
  635. dma_addr_t reg;
  636. unsigned int reg_width;
  637. unsigned int mem_width;
  638. unsigned int data_width;
  639. unsigned int i;
  640. struct scatterlist *sg;
  641. size_t total_len = 0;
  642. dev_vdbg(chan2dev(chan), "%s\n", __func__);
  643. if (unlikely(!is_slave_direction(direction) || !sg_len))
  644. return NULL;
  645. dwc->direction = direction;
  646. prev = first = NULL;
  647. switch (direction) {
  648. case DMA_MEM_TO_DEV:
  649. reg_width = __ffs(sconfig->dst_addr_width);
  650. reg = sconfig->dst_addr;
  651. ctllo = (DWC_DEFAULT_CTLLO(chan)
  652. | DWC_CTLL_DST_WIDTH(reg_width)
  653. | DWC_CTLL_DST_FIX
  654. | DWC_CTLL_SRC_INC);
  655. ctllo |= sconfig->device_fc ? DWC_CTLL_FC(DW_DMA_FC_P_M2P) :
  656. DWC_CTLL_FC(DW_DMA_FC_D_M2P);
  657. data_width = dw->data_width[dwc->m_master];
  658. for_each_sg(sgl, sg, sg_len, i) {
  659. struct dw_desc *desc;
  660. u32 len, dlen, mem;
  661. mem = sg_dma_address(sg);
  662. len = sg_dma_len(sg);
  663. mem_width = min_t(unsigned int,
  664. data_width, dwc_fast_ffs(mem | len));
  665. slave_sg_todev_fill_desc:
  666. desc = dwc_desc_get(dwc);
  667. if (!desc)
  668. goto err_desc_get;
  669. lli_write(desc, sar, mem);
  670. lli_write(desc, dar, reg);
  671. lli_write(desc, ctllo, ctllo | DWC_CTLL_SRC_WIDTH(mem_width));
  672. if ((len >> mem_width) > dwc->block_size) {
  673. dlen = dwc->block_size << mem_width;
  674. mem += dlen;
  675. len -= dlen;
  676. } else {
  677. dlen = len;
  678. len = 0;
  679. }
  680. lli_write(desc, ctlhi, dlen >> mem_width);
  681. desc->len = dlen;
  682. if (!first) {
  683. first = desc;
  684. } else {
  685. lli_write(prev, llp, desc->txd.phys | lms);
  686. list_add_tail(&desc->desc_node, &first->tx_list);
  687. }
  688. prev = desc;
  689. total_len += dlen;
  690. if (len)
  691. goto slave_sg_todev_fill_desc;
  692. }
  693. break;
  694. case DMA_DEV_TO_MEM:
  695. reg_width = __ffs(sconfig->src_addr_width);
  696. reg = sconfig->src_addr;
  697. ctllo = (DWC_DEFAULT_CTLLO(chan)
  698. | DWC_CTLL_SRC_WIDTH(reg_width)
  699. | DWC_CTLL_DST_INC
  700. | DWC_CTLL_SRC_FIX);
  701. ctllo |= sconfig->device_fc ? DWC_CTLL_FC(DW_DMA_FC_P_P2M) :
  702. DWC_CTLL_FC(DW_DMA_FC_D_P2M);
  703. data_width = dw->data_width[dwc->m_master];
  704. for_each_sg(sgl, sg, sg_len, i) {
  705. struct dw_desc *desc;
  706. u32 len, dlen, mem;
  707. mem = sg_dma_address(sg);
  708. len = sg_dma_len(sg);
  709. mem_width = min_t(unsigned int,
  710. data_width, dwc_fast_ffs(mem | len));
  711. slave_sg_fromdev_fill_desc:
  712. desc = dwc_desc_get(dwc);
  713. if (!desc)
  714. goto err_desc_get;
  715. lli_write(desc, sar, reg);
  716. lli_write(desc, dar, mem);
  717. lli_write(desc, ctllo, ctllo | DWC_CTLL_DST_WIDTH(mem_width));
  718. if ((len >> reg_width) > dwc->block_size) {
  719. dlen = dwc->block_size << reg_width;
  720. mem += dlen;
  721. len -= dlen;
  722. } else {
  723. dlen = len;
  724. len = 0;
  725. }
  726. lli_write(desc, ctlhi, dlen >> reg_width);
  727. desc->len = dlen;
  728. if (!first) {
  729. first = desc;
  730. } else {
  731. lli_write(prev, llp, desc->txd.phys | lms);
  732. list_add_tail(&desc->desc_node, &first->tx_list);
  733. }
  734. prev = desc;
  735. total_len += dlen;
  736. if (len)
  737. goto slave_sg_fromdev_fill_desc;
  738. }
  739. break;
  740. default:
  741. return NULL;
  742. }
  743. if (flags & DMA_PREP_INTERRUPT)
  744. /* Trigger interrupt after last block */
  745. lli_set(prev, ctllo, DWC_CTLL_INT_EN);
  746. prev->lli.llp = 0;
  747. lli_clear(prev, ctllo, DWC_CTLL_LLP_D_EN | DWC_CTLL_LLP_S_EN);
  748. first->total_len = total_len;
  749. return &first->txd;
  750. err_desc_get:
  751. dev_err(chan2dev(chan),
  752. "not enough descriptors available. Direction %d\n", direction);
  753. dwc_desc_put(dwc, first);
  754. return NULL;
  755. }
  756. bool dw_dma_filter(struct dma_chan *chan, void *param)
  757. {
  758. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  759. struct dw_dma_slave *dws = param;
  760. if (dws->dma_dev != chan->device->dev)
  761. return false;
  762. /* We have to copy data since dws can be temporary storage */
  763. dwc->src_id = dws->src_id;
  764. dwc->dst_id = dws->dst_id;
  765. dwc->m_master = dws->m_master;
  766. dwc->p_master = dws->p_master;
  767. return true;
  768. }
  769. EXPORT_SYMBOL_GPL(dw_dma_filter);
  770. /*
  771. * Fix sconfig's burst size according to dw_dmac. We need to convert them as:
  772. * 1 -> 0, 4 -> 1, 8 -> 2, 16 -> 3.
  773. *
  774. * NOTE: burst size 2 is not supported by controller.
  775. *
  776. * This can be done by finding least significant bit set: n & (n - 1)
  777. */
  778. static inline void convert_burst(u32 *maxburst)
  779. {
  780. if (*maxburst > 1)
  781. *maxburst = fls(*maxburst) - 2;
  782. else
  783. *maxburst = 0;
  784. }
  785. static int dwc_config(struct dma_chan *chan, struct dma_slave_config *sconfig)
  786. {
  787. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  788. /* Check if chan will be configured for slave transfers */
  789. if (!is_slave_direction(sconfig->direction))
  790. return -EINVAL;
  791. memcpy(&dwc->dma_sconfig, sconfig, sizeof(*sconfig));
  792. dwc->direction = sconfig->direction;
  793. convert_burst(&dwc->dma_sconfig.src_maxburst);
  794. convert_burst(&dwc->dma_sconfig.dst_maxburst);
  795. return 0;
  796. }
  797. static int dwc_pause(struct dma_chan *chan)
  798. {
  799. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  800. unsigned long flags;
  801. unsigned int count = 20; /* timeout iterations */
  802. u32 cfglo;
  803. spin_lock_irqsave(&dwc->lock, flags);
  804. cfglo = channel_readl(dwc, CFG_LO);
  805. channel_writel(dwc, CFG_LO, cfglo | DWC_CFGL_CH_SUSP);
  806. while (!(channel_readl(dwc, CFG_LO) & DWC_CFGL_FIFO_EMPTY) && count--)
  807. udelay(2);
  808. dwc->paused = true;
  809. spin_unlock_irqrestore(&dwc->lock, flags);
  810. return 0;
  811. }
  812. static inline void dwc_chan_resume(struct dw_dma_chan *dwc)
  813. {
  814. u32 cfglo = channel_readl(dwc, CFG_LO);
  815. channel_writel(dwc, CFG_LO, cfglo & ~DWC_CFGL_CH_SUSP);
  816. dwc->paused = false;
  817. }
  818. static int dwc_resume(struct dma_chan *chan)
  819. {
  820. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  821. unsigned long flags;
  822. if (!dwc->paused)
  823. return 0;
  824. spin_lock_irqsave(&dwc->lock, flags);
  825. dwc_chan_resume(dwc);
  826. spin_unlock_irqrestore(&dwc->lock, flags);
  827. return 0;
  828. }
  829. static int dwc_terminate_all(struct dma_chan *chan)
  830. {
  831. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  832. struct dw_dma *dw = to_dw_dma(chan->device);
  833. struct dw_desc *desc, *_desc;
  834. unsigned long flags;
  835. LIST_HEAD(list);
  836. spin_lock_irqsave(&dwc->lock, flags);
  837. clear_bit(DW_DMA_IS_SOFT_LLP, &dwc->flags);
  838. dwc_chan_disable(dw, dwc);
  839. dwc_chan_resume(dwc);
  840. /* active_list entries will end up before queued entries */
  841. list_splice_init(&dwc->queue, &list);
  842. list_splice_init(&dwc->active_list, &list);
  843. spin_unlock_irqrestore(&dwc->lock, flags);
  844. /* Flush all pending and queued descriptors */
  845. list_for_each_entry_safe(desc, _desc, &list, desc_node)
  846. dwc_descriptor_complete(dwc, desc, false);
  847. return 0;
  848. }
  849. static inline u32 dwc_get_residue(struct dw_dma_chan *dwc)
  850. {
  851. unsigned long flags;
  852. u32 residue;
  853. spin_lock_irqsave(&dwc->lock, flags);
  854. residue = dwc->residue;
  855. if (test_bit(DW_DMA_IS_SOFT_LLP, &dwc->flags) && residue)
  856. residue -= dwc_get_sent(dwc);
  857. spin_unlock_irqrestore(&dwc->lock, flags);
  858. return residue;
  859. }
  860. static enum dma_status
  861. dwc_tx_status(struct dma_chan *chan,
  862. dma_cookie_t cookie,
  863. struct dma_tx_state *txstate)
  864. {
  865. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  866. enum dma_status ret;
  867. ret = dma_cookie_status(chan, cookie, txstate);
  868. if (ret == DMA_COMPLETE)
  869. return ret;
  870. dwc_scan_descriptors(to_dw_dma(chan->device), dwc);
  871. ret = dma_cookie_status(chan, cookie, txstate);
  872. if (ret != DMA_COMPLETE)
  873. dma_set_residue(txstate, dwc_get_residue(dwc));
  874. if (dwc->paused && ret == DMA_IN_PROGRESS)
  875. return DMA_PAUSED;
  876. return ret;
  877. }
  878. static void dwc_issue_pending(struct dma_chan *chan)
  879. {
  880. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  881. unsigned long flags;
  882. spin_lock_irqsave(&dwc->lock, flags);
  883. if (list_empty(&dwc->active_list))
  884. dwc_dostart_first_queued(dwc);
  885. spin_unlock_irqrestore(&dwc->lock, flags);
  886. }
  887. /*----------------------------------------------------------------------*/
  888. static void dw_dma_off(struct dw_dma *dw)
  889. {
  890. unsigned int i;
  891. dma_writel(dw, CFG, 0);
  892. channel_clear_bit(dw, MASK.XFER, dw->all_chan_mask);
  893. channel_clear_bit(dw, MASK.BLOCK, dw->all_chan_mask);
  894. channel_clear_bit(dw, MASK.SRC_TRAN, dw->all_chan_mask);
  895. channel_clear_bit(dw, MASK.DST_TRAN, dw->all_chan_mask);
  896. channel_clear_bit(dw, MASK.ERROR, dw->all_chan_mask);
  897. while (dma_readl(dw, CFG) & DW_CFG_DMA_EN)
  898. cpu_relax();
  899. for (i = 0; i < dw->dma.chancnt; i++)
  900. dw->chan[i].initialized = false;
  901. }
  902. static void dw_dma_on(struct dw_dma *dw)
  903. {
  904. dma_writel(dw, CFG, DW_CFG_DMA_EN);
  905. }
  906. static int dwc_alloc_chan_resources(struct dma_chan *chan)
  907. {
  908. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  909. struct dw_dma *dw = to_dw_dma(chan->device);
  910. struct dw_desc *desc;
  911. int i;
  912. unsigned long flags;
  913. dev_vdbg(chan2dev(chan), "%s\n", __func__);
  914. /* ASSERT: channel is idle */
  915. if (dma_readl(dw, CH_EN) & dwc->mask) {
  916. dev_dbg(chan2dev(chan), "DMA channel not idle?\n");
  917. return -EIO;
  918. }
  919. dma_cookie_init(chan);
  920. /*
  921. * NOTE: some controllers may have additional features that we
  922. * need to initialize here, like "scatter-gather" (which
  923. * doesn't mean what you think it means), and status writeback.
  924. */
  925. /*
  926. * We need controller-specific data to set up slave transfers.
  927. */
  928. if (chan->private && !dw_dma_filter(chan, chan->private)) {
  929. dev_warn(chan2dev(chan), "Wrong controller-specific data\n");
  930. return -EINVAL;
  931. }
  932. /* Enable controller here if needed */
  933. if (!dw->in_use)
  934. dw_dma_on(dw);
  935. dw->in_use |= dwc->mask;
  936. spin_lock_irqsave(&dwc->lock, flags);
  937. i = dwc->descs_allocated;
  938. while (dwc->descs_allocated < NR_DESCS_PER_CHANNEL) {
  939. dma_addr_t phys;
  940. spin_unlock_irqrestore(&dwc->lock, flags);
  941. desc = dma_pool_alloc(dw->desc_pool, GFP_ATOMIC, &phys);
  942. if (!desc)
  943. goto err_desc_alloc;
  944. memset(desc, 0, sizeof(struct dw_desc));
  945. INIT_LIST_HEAD(&desc->tx_list);
  946. dma_async_tx_descriptor_init(&desc->txd, chan);
  947. desc->txd.tx_submit = dwc_tx_submit;
  948. desc->txd.flags = DMA_CTRL_ACK;
  949. desc->txd.phys = phys;
  950. dwc_desc_put(dwc, desc);
  951. spin_lock_irqsave(&dwc->lock, flags);
  952. i = ++dwc->descs_allocated;
  953. }
  954. spin_unlock_irqrestore(&dwc->lock, flags);
  955. dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i);
  956. return i;
  957. err_desc_alloc:
  958. dev_info(chan2dev(chan), "only allocated %d descriptors\n", i);
  959. return i;
  960. }
  961. static void dwc_free_chan_resources(struct dma_chan *chan)
  962. {
  963. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  964. struct dw_dma *dw = to_dw_dma(chan->device);
  965. struct dw_desc *desc, *_desc;
  966. unsigned long flags;
  967. LIST_HEAD(list);
  968. dev_dbg(chan2dev(chan), "%s: descs allocated=%u\n", __func__,
  969. dwc->descs_allocated);
  970. /* ASSERT: channel is idle */
  971. BUG_ON(!list_empty(&dwc->active_list));
  972. BUG_ON(!list_empty(&dwc->queue));
  973. BUG_ON(dma_readl(to_dw_dma(chan->device), CH_EN) & dwc->mask);
  974. spin_lock_irqsave(&dwc->lock, flags);
  975. list_splice_init(&dwc->free_list, &list);
  976. dwc->descs_allocated = 0;
  977. /* Clear custom channel configuration */
  978. dwc->src_id = 0;
  979. dwc->dst_id = 0;
  980. dwc->m_master = 0;
  981. dwc->p_master = 0;
  982. dwc->initialized = false;
  983. /* Disable interrupts */
  984. channel_clear_bit(dw, MASK.XFER, dwc->mask);
  985. channel_clear_bit(dw, MASK.BLOCK, dwc->mask);
  986. channel_clear_bit(dw, MASK.ERROR, dwc->mask);
  987. spin_unlock_irqrestore(&dwc->lock, flags);
  988. /* Disable controller in case it was a last user */
  989. dw->in_use &= ~dwc->mask;
  990. if (!dw->in_use)
  991. dw_dma_off(dw);
  992. list_for_each_entry_safe(desc, _desc, &list, desc_node) {
  993. dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc);
  994. dma_pool_free(dw->desc_pool, desc, desc->txd.phys);
  995. }
  996. dev_vdbg(chan2dev(chan), "%s: done\n", __func__);
  997. }
  998. /* --------------------- Cyclic DMA API extensions -------------------- */
  999. /**
  1000. * dw_dma_cyclic_start - start the cyclic DMA transfer
  1001. * @chan: the DMA channel to start
  1002. *
  1003. * Must be called with soft interrupts disabled. Returns zero on success or
  1004. * -errno on failure.
  1005. */
  1006. int dw_dma_cyclic_start(struct dma_chan *chan)
  1007. {
  1008. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  1009. struct dw_dma *dw = to_dw_dma(chan->device);
  1010. unsigned long flags;
  1011. if (!test_bit(DW_DMA_IS_CYCLIC, &dwc->flags)) {
  1012. dev_err(chan2dev(&dwc->chan), "missing prep for cyclic DMA\n");
  1013. return -ENODEV;
  1014. }
  1015. spin_lock_irqsave(&dwc->lock, flags);
  1016. /* Enable interrupts to perform cyclic transfer */
  1017. channel_set_bit(dw, MASK.BLOCK, dwc->mask);
  1018. dwc_dostart(dwc, dwc->cdesc->desc[0]);
  1019. spin_unlock_irqrestore(&dwc->lock, flags);
  1020. return 0;
  1021. }
  1022. EXPORT_SYMBOL(dw_dma_cyclic_start);
  1023. /**
  1024. * dw_dma_cyclic_stop - stop the cyclic DMA transfer
  1025. * @chan: the DMA channel to stop
  1026. *
  1027. * Must be called with soft interrupts disabled.
  1028. */
  1029. void dw_dma_cyclic_stop(struct dma_chan *chan)
  1030. {
  1031. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  1032. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  1033. unsigned long flags;
  1034. spin_lock_irqsave(&dwc->lock, flags);
  1035. dwc_chan_disable(dw, dwc);
  1036. spin_unlock_irqrestore(&dwc->lock, flags);
  1037. }
  1038. EXPORT_SYMBOL(dw_dma_cyclic_stop);
  1039. /**
  1040. * dw_dma_cyclic_prep - prepare the cyclic DMA transfer
  1041. * @chan: the DMA channel to prepare
  1042. * @buf_addr: physical DMA address where the buffer starts
  1043. * @buf_len: total number of bytes for the entire buffer
  1044. * @period_len: number of bytes for each period
  1045. * @direction: transfer direction, to or from device
  1046. *
  1047. * Must be called before trying to start the transfer. Returns a valid struct
  1048. * dw_cyclic_desc if successful or an ERR_PTR(-errno) if not successful.
  1049. */
  1050. struct dw_cyclic_desc *dw_dma_cyclic_prep(struct dma_chan *chan,
  1051. dma_addr_t buf_addr, size_t buf_len, size_t period_len,
  1052. enum dma_transfer_direction direction)
  1053. {
  1054. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  1055. struct dma_slave_config *sconfig = &dwc->dma_sconfig;
  1056. struct dw_cyclic_desc *cdesc;
  1057. struct dw_cyclic_desc *retval = NULL;
  1058. struct dw_desc *desc;
  1059. struct dw_desc *last = NULL;
  1060. u8 lms = DWC_LLP_LMS(dwc->m_master);
  1061. unsigned long was_cyclic;
  1062. unsigned int reg_width;
  1063. unsigned int periods;
  1064. unsigned int i;
  1065. unsigned long flags;
  1066. spin_lock_irqsave(&dwc->lock, flags);
  1067. if (dwc->nollp) {
  1068. spin_unlock_irqrestore(&dwc->lock, flags);
  1069. dev_dbg(chan2dev(&dwc->chan),
  1070. "channel doesn't support LLP transfers\n");
  1071. return ERR_PTR(-EINVAL);
  1072. }
  1073. if (!list_empty(&dwc->queue) || !list_empty(&dwc->active_list)) {
  1074. spin_unlock_irqrestore(&dwc->lock, flags);
  1075. dev_dbg(chan2dev(&dwc->chan),
  1076. "queue and/or active list are not empty\n");
  1077. return ERR_PTR(-EBUSY);
  1078. }
  1079. was_cyclic = test_and_set_bit(DW_DMA_IS_CYCLIC, &dwc->flags);
  1080. spin_unlock_irqrestore(&dwc->lock, flags);
  1081. if (was_cyclic) {
  1082. dev_dbg(chan2dev(&dwc->chan),
  1083. "channel already prepared for cyclic DMA\n");
  1084. return ERR_PTR(-EBUSY);
  1085. }
  1086. retval = ERR_PTR(-EINVAL);
  1087. if (unlikely(!is_slave_direction(direction)))
  1088. goto out_err;
  1089. dwc->direction = direction;
  1090. if (direction == DMA_MEM_TO_DEV)
  1091. reg_width = __ffs(sconfig->dst_addr_width);
  1092. else
  1093. reg_width = __ffs(sconfig->src_addr_width);
  1094. periods = buf_len / period_len;
  1095. /* Check for too big/unaligned periods and unaligned DMA buffer. */
  1096. if (period_len > (dwc->block_size << reg_width))
  1097. goto out_err;
  1098. if (unlikely(period_len & ((1 << reg_width) - 1)))
  1099. goto out_err;
  1100. if (unlikely(buf_addr & ((1 << reg_width) - 1)))
  1101. goto out_err;
  1102. retval = ERR_PTR(-ENOMEM);
  1103. if (periods > NR_DESCS_PER_CHANNEL)
  1104. goto out_err;
  1105. cdesc = kzalloc(sizeof(struct dw_cyclic_desc), GFP_KERNEL);
  1106. if (!cdesc)
  1107. goto out_err;
  1108. cdesc->desc = kzalloc(sizeof(struct dw_desc *) * periods, GFP_KERNEL);
  1109. if (!cdesc->desc)
  1110. goto out_err_alloc;
  1111. for (i = 0; i < periods; i++) {
  1112. desc = dwc_desc_get(dwc);
  1113. if (!desc)
  1114. goto out_err_desc_get;
  1115. switch (direction) {
  1116. case DMA_MEM_TO_DEV:
  1117. lli_write(desc, dar, sconfig->dst_addr);
  1118. lli_write(desc, sar, buf_addr + period_len * i);
  1119. lli_write(desc, ctllo, (DWC_DEFAULT_CTLLO(chan)
  1120. | DWC_CTLL_DST_WIDTH(reg_width)
  1121. | DWC_CTLL_SRC_WIDTH(reg_width)
  1122. | DWC_CTLL_DST_FIX
  1123. | DWC_CTLL_SRC_INC
  1124. | DWC_CTLL_INT_EN));
  1125. lli_set(desc, ctllo, sconfig->device_fc ?
  1126. DWC_CTLL_FC(DW_DMA_FC_P_M2P) :
  1127. DWC_CTLL_FC(DW_DMA_FC_D_M2P));
  1128. break;
  1129. case DMA_DEV_TO_MEM:
  1130. lli_write(desc, dar, buf_addr + period_len * i);
  1131. lli_write(desc, sar, sconfig->src_addr);
  1132. lli_write(desc, ctllo, (DWC_DEFAULT_CTLLO(chan)
  1133. | DWC_CTLL_SRC_WIDTH(reg_width)
  1134. | DWC_CTLL_DST_WIDTH(reg_width)
  1135. | DWC_CTLL_DST_INC
  1136. | DWC_CTLL_SRC_FIX
  1137. | DWC_CTLL_INT_EN));
  1138. lli_set(desc, ctllo, sconfig->device_fc ?
  1139. DWC_CTLL_FC(DW_DMA_FC_P_P2M) :
  1140. DWC_CTLL_FC(DW_DMA_FC_D_P2M));
  1141. break;
  1142. default:
  1143. break;
  1144. }
  1145. lli_write(desc, ctlhi, period_len >> reg_width);
  1146. cdesc->desc[i] = desc;
  1147. if (last)
  1148. lli_write(last, llp, desc->txd.phys | lms);
  1149. last = desc;
  1150. }
  1151. /* Let's make a cyclic list */
  1152. lli_write(last, llp, cdesc->desc[0]->txd.phys | lms);
  1153. dev_dbg(chan2dev(&dwc->chan),
  1154. "cyclic prepared buf %pad len %zu period %zu periods %d\n",
  1155. &buf_addr, buf_len, period_len, periods);
  1156. cdesc->periods = periods;
  1157. dwc->cdesc = cdesc;
  1158. return cdesc;
  1159. out_err_desc_get:
  1160. while (i--)
  1161. dwc_desc_put(dwc, cdesc->desc[i]);
  1162. out_err_alloc:
  1163. kfree(cdesc);
  1164. out_err:
  1165. clear_bit(DW_DMA_IS_CYCLIC, &dwc->flags);
  1166. return (struct dw_cyclic_desc *)retval;
  1167. }
  1168. EXPORT_SYMBOL(dw_dma_cyclic_prep);
  1169. /**
  1170. * dw_dma_cyclic_free - free a prepared cyclic DMA transfer
  1171. * @chan: the DMA channel to free
  1172. */
  1173. void dw_dma_cyclic_free(struct dma_chan *chan)
  1174. {
  1175. struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
  1176. struct dw_dma *dw = to_dw_dma(dwc->chan.device);
  1177. struct dw_cyclic_desc *cdesc = dwc->cdesc;
  1178. unsigned int i;
  1179. unsigned long flags;
  1180. dev_dbg(chan2dev(&dwc->chan), "%s\n", __func__);
  1181. if (!cdesc)
  1182. return;
  1183. spin_lock_irqsave(&dwc->lock, flags);
  1184. dwc_chan_disable(dw, dwc);
  1185. dma_writel(dw, CLEAR.BLOCK, dwc->mask);
  1186. dma_writel(dw, CLEAR.ERROR, dwc->mask);
  1187. dma_writel(dw, CLEAR.XFER, dwc->mask);
  1188. spin_unlock_irqrestore(&dwc->lock, flags);
  1189. for (i = 0; i < cdesc->periods; i++)
  1190. dwc_desc_put(dwc, cdesc->desc[i]);
  1191. kfree(cdesc->desc);
  1192. kfree(cdesc);
  1193. clear_bit(DW_DMA_IS_CYCLIC, &dwc->flags);
  1194. }
  1195. EXPORT_SYMBOL(dw_dma_cyclic_free);
  1196. /*----------------------------------------------------------------------*/
  1197. int dw_dma_probe(struct dw_dma_chip *chip, struct dw_dma_platform_data *pdata)
  1198. {
  1199. struct dw_dma *dw;
  1200. bool autocfg = false;
  1201. unsigned int dw_params;
  1202. unsigned int max_blk_size = 0;
  1203. unsigned int i;
  1204. int err;
  1205. dw = devm_kzalloc(chip->dev, sizeof(*dw), GFP_KERNEL);
  1206. if (!dw)
  1207. return -ENOMEM;
  1208. dw->regs = chip->regs;
  1209. chip->dw = dw;
  1210. pm_runtime_get_sync(chip->dev);
  1211. if (!pdata) {
  1212. dw_params = dma_readl(dw, DW_PARAMS);
  1213. dev_dbg(chip->dev, "DW_PARAMS: 0x%08x\n", dw_params);
  1214. autocfg = dw_params >> DW_PARAMS_EN & 1;
  1215. if (!autocfg) {
  1216. err = -EINVAL;
  1217. goto err_pdata;
  1218. }
  1219. pdata = devm_kzalloc(chip->dev, sizeof(*pdata), GFP_KERNEL);
  1220. if (!pdata) {
  1221. err = -ENOMEM;
  1222. goto err_pdata;
  1223. }
  1224. /* Get hardware configuration parameters */
  1225. pdata->nr_channels = (dw_params >> DW_PARAMS_NR_CHAN & 7) + 1;
  1226. pdata->nr_masters = (dw_params >> DW_PARAMS_NR_MASTER & 3) + 1;
  1227. for (i = 0; i < pdata->nr_masters; i++) {
  1228. pdata->data_width[i] =
  1229. (dw_params >> DW_PARAMS_DATA_WIDTH(i) & 3) + 2;
  1230. }
  1231. max_blk_size = dma_readl(dw, MAX_BLK_SIZE);
  1232. /* Fill platform data with the default values */
  1233. pdata->is_private = true;
  1234. pdata->is_memcpy = true;
  1235. pdata->chan_allocation_order = CHAN_ALLOCATION_ASCENDING;
  1236. pdata->chan_priority = CHAN_PRIORITY_ASCENDING;
  1237. } else if (pdata->nr_channels > DW_DMA_MAX_NR_CHANNELS) {
  1238. err = -EINVAL;
  1239. goto err_pdata;
  1240. }
  1241. dw->chan = devm_kcalloc(chip->dev, pdata->nr_channels, sizeof(*dw->chan),
  1242. GFP_KERNEL);
  1243. if (!dw->chan) {
  1244. err = -ENOMEM;
  1245. goto err_pdata;
  1246. }
  1247. /* Get hardware configuration parameters */
  1248. dw->nr_masters = pdata->nr_masters;
  1249. for (i = 0; i < dw->nr_masters; i++)
  1250. dw->data_width[i] = pdata->data_width[i];
  1251. /* Calculate all channel mask before DMA setup */
  1252. dw->all_chan_mask = (1 << pdata->nr_channels) - 1;
  1253. /* Force dma off, just in case */
  1254. dw_dma_off(dw);
  1255. /* Create a pool of consistent memory blocks for hardware descriptors */
  1256. dw->desc_pool = dmam_pool_create("dw_dmac_desc_pool", chip->dev,
  1257. sizeof(struct dw_desc), 4, 0);
  1258. if (!dw->desc_pool) {
  1259. dev_err(chip->dev, "No memory for descriptors dma pool\n");
  1260. err = -ENOMEM;
  1261. goto err_pdata;
  1262. }
  1263. tasklet_init(&dw->tasklet, dw_dma_tasklet, (unsigned long)dw);
  1264. err = request_irq(chip->irq, dw_dma_interrupt, IRQF_SHARED,
  1265. "dw_dmac", dw);
  1266. if (err)
  1267. goto err_pdata;
  1268. INIT_LIST_HEAD(&dw->dma.channels);
  1269. for (i = 0; i < pdata->nr_channels; i++) {
  1270. struct dw_dma_chan *dwc = &dw->chan[i];
  1271. dwc->chan.device = &dw->dma;
  1272. dma_cookie_init(&dwc->chan);
  1273. if (pdata->chan_allocation_order == CHAN_ALLOCATION_ASCENDING)
  1274. list_add_tail(&dwc->chan.device_node,
  1275. &dw->dma.channels);
  1276. else
  1277. list_add(&dwc->chan.device_node, &dw->dma.channels);
  1278. /* 7 is highest priority & 0 is lowest. */
  1279. if (pdata->chan_priority == CHAN_PRIORITY_ASCENDING)
  1280. dwc->priority = pdata->nr_channels - i - 1;
  1281. else
  1282. dwc->priority = i;
  1283. dwc->ch_regs = &__dw_regs(dw)->CHAN[i];
  1284. spin_lock_init(&dwc->lock);
  1285. dwc->mask = 1 << i;
  1286. INIT_LIST_HEAD(&dwc->active_list);
  1287. INIT_LIST_HEAD(&dwc->queue);
  1288. INIT_LIST_HEAD(&dwc->free_list);
  1289. channel_clear_bit(dw, CH_EN, dwc->mask);
  1290. dwc->direction = DMA_TRANS_NONE;
  1291. /* Hardware configuration */
  1292. if (autocfg) {
  1293. unsigned int r = DW_DMA_MAX_NR_CHANNELS - i - 1;
  1294. void __iomem *addr = &__dw_regs(dw)->DWC_PARAMS[r];
  1295. unsigned int dwc_params = dma_readl_native(addr);
  1296. dev_dbg(chip->dev, "DWC_PARAMS[%d]: 0x%08x\n", i,
  1297. dwc_params);
  1298. /*
  1299. * Decode maximum block size for given channel. The
  1300. * stored 4 bit value represents blocks from 0x00 for 3
  1301. * up to 0x0a for 4095.
  1302. */
  1303. dwc->block_size =
  1304. (4 << ((max_blk_size >> 4 * i) & 0xf)) - 1;
  1305. dwc->nollp =
  1306. (dwc_params >> DWC_PARAMS_MBLK_EN & 0x1) == 0;
  1307. } else {
  1308. dwc->block_size = pdata->block_size;
  1309. /* Check if channel supports multi block transfer */
  1310. channel_writel(dwc, LLP, DWC_LLP_LOC(0xffffffff));
  1311. dwc->nollp = DWC_LLP_LOC(channel_readl(dwc, LLP)) == 0;
  1312. channel_writel(dwc, LLP, 0);
  1313. }
  1314. }
  1315. /* Clear all interrupts on all channels. */
  1316. dma_writel(dw, CLEAR.XFER, dw->all_chan_mask);
  1317. dma_writel(dw, CLEAR.BLOCK, dw->all_chan_mask);
  1318. dma_writel(dw, CLEAR.SRC_TRAN, dw->all_chan_mask);
  1319. dma_writel(dw, CLEAR.DST_TRAN, dw->all_chan_mask);
  1320. dma_writel(dw, CLEAR.ERROR, dw->all_chan_mask);
  1321. /* Set capabilities */
  1322. dma_cap_set(DMA_SLAVE, dw->dma.cap_mask);
  1323. if (pdata->is_private)
  1324. dma_cap_set(DMA_PRIVATE, dw->dma.cap_mask);
  1325. if (pdata->is_memcpy)
  1326. dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask);
  1327. dw->dma.dev = chip->dev;
  1328. dw->dma.device_alloc_chan_resources = dwc_alloc_chan_resources;
  1329. dw->dma.device_free_chan_resources = dwc_free_chan_resources;
  1330. dw->dma.device_prep_dma_memcpy = dwc_prep_dma_memcpy;
  1331. dw->dma.device_prep_slave_sg = dwc_prep_slave_sg;
  1332. dw->dma.device_config = dwc_config;
  1333. dw->dma.device_pause = dwc_pause;
  1334. dw->dma.device_resume = dwc_resume;
  1335. dw->dma.device_terminate_all = dwc_terminate_all;
  1336. dw->dma.device_tx_status = dwc_tx_status;
  1337. dw->dma.device_issue_pending = dwc_issue_pending;
  1338. /* DMA capabilities */
  1339. dw->dma.src_addr_widths = DW_DMA_BUSWIDTHS;
  1340. dw->dma.dst_addr_widths = DW_DMA_BUSWIDTHS;
  1341. dw->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV) |
  1342. BIT(DMA_MEM_TO_MEM);
  1343. dw->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
  1344. err = dma_async_device_register(&dw->dma);
  1345. if (err)
  1346. goto err_dma_register;
  1347. dev_info(chip->dev, "DesignWare DMA Controller, %d channels\n",
  1348. pdata->nr_channels);
  1349. pm_runtime_put_sync_suspend(chip->dev);
  1350. return 0;
  1351. err_dma_register:
  1352. free_irq(chip->irq, dw);
  1353. err_pdata:
  1354. pm_runtime_put_sync_suspend(chip->dev);
  1355. return err;
  1356. }
  1357. EXPORT_SYMBOL_GPL(dw_dma_probe);
  1358. int dw_dma_remove(struct dw_dma_chip *chip)
  1359. {
  1360. struct dw_dma *dw = chip->dw;
  1361. struct dw_dma_chan *dwc, *_dwc;
  1362. pm_runtime_get_sync(chip->dev);
  1363. dw_dma_off(dw);
  1364. dma_async_device_unregister(&dw->dma);
  1365. free_irq(chip->irq, dw);
  1366. tasklet_kill(&dw->tasklet);
  1367. list_for_each_entry_safe(dwc, _dwc, &dw->dma.channels,
  1368. chan.device_node) {
  1369. list_del(&dwc->chan.device_node);
  1370. channel_clear_bit(dw, CH_EN, dwc->mask);
  1371. }
  1372. pm_runtime_put_sync_suspend(chip->dev);
  1373. return 0;
  1374. }
  1375. EXPORT_SYMBOL_GPL(dw_dma_remove);
  1376. int dw_dma_disable(struct dw_dma_chip *chip)
  1377. {
  1378. struct dw_dma *dw = chip->dw;
  1379. dw_dma_off(dw);
  1380. return 0;
  1381. }
  1382. EXPORT_SYMBOL_GPL(dw_dma_disable);
  1383. int dw_dma_enable(struct dw_dma_chip *chip)
  1384. {
  1385. struct dw_dma *dw = chip->dw;
  1386. dw_dma_on(dw);
  1387. return 0;
  1388. }
  1389. EXPORT_SYMBOL_GPL(dw_dma_enable);
  1390. MODULE_LICENSE("GPL v2");
  1391. MODULE_DESCRIPTION("Synopsys DesignWare DMA Controller core driver");
  1392. MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
  1393. MODULE_AUTHOR("Viresh Kumar <vireshk@kernel.org>");