mvpp2_main.c 143 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Driver for Marvell PPv2 network controller for Armada 375 SoC.
  4. *
  5. * Copyright (C) 2014 Marvell
  6. *
  7. * Marcin Wojtas <mw@semihalf.com>
  8. */
  9. #include <linux/acpi.h>
  10. #include <linux/kernel.h>
  11. #include <linux/netdevice.h>
  12. #include <linux/etherdevice.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/skbuff.h>
  15. #include <linux/inetdevice.h>
  16. #include <linux/mbus.h>
  17. #include <linux/module.h>
  18. #include <linux/mfd/syscon.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/cpumask.h>
  21. #include <linux/of.h>
  22. #include <linux/of_irq.h>
  23. #include <linux/of_mdio.h>
  24. #include <linux/of_net.h>
  25. #include <linux/of_address.h>
  26. #include <linux/of_device.h>
  27. #include <linux/phy.h>
  28. #include <linux/phylink.h>
  29. #include <linux/phy/phy.h>
  30. #include <linux/clk.h>
  31. #include <linux/hrtimer.h>
  32. #include <linux/ktime.h>
  33. #include <linux/regmap.h>
  34. #include <uapi/linux/ppp_defs.h>
  35. #include <net/ip.h>
  36. #include <net/ipv6.h>
  37. #include <net/tso.h>
  38. #include "mvpp2.h"
  39. #include "mvpp2_prs.h"
  40. #include "mvpp2_cls.h"
  41. enum mvpp2_bm_pool_log_num {
  42. MVPP2_BM_SHORT,
  43. MVPP2_BM_LONG,
  44. MVPP2_BM_JUMBO,
  45. MVPP2_BM_POOLS_NUM
  46. };
  47. static struct {
  48. int pkt_size;
  49. int buf_num;
  50. } mvpp2_pools[MVPP2_BM_POOLS_NUM];
  51. /* The prototype is added here to be used in start_dev when using ACPI. This
  52. * will be removed once phylink is used for all modes (dt+ACPI).
  53. */
  54. static void mvpp2_mac_config(struct net_device *dev, unsigned int mode,
  55. const struct phylink_link_state *state);
  56. static void mvpp2_mac_link_up(struct net_device *dev, unsigned int mode,
  57. phy_interface_t interface, struct phy_device *phy);
  58. /* Queue modes */
  59. #define MVPP2_QDIST_SINGLE_MODE 0
  60. #define MVPP2_QDIST_MULTI_MODE 1
  61. static int queue_mode = MVPP2_QDIST_MULTI_MODE;
  62. module_param(queue_mode, int, 0444);
  63. MODULE_PARM_DESC(queue_mode, "Set queue_mode (single=0, multi=1)");
  64. /* Utility/helper methods */
  65. void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
  66. {
  67. writel(data, priv->swth_base[0] + offset);
  68. }
  69. u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
  70. {
  71. return readl(priv->swth_base[0] + offset);
  72. }
  73. u32 mvpp2_read_relaxed(struct mvpp2 *priv, u32 offset)
  74. {
  75. return readl_relaxed(priv->swth_base[0] + offset);
  76. }
  77. /* These accessors should be used to access:
  78. *
  79. * - per-CPU registers, where each CPU has its own copy of the
  80. * register.
  81. *
  82. * MVPP2_BM_VIRT_ALLOC_REG
  83. * MVPP2_BM_ADDR_HIGH_ALLOC
  84. * MVPP22_BM_ADDR_HIGH_RLS_REG
  85. * MVPP2_BM_VIRT_RLS_REG
  86. * MVPP2_ISR_RX_TX_CAUSE_REG
  87. * MVPP2_ISR_RX_TX_MASK_REG
  88. * MVPP2_TXQ_NUM_REG
  89. * MVPP2_AGGR_TXQ_UPDATE_REG
  90. * MVPP2_TXQ_RSVD_REQ_REG
  91. * MVPP2_TXQ_RSVD_RSLT_REG
  92. * MVPP2_TXQ_SENT_REG
  93. * MVPP2_RXQ_NUM_REG
  94. *
  95. * - global registers that must be accessed through a specific CPU
  96. * window, because they are related to an access to a per-CPU
  97. * register
  98. *
  99. * MVPP2_BM_PHY_ALLOC_REG (related to MVPP2_BM_VIRT_ALLOC_REG)
  100. * MVPP2_BM_PHY_RLS_REG (related to MVPP2_BM_VIRT_RLS_REG)
  101. * MVPP2_RXQ_THRESH_REG (related to MVPP2_RXQ_NUM_REG)
  102. * MVPP2_RXQ_DESC_ADDR_REG (related to MVPP2_RXQ_NUM_REG)
  103. * MVPP2_RXQ_DESC_SIZE_REG (related to MVPP2_RXQ_NUM_REG)
  104. * MVPP2_RXQ_INDEX_REG (related to MVPP2_RXQ_NUM_REG)
  105. * MVPP2_TXQ_PENDING_REG (related to MVPP2_TXQ_NUM_REG)
  106. * MVPP2_TXQ_DESC_ADDR_REG (related to MVPP2_TXQ_NUM_REG)
  107. * MVPP2_TXQ_DESC_SIZE_REG (related to MVPP2_TXQ_NUM_REG)
  108. * MVPP2_TXQ_INDEX_REG (related to MVPP2_TXQ_NUM_REG)
  109. * MVPP2_TXQ_PENDING_REG (related to MVPP2_TXQ_NUM_REG)
  110. * MVPP2_TXQ_PREF_BUF_REG (related to MVPP2_TXQ_NUM_REG)
  111. * MVPP2_TXQ_PREF_BUF_REG (related to MVPP2_TXQ_NUM_REG)
  112. */
  113. void mvpp2_percpu_write(struct mvpp2 *priv, int cpu,
  114. u32 offset, u32 data)
  115. {
  116. writel(data, priv->swth_base[cpu] + offset);
  117. }
  118. u32 mvpp2_percpu_read(struct mvpp2 *priv, int cpu,
  119. u32 offset)
  120. {
  121. return readl(priv->swth_base[cpu] + offset);
  122. }
  123. void mvpp2_percpu_write_relaxed(struct mvpp2 *priv, int cpu,
  124. u32 offset, u32 data)
  125. {
  126. writel_relaxed(data, priv->swth_base[cpu] + offset);
  127. }
  128. static u32 mvpp2_percpu_read_relaxed(struct mvpp2 *priv, int cpu,
  129. u32 offset)
  130. {
  131. return readl_relaxed(priv->swth_base[cpu] + offset);
  132. }
  133. static dma_addr_t mvpp2_txdesc_dma_addr_get(struct mvpp2_port *port,
  134. struct mvpp2_tx_desc *tx_desc)
  135. {
  136. if (port->priv->hw_version == MVPP21)
  137. return le32_to_cpu(tx_desc->pp21.buf_dma_addr);
  138. else
  139. return le64_to_cpu(tx_desc->pp22.buf_dma_addr_ptp) &
  140. MVPP2_DESC_DMA_MASK;
  141. }
  142. static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port,
  143. struct mvpp2_tx_desc *tx_desc,
  144. dma_addr_t dma_addr)
  145. {
  146. dma_addr_t addr, offset;
  147. addr = dma_addr & ~MVPP2_TX_DESC_ALIGN;
  148. offset = dma_addr & MVPP2_TX_DESC_ALIGN;
  149. if (port->priv->hw_version == MVPP21) {
  150. tx_desc->pp21.buf_dma_addr = cpu_to_le32(addr);
  151. tx_desc->pp21.packet_offset = offset;
  152. } else {
  153. __le64 val = cpu_to_le64(addr);
  154. tx_desc->pp22.buf_dma_addr_ptp &= ~cpu_to_le64(MVPP2_DESC_DMA_MASK);
  155. tx_desc->pp22.buf_dma_addr_ptp |= val;
  156. tx_desc->pp22.packet_offset = offset;
  157. }
  158. }
  159. static size_t mvpp2_txdesc_size_get(struct mvpp2_port *port,
  160. struct mvpp2_tx_desc *tx_desc)
  161. {
  162. if (port->priv->hw_version == MVPP21)
  163. return le16_to_cpu(tx_desc->pp21.data_size);
  164. else
  165. return le16_to_cpu(tx_desc->pp22.data_size);
  166. }
  167. static void mvpp2_txdesc_size_set(struct mvpp2_port *port,
  168. struct mvpp2_tx_desc *tx_desc,
  169. size_t size)
  170. {
  171. if (port->priv->hw_version == MVPP21)
  172. tx_desc->pp21.data_size = cpu_to_le16(size);
  173. else
  174. tx_desc->pp22.data_size = cpu_to_le16(size);
  175. }
  176. static void mvpp2_txdesc_txq_set(struct mvpp2_port *port,
  177. struct mvpp2_tx_desc *tx_desc,
  178. unsigned int txq)
  179. {
  180. if (port->priv->hw_version == MVPP21)
  181. tx_desc->pp21.phys_txq = txq;
  182. else
  183. tx_desc->pp22.phys_txq = txq;
  184. }
  185. static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port,
  186. struct mvpp2_tx_desc *tx_desc,
  187. unsigned int command)
  188. {
  189. if (port->priv->hw_version == MVPP21)
  190. tx_desc->pp21.command = cpu_to_le32(command);
  191. else
  192. tx_desc->pp22.command = cpu_to_le32(command);
  193. }
  194. static unsigned int mvpp2_txdesc_offset_get(struct mvpp2_port *port,
  195. struct mvpp2_tx_desc *tx_desc)
  196. {
  197. if (port->priv->hw_version == MVPP21)
  198. return tx_desc->pp21.packet_offset;
  199. else
  200. return tx_desc->pp22.packet_offset;
  201. }
  202. static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port,
  203. struct mvpp2_rx_desc *rx_desc)
  204. {
  205. if (port->priv->hw_version == MVPP21)
  206. return le32_to_cpu(rx_desc->pp21.buf_dma_addr);
  207. else
  208. return le64_to_cpu(rx_desc->pp22.buf_dma_addr_key_hash) &
  209. MVPP2_DESC_DMA_MASK;
  210. }
  211. static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port,
  212. struct mvpp2_rx_desc *rx_desc)
  213. {
  214. if (port->priv->hw_version == MVPP21)
  215. return le32_to_cpu(rx_desc->pp21.buf_cookie);
  216. else
  217. return le64_to_cpu(rx_desc->pp22.buf_cookie_misc) &
  218. MVPP2_DESC_DMA_MASK;
  219. }
  220. static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port,
  221. struct mvpp2_rx_desc *rx_desc)
  222. {
  223. if (port->priv->hw_version == MVPP21)
  224. return le16_to_cpu(rx_desc->pp21.data_size);
  225. else
  226. return le16_to_cpu(rx_desc->pp22.data_size);
  227. }
  228. static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port,
  229. struct mvpp2_rx_desc *rx_desc)
  230. {
  231. if (port->priv->hw_version == MVPP21)
  232. return le32_to_cpu(rx_desc->pp21.status);
  233. else
  234. return le32_to_cpu(rx_desc->pp22.status);
  235. }
  236. static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
  237. {
  238. txq_pcpu->txq_get_index++;
  239. if (txq_pcpu->txq_get_index == txq_pcpu->size)
  240. txq_pcpu->txq_get_index = 0;
  241. }
  242. static void mvpp2_txq_inc_put(struct mvpp2_port *port,
  243. struct mvpp2_txq_pcpu *txq_pcpu,
  244. struct sk_buff *skb,
  245. struct mvpp2_tx_desc *tx_desc)
  246. {
  247. struct mvpp2_txq_pcpu_buf *tx_buf =
  248. txq_pcpu->buffs + txq_pcpu->txq_put_index;
  249. tx_buf->skb = skb;
  250. tx_buf->size = mvpp2_txdesc_size_get(port, tx_desc);
  251. tx_buf->dma = mvpp2_txdesc_dma_addr_get(port, tx_desc) +
  252. mvpp2_txdesc_offset_get(port, tx_desc);
  253. txq_pcpu->txq_put_index++;
  254. if (txq_pcpu->txq_put_index == txq_pcpu->size)
  255. txq_pcpu->txq_put_index = 0;
  256. }
  257. /* Get number of physical egress port */
  258. static inline int mvpp2_egress_port(struct mvpp2_port *port)
  259. {
  260. return MVPP2_MAX_TCONT + port->id;
  261. }
  262. /* Get number of physical TXQ */
  263. static inline int mvpp2_txq_phys(int port, int txq)
  264. {
  265. return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
  266. }
  267. static void *mvpp2_frag_alloc(const struct mvpp2_bm_pool *pool)
  268. {
  269. if (likely(pool->frag_size <= PAGE_SIZE))
  270. return netdev_alloc_frag(pool->frag_size);
  271. else
  272. return kmalloc(pool->frag_size, GFP_ATOMIC);
  273. }
  274. static void mvpp2_frag_free(const struct mvpp2_bm_pool *pool, void *data)
  275. {
  276. if (likely(pool->frag_size <= PAGE_SIZE))
  277. skb_free_frag(data);
  278. else
  279. kfree(data);
  280. }
  281. /* Buffer Manager configuration routines */
  282. /* Create pool */
  283. static int mvpp2_bm_pool_create(struct platform_device *pdev,
  284. struct mvpp2 *priv,
  285. struct mvpp2_bm_pool *bm_pool, int size)
  286. {
  287. u32 val;
  288. /* Number of buffer pointers must be a multiple of 16, as per
  289. * hardware constraints
  290. */
  291. if (!IS_ALIGNED(size, 16))
  292. return -EINVAL;
  293. /* PPv2.1 needs 8 bytes per buffer pointer, PPv2.2 needs 16
  294. * bytes per buffer pointer
  295. */
  296. if (priv->hw_version == MVPP21)
  297. bm_pool->size_bytes = 2 * sizeof(u32) * size;
  298. else
  299. bm_pool->size_bytes = 2 * sizeof(u64) * size;
  300. bm_pool->virt_addr = dma_alloc_coherent(&pdev->dev, bm_pool->size_bytes,
  301. &bm_pool->dma_addr,
  302. GFP_KERNEL);
  303. if (!bm_pool->virt_addr)
  304. return -ENOMEM;
  305. if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr,
  306. MVPP2_BM_POOL_PTR_ALIGN)) {
  307. dma_free_coherent(&pdev->dev, bm_pool->size_bytes,
  308. bm_pool->virt_addr, bm_pool->dma_addr);
  309. dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
  310. bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
  311. return -ENOMEM;
  312. }
  313. mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
  314. lower_32_bits(bm_pool->dma_addr));
  315. mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
  316. val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
  317. val |= MVPP2_BM_START_MASK;
  318. mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
  319. bm_pool->size = size;
  320. bm_pool->pkt_size = 0;
  321. bm_pool->buf_num = 0;
  322. return 0;
  323. }
  324. /* Set pool buffer size */
  325. static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
  326. struct mvpp2_bm_pool *bm_pool,
  327. int buf_size)
  328. {
  329. u32 val;
  330. bm_pool->buf_size = buf_size;
  331. val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
  332. mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
  333. }
  334. static void mvpp2_bm_bufs_get_addrs(struct device *dev, struct mvpp2 *priv,
  335. struct mvpp2_bm_pool *bm_pool,
  336. dma_addr_t *dma_addr,
  337. phys_addr_t *phys_addr)
  338. {
  339. int cpu = get_cpu();
  340. *dma_addr = mvpp2_percpu_read(priv, cpu,
  341. MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
  342. *phys_addr = mvpp2_percpu_read(priv, cpu, MVPP2_BM_VIRT_ALLOC_REG);
  343. if (priv->hw_version == MVPP22) {
  344. u32 val;
  345. u32 dma_addr_highbits, phys_addr_highbits;
  346. val = mvpp2_percpu_read(priv, cpu, MVPP22_BM_ADDR_HIGH_ALLOC);
  347. dma_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_PHYS_MASK);
  348. phys_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_VIRT_MASK) >>
  349. MVPP22_BM_ADDR_HIGH_VIRT_SHIFT;
  350. if (sizeof(dma_addr_t) == 8)
  351. *dma_addr |= (u64)dma_addr_highbits << 32;
  352. if (sizeof(phys_addr_t) == 8)
  353. *phys_addr |= (u64)phys_addr_highbits << 32;
  354. }
  355. put_cpu();
  356. }
  357. /* Free all buffers from the pool */
  358. static void mvpp2_bm_bufs_free(struct device *dev, struct mvpp2 *priv,
  359. struct mvpp2_bm_pool *bm_pool, int buf_num)
  360. {
  361. int i;
  362. if (buf_num > bm_pool->buf_num) {
  363. WARN(1, "Pool does not have so many bufs pool(%d) bufs(%d)\n",
  364. bm_pool->id, buf_num);
  365. buf_num = bm_pool->buf_num;
  366. }
  367. for (i = 0; i < buf_num; i++) {
  368. dma_addr_t buf_dma_addr;
  369. phys_addr_t buf_phys_addr;
  370. void *data;
  371. mvpp2_bm_bufs_get_addrs(dev, priv, bm_pool,
  372. &buf_dma_addr, &buf_phys_addr);
  373. dma_unmap_single(dev, buf_dma_addr,
  374. bm_pool->buf_size, DMA_FROM_DEVICE);
  375. data = (void *)phys_to_virt(buf_phys_addr);
  376. if (!data)
  377. break;
  378. mvpp2_frag_free(bm_pool, data);
  379. }
  380. /* Update BM driver with number of buffers removed from pool */
  381. bm_pool->buf_num -= i;
  382. }
  383. /* Check number of buffers in BM pool */
  384. static int mvpp2_check_hw_buf_num(struct mvpp2 *priv, struct mvpp2_bm_pool *bm_pool)
  385. {
  386. int buf_num = 0;
  387. buf_num += mvpp2_read(priv, MVPP2_BM_POOL_PTRS_NUM_REG(bm_pool->id)) &
  388. MVPP22_BM_POOL_PTRS_NUM_MASK;
  389. buf_num += mvpp2_read(priv, MVPP2_BM_BPPI_PTRS_NUM_REG(bm_pool->id)) &
  390. MVPP2_BM_BPPI_PTR_NUM_MASK;
  391. /* HW has one buffer ready which is not reflected in the counters */
  392. if (buf_num)
  393. buf_num += 1;
  394. return buf_num;
  395. }
  396. /* Cleanup pool */
  397. static int mvpp2_bm_pool_destroy(struct platform_device *pdev,
  398. struct mvpp2 *priv,
  399. struct mvpp2_bm_pool *bm_pool)
  400. {
  401. int buf_num;
  402. u32 val;
  403. buf_num = mvpp2_check_hw_buf_num(priv, bm_pool);
  404. mvpp2_bm_bufs_free(&pdev->dev, priv, bm_pool, buf_num);
  405. /* Check buffer counters after free */
  406. buf_num = mvpp2_check_hw_buf_num(priv, bm_pool);
  407. if (buf_num) {
  408. WARN(1, "cannot free all buffers in pool %d, buf_num left %d\n",
  409. bm_pool->id, bm_pool->buf_num);
  410. return 0;
  411. }
  412. val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
  413. val |= MVPP2_BM_STOP_MASK;
  414. mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
  415. dma_free_coherent(&pdev->dev, bm_pool->size_bytes,
  416. bm_pool->virt_addr,
  417. bm_pool->dma_addr);
  418. return 0;
  419. }
  420. static int mvpp2_bm_pools_init(struct platform_device *pdev,
  421. struct mvpp2 *priv)
  422. {
  423. int i, err, size;
  424. struct mvpp2_bm_pool *bm_pool;
  425. /* Create all pools with maximum size */
  426. size = MVPP2_BM_POOL_SIZE_MAX;
  427. for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
  428. bm_pool = &priv->bm_pools[i];
  429. bm_pool->id = i;
  430. err = mvpp2_bm_pool_create(pdev, priv, bm_pool, size);
  431. if (err)
  432. goto err_unroll_pools;
  433. mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
  434. }
  435. return 0;
  436. err_unroll_pools:
  437. dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
  438. for (i = i - 1; i >= 0; i--)
  439. mvpp2_bm_pool_destroy(pdev, priv, &priv->bm_pools[i]);
  440. return err;
  441. }
  442. static int mvpp2_bm_init(struct platform_device *pdev, struct mvpp2 *priv)
  443. {
  444. int i, err;
  445. for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
  446. /* Mask BM all interrupts */
  447. mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
  448. /* Clear BM cause register */
  449. mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
  450. }
  451. /* Allocate and initialize BM pools */
  452. priv->bm_pools = devm_kcalloc(&pdev->dev, MVPP2_BM_POOLS_NUM,
  453. sizeof(*priv->bm_pools), GFP_KERNEL);
  454. if (!priv->bm_pools)
  455. return -ENOMEM;
  456. err = mvpp2_bm_pools_init(pdev, priv);
  457. if (err < 0)
  458. return err;
  459. return 0;
  460. }
  461. static void mvpp2_setup_bm_pool(void)
  462. {
  463. /* Short pool */
  464. mvpp2_pools[MVPP2_BM_SHORT].buf_num = MVPP2_BM_SHORT_BUF_NUM;
  465. mvpp2_pools[MVPP2_BM_SHORT].pkt_size = MVPP2_BM_SHORT_PKT_SIZE;
  466. /* Long pool */
  467. mvpp2_pools[MVPP2_BM_LONG].buf_num = MVPP2_BM_LONG_BUF_NUM;
  468. mvpp2_pools[MVPP2_BM_LONG].pkt_size = MVPP2_BM_LONG_PKT_SIZE;
  469. /* Jumbo pool */
  470. mvpp2_pools[MVPP2_BM_JUMBO].buf_num = MVPP2_BM_JUMBO_BUF_NUM;
  471. mvpp2_pools[MVPP2_BM_JUMBO].pkt_size = MVPP2_BM_JUMBO_PKT_SIZE;
  472. }
  473. /* Attach long pool to rxq */
  474. static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
  475. int lrxq, int long_pool)
  476. {
  477. u32 val, mask;
  478. int prxq;
  479. /* Get queue physical ID */
  480. prxq = port->rxqs[lrxq]->id;
  481. if (port->priv->hw_version == MVPP21)
  482. mask = MVPP21_RXQ_POOL_LONG_MASK;
  483. else
  484. mask = MVPP22_RXQ_POOL_LONG_MASK;
  485. val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
  486. val &= ~mask;
  487. val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask;
  488. mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
  489. }
  490. /* Attach short pool to rxq */
  491. static void mvpp2_rxq_short_pool_set(struct mvpp2_port *port,
  492. int lrxq, int short_pool)
  493. {
  494. u32 val, mask;
  495. int prxq;
  496. /* Get queue physical ID */
  497. prxq = port->rxqs[lrxq]->id;
  498. if (port->priv->hw_version == MVPP21)
  499. mask = MVPP21_RXQ_POOL_SHORT_MASK;
  500. else
  501. mask = MVPP22_RXQ_POOL_SHORT_MASK;
  502. val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
  503. val &= ~mask;
  504. val |= (short_pool << MVPP2_RXQ_POOL_SHORT_OFFS) & mask;
  505. mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
  506. }
  507. static void *mvpp2_buf_alloc(struct mvpp2_port *port,
  508. struct mvpp2_bm_pool *bm_pool,
  509. dma_addr_t *buf_dma_addr,
  510. phys_addr_t *buf_phys_addr,
  511. gfp_t gfp_mask)
  512. {
  513. dma_addr_t dma_addr;
  514. void *data;
  515. data = mvpp2_frag_alloc(bm_pool);
  516. if (!data)
  517. return NULL;
  518. dma_addr = dma_map_single(port->dev->dev.parent, data,
  519. MVPP2_RX_BUF_SIZE(bm_pool->pkt_size),
  520. DMA_FROM_DEVICE);
  521. if (unlikely(dma_mapping_error(port->dev->dev.parent, dma_addr))) {
  522. mvpp2_frag_free(bm_pool, data);
  523. return NULL;
  524. }
  525. *buf_dma_addr = dma_addr;
  526. *buf_phys_addr = virt_to_phys(data);
  527. return data;
  528. }
  529. /* Release buffer to BM */
  530. static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
  531. dma_addr_t buf_dma_addr,
  532. phys_addr_t buf_phys_addr)
  533. {
  534. int cpu = get_cpu();
  535. if (port->priv->hw_version == MVPP22) {
  536. u32 val = 0;
  537. if (sizeof(dma_addr_t) == 8)
  538. val |= upper_32_bits(buf_dma_addr) &
  539. MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK;
  540. if (sizeof(phys_addr_t) == 8)
  541. val |= (upper_32_bits(buf_phys_addr)
  542. << MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) &
  543. MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK;
  544. mvpp2_percpu_write_relaxed(port->priv, cpu,
  545. MVPP22_BM_ADDR_HIGH_RLS_REG, val);
  546. }
  547. /* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply
  548. * returned in the "cookie" field of the RX
  549. * descriptor. Instead of storing the virtual address, we
  550. * store the physical address
  551. */
  552. mvpp2_percpu_write_relaxed(port->priv, cpu,
  553. MVPP2_BM_VIRT_RLS_REG, buf_phys_addr);
  554. mvpp2_percpu_write_relaxed(port->priv, cpu,
  555. MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr);
  556. put_cpu();
  557. }
  558. /* Allocate buffers for the pool */
  559. static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
  560. struct mvpp2_bm_pool *bm_pool, int buf_num)
  561. {
  562. int i, buf_size, total_size;
  563. dma_addr_t dma_addr;
  564. phys_addr_t phys_addr;
  565. void *buf;
  566. buf_size = MVPP2_RX_BUF_SIZE(bm_pool->pkt_size);
  567. total_size = MVPP2_RX_TOTAL_SIZE(buf_size);
  568. if (buf_num < 0 ||
  569. (buf_num + bm_pool->buf_num > bm_pool->size)) {
  570. netdev_err(port->dev,
  571. "cannot allocate %d buffers for pool %d\n",
  572. buf_num, bm_pool->id);
  573. return 0;
  574. }
  575. for (i = 0; i < buf_num; i++) {
  576. buf = mvpp2_buf_alloc(port, bm_pool, &dma_addr,
  577. &phys_addr, GFP_KERNEL);
  578. if (!buf)
  579. break;
  580. mvpp2_bm_pool_put(port, bm_pool->id, dma_addr,
  581. phys_addr);
  582. }
  583. /* Update BM driver with number of buffers added to pool */
  584. bm_pool->buf_num += i;
  585. netdev_dbg(port->dev,
  586. "pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n",
  587. bm_pool->id, bm_pool->pkt_size, buf_size, total_size);
  588. netdev_dbg(port->dev,
  589. "pool %d: %d of %d buffers added\n",
  590. bm_pool->id, i, buf_num);
  591. return i;
  592. }
  593. /* Notify the driver that BM pool is being used as specific type and return the
  594. * pool pointer on success
  595. */
  596. static struct mvpp2_bm_pool *
  597. mvpp2_bm_pool_use(struct mvpp2_port *port, unsigned pool, int pkt_size)
  598. {
  599. struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
  600. int num;
  601. if (pool >= MVPP2_BM_POOLS_NUM) {
  602. netdev_err(port->dev, "Invalid pool %d\n", pool);
  603. return NULL;
  604. }
  605. /* Allocate buffers in case BM pool is used as long pool, but packet
  606. * size doesn't match MTU or BM pool hasn't being used yet
  607. */
  608. if (new_pool->pkt_size == 0) {
  609. int pkts_num;
  610. /* Set default buffer number or free all the buffers in case
  611. * the pool is not empty
  612. */
  613. pkts_num = new_pool->buf_num;
  614. if (pkts_num == 0)
  615. pkts_num = mvpp2_pools[pool].buf_num;
  616. else
  617. mvpp2_bm_bufs_free(port->dev->dev.parent,
  618. port->priv, new_pool, pkts_num);
  619. new_pool->pkt_size = pkt_size;
  620. new_pool->frag_size =
  621. SKB_DATA_ALIGN(MVPP2_RX_BUF_SIZE(pkt_size)) +
  622. MVPP2_SKB_SHINFO_SIZE;
  623. /* Allocate buffers for this pool */
  624. num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
  625. if (num != pkts_num) {
  626. WARN(1, "pool %d: %d of %d allocated\n",
  627. new_pool->id, num, pkts_num);
  628. return NULL;
  629. }
  630. }
  631. mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
  632. MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
  633. return new_pool;
  634. }
  635. /* Initialize pools for swf */
  636. static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
  637. {
  638. int rxq;
  639. enum mvpp2_bm_pool_log_num long_log_pool, short_log_pool;
  640. /* If port pkt_size is higher than 1518B:
  641. * HW Long pool - SW Jumbo pool, HW Short pool - SW Long pool
  642. * else: HW Long pool - SW Long pool, HW Short pool - SW Short pool
  643. */
  644. if (port->pkt_size > MVPP2_BM_LONG_PKT_SIZE) {
  645. long_log_pool = MVPP2_BM_JUMBO;
  646. short_log_pool = MVPP2_BM_LONG;
  647. } else {
  648. long_log_pool = MVPP2_BM_LONG;
  649. short_log_pool = MVPP2_BM_SHORT;
  650. }
  651. if (!port->pool_long) {
  652. port->pool_long =
  653. mvpp2_bm_pool_use(port, long_log_pool,
  654. mvpp2_pools[long_log_pool].pkt_size);
  655. if (!port->pool_long)
  656. return -ENOMEM;
  657. port->pool_long->port_map |= BIT(port->id);
  658. for (rxq = 0; rxq < port->nrxqs; rxq++)
  659. mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
  660. }
  661. if (!port->pool_short) {
  662. port->pool_short =
  663. mvpp2_bm_pool_use(port, short_log_pool,
  664. mvpp2_pools[short_log_pool].pkt_size);
  665. if (!port->pool_short)
  666. return -ENOMEM;
  667. port->pool_short->port_map |= BIT(port->id);
  668. for (rxq = 0; rxq < port->nrxqs; rxq++)
  669. mvpp2_rxq_short_pool_set(port, rxq,
  670. port->pool_short->id);
  671. }
  672. return 0;
  673. }
  674. static int mvpp2_bm_update_mtu(struct net_device *dev, int mtu)
  675. {
  676. struct mvpp2_port *port = netdev_priv(dev);
  677. enum mvpp2_bm_pool_log_num new_long_pool;
  678. int pkt_size = MVPP2_RX_PKT_SIZE(mtu);
  679. /* If port MTU is higher than 1518B:
  680. * HW Long pool - SW Jumbo pool, HW Short pool - SW Long pool
  681. * else: HW Long pool - SW Long pool, HW Short pool - SW Short pool
  682. */
  683. if (pkt_size > MVPP2_BM_LONG_PKT_SIZE)
  684. new_long_pool = MVPP2_BM_JUMBO;
  685. else
  686. new_long_pool = MVPP2_BM_LONG;
  687. if (new_long_pool != port->pool_long->id) {
  688. /* Remove port from old short & long pool */
  689. port->pool_long = mvpp2_bm_pool_use(port, port->pool_long->id,
  690. port->pool_long->pkt_size);
  691. port->pool_long->port_map &= ~BIT(port->id);
  692. port->pool_long = NULL;
  693. port->pool_short = mvpp2_bm_pool_use(port, port->pool_short->id,
  694. port->pool_short->pkt_size);
  695. port->pool_short->port_map &= ~BIT(port->id);
  696. port->pool_short = NULL;
  697. port->pkt_size = pkt_size;
  698. /* Add port to new short & long pool */
  699. mvpp2_swf_bm_pool_init(port);
  700. /* Update L4 checksum when jumbo enable/disable on port */
  701. if (new_long_pool == MVPP2_BM_JUMBO && port->id != 0) {
  702. dev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
  703. dev->hw_features &= ~(NETIF_F_IP_CSUM |
  704. NETIF_F_IPV6_CSUM);
  705. } else {
  706. dev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
  707. dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
  708. }
  709. }
  710. dev->mtu = mtu;
  711. dev->wanted_features = dev->features;
  712. netdev_update_features(dev);
  713. return 0;
  714. }
  715. static inline void mvpp2_interrupts_enable(struct mvpp2_port *port)
  716. {
  717. int i, sw_thread_mask = 0;
  718. for (i = 0; i < port->nqvecs; i++)
  719. sw_thread_mask |= port->qvecs[i].sw_thread_mask;
  720. mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
  721. MVPP2_ISR_ENABLE_INTERRUPT(sw_thread_mask));
  722. }
  723. static inline void mvpp2_interrupts_disable(struct mvpp2_port *port)
  724. {
  725. int i, sw_thread_mask = 0;
  726. for (i = 0; i < port->nqvecs; i++)
  727. sw_thread_mask |= port->qvecs[i].sw_thread_mask;
  728. mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
  729. MVPP2_ISR_DISABLE_INTERRUPT(sw_thread_mask));
  730. }
  731. static inline void mvpp2_qvec_interrupt_enable(struct mvpp2_queue_vector *qvec)
  732. {
  733. struct mvpp2_port *port = qvec->port;
  734. mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
  735. MVPP2_ISR_ENABLE_INTERRUPT(qvec->sw_thread_mask));
  736. }
  737. static inline void mvpp2_qvec_interrupt_disable(struct mvpp2_queue_vector *qvec)
  738. {
  739. struct mvpp2_port *port = qvec->port;
  740. mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
  741. MVPP2_ISR_DISABLE_INTERRUPT(qvec->sw_thread_mask));
  742. }
  743. /* Mask the current CPU's Rx/Tx interrupts
  744. * Called by on_each_cpu(), guaranteed to run with migration disabled,
  745. * using smp_processor_id() is OK.
  746. */
  747. static void mvpp2_interrupts_mask(void *arg)
  748. {
  749. struct mvpp2_port *port = arg;
  750. mvpp2_percpu_write(port->priv, smp_processor_id(),
  751. MVPP2_ISR_RX_TX_MASK_REG(port->id), 0);
  752. }
  753. /* Unmask the current CPU's Rx/Tx interrupts.
  754. * Called by on_each_cpu(), guaranteed to run with migration disabled,
  755. * using smp_processor_id() is OK.
  756. */
  757. static void mvpp2_interrupts_unmask(void *arg)
  758. {
  759. struct mvpp2_port *port = arg;
  760. u32 val;
  761. val = MVPP2_CAUSE_MISC_SUM_MASK |
  762. MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
  763. if (port->has_tx_irqs)
  764. val |= MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
  765. mvpp2_percpu_write(port->priv, smp_processor_id(),
  766. MVPP2_ISR_RX_TX_MASK_REG(port->id), val);
  767. }
  768. static void
  769. mvpp2_shared_interrupt_mask_unmask(struct mvpp2_port *port, bool mask)
  770. {
  771. u32 val;
  772. int i;
  773. if (port->priv->hw_version != MVPP22)
  774. return;
  775. if (mask)
  776. val = 0;
  777. else
  778. val = MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
  779. for (i = 0; i < port->nqvecs; i++) {
  780. struct mvpp2_queue_vector *v = port->qvecs + i;
  781. if (v->type != MVPP2_QUEUE_VECTOR_SHARED)
  782. continue;
  783. mvpp2_percpu_write(port->priv, v->sw_thread_id,
  784. MVPP2_ISR_RX_TX_MASK_REG(port->id), val);
  785. }
  786. }
  787. /* Port configuration routines */
  788. static void mvpp22_gop_init_rgmii(struct mvpp2_port *port)
  789. {
  790. struct mvpp2 *priv = port->priv;
  791. u32 val;
  792. regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val);
  793. val |= GENCONF_PORT_CTRL0_BUS_WIDTH_SELECT;
  794. regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val);
  795. regmap_read(priv->sysctrl_base, GENCONF_CTRL0, &val);
  796. if (port->gop_id == 2)
  797. val |= GENCONF_CTRL0_PORT0_RGMII | GENCONF_CTRL0_PORT1_RGMII;
  798. else if (port->gop_id == 3)
  799. val |= GENCONF_CTRL0_PORT1_RGMII_MII;
  800. regmap_write(priv->sysctrl_base, GENCONF_CTRL0, val);
  801. }
  802. static void mvpp22_gop_init_sgmii(struct mvpp2_port *port)
  803. {
  804. struct mvpp2 *priv = port->priv;
  805. u32 val;
  806. regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val);
  807. val |= GENCONF_PORT_CTRL0_BUS_WIDTH_SELECT |
  808. GENCONF_PORT_CTRL0_RX_DATA_SAMPLE;
  809. regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val);
  810. if (port->gop_id > 1) {
  811. regmap_read(priv->sysctrl_base, GENCONF_CTRL0, &val);
  812. if (port->gop_id == 2)
  813. val &= ~GENCONF_CTRL0_PORT0_RGMII;
  814. else if (port->gop_id == 3)
  815. val &= ~GENCONF_CTRL0_PORT1_RGMII_MII;
  816. regmap_write(priv->sysctrl_base, GENCONF_CTRL0, val);
  817. }
  818. }
  819. static void mvpp22_gop_init_10gkr(struct mvpp2_port *port)
  820. {
  821. struct mvpp2 *priv = port->priv;
  822. void __iomem *mpcs = priv->iface_base + MVPP22_MPCS_BASE(port->gop_id);
  823. void __iomem *xpcs = priv->iface_base + MVPP22_XPCS_BASE(port->gop_id);
  824. u32 val;
  825. /* XPCS */
  826. val = readl(xpcs + MVPP22_XPCS_CFG0);
  827. val &= ~(MVPP22_XPCS_CFG0_PCS_MODE(0x3) |
  828. MVPP22_XPCS_CFG0_ACTIVE_LANE(0x3));
  829. val |= MVPP22_XPCS_CFG0_ACTIVE_LANE(2);
  830. writel(val, xpcs + MVPP22_XPCS_CFG0);
  831. /* MPCS */
  832. val = readl(mpcs + MVPP22_MPCS_CTRL);
  833. val &= ~MVPP22_MPCS_CTRL_FWD_ERR_CONN;
  834. writel(val, mpcs + MVPP22_MPCS_CTRL);
  835. val = readl(mpcs + MVPP22_MPCS_CLK_RESET);
  836. val &= ~(MVPP22_MPCS_CLK_RESET_DIV_RATIO(0x7) | MAC_CLK_RESET_MAC |
  837. MAC_CLK_RESET_SD_RX | MAC_CLK_RESET_SD_TX);
  838. val |= MVPP22_MPCS_CLK_RESET_DIV_RATIO(1);
  839. writel(val, mpcs + MVPP22_MPCS_CLK_RESET);
  840. val &= ~MVPP22_MPCS_CLK_RESET_DIV_SET;
  841. val |= MAC_CLK_RESET_MAC | MAC_CLK_RESET_SD_RX | MAC_CLK_RESET_SD_TX;
  842. writel(val, mpcs + MVPP22_MPCS_CLK_RESET);
  843. }
  844. static int mvpp22_gop_init(struct mvpp2_port *port)
  845. {
  846. struct mvpp2 *priv = port->priv;
  847. u32 val;
  848. if (!priv->sysctrl_base)
  849. return 0;
  850. switch (port->phy_interface) {
  851. case PHY_INTERFACE_MODE_RGMII:
  852. case PHY_INTERFACE_MODE_RGMII_ID:
  853. case PHY_INTERFACE_MODE_RGMII_RXID:
  854. case PHY_INTERFACE_MODE_RGMII_TXID:
  855. if (port->gop_id == 0)
  856. goto invalid_conf;
  857. mvpp22_gop_init_rgmii(port);
  858. break;
  859. case PHY_INTERFACE_MODE_SGMII:
  860. case PHY_INTERFACE_MODE_1000BASEX:
  861. case PHY_INTERFACE_MODE_2500BASEX:
  862. mvpp22_gop_init_sgmii(port);
  863. break;
  864. case PHY_INTERFACE_MODE_10GKR:
  865. if (port->gop_id != 0)
  866. goto invalid_conf;
  867. mvpp22_gop_init_10gkr(port);
  868. break;
  869. default:
  870. goto unsupported_conf;
  871. }
  872. regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL1, &val);
  873. val |= GENCONF_PORT_CTRL1_RESET(port->gop_id) |
  874. GENCONF_PORT_CTRL1_EN(port->gop_id);
  875. regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL1, val);
  876. regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val);
  877. val |= GENCONF_PORT_CTRL0_CLK_DIV_PHASE_CLR;
  878. regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val);
  879. regmap_read(priv->sysctrl_base, GENCONF_SOFT_RESET1, &val);
  880. val |= GENCONF_SOFT_RESET1_GOP;
  881. regmap_write(priv->sysctrl_base, GENCONF_SOFT_RESET1, val);
  882. unsupported_conf:
  883. return 0;
  884. invalid_conf:
  885. netdev_err(port->dev, "Invalid port configuration\n");
  886. return -EINVAL;
  887. }
  888. static void mvpp22_gop_unmask_irq(struct mvpp2_port *port)
  889. {
  890. u32 val;
  891. if (phy_interface_mode_is_rgmii(port->phy_interface) ||
  892. port->phy_interface == PHY_INTERFACE_MODE_SGMII ||
  893. port->phy_interface == PHY_INTERFACE_MODE_1000BASEX ||
  894. port->phy_interface == PHY_INTERFACE_MODE_2500BASEX) {
  895. /* Enable the GMAC link status irq for this port */
  896. val = readl(port->base + MVPP22_GMAC_INT_SUM_MASK);
  897. val |= MVPP22_GMAC_INT_SUM_MASK_LINK_STAT;
  898. writel(val, port->base + MVPP22_GMAC_INT_SUM_MASK);
  899. }
  900. if (port->gop_id == 0) {
  901. /* Enable the XLG/GIG irqs for this port */
  902. val = readl(port->base + MVPP22_XLG_EXT_INT_MASK);
  903. if (port->phy_interface == PHY_INTERFACE_MODE_10GKR)
  904. val |= MVPP22_XLG_EXT_INT_MASK_XLG;
  905. else
  906. val |= MVPP22_XLG_EXT_INT_MASK_GIG;
  907. writel(val, port->base + MVPP22_XLG_EXT_INT_MASK);
  908. }
  909. }
  910. static void mvpp22_gop_mask_irq(struct mvpp2_port *port)
  911. {
  912. u32 val;
  913. if (port->gop_id == 0) {
  914. val = readl(port->base + MVPP22_XLG_EXT_INT_MASK);
  915. val &= ~(MVPP22_XLG_EXT_INT_MASK_XLG |
  916. MVPP22_XLG_EXT_INT_MASK_GIG);
  917. writel(val, port->base + MVPP22_XLG_EXT_INT_MASK);
  918. }
  919. if (phy_interface_mode_is_rgmii(port->phy_interface) ||
  920. port->phy_interface == PHY_INTERFACE_MODE_SGMII ||
  921. port->phy_interface == PHY_INTERFACE_MODE_1000BASEX ||
  922. port->phy_interface == PHY_INTERFACE_MODE_2500BASEX) {
  923. val = readl(port->base + MVPP22_GMAC_INT_SUM_MASK);
  924. val &= ~MVPP22_GMAC_INT_SUM_MASK_LINK_STAT;
  925. writel(val, port->base + MVPP22_GMAC_INT_SUM_MASK);
  926. }
  927. }
  928. static void mvpp22_gop_setup_irq(struct mvpp2_port *port)
  929. {
  930. u32 val;
  931. if (phy_interface_mode_is_rgmii(port->phy_interface) ||
  932. port->phy_interface == PHY_INTERFACE_MODE_SGMII ||
  933. port->phy_interface == PHY_INTERFACE_MODE_1000BASEX ||
  934. port->phy_interface == PHY_INTERFACE_MODE_2500BASEX) {
  935. val = readl(port->base + MVPP22_GMAC_INT_MASK);
  936. val |= MVPP22_GMAC_INT_MASK_LINK_STAT;
  937. writel(val, port->base + MVPP22_GMAC_INT_MASK);
  938. }
  939. if (port->gop_id == 0) {
  940. val = readl(port->base + MVPP22_XLG_INT_MASK);
  941. val |= MVPP22_XLG_INT_MASK_LINK;
  942. writel(val, port->base + MVPP22_XLG_INT_MASK);
  943. }
  944. mvpp22_gop_unmask_irq(port);
  945. }
  946. /* Sets the PHY mode of the COMPHY (which configures the serdes lanes).
  947. *
  948. * The PHY mode used by the PPv2 driver comes from the network subsystem, while
  949. * the one given to the COMPHY comes from the generic PHY subsystem. Hence they
  950. * differ.
  951. *
  952. * The COMPHY configures the serdes lanes regardless of the actual use of the
  953. * lanes by the physical layer. This is why configurations like
  954. * "PPv2 (2500BaseX) - COMPHY (2500SGMII)" are valid.
  955. */
  956. static int mvpp22_comphy_init(struct mvpp2_port *port)
  957. {
  958. enum phy_mode mode;
  959. int ret;
  960. if (!port->comphy)
  961. return 0;
  962. switch (port->phy_interface) {
  963. case PHY_INTERFACE_MODE_SGMII:
  964. case PHY_INTERFACE_MODE_1000BASEX:
  965. mode = PHY_MODE_SGMII;
  966. break;
  967. case PHY_INTERFACE_MODE_2500BASEX:
  968. mode = PHY_MODE_2500SGMII;
  969. break;
  970. case PHY_INTERFACE_MODE_10GKR:
  971. mode = PHY_MODE_10GKR;
  972. break;
  973. default:
  974. return -EINVAL;
  975. }
  976. ret = phy_set_mode(port->comphy, mode);
  977. if (ret)
  978. return ret;
  979. return phy_power_on(port->comphy);
  980. }
  981. static void mvpp2_port_enable(struct mvpp2_port *port)
  982. {
  983. u32 val;
  984. /* Only GOP port 0 has an XLG MAC */
  985. if (port->gop_id == 0 &&
  986. (port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
  987. port->phy_interface == PHY_INTERFACE_MODE_10GKR)) {
  988. val = readl(port->base + MVPP22_XLG_CTRL0_REG);
  989. val |= MVPP22_XLG_CTRL0_PORT_EN |
  990. MVPP22_XLG_CTRL0_MAC_RESET_DIS;
  991. val &= ~MVPP22_XLG_CTRL0_MIB_CNT_DIS;
  992. writel(val, port->base + MVPP22_XLG_CTRL0_REG);
  993. } else {
  994. val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
  995. val |= MVPP2_GMAC_PORT_EN_MASK;
  996. val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
  997. writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
  998. }
  999. }
  1000. static void mvpp2_port_disable(struct mvpp2_port *port)
  1001. {
  1002. u32 val;
  1003. /* Only GOP port 0 has an XLG MAC */
  1004. if (port->gop_id == 0 &&
  1005. (port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
  1006. port->phy_interface == PHY_INTERFACE_MODE_10GKR)) {
  1007. val = readl(port->base + MVPP22_XLG_CTRL0_REG);
  1008. val &= ~MVPP22_XLG_CTRL0_PORT_EN;
  1009. writel(val, port->base + MVPP22_XLG_CTRL0_REG);
  1010. /* Disable & reset should be done separately */
  1011. val &= ~MVPP22_XLG_CTRL0_MAC_RESET_DIS;
  1012. writel(val, port->base + MVPP22_XLG_CTRL0_REG);
  1013. } else {
  1014. val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
  1015. val &= ~(MVPP2_GMAC_PORT_EN_MASK);
  1016. writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
  1017. }
  1018. }
  1019. /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
  1020. static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
  1021. {
  1022. u32 val;
  1023. val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
  1024. ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
  1025. writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
  1026. }
  1027. /* Configure loopback port */
  1028. static void mvpp2_port_loopback_set(struct mvpp2_port *port,
  1029. const struct phylink_link_state *state)
  1030. {
  1031. u32 val;
  1032. val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
  1033. if (state->speed == 1000)
  1034. val |= MVPP2_GMAC_GMII_LB_EN_MASK;
  1035. else
  1036. val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
  1037. if (port->phy_interface == PHY_INTERFACE_MODE_SGMII ||
  1038. port->phy_interface == PHY_INTERFACE_MODE_1000BASEX ||
  1039. port->phy_interface == PHY_INTERFACE_MODE_2500BASEX)
  1040. val |= MVPP2_GMAC_PCS_LB_EN_MASK;
  1041. else
  1042. val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
  1043. writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
  1044. }
  1045. struct mvpp2_ethtool_counter {
  1046. unsigned int offset;
  1047. const char string[ETH_GSTRING_LEN];
  1048. bool reg_is_64b;
  1049. };
  1050. static u64 mvpp2_read_count(struct mvpp2_port *port,
  1051. const struct mvpp2_ethtool_counter *counter)
  1052. {
  1053. u64 val;
  1054. val = readl(port->stats_base + counter->offset);
  1055. if (counter->reg_is_64b)
  1056. val += (u64)readl(port->stats_base + counter->offset + 4) << 32;
  1057. return val;
  1058. }
  1059. /* Due to the fact that software statistics and hardware statistics are, by
  1060. * design, incremented at different moments in the chain of packet processing,
  1061. * it is very likely that incoming packets could have been dropped after being
  1062. * counted by hardware but before reaching software statistics (most probably
  1063. * multicast packets), and in the oppposite way, during transmission, FCS bytes
  1064. * are added in between as well as TSO skb will be split and header bytes added.
  1065. * Hence, statistics gathered from userspace with ifconfig (software) and
  1066. * ethtool (hardware) cannot be compared.
  1067. */
  1068. static const struct mvpp2_ethtool_counter mvpp2_ethtool_regs[] = {
  1069. { MVPP2_MIB_GOOD_OCTETS_RCVD, "good_octets_received", true },
  1070. { MVPP2_MIB_BAD_OCTETS_RCVD, "bad_octets_received" },
  1071. { MVPP2_MIB_CRC_ERRORS_SENT, "crc_errors_sent" },
  1072. { MVPP2_MIB_UNICAST_FRAMES_RCVD, "unicast_frames_received" },
  1073. { MVPP2_MIB_BROADCAST_FRAMES_RCVD, "broadcast_frames_received" },
  1074. { MVPP2_MIB_MULTICAST_FRAMES_RCVD, "multicast_frames_received" },
  1075. { MVPP2_MIB_FRAMES_64_OCTETS, "frames_64_octets" },
  1076. { MVPP2_MIB_FRAMES_65_TO_127_OCTETS, "frames_65_to_127_octet" },
  1077. { MVPP2_MIB_FRAMES_128_TO_255_OCTETS, "frames_128_to_255_octet" },
  1078. { MVPP2_MIB_FRAMES_256_TO_511_OCTETS, "frames_256_to_511_octet" },
  1079. { MVPP2_MIB_FRAMES_512_TO_1023_OCTETS, "frames_512_to_1023_octet" },
  1080. { MVPP2_MIB_FRAMES_1024_TO_MAX_OCTETS, "frames_1024_to_max_octet" },
  1081. { MVPP2_MIB_GOOD_OCTETS_SENT, "good_octets_sent", true },
  1082. { MVPP2_MIB_UNICAST_FRAMES_SENT, "unicast_frames_sent" },
  1083. { MVPP2_MIB_MULTICAST_FRAMES_SENT, "multicast_frames_sent" },
  1084. { MVPP2_MIB_BROADCAST_FRAMES_SENT, "broadcast_frames_sent" },
  1085. { MVPP2_MIB_FC_SENT, "fc_sent" },
  1086. { MVPP2_MIB_FC_RCVD, "fc_received" },
  1087. { MVPP2_MIB_RX_FIFO_OVERRUN, "rx_fifo_overrun" },
  1088. { MVPP2_MIB_UNDERSIZE_RCVD, "undersize_received" },
  1089. { MVPP2_MIB_FRAGMENTS_RCVD, "fragments_received" },
  1090. { MVPP2_MIB_OVERSIZE_RCVD, "oversize_received" },
  1091. { MVPP2_MIB_JABBER_RCVD, "jabber_received" },
  1092. { MVPP2_MIB_MAC_RCV_ERROR, "mac_receive_error" },
  1093. { MVPP2_MIB_BAD_CRC_EVENT, "bad_crc_event" },
  1094. { MVPP2_MIB_COLLISION, "collision" },
  1095. { MVPP2_MIB_LATE_COLLISION, "late_collision" },
  1096. };
  1097. static void mvpp2_ethtool_get_strings(struct net_device *netdev, u32 sset,
  1098. u8 *data)
  1099. {
  1100. if (sset == ETH_SS_STATS) {
  1101. int i;
  1102. for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_regs); i++)
  1103. memcpy(data + i * ETH_GSTRING_LEN,
  1104. &mvpp2_ethtool_regs[i].string, ETH_GSTRING_LEN);
  1105. }
  1106. }
  1107. static void mvpp2_gather_hw_statistics(struct work_struct *work)
  1108. {
  1109. struct delayed_work *del_work = to_delayed_work(work);
  1110. struct mvpp2_port *port = container_of(del_work, struct mvpp2_port,
  1111. stats_work);
  1112. u64 *pstats;
  1113. int i;
  1114. mutex_lock(&port->gather_stats_lock);
  1115. pstats = port->ethtool_stats;
  1116. for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_regs); i++)
  1117. *pstats++ += mvpp2_read_count(port, &mvpp2_ethtool_regs[i]);
  1118. /* No need to read again the counters right after this function if it
  1119. * was called asynchronously by the user (ie. use of ethtool).
  1120. */
  1121. cancel_delayed_work(&port->stats_work);
  1122. queue_delayed_work(port->priv->stats_queue, &port->stats_work,
  1123. MVPP2_MIB_COUNTERS_STATS_DELAY);
  1124. mutex_unlock(&port->gather_stats_lock);
  1125. }
  1126. static void mvpp2_ethtool_get_stats(struct net_device *dev,
  1127. struct ethtool_stats *stats, u64 *data)
  1128. {
  1129. struct mvpp2_port *port = netdev_priv(dev);
  1130. /* Update statistics for the given port, then take the lock to avoid
  1131. * concurrent accesses on the ethtool_stats structure during its copy.
  1132. */
  1133. mvpp2_gather_hw_statistics(&port->stats_work.work);
  1134. mutex_lock(&port->gather_stats_lock);
  1135. memcpy(data, port->ethtool_stats,
  1136. sizeof(u64) * ARRAY_SIZE(mvpp2_ethtool_regs));
  1137. mutex_unlock(&port->gather_stats_lock);
  1138. }
  1139. static int mvpp2_ethtool_get_sset_count(struct net_device *dev, int sset)
  1140. {
  1141. if (sset == ETH_SS_STATS)
  1142. return ARRAY_SIZE(mvpp2_ethtool_regs);
  1143. return -EOPNOTSUPP;
  1144. }
  1145. static void mvpp2_port_reset(struct mvpp2_port *port)
  1146. {
  1147. u32 val;
  1148. unsigned int i;
  1149. /* Read the GOP statistics to reset the hardware counters */
  1150. for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_regs); i++)
  1151. mvpp2_read_count(port, &mvpp2_ethtool_regs[i]);
  1152. val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
  1153. ~MVPP2_GMAC_PORT_RESET_MASK;
  1154. writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
  1155. while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
  1156. MVPP2_GMAC_PORT_RESET_MASK)
  1157. continue;
  1158. }
  1159. /* Change maximum receive size of the port */
  1160. static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
  1161. {
  1162. u32 val;
  1163. val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
  1164. val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
  1165. val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
  1166. MVPP2_GMAC_MAX_RX_SIZE_OFFS);
  1167. writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
  1168. }
  1169. /* Change maximum receive size of the port */
  1170. static inline void mvpp2_xlg_max_rx_size_set(struct mvpp2_port *port)
  1171. {
  1172. u32 val;
  1173. val = readl(port->base + MVPP22_XLG_CTRL1_REG);
  1174. val &= ~MVPP22_XLG_CTRL1_FRAMESIZELIMIT_MASK;
  1175. val |= ((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
  1176. MVPP22_XLG_CTRL1_FRAMESIZELIMIT_OFFS;
  1177. writel(val, port->base + MVPP22_XLG_CTRL1_REG);
  1178. }
  1179. /* Set defaults to the MVPP2 port */
  1180. static void mvpp2_defaults_set(struct mvpp2_port *port)
  1181. {
  1182. int tx_port_num, val, queue, ptxq, lrxq;
  1183. if (port->priv->hw_version == MVPP21) {
  1184. /* Update TX FIFO MIN Threshold */
  1185. val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
  1186. val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
  1187. /* Min. TX threshold must be less than minimal packet length */
  1188. val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
  1189. writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
  1190. }
  1191. /* Disable Legacy WRR, Disable EJP, Release from reset */
  1192. tx_port_num = mvpp2_egress_port(port);
  1193. mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
  1194. tx_port_num);
  1195. mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
  1196. /* Close bandwidth for all queues */
  1197. for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
  1198. ptxq = mvpp2_txq_phys(port->id, queue);
  1199. mvpp2_write(port->priv,
  1200. MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
  1201. }
  1202. /* Set refill period to 1 usec, refill tokens
  1203. * and bucket size to maximum
  1204. */
  1205. mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG,
  1206. port->priv->tclk / USEC_PER_SEC);
  1207. val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
  1208. val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
  1209. val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
  1210. val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
  1211. mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
  1212. val = MVPP2_TXP_TOKEN_SIZE_MAX;
  1213. mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
  1214. /* Set MaximumLowLatencyPacketSize value to 256 */
  1215. mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
  1216. MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
  1217. MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
  1218. /* Enable Rx cache snoop */
  1219. for (lrxq = 0; lrxq < port->nrxqs; lrxq++) {
  1220. queue = port->rxqs[lrxq]->id;
  1221. val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
  1222. val |= MVPP2_SNOOP_PKT_SIZE_MASK |
  1223. MVPP2_SNOOP_BUF_HDR_MASK;
  1224. mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
  1225. }
  1226. /* At default, mask all interrupts to all present cpus */
  1227. mvpp2_interrupts_disable(port);
  1228. }
  1229. /* Enable/disable receiving packets */
  1230. static void mvpp2_ingress_enable(struct mvpp2_port *port)
  1231. {
  1232. u32 val;
  1233. int lrxq, queue;
  1234. for (lrxq = 0; lrxq < port->nrxqs; lrxq++) {
  1235. queue = port->rxqs[lrxq]->id;
  1236. val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
  1237. val &= ~MVPP2_RXQ_DISABLE_MASK;
  1238. mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
  1239. }
  1240. }
  1241. static void mvpp2_ingress_disable(struct mvpp2_port *port)
  1242. {
  1243. u32 val;
  1244. int lrxq, queue;
  1245. for (lrxq = 0; lrxq < port->nrxqs; lrxq++) {
  1246. queue = port->rxqs[lrxq]->id;
  1247. val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
  1248. val |= MVPP2_RXQ_DISABLE_MASK;
  1249. mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
  1250. }
  1251. }
  1252. /* Enable transmit via physical egress queue
  1253. * - HW starts take descriptors from DRAM
  1254. */
  1255. static void mvpp2_egress_enable(struct mvpp2_port *port)
  1256. {
  1257. u32 qmap;
  1258. int queue;
  1259. int tx_port_num = mvpp2_egress_port(port);
  1260. /* Enable all initialized TXs. */
  1261. qmap = 0;
  1262. for (queue = 0; queue < port->ntxqs; queue++) {
  1263. struct mvpp2_tx_queue *txq = port->txqs[queue];
  1264. if (txq->descs)
  1265. qmap |= (1 << queue);
  1266. }
  1267. mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
  1268. mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
  1269. }
  1270. /* Disable transmit via physical egress queue
  1271. * - HW doesn't take descriptors from DRAM
  1272. */
  1273. static void mvpp2_egress_disable(struct mvpp2_port *port)
  1274. {
  1275. u32 reg_data;
  1276. int delay;
  1277. int tx_port_num = mvpp2_egress_port(port);
  1278. /* Issue stop command for active channels only */
  1279. mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
  1280. reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
  1281. MVPP2_TXP_SCHED_ENQ_MASK;
  1282. if (reg_data != 0)
  1283. mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
  1284. (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
  1285. /* Wait for all Tx activity to terminate. */
  1286. delay = 0;
  1287. do {
  1288. if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
  1289. netdev_warn(port->dev,
  1290. "Tx stop timed out, status=0x%08x\n",
  1291. reg_data);
  1292. break;
  1293. }
  1294. mdelay(1);
  1295. delay++;
  1296. /* Check port TX Command register that all
  1297. * Tx queues are stopped
  1298. */
  1299. reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
  1300. } while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
  1301. }
  1302. /* Rx descriptors helper methods */
  1303. /* Get number of Rx descriptors occupied by received packets */
  1304. static inline int
  1305. mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
  1306. {
  1307. u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
  1308. return val & MVPP2_RXQ_OCCUPIED_MASK;
  1309. }
  1310. /* Update Rx queue status with the number of occupied and available
  1311. * Rx descriptor slots.
  1312. */
  1313. static inline void
  1314. mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
  1315. int used_count, int free_count)
  1316. {
  1317. /* Decrement the number of used descriptors and increment count
  1318. * increment the number of free descriptors.
  1319. */
  1320. u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
  1321. mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
  1322. }
  1323. /* Get pointer to next RX descriptor to be processed by SW */
  1324. static inline struct mvpp2_rx_desc *
  1325. mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
  1326. {
  1327. int rx_desc = rxq->next_desc_to_proc;
  1328. rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
  1329. prefetch(rxq->descs + rxq->next_desc_to_proc);
  1330. return rxq->descs + rx_desc;
  1331. }
  1332. /* Set rx queue offset */
  1333. static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
  1334. int prxq, int offset)
  1335. {
  1336. u32 val;
  1337. /* Convert offset from bytes to units of 32 bytes */
  1338. offset = offset >> 5;
  1339. val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
  1340. val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
  1341. /* Offset is in */
  1342. val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
  1343. MVPP2_RXQ_PACKET_OFFSET_MASK);
  1344. mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
  1345. }
  1346. /* Tx descriptors helper methods */
  1347. /* Get pointer to next Tx descriptor to be processed (send) by HW */
  1348. static struct mvpp2_tx_desc *
  1349. mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
  1350. {
  1351. int tx_desc = txq->next_desc_to_proc;
  1352. txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
  1353. return txq->descs + tx_desc;
  1354. }
  1355. /* Update HW with number of aggregated Tx descriptors to be sent
  1356. *
  1357. * Called only from mvpp2_tx(), so migration is disabled, using
  1358. * smp_processor_id() is OK.
  1359. */
  1360. static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
  1361. {
  1362. /* aggregated access - relevant TXQ number is written in TX desc */
  1363. mvpp2_percpu_write(port->priv, smp_processor_id(),
  1364. MVPP2_AGGR_TXQ_UPDATE_REG, pending);
  1365. }
  1366. /* Check if there are enough free descriptors in aggregated txq.
  1367. * If not, update the number of occupied descriptors and repeat the check.
  1368. *
  1369. * Called only from mvpp2_tx(), so migration is disabled, using
  1370. * smp_processor_id() is OK.
  1371. */
  1372. static int mvpp2_aggr_desc_num_check(struct mvpp2 *priv,
  1373. struct mvpp2_tx_queue *aggr_txq, int num)
  1374. {
  1375. if ((aggr_txq->count + num) > MVPP2_AGGR_TXQ_SIZE) {
  1376. /* Update number of occupied aggregated Tx descriptors */
  1377. int cpu = smp_processor_id();
  1378. u32 val = mvpp2_read_relaxed(priv,
  1379. MVPP2_AGGR_TXQ_STATUS_REG(cpu));
  1380. aggr_txq->count = val & MVPP2_AGGR_TXQ_PENDING_MASK;
  1381. if ((aggr_txq->count + num) > MVPP2_AGGR_TXQ_SIZE)
  1382. return -ENOMEM;
  1383. }
  1384. return 0;
  1385. }
  1386. /* Reserved Tx descriptors allocation request
  1387. *
  1388. * Called only from mvpp2_txq_reserved_desc_num_proc(), itself called
  1389. * only by mvpp2_tx(), so migration is disabled, using
  1390. * smp_processor_id() is OK.
  1391. */
  1392. static int mvpp2_txq_alloc_reserved_desc(struct mvpp2 *priv,
  1393. struct mvpp2_tx_queue *txq, int num)
  1394. {
  1395. u32 val;
  1396. int cpu = smp_processor_id();
  1397. val = (txq->id << MVPP2_TXQ_RSVD_REQ_Q_OFFSET) | num;
  1398. mvpp2_percpu_write_relaxed(priv, cpu, MVPP2_TXQ_RSVD_REQ_REG, val);
  1399. val = mvpp2_percpu_read_relaxed(priv, cpu, MVPP2_TXQ_RSVD_RSLT_REG);
  1400. return val & MVPP2_TXQ_RSVD_RSLT_MASK;
  1401. }
  1402. /* Check if there are enough reserved descriptors for transmission.
  1403. * If not, request chunk of reserved descriptors and check again.
  1404. */
  1405. static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2 *priv,
  1406. struct mvpp2_tx_queue *txq,
  1407. struct mvpp2_txq_pcpu *txq_pcpu,
  1408. int num)
  1409. {
  1410. int req, cpu, desc_count;
  1411. if (txq_pcpu->reserved_num >= num)
  1412. return 0;
  1413. /* Not enough descriptors reserved! Update the reserved descriptor
  1414. * count and check again.
  1415. */
  1416. desc_count = 0;
  1417. /* Compute total of used descriptors */
  1418. for_each_present_cpu(cpu) {
  1419. struct mvpp2_txq_pcpu *txq_pcpu_aux;
  1420. txq_pcpu_aux = per_cpu_ptr(txq->pcpu, cpu);
  1421. desc_count += txq_pcpu_aux->count;
  1422. desc_count += txq_pcpu_aux->reserved_num;
  1423. }
  1424. req = max(MVPP2_CPU_DESC_CHUNK, num - txq_pcpu->reserved_num);
  1425. desc_count += req;
  1426. if (desc_count >
  1427. (txq->size - (num_present_cpus() * MVPP2_CPU_DESC_CHUNK)))
  1428. return -ENOMEM;
  1429. txq_pcpu->reserved_num += mvpp2_txq_alloc_reserved_desc(priv, txq, req);
  1430. /* OK, the descriptor could have been updated: check again. */
  1431. if (txq_pcpu->reserved_num < num)
  1432. return -ENOMEM;
  1433. return 0;
  1434. }
  1435. /* Release the last allocated Tx descriptor. Useful to handle DMA
  1436. * mapping failures in the Tx path.
  1437. */
  1438. static void mvpp2_txq_desc_put(struct mvpp2_tx_queue *txq)
  1439. {
  1440. if (txq->next_desc_to_proc == 0)
  1441. txq->next_desc_to_proc = txq->last_desc - 1;
  1442. else
  1443. txq->next_desc_to_proc--;
  1444. }
  1445. /* Set Tx descriptors fields relevant for CSUM calculation */
  1446. static u32 mvpp2_txq_desc_csum(int l3_offs, int l3_proto,
  1447. int ip_hdr_len, int l4_proto)
  1448. {
  1449. u32 command;
  1450. /* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
  1451. * G_L4_chk, L4_type required only for checksum calculation
  1452. */
  1453. command = (l3_offs << MVPP2_TXD_L3_OFF_SHIFT);
  1454. command |= (ip_hdr_len << MVPP2_TXD_IP_HLEN_SHIFT);
  1455. command |= MVPP2_TXD_IP_CSUM_DISABLE;
  1456. if (l3_proto == htons(ETH_P_IP)) {
  1457. command &= ~MVPP2_TXD_IP_CSUM_DISABLE; /* enable IPv4 csum */
  1458. command &= ~MVPP2_TXD_L3_IP6; /* enable IPv4 */
  1459. } else {
  1460. command |= MVPP2_TXD_L3_IP6; /* enable IPv6 */
  1461. }
  1462. if (l4_proto == IPPROTO_TCP) {
  1463. command &= ~MVPP2_TXD_L4_UDP; /* enable TCP */
  1464. command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
  1465. } else if (l4_proto == IPPROTO_UDP) {
  1466. command |= MVPP2_TXD_L4_UDP; /* enable UDP */
  1467. command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
  1468. } else {
  1469. command |= MVPP2_TXD_L4_CSUM_NOT;
  1470. }
  1471. return command;
  1472. }
  1473. /* Get number of sent descriptors and decrement counter.
  1474. * The number of sent descriptors is returned.
  1475. * Per-CPU access
  1476. *
  1477. * Called only from mvpp2_txq_done(), called from mvpp2_tx()
  1478. * (migration disabled) and from the TX completion tasklet (migration
  1479. * disabled) so using smp_processor_id() is OK.
  1480. */
  1481. static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
  1482. struct mvpp2_tx_queue *txq)
  1483. {
  1484. u32 val;
  1485. /* Reading status reg resets transmitted descriptor counter */
  1486. val = mvpp2_percpu_read_relaxed(port->priv, smp_processor_id(),
  1487. MVPP2_TXQ_SENT_REG(txq->id));
  1488. return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
  1489. MVPP2_TRANSMITTED_COUNT_OFFSET;
  1490. }
  1491. /* Called through on_each_cpu(), so runs on all CPUs, with migration
  1492. * disabled, therefore using smp_processor_id() is OK.
  1493. */
  1494. static void mvpp2_txq_sent_counter_clear(void *arg)
  1495. {
  1496. struct mvpp2_port *port = arg;
  1497. int queue;
  1498. for (queue = 0; queue < port->ntxqs; queue++) {
  1499. int id = port->txqs[queue]->id;
  1500. mvpp2_percpu_read(port->priv, smp_processor_id(),
  1501. MVPP2_TXQ_SENT_REG(id));
  1502. }
  1503. }
  1504. /* Set max sizes for Tx queues */
  1505. static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
  1506. {
  1507. u32 val, size, mtu;
  1508. int txq, tx_port_num;
  1509. mtu = port->pkt_size * 8;
  1510. if (mtu > MVPP2_TXP_MTU_MAX)
  1511. mtu = MVPP2_TXP_MTU_MAX;
  1512. /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
  1513. mtu = 3 * mtu;
  1514. /* Indirect access to registers */
  1515. tx_port_num = mvpp2_egress_port(port);
  1516. mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
  1517. /* Set MTU */
  1518. val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
  1519. val &= ~MVPP2_TXP_MTU_MAX;
  1520. val |= mtu;
  1521. mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
  1522. /* TXP token size and all TXQs token size must be larger that MTU */
  1523. val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
  1524. size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
  1525. if (size < mtu) {
  1526. size = mtu;
  1527. val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
  1528. val |= size;
  1529. mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
  1530. }
  1531. for (txq = 0; txq < port->ntxqs; txq++) {
  1532. val = mvpp2_read(port->priv,
  1533. MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
  1534. size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
  1535. if (size < mtu) {
  1536. size = mtu;
  1537. val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
  1538. val |= size;
  1539. mvpp2_write(port->priv,
  1540. MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
  1541. val);
  1542. }
  1543. }
  1544. }
  1545. /* Set the number of packets that will be received before Rx interrupt
  1546. * will be generated by HW.
  1547. */
  1548. static void mvpp2_rx_pkts_coal_set(struct mvpp2_port *port,
  1549. struct mvpp2_rx_queue *rxq)
  1550. {
  1551. int cpu = get_cpu();
  1552. if (rxq->pkts_coal > MVPP2_OCCUPIED_THRESH_MASK)
  1553. rxq->pkts_coal = MVPP2_OCCUPIED_THRESH_MASK;
  1554. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
  1555. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_THRESH_REG,
  1556. rxq->pkts_coal);
  1557. put_cpu();
  1558. }
  1559. /* For some reason in the LSP this is done on each CPU. Why ? */
  1560. static void mvpp2_tx_pkts_coal_set(struct mvpp2_port *port,
  1561. struct mvpp2_tx_queue *txq)
  1562. {
  1563. int cpu = get_cpu();
  1564. u32 val;
  1565. if (txq->done_pkts_coal > MVPP2_TXQ_THRESH_MASK)
  1566. txq->done_pkts_coal = MVPP2_TXQ_THRESH_MASK;
  1567. val = (txq->done_pkts_coal << MVPP2_TXQ_THRESH_OFFSET);
  1568. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
  1569. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_THRESH_REG, val);
  1570. put_cpu();
  1571. }
  1572. static u32 mvpp2_usec_to_cycles(u32 usec, unsigned long clk_hz)
  1573. {
  1574. u64 tmp = (u64)clk_hz * usec;
  1575. do_div(tmp, USEC_PER_SEC);
  1576. return tmp > U32_MAX ? U32_MAX : tmp;
  1577. }
  1578. static u32 mvpp2_cycles_to_usec(u32 cycles, unsigned long clk_hz)
  1579. {
  1580. u64 tmp = (u64)cycles * USEC_PER_SEC;
  1581. do_div(tmp, clk_hz);
  1582. return tmp > U32_MAX ? U32_MAX : tmp;
  1583. }
  1584. /* Set the time delay in usec before Rx interrupt */
  1585. static void mvpp2_rx_time_coal_set(struct mvpp2_port *port,
  1586. struct mvpp2_rx_queue *rxq)
  1587. {
  1588. unsigned long freq = port->priv->tclk;
  1589. u32 val = mvpp2_usec_to_cycles(rxq->time_coal, freq);
  1590. if (val > MVPP2_MAX_ISR_RX_THRESHOLD) {
  1591. rxq->time_coal =
  1592. mvpp2_cycles_to_usec(MVPP2_MAX_ISR_RX_THRESHOLD, freq);
  1593. /* re-evaluate to get actual register value */
  1594. val = mvpp2_usec_to_cycles(rxq->time_coal, freq);
  1595. }
  1596. mvpp2_write(port->priv, MVPP2_ISR_RX_THRESHOLD_REG(rxq->id), val);
  1597. }
  1598. static void mvpp2_tx_time_coal_set(struct mvpp2_port *port)
  1599. {
  1600. unsigned long freq = port->priv->tclk;
  1601. u32 val = mvpp2_usec_to_cycles(port->tx_time_coal, freq);
  1602. if (val > MVPP2_MAX_ISR_TX_THRESHOLD) {
  1603. port->tx_time_coal =
  1604. mvpp2_cycles_to_usec(MVPP2_MAX_ISR_TX_THRESHOLD, freq);
  1605. /* re-evaluate to get actual register value */
  1606. val = mvpp2_usec_to_cycles(port->tx_time_coal, freq);
  1607. }
  1608. mvpp2_write(port->priv, MVPP2_ISR_TX_THRESHOLD_REG(port->id), val);
  1609. }
  1610. /* Free Tx queue skbuffs */
  1611. static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
  1612. struct mvpp2_tx_queue *txq,
  1613. struct mvpp2_txq_pcpu *txq_pcpu, int num)
  1614. {
  1615. int i;
  1616. for (i = 0; i < num; i++) {
  1617. struct mvpp2_txq_pcpu_buf *tx_buf =
  1618. txq_pcpu->buffs + txq_pcpu->txq_get_index;
  1619. if (!IS_TSO_HEADER(txq_pcpu, tx_buf->dma))
  1620. dma_unmap_single(port->dev->dev.parent, tx_buf->dma,
  1621. tx_buf->size, DMA_TO_DEVICE);
  1622. if (tx_buf->skb)
  1623. dev_kfree_skb_any(tx_buf->skb);
  1624. mvpp2_txq_inc_get(txq_pcpu);
  1625. }
  1626. }
  1627. static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
  1628. u32 cause)
  1629. {
  1630. int queue = fls(cause) - 1;
  1631. return port->rxqs[queue];
  1632. }
  1633. static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
  1634. u32 cause)
  1635. {
  1636. int queue = fls(cause) - 1;
  1637. return port->txqs[queue];
  1638. }
  1639. /* Handle end of transmission */
  1640. static void mvpp2_txq_done(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
  1641. struct mvpp2_txq_pcpu *txq_pcpu)
  1642. {
  1643. struct netdev_queue *nq = netdev_get_tx_queue(port->dev, txq->log_id);
  1644. int tx_done;
  1645. if (txq_pcpu->cpu != smp_processor_id())
  1646. netdev_err(port->dev, "wrong cpu on the end of Tx processing\n");
  1647. tx_done = mvpp2_txq_sent_desc_proc(port, txq);
  1648. if (!tx_done)
  1649. return;
  1650. mvpp2_txq_bufs_free(port, txq, txq_pcpu, tx_done);
  1651. txq_pcpu->count -= tx_done;
  1652. if (netif_tx_queue_stopped(nq))
  1653. if (txq_pcpu->count <= txq_pcpu->wake_threshold)
  1654. netif_tx_wake_queue(nq);
  1655. }
  1656. static unsigned int mvpp2_tx_done(struct mvpp2_port *port, u32 cause,
  1657. int cpu)
  1658. {
  1659. struct mvpp2_tx_queue *txq;
  1660. struct mvpp2_txq_pcpu *txq_pcpu;
  1661. unsigned int tx_todo = 0;
  1662. while (cause) {
  1663. txq = mvpp2_get_tx_queue(port, cause);
  1664. if (!txq)
  1665. break;
  1666. txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
  1667. if (txq_pcpu->count) {
  1668. mvpp2_txq_done(port, txq, txq_pcpu);
  1669. tx_todo += txq_pcpu->count;
  1670. }
  1671. cause &= ~(1 << txq->log_id);
  1672. }
  1673. return tx_todo;
  1674. }
  1675. /* Rx/Tx queue initialization/cleanup methods */
  1676. /* Allocate and initialize descriptors for aggr TXQ */
  1677. static int mvpp2_aggr_txq_init(struct platform_device *pdev,
  1678. struct mvpp2_tx_queue *aggr_txq, int cpu,
  1679. struct mvpp2 *priv)
  1680. {
  1681. u32 txq_dma;
  1682. /* Allocate memory for TX descriptors */
  1683. aggr_txq->descs = dma_zalloc_coherent(&pdev->dev,
  1684. MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
  1685. &aggr_txq->descs_dma, GFP_KERNEL);
  1686. if (!aggr_txq->descs)
  1687. return -ENOMEM;
  1688. aggr_txq->last_desc = MVPP2_AGGR_TXQ_SIZE - 1;
  1689. /* Aggr TXQ no reset WA */
  1690. aggr_txq->next_desc_to_proc = mvpp2_read(priv,
  1691. MVPP2_AGGR_TXQ_INDEX_REG(cpu));
  1692. /* Set Tx descriptors queue starting address indirect
  1693. * access
  1694. */
  1695. if (priv->hw_version == MVPP21)
  1696. txq_dma = aggr_txq->descs_dma;
  1697. else
  1698. txq_dma = aggr_txq->descs_dma >>
  1699. MVPP22_AGGR_TXQ_DESC_ADDR_OFFS;
  1700. mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma);
  1701. mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu),
  1702. MVPP2_AGGR_TXQ_SIZE);
  1703. return 0;
  1704. }
  1705. /* Create a specified Rx queue */
  1706. static int mvpp2_rxq_init(struct mvpp2_port *port,
  1707. struct mvpp2_rx_queue *rxq)
  1708. {
  1709. u32 rxq_dma;
  1710. int cpu;
  1711. rxq->size = port->rx_ring_size;
  1712. /* Allocate memory for RX descriptors */
  1713. rxq->descs = dma_alloc_coherent(port->dev->dev.parent,
  1714. rxq->size * MVPP2_DESC_ALIGNED_SIZE,
  1715. &rxq->descs_dma, GFP_KERNEL);
  1716. if (!rxq->descs)
  1717. return -ENOMEM;
  1718. rxq->last_desc = rxq->size - 1;
  1719. /* Zero occupied and non-occupied counters - direct access */
  1720. mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
  1721. /* Set Rx descriptors queue starting address - indirect access */
  1722. cpu = get_cpu();
  1723. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
  1724. if (port->priv->hw_version == MVPP21)
  1725. rxq_dma = rxq->descs_dma;
  1726. else
  1727. rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS;
  1728. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma);
  1729. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
  1730. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_INDEX_REG, 0);
  1731. put_cpu();
  1732. /* Set Offset */
  1733. mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
  1734. /* Set coalescing pkts and time */
  1735. mvpp2_rx_pkts_coal_set(port, rxq);
  1736. mvpp2_rx_time_coal_set(port, rxq);
  1737. /* Add number of descriptors ready for receiving packets */
  1738. mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
  1739. return 0;
  1740. }
  1741. /* Push packets received by the RXQ to BM pool */
  1742. static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
  1743. struct mvpp2_rx_queue *rxq)
  1744. {
  1745. int rx_received, i;
  1746. rx_received = mvpp2_rxq_received(port, rxq->id);
  1747. if (!rx_received)
  1748. return;
  1749. for (i = 0; i < rx_received; i++) {
  1750. struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
  1751. u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
  1752. int pool;
  1753. pool = (status & MVPP2_RXD_BM_POOL_ID_MASK) >>
  1754. MVPP2_RXD_BM_POOL_ID_OFFS;
  1755. mvpp2_bm_pool_put(port, pool,
  1756. mvpp2_rxdesc_dma_addr_get(port, rx_desc),
  1757. mvpp2_rxdesc_cookie_get(port, rx_desc));
  1758. }
  1759. mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
  1760. }
  1761. /* Cleanup Rx queue */
  1762. static void mvpp2_rxq_deinit(struct mvpp2_port *port,
  1763. struct mvpp2_rx_queue *rxq)
  1764. {
  1765. int cpu;
  1766. mvpp2_rxq_drop_pkts(port, rxq);
  1767. if (rxq->descs)
  1768. dma_free_coherent(port->dev->dev.parent,
  1769. rxq->size * MVPP2_DESC_ALIGNED_SIZE,
  1770. rxq->descs,
  1771. rxq->descs_dma);
  1772. rxq->descs = NULL;
  1773. rxq->last_desc = 0;
  1774. rxq->next_desc_to_proc = 0;
  1775. rxq->descs_dma = 0;
  1776. /* Clear Rx descriptors queue starting address and size;
  1777. * free descriptor number
  1778. */
  1779. mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
  1780. cpu = get_cpu();
  1781. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
  1782. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_ADDR_REG, 0);
  1783. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_SIZE_REG, 0);
  1784. put_cpu();
  1785. }
  1786. /* Create and initialize a Tx queue */
  1787. static int mvpp2_txq_init(struct mvpp2_port *port,
  1788. struct mvpp2_tx_queue *txq)
  1789. {
  1790. u32 val;
  1791. int cpu, desc, desc_per_txq, tx_port_num;
  1792. struct mvpp2_txq_pcpu *txq_pcpu;
  1793. txq->size = port->tx_ring_size;
  1794. /* Allocate memory for Tx descriptors */
  1795. txq->descs = dma_alloc_coherent(port->dev->dev.parent,
  1796. txq->size * MVPP2_DESC_ALIGNED_SIZE,
  1797. &txq->descs_dma, GFP_KERNEL);
  1798. if (!txq->descs)
  1799. return -ENOMEM;
  1800. txq->last_desc = txq->size - 1;
  1801. /* Set Tx descriptors queue starting address - indirect access */
  1802. cpu = get_cpu();
  1803. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
  1804. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_ADDR_REG,
  1805. txq->descs_dma);
  1806. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_SIZE_REG,
  1807. txq->size & MVPP2_TXQ_DESC_SIZE_MASK);
  1808. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_INDEX_REG, 0);
  1809. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_RSVD_CLR_REG,
  1810. txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
  1811. val = mvpp2_percpu_read(port->priv, cpu, MVPP2_TXQ_PENDING_REG);
  1812. val &= ~MVPP2_TXQ_PENDING_MASK;
  1813. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PENDING_REG, val);
  1814. /* Calculate base address in prefetch buffer. We reserve 16 descriptors
  1815. * for each existing TXQ.
  1816. * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
  1817. * GBE ports assumed to be continuous from 0 to MVPP2_MAX_PORTS
  1818. */
  1819. desc_per_txq = 16;
  1820. desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
  1821. (txq->log_id * desc_per_txq);
  1822. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG,
  1823. MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
  1824. MVPP2_PREF_BUF_THRESH(desc_per_txq / 2));
  1825. put_cpu();
  1826. /* WRR / EJP configuration - indirect access */
  1827. tx_port_num = mvpp2_egress_port(port);
  1828. mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
  1829. val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
  1830. val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
  1831. val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
  1832. val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
  1833. mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
  1834. val = MVPP2_TXQ_TOKEN_SIZE_MAX;
  1835. mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
  1836. val);
  1837. for_each_present_cpu(cpu) {
  1838. txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
  1839. txq_pcpu->size = txq->size;
  1840. txq_pcpu->buffs = kmalloc_array(txq_pcpu->size,
  1841. sizeof(*txq_pcpu->buffs),
  1842. GFP_KERNEL);
  1843. if (!txq_pcpu->buffs)
  1844. return -ENOMEM;
  1845. txq_pcpu->count = 0;
  1846. txq_pcpu->reserved_num = 0;
  1847. txq_pcpu->txq_put_index = 0;
  1848. txq_pcpu->txq_get_index = 0;
  1849. txq_pcpu->tso_headers = NULL;
  1850. txq_pcpu->stop_threshold = txq->size - MVPP2_MAX_SKB_DESCS;
  1851. txq_pcpu->wake_threshold = txq_pcpu->stop_threshold / 2;
  1852. txq_pcpu->tso_headers =
  1853. dma_alloc_coherent(port->dev->dev.parent,
  1854. txq_pcpu->size * TSO_HEADER_SIZE,
  1855. &txq_pcpu->tso_headers_dma,
  1856. GFP_KERNEL);
  1857. if (!txq_pcpu->tso_headers)
  1858. return -ENOMEM;
  1859. }
  1860. return 0;
  1861. }
  1862. /* Free allocated TXQ resources */
  1863. static void mvpp2_txq_deinit(struct mvpp2_port *port,
  1864. struct mvpp2_tx_queue *txq)
  1865. {
  1866. struct mvpp2_txq_pcpu *txq_pcpu;
  1867. int cpu;
  1868. for_each_present_cpu(cpu) {
  1869. txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
  1870. kfree(txq_pcpu->buffs);
  1871. if (txq_pcpu->tso_headers)
  1872. dma_free_coherent(port->dev->dev.parent,
  1873. txq_pcpu->size * TSO_HEADER_SIZE,
  1874. txq_pcpu->tso_headers,
  1875. txq_pcpu->tso_headers_dma);
  1876. txq_pcpu->tso_headers = NULL;
  1877. }
  1878. if (txq->descs)
  1879. dma_free_coherent(port->dev->dev.parent,
  1880. txq->size * MVPP2_DESC_ALIGNED_SIZE,
  1881. txq->descs, txq->descs_dma);
  1882. txq->descs = NULL;
  1883. txq->last_desc = 0;
  1884. txq->next_desc_to_proc = 0;
  1885. txq->descs_dma = 0;
  1886. /* Set minimum bandwidth for disabled TXQs */
  1887. mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
  1888. /* Set Tx descriptors queue starting address and size */
  1889. cpu = get_cpu();
  1890. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
  1891. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_ADDR_REG, 0);
  1892. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_SIZE_REG, 0);
  1893. put_cpu();
  1894. }
  1895. /* Cleanup Tx ports */
  1896. static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
  1897. {
  1898. struct mvpp2_txq_pcpu *txq_pcpu;
  1899. int delay, pending, cpu;
  1900. u32 val;
  1901. cpu = get_cpu();
  1902. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
  1903. val = mvpp2_percpu_read(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG);
  1904. val |= MVPP2_TXQ_DRAIN_EN_MASK;
  1905. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG, val);
  1906. /* The napi queue has been stopped so wait for all packets
  1907. * to be transmitted.
  1908. */
  1909. delay = 0;
  1910. do {
  1911. if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
  1912. netdev_warn(port->dev,
  1913. "port %d: cleaning queue %d timed out\n",
  1914. port->id, txq->log_id);
  1915. break;
  1916. }
  1917. mdelay(1);
  1918. delay++;
  1919. pending = mvpp2_percpu_read(port->priv, cpu,
  1920. MVPP2_TXQ_PENDING_REG);
  1921. pending &= MVPP2_TXQ_PENDING_MASK;
  1922. } while (pending);
  1923. val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
  1924. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG, val);
  1925. put_cpu();
  1926. for_each_present_cpu(cpu) {
  1927. txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
  1928. /* Release all packets */
  1929. mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
  1930. /* Reset queue */
  1931. txq_pcpu->count = 0;
  1932. txq_pcpu->txq_put_index = 0;
  1933. txq_pcpu->txq_get_index = 0;
  1934. }
  1935. }
  1936. /* Cleanup all Tx queues */
  1937. static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
  1938. {
  1939. struct mvpp2_tx_queue *txq;
  1940. int queue;
  1941. u32 val;
  1942. val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
  1943. /* Reset Tx ports and delete Tx queues */
  1944. val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
  1945. mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
  1946. for (queue = 0; queue < port->ntxqs; queue++) {
  1947. txq = port->txqs[queue];
  1948. mvpp2_txq_clean(port, txq);
  1949. mvpp2_txq_deinit(port, txq);
  1950. }
  1951. on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
  1952. val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
  1953. mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
  1954. }
  1955. /* Cleanup all Rx queues */
  1956. static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
  1957. {
  1958. int queue;
  1959. for (queue = 0; queue < port->nrxqs; queue++)
  1960. mvpp2_rxq_deinit(port, port->rxqs[queue]);
  1961. }
  1962. /* Init all Rx queues for port */
  1963. static int mvpp2_setup_rxqs(struct mvpp2_port *port)
  1964. {
  1965. int queue, err;
  1966. for (queue = 0; queue < port->nrxqs; queue++) {
  1967. err = mvpp2_rxq_init(port, port->rxqs[queue]);
  1968. if (err)
  1969. goto err_cleanup;
  1970. }
  1971. return 0;
  1972. err_cleanup:
  1973. mvpp2_cleanup_rxqs(port);
  1974. return err;
  1975. }
  1976. /* Init all tx queues for port */
  1977. static int mvpp2_setup_txqs(struct mvpp2_port *port)
  1978. {
  1979. struct mvpp2_tx_queue *txq;
  1980. int queue, err;
  1981. for (queue = 0; queue < port->ntxqs; queue++) {
  1982. txq = port->txqs[queue];
  1983. err = mvpp2_txq_init(port, txq);
  1984. if (err)
  1985. goto err_cleanup;
  1986. }
  1987. if (port->has_tx_irqs) {
  1988. mvpp2_tx_time_coal_set(port);
  1989. for (queue = 0; queue < port->ntxqs; queue++) {
  1990. txq = port->txqs[queue];
  1991. mvpp2_tx_pkts_coal_set(port, txq);
  1992. }
  1993. }
  1994. on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
  1995. return 0;
  1996. err_cleanup:
  1997. mvpp2_cleanup_txqs(port);
  1998. return err;
  1999. }
  2000. /* The callback for per-port interrupt */
  2001. static irqreturn_t mvpp2_isr(int irq, void *dev_id)
  2002. {
  2003. struct mvpp2_queue_vector *qv = dev_id;
  2004. mvpp2_qvec_interrupt_disable(qv);
  2005. napi_schedule(&qv->napi);
  2006. return IRQ_HANDLED;
  2007. }
  2008. /* Per-port interrupt for link status changes */
  2009. static irqreturn_t mvpp2_link_status_isr(int irq, void *dev_id)
  2010. {
  2011. struct mvpp2_port *port = (struct mvpp2_port *)dev_id;
  2012. struct net_device *dev = port->dev;
  2013. bool event = false, link = false;
  2014. u32 val;
  2015. mvpp22_gop_mask_irq(port);
  2016. if (port->gop_id == 0 &&
  2017. port->phy_interface == PHY_INTERFACE_MODE_10GKR) {
  2018. val = readl(port->base + MVPP22_XLG_INT_STAT);
  2019. if (val & MVPP22_XLG_INT_STAT_LINK) {
  2020. event = true;
  2021. val = readl(port->base + MVPP22_XLG_STATUS);
  2022. if (val & MVPP22_XLG_STATUS_LINK_UP)
  2023. link = true;
  2024. }
  2025. } else if (phy_interface_mode_is_rgmii(port->phy_interface) ||
  2026. port->phy_interface == PHY_INTERFACE_MODE_SGMII ||
  2027. port->phy_interface == PHY_INTERFACE_MODE_1000BASEX ||
  2028. port->phy_interface == PHY_INTERFACE_MODE_2500BASEX) {
  2029. val = readl(port->base + MVPP22_GMAC_INT_STAT);
  2030. if (val & MVPP22_GMAC_INT_STAT_LINK) {
  2031. event = true;
  2032. val = readl(port->base + MVPP2_GMAC_STATUS0);
  2033. if (val & MVPP2_GMAC_STATUS0_LINK_UP)
  2034. link = true;
  2035. }
  2036. }
  2037. if (port->phylink) {
  2038. phylink_mac_change(port->phylink, link);
  2039. goto handled;
  2040. }
  2041. if (!netif_running(dev) || !event)
  2042. goto handled;
  2043. if (link) {
  2044. mvpp2_interrupts_enable(port);
  2045. mvpp2_egress_enable(port);
  2046. mvpp2_ingress_enable(port);
  2047. netif_carrier_on(dev);
  2048. netif_tx_wake_all_queues(dev);
  2049. } else {
  2050. netif_tx_stop_all_queues(dev);
  2051. netif_carrier_off(dev);
  2052. mvpp2_ingress_disable(port);
  2053. mvpp2_egress_disable(port);
  2054. mvpp2_interrupts_disable(port);
  2055. }
  2056. handled:
  2057. mvpp22_gop_unmask_irq(port);
  2058. return IRQ_HANDLED;
  2059. }
  2060. static void mvpp2_timer_set(struct mvpp2_port_pcpu *port_pcpu)
  2061. {
  2062. ktime_t interval;
  2063. if (!port_pcpu->timer_scheduled) {
  2064. port_pcpu->timer_scheduled = true;
  2065. interval = MVPP2_TXDONE_HRTIMER_PERIOD_NS;
  2066. hrtimer_start(&port_pcpu->tx_done_timer, interval,
  2067. HRTIMER_MODE_REL_PINNED);
  2068. }
  2069. }
  2070. static void mvpp2_tx_proc_cb(unsigned long data)
  2071. {
  2072. struct net_device *dev = (struct net_device *)data;
  2073. struct mvpp2_port *port = netdev_priv(dev);
  2074. struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
  2075. unsigned int tx_todo, cause;
  2076. if (!netif_running(dev))
  2077. return;
  2078. port_pcpu->timer_scheduled = false;
  2079. /* Process all the Tx queues */
  2080. cause = (1 << port->ntxqs) - 1;
  2081. tx_todo = mvpp2_tx_done(port, cause, smp_processor_id());
  2082. /* Set the timer in case not all the packets were processed */
  2083. if (tx_todo)
  2084. mvpp2_timer_set(port_pcpu);
  2085. }
  2086. static enum hrtimer_restart mvpp2_hr_timer_cb(struct hrtimer *timer)
  2087. {
  2088. struct mvpp2_port_pcpu *port_pcpu = container_of(timer,
  2089. struct mvpp2_port_pcpu,
  2090. tx_done_timer);
  2091. tasklet_schedule(&port_pcpu->tx_done_tasklet);
  2092. return HRTIMER_NORESTART;
  2093. }
  2094. /* Main RX/TX processing routines */
  2095. /* Display more error info */
  2096. static void mvpp2_rx_error(struct mvpp2_port *port,
  2097. struct mvpp2_rx_desc *rx_desc)
  2098. {
  2099. u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
  2100. size_t sz = mvpp2_rxdesc_size_get(port, rx_desc);
  2101. char *err_str = NULL;
  2102. switch (status & MVPP2_RXD_ERR_CODE_MASK) {
  2103. case MVPP2_RXD_ERR_CRC:
  2104. err_str = "crc";
  2105. break;
  2106. case MVPP2_RXD_ERR_OVERRUN:
  2107. err_str = "overrun";
  2108. break;
  2109. case MVPP2_RXD_ERR_RESOURCE:
  2110. err_str = "resource";
  2111. break;
  2112. }
  2113. if (err_str && net_ratelimit())
  2114. netdev_err(port->dev,
  2115. "bad rx status %08x (%s error), size=%zu\n",
  2116. status, err_str, sz);
  2117. }
  2118. /* Handle RX checksum offload */
  2119. static void mvpp2_rx_csum(struct mvpp2_port *port, u32 status,
  2120. struct sk_buff *skb)
  2121. {
  2122. if (((status & MVPP2_RXD_L3_IP4) &&
  2123. !(status & MVPP2_RXD_IP4_HEADER_ERR)) ||
  2124. (status & MVPP2_RXD_L3_IP6))
  2125. if (((status & MVPP2_RXD_L4_UDP) ||
  2126. (status & MVPP2_RXD_L4_TCP)) &&
  2127. (status & MVPP2_RXD_L4_CSUM_OK)) {
  2128. skb->csum = 0;
  2129. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2130. return;
  2131. }
  2132. skb->ip_summed = CHECKSUM_NONE;
  2133. }
  2134. /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
  2135. static int mvpp2_rx_refill(struct mvpp2_port *port,
  2136. struct mvpp2_bm_pool *bm_pool, int pool)
  2137. {
  2138. dma_addr_t dma_addr;
  2139. phys_addr_t phys_addr;
  2140. void *buf;
  2141. /* No recycle or too many buffers are in use, so allocate a new skb */
  2142. buf = mvpp2_buf_alloc(port, bm_pool, &dma_addr, &phys_addr,
  2143. GFP_ATOMIC);
  2144. if (!buf)
  2145. return -ENOMEM;
  2146. mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
  2147. return 0;
  2148. }
  2149. /* Handle tx checksum */
  2150. static u32 mvpp2_skb_tx_csum(struct mvpp2_port *port, struct sk_buff *skb)
  2151. {
  2152. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2153. int ip_hdr_len = 0;
  2154. u8 l4_proto;
  2155. if (skb->protocol == htons(ETH_P_IP)) {
  2156. struct iphdr *ip4h = ip_hdr(skb);
  2157. /* Calculate IPv4 checksum and L4 checksum */
  2158. ip_hdr_len = ip4h->ihl;
  2159. l4_proto = ip4h->protocol;
  2160. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  2161. struct ipv6hdr *ip6h = ipv6_hdr(skb);
  2162. /* Read l4_protocol from one of IPv6 extra headers */
  2163. if (skb_network_header_len(skb) > 0)
  2164. ip_hdr_len = (skb_network_header_len(skb) >> 2);
  2165. l4_proto = ip6h->nexthdr;
  2166. } else {
  2167. return MVPP2_TXD_L4_CSUM_NOT;
  2168. }
  2169. return mvpp2_txq_desc_csum(skb_network_offset(skb),
  2170. skb->protocol, ip_hdr_len, l4_proto);
  2171. }
  2172. return MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE;
  2173. }
  2174. /* Main rx processing */
  2175. static int mvpp2_rx(struct mvpp2_port *port, struct napi_struct *napi,
  2176. int rx_todo, struct mvpp2_rx_queue *rxq)
  2177. {
  2178. struct net_device *dev = port->dev;
  2179. int rx_received;
  2180. int rx_done = 0;
  2181. u32 rcvd_pkts = 0;
  2182. u32 rcvd_bytes = 0;
  2183. /* Get number of received packets and clamp the to-do */
  2184. rx_received = mvpp2_rxq_received(port, rxq->id);
  2185. if (rx_todo > rx_received)
  2186. rx_todo = rx_received;
  2187. while (rx_done < rx_todo) {
  2188. struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
  2189. struct mvpp2_bm_pool *bm_pool;
  2190. struct sk_buff *skb;
  2191. unsigned int frag_size;
  2192. dma_addr_t dma_addr;
  2193. phys_addr_t phys_addr;
  2194. u32 rx_status;
  2195. int pool, rx_bytes, err;
  2196. void *data;
  2197. rx_done++;
  2198. rx_status = mvpp2_rxdesc_status_get(port, rx_desc);
  2199. rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc);
  2200. rx_bytes -= MVPP2_MH_SIZE;
  2201. dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc);
  2202. phys_addr = mvpp2_rxdesc_cookie_get(port, rx_desc);
  2203. data = (void *)phys_to_virt(phys_addr);
  2204. pool = (rx_status & MVPP2_RXD_BM_POOL_ID_MASK) >>
  2205. MVPP2_RXD_BM_POOL_ID_OFFS;
  2206. bm_pool = &port->priv->bm_pools[pool];
  2207. /* In case of an error, release the requested buffer pointer
  2208. * to the Buffer Manager. This request process is controlled
  2209. * by the hardware, and the information about the buffer is
  2210. * comprised by the RX descriptor.
  2211. */
  2212. if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
  2213. err_drop_frame:
  2214. dev->stats.rx_errors++;
  2215. mvpp2_rx_error(port, rx_desc);
  2216. /* Return the buffer to the pool */
  2217. mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
  2218. continue;
  2219. }
  2220. if (bm_pool->frag_size > PAGE_SIZE)
  2221. frag_size = 0;
  2222. else
  2223. frag_size = bm_pool->frag_size;
  2224. skb = build_skb(data, frag_size);
  2225. if (!skb) {
  2226. netdev_warn(port->dev, "skb build failed\n");
  2227. goto err_drop_frame;
  2228. }
  2229. err = mvpp2_rx_refill(port, bm_pool, pool);
  2230. if (err) {
  2231. netdev_err(port->dev, "failed to refill BM pools\n");
  2232. goto err_drop_frame;
  2233. }
  2234. dma_unmap_single(dev->dev.parent, dma_addr,
  2235. bm_pool->buf_size, DMA_FROM_DEVICE);
  2236. rcvd_pkts++;
  2237. rcvd_bytes += rx_bytes;
  2238. skb_reserve(skb, MVPP2_MH_SIZE + NET_SKB_PAD);
  2239. skb_put(skb, rx_bytes);
  2240. skb->protocol = eth_type_trans(skb, dev);
  2241. mvpp2_rx_csum(port, rx_status, skb);
  2242. napi_gro_receive(napi, skb);
  2243. }
  2244. if (rcvd_pkts) {
  2245. struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
  2246. u64_stats_update_begin(&stats->syncp);
  2247. stats->rx_packets += rcvd_pkts;
  2248. stats->rx_bytes += rcvd_bytes;
  2249. u64_stats_update_end(&stats->syncp);
  2250. }
  2251. /* Update Rx queue management counters */
  2252. wmb();
  2253. mvpp2_rxq_status_update(port, rxq->id, rx_done, rx_done);
  2254. return rx_todo;
  2255. }
  2256. static inline void
  2257. tx_desc_unmap_put(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
  2258. struct mvpp2_tx_desc *desc)
  2259. {
  2260. struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
  2261. dma_addr_t buf_dma_addr =
  2262. mvpp2_txdesc_dma_addr_get(port, desc);
  2263. size_t buf_sz =
  2264. mvpp2_txdesc_size_get(port, desc);
  2265. if (!IS_TSO_HEADER(txq_pcpu, buf_dma_addr))
  2266. dma_unmap_single(port->dev->dev.parent, buf_dma_addr,
  2267. buf_sz, DMA_TO_DEVICE);
  2268. mvpp2_txq_desc_put(txq);
  2269. }
  2270. /* Handle tx fragmentation processing */
  2271. static int mvpp2_tx_frag_process(struct mvpp2_port *port, struct sk_buff *skb,
  2272. struct mvpp2_tx_queue *aggr_txq,
  2273. struct mvpp2_tx_queue *txq)
  2274. {
  2275. struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
  2276. struct mvpp2_tx_desc *tx_desc;
  2277. int i;
  2278. dma_addr_t buf_dma_addr;
  2279. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2280. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2281. void *addr = page_address(frag->page.p) + frag->page_offset;
  2282. tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
  2283. mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
  2284. mvpp2_txdesc_size_set(port, tx_desc, frag->size);
  2285. buf_dma_addr = dma_map_single(port->dev->dev.parent, addr,
  2286. frag->size, DMA_TO_DEVICE);
  2287. if (dma_mapping_error(port->dev->dev.parent, buf_dma_addr)) {
  2288. mvpp2_txq_desc_put(txq);
  2289. goto cleanup;
  2290. }
  2291. mvpp2_txdesc_dma_addr_set(port, tx_desc, buf_dma_addr);
  2292. if (i == (skb_shinfo(skb)->nr_frags - 1)) {
  2293. /* Last descriptor */
  2294. mvpp2_txdesc_cmd_set(port, tx_desc,
  2295. MVPP2_TXD_L_DESC);
  2296. mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
  2297. } else {
  2298. /* Descriptor in the middle: Not First, Not Last */
  2299. mvpp2_txdesc_cmd_set(port, tx_desc, 0);
  2300. mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
  2301. }
  2302. }
  2303. return 0;
  2304. cleanup:
  2305. /* Release all descriptors that were used to map fragments of
  2306. * this packet, as well as the corresponding DMA mappings
  2307. */
  2308. for (i = i - 1; i >= 0; i--) {
  2309. tx_desc = txq->descs + i;
  2310. tx_desc_unmap_put(port, txq, tx_desc);
  2311. }
  2312. return -ENOMEM;
  2313. }
  2314. static inline void mvpp2_tso_put_hdr(struct sk_buff *skb,
  2315. struct net_device *dev,
  2316. struct mvpp2_tx_queue *txq,
  2317. struct mvpp2_tx_queue *aggr_txq,
  2318. struct mvpp2_txq_pcpu *txq_pcpu,
  2319. int hdr_sz)
  2320. {
  2321. struct mvpp2_port *port = netdev_priv(dev);
  2322. struct mvpp2_tx_desc *tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
  2323. dma_addr_t addr;
  2324. mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
  2325. mvpp2_txdesc_size_set(port, tx_desc, hdr_sz);
  2326. addr = txq_pcpu->tso_headers_dma +
  2327. txq_pcpu->txq_put_index * TSO_HEADER_SIZE;
  2328. mvpp2_txdesc_dma_addr_set(port, tx_desc, addr);
  2329. mvpp2_txdesc_cmd_set(port, tx_desc, mvpp2_skb_tx_csum(port, skb) |
  2330. MVPP2_TXD_F_DESC |
  2331. MVPP2_TXD_PADDING_DISABLE);
  2332. mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
  2333. }
  2334. static inline int mvpp2_tso_put_data(struct sk_buff *skb,
  2335. struct net_device *dev, struct tso_t *tso,
  2336. struct mvpp2_tx_queue *txq,
  2337. struct mvpp2_tx_queue *aggr_txq,
  2338. struct mvpp2_txq_pcpu *txq_pcpu,
  2339. int sz, bool left, bool last)
  2340. {
  2341. struct mvpp2_port *port = netdev_priv(dev);
  2342. struct mvpp2_tx_desc *tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
  2343. dma_addr_t buf_dma_addr;
  2344. mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
  2345. mvpp2_txdesc_size_set(port, tx_desc, sz);
  2346. buf_dma_addr = dma_map_single(dev->dev.parent, tso->data, sz,
  2347. DMA_TO_DEVICE);
  2348. if (unlikely(dma_mapping_error(dev->dev.parent, buf_dma_addr))) {
  2349. mvpp2_txq_desc_put(txq);
  2350. return -ENOMEM;
  2351. }
  2352. mvpp2_txdesc_dma_addr_set(port, tx_desc, buf_dma_addr);
  2353. if (!left) {
  2354. mvpp2_txdesc_cmd_set(port, tx_desc, MVPP2_TXD_L_DESC);
  2355. if (last) {
  2356. mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
  2357. return 0;
  2358. }
  2359. } else {
  2360. mvpp2_txdesc_cmd_set(port, tx_desc, 0);
  2361. }
  2362. mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
  2363. return 0;
  2364. }
  2365. static int mvpp2_tx_tso(struct sk_buff *skb, struct net_device *dev,
  2366. struct mvpp2_tx_queue *txq,
  2367. struct mvpp2_tx_queue *aggr_txq,
  2368. struct mvpp2_txq_pcpu *txq_pcpu)
  2369. {
  2370. struct mvpp2_port *port = netdev_priv(dev);
  2371. struct tso_t tso;
  2372. int hdr_sz = skb_transport_offset(skb) + tcp_hdrlen(skb);
  2373. int i, len, descs = 0;
  2374. /* Check number of available descriptors */
  2375. if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq,
  2376. tso_count_descs(skb)) ||
  2377. mvpp2_txq_reserved_desc_num_proc(port->priv, txq, txq_pcpu,
  2378. tso_count_descs(skb)))
  2379. return 0;
  2380. tso_start(skb, &tso);
  2381. len = skb->len - hdr_sz;
  2382. while (len > 0) {
  2383. int left = min_t(int, skb_shinfo(skb)->gso_size, len);
  2384. char *hdr = txq_pcpu->tso_headers +
  2385. txq_pcpu->txq_put_index * TSO_HEADER_SIZE;
  2386. len -= left;
  2387. descs++;
  2388. tso_build_hdr(skb, hdr, &tso, left, len == 0);
  2389. mvpp2_tso_put_hdr(skb, dev, txq, aggr_txq, txq_pcpu, hdr_sz);
  2390. while (left > 0) {
  2391. int sz = min_t(int, tso.size, left);
  2392. left -= sz;
  2393. descs++;
  2394. if (mvpp2_tso_put_data(skb, dev, &tso, txq, aggr_txq,
  2395. txq_pcpu, sz, left, len == 0))
  2396. goto release;
  2397. tso_build_data(skb, &tso, sz);
  2398. }
  2399. }
  2400. return descs;
  2401. release:
  2402. for (i = descs - 1; i >= 0; i--) {
  2403. struct mvpp2_tx_desc *tx_desc = txq->descs + i;
  2404. tx_desc_unmap_put(port, txq, tx_desc);
  2405. }
  2406. return 0;
  2407. }
  2408. /* Main tx processing */
  2409. static int mvpp2_tx(struct sk_buff *skb, struct net_device *dev)
  2410. {
  2411. struct mvpp2_port *port = netdev_priv(dev);
  2412. struct mvpp2_tx_queue *txq, *aggr_txq;
  2413. struct mvpp2_txq_pcpu *txq_pcpu;
  2414. struct mvpp2_tx_desc *tx_desc;
  2415. dma_addr_t buf_dma_addr;
  2416. int frags = 0;
  2417. u16 txq_id;
  2418. u32 tx_cmd;
  2419. txq_id = skb_get_queue_mapping(skb);
  2420. txq = port->txqs[txq_id];
  2421. txq_pcpu = this_cpu_ptr(txq->pcpu);
  2422. aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
  2423. if (skb_is_gso(skb)) {
  2424. frags = mvpp2_tx_tso(skb, dev, txq, aggr_txq, txq_pcpu);
  2425. goto out;
  2426. }
  2427. frags = skb_shinfo(skb)->nr_frags + 1;
  2428. /* Check number of available descriptors */
  2429. if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq, frags) ||
  2430. mvpp2_txq_reserved_desc_num_proc(port->priv, txq,
  2431. txq_pcpu, frags)) {
  2432. frags = 0;
  2433. goto out;
  2434. }
  2435. /* Get a descriptor for the first part of the packet */
  2436. tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
  2437. mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
  2438. mvpp2_txdesc_size_set(port, tx_desc, skb_headlen(skb));
  2439. buf_dma_addr = dma_map_single(dev->dev.parent, skb->data,
  2440. skb_headlen(skb), DMA_TO_DEVICE);
  2441. if (unlikely(dma_mapping_error(dev->dev.parent, buf_dma_addr))) {
  2442. mvpp2_txq_desc_put(txq);
  2443. frags = 0;
  2444. goto out;
  2445. }
  2446. mvpp2_txdesc_dma_addr_set(port, tx_desc, buf_dma_addr);
  2447. tx_cmd = mvpp2_skb_tx_csum(port, skb);
  2448. if (frags == 1) {
  2449. /* First and Last descriptor */
  2450. tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
  2451. mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd);
  2452. mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
  2453. } else {
  2454. /* First but not Last */
  2455. tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE;
  2456. mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd);
  2457. mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
  2458. /* Continue with other skb fragments */
  2459. if (mvpp2_tx_frag_process(port, skb, aggr_txq, txq)) {
  2460. tx_desc_unmap_put(port, txq, tx_desc);
  2461. frags = 0;
  2462. }
  2463. }
  2464. out:
  2465. if (frags > 0) {
  2466. struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
  2467. struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
  2468. txq_pcpu->reserved_num -= frags;
  2469. txq_pcpu->count += frags;
  2470. aggr_txq->count += frags;
  2471. /* Enable transmit */
  2472. wmb();
  2473. mvpp2_aggr_txq_pend_desc_add(port, frags);
  2474. if (txq_pcpu->count >= txq_pcpu->stop_threshold)
  2475. netif_tx_stop_queue(nq);
  2476. u64_stats_update_begin(&stats->syncp);
  2477. stats->tx_packets++;
  2478. stats->tx_bytes += skb->len;
  2479. u64_stats_update_end(&stats->syncp);
  2480. } else {
  2481. dev->stats.tx_dropped++;
  2482. dev_kfree_skb_any(skb);
  2483. }
  2484. /* Finalize TX processing */
  2485. if (!port->has_tx_irqs && txq_pcpu->count >= txq->done_pkts_coal)
  2486. mvpp2_txq_done(port, txq, txq_pcpu);
  2487. /* Set the timer in case not all frags were processed */
  2488. if (!port->has_tx_irqs && txq_pcpu->count <= frags &&
  2489. txq_pcpu->count > 0) {
  2490. struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
  2491. mvpp2_timer_set(port_pcpu);
  2492. }
  2493. return NETDEV_TX_OK;
  2494. }
  2495. static inline void mvpp2_cause_error(struct net_device *dev, int cause)
  2496. {
  2497. if (cause & MVPP2_CAUSE_FCS_ERR_MASK)
  2498. netdev_err(dev, "FCS error\n");
  2499. if (cause & MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK)
  2500. netdev_err(dev, "rx fifo overrun error\n");
  2501. if (cause & MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK)
  2502. netdev_err(dev, "tx fifo underrun error\n");
  2503. }
  2504. static int mvpp2_poll(struct napi_struct *napi, int budget)
  2505. {
  2506. u32 cause_rx_tx, cause_rx, cause_tx, cause_misc;
  2507. int rx_done = 0;
  2508. struct mvpp2_port *port = netdev_priv(napi->dev);
  2509. struct mvpp2_queue_vector *qv;
  2510. int cpu = smp_processor_id();
  2511. qv = container_of(napi, struct mvpp2_queue_vector, napi);
  2512. /* Rx/Tx cause register
  2513. *
  2514. * Bits 0-15: each bit indicates received packets on the Rx queue
  2515. * (bit 0 is for Rx queue 0).
  2516. *
  2517. * Bits 16-23: each bit indicates transmitted packets on the Tx queue
  2518. * (bit 16 is for Tx queue 0).
  2519. *
  2520. * Each CPU has its own Rx/Tx cause register
  2521. */
  2522. cause_rx_tx = mvpp2_percpu_read_relaxed(port->priv, qv->sw_thread_id,
  2523. MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
  2524. cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
  2525. if (cause_misc) {
  2526. mvpp2_cause_error(port->dev, cause_misc);
  2527. /* Clear the cause register */
  2528. mvpp2_write(port->priv, MVPP2_ISR_MISC_CAUSE_REG, 0);
  2529. mvpp2_percpu_write(port->priv, cpu,
  2530. MVPP2_ISR_RX_TX_CAUSE_REG(port->id),
  2531. cause_rx_tx & ~MVPP2_CAUSE_MISC_SUM_MASK);
  2532. }
  2533. if (port->has_tx_irqs) {
  2534. cause_tx = cause_rx_tx & MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
  2535. if (cause_tx) {
  2536. cause_tx >>= MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_OFFSET;
  2537. mvpp2_tx_done(port, cause_tx, qv->sw_thread_id);
  2538. }
  2539. }
  2540. /* Process RX packets */
  2541. cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
  2542. cause_rx <<= qv->first_rxq;
  2543. cause_rx |= qv->pending_cause_rx;
  2544. while (cause_rx && budget > 0) {
  2545. int count;
  2546. struct mvpp2_rx_queue *rxq;
  2547. rxq = mvpp2_get_rx_queue(port, cause_rx);
  2548. if (!rxq)
  2549. break;
  2550. count = mvpp2_rx(port, napi, budget, rxq);
  2551. rx_done += count;
  2552. budget -= count;
  2553. if (budget > 0) {
  2554. /* Clear the bit associated to this Rx queue
  2555. * so that next iteration will continue from
  2556. * the next Rx queue.
  2557. */
  2558. cause_rx &= ~(1 << rxq->logic_rxq);
  2559. }
  2560. }
  2561. if (budget > 0) {
  2562. cause_rx = 0;
  2563. napi_complete_done(napi, rx_done);
  2564. mvpp2_qvec_interrupt_enable(qv);
  2565. }
  2566. qv->pending_cause_rx = cause_rx;
  2567. return rx_done;
  2568. }
  2569. static void mvpp22_mode_reconfigure(struct mvpp2_port *port)
  2570. {
  2571. u32 ctrl3;
  2572. /* comphy reconfiguration */
  2573. mvpp22_comphy_init(port);
  2574. /* gop reconfiguration */
  2575. mvpp22_gop_init(port);
  2576. /* Only GOP port 0 has an XLG MAC */
  2577. if (port->gop_id == 0) {
  2578. ctrl3 = readl(port->base + MVPP22_XLG_CTRL3_REG);
  2579. ctrl3 &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
  2580. if (port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
  2581. port->phy_interface == PHY_INTERFACE_MODE_10GKR)
  2582. ctrl3 |= MVPP22_XLG_CTRL3_MACMODESELECT_10G;
  2583. else
  2584. ctrl3 |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC;
  2585. writel(ctrl3, port->base + MVPP22_XLG_CTRL3_REG);
  2586. }
  2587. if (port->gop_id == 0 &&
  2588. (port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
  2589. port->phy_interface == PHY_INTERFACE_MODE_10GKR))
  2590. mvpp2_xlg_max_rx_size_set(port);
  2591. else
  2592. mvpp2_gmac_max_rx_size_set(port);
  2593. }
  2594. /* Set hw internals when starting port */
  2595. static void mvpp2_start_dev(struct mvpp2_port *port)
  2596. {
  2597. int i;
  2598. mvpp2_txp_max_tx_size_set(port);
  2599. for (i = 0; i < port->nqvecs; i++)
  2600. napi_enable(&port->qvecs[i].napi);
  2601. /* Enable interrupts on all CPUs */
  2602. mvpp2_interrupts_enable(port);
  2603. if (port->priv->hw_version == MVPP22)
  2604. mvpp22_mode_reconfigure(port);
  2605. if (port->phylink) {
  2606. netif_carrier_off(port->dev);
  2607. phylink_start(port->phylink);
  2608. } else {
  2609. /* Phylink isn't used as of now for ACPI, so the MAC has to be
  2610. * configured manually when the interface is started. This will
  2611. * be removed as soon as the phylink ACPI support lands in.
  2612. */
  2613. struct phylink_link_state state = {
  2614. .interface = port->phy_interface,
  2615. };
  2616. mvpp2_mac_config(port->dev, MLO_AN_INBAND, &state);
  2617. mvpp2_mac_link_up(port->dev, MLO_AN_INBAND, port->phy_interface,
  2618. NULL);
  2619. }
  2620. netif_tx_start_all_queues(port->dev);
  2621. }
  2622. /* Set hw internals when stopping port */
  2623. static void mvpp2_stop_dev(struct mvpp2_port *port)
  2624. {
  2625. int i;
  2626. /* Disable interrupts on all CPUs */
  2627. mvpp2_interrupts_disable(port);
  2628. for (i = 0; i < port->nqvecs; i++)
  2629. napi_disable(&port->qvecs[i].napi);
  2630. if (port->phylink)
  2631. phylink_stop(port->phylink);
  2632. phy_power_off(port->comphy);
  2633. }
  2634. static int mvpp2_check_ringparam_valid(struct net_device *dev,
  2635. struct ethtool_ringparam *ring)
  2636. {
  2637. u16 new_rx_pending = ring->rx_pending;
  2638. u16 new_tx_pending = ring->tx_pending;
  2639. if (ring->rx_pending == 0 || ring->tx_pending == 0)
  2640. return -EINVAL;
  2641. if (ring->rx_pending > MVPP2_MAX_RXD_MAX)
  2642. new_rx_pending = MVPP2_MAX_RXD_MAX;
  2643. else if (!IS_ALIGNED(ring->rx_pending, 16))
  2644. new_rx_pending = ALIGN(ring->rx_pending, 16);
  2645. if (ring->tx_pending > MVPP2_MAX_TXD_MAX)
  2646. new_tx_pending = MVPP2_MAX_TXD_MAX;
  2647. else if (!IS_ALIGNED(ring->tx_pending, 32))
  2648. new_tx_pending = ALIGN(ring->tx_pending, 32);
  2649. /* The Tx ring size cannot be smaller than the minimum number of
  2650. * descriptors needed for TSO.
  2651. */
  2652. if (new_tx_pending < MVPP2_MAX_SKB_DESCS)
  2653. new_tx_pending = ALIGN(MVPP2_MAX_SKB_DESCS, 32);
  2654. if (ring->rx_pending != new_rx_pending) {
  2655. netdev_info(dev, "illegal Rx ring size value %d, round to %d\n",
  2656. ring->rx_pending, new_rx_pending);
  2657. ring->rx_pending = new_rx_pending;
  2658. }
  2659. if (ring->tx_pending != new_tx_pending) {
  2660. netdev_info(dev, "illegal Tx ring size value %d, round to %d\n",
  2661. ring->tx_pending, new_tx_pending);
  2662. ring->tx_pending = new_tx_pending;
  2663. }
  2664. return 0;
  2665. }
  2666. static void mvpp21_get_mac_address(struct mvpp2_port *port, unsigned char *addr)
  2667. {
  2668. u32 mac_addr_l, mac_addr_m, mac_addr_h;
  2669. mac_addr_l = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
  2670. mac_addr_m = readl(port->priv->lms_base + MVPP2_SRC_ADDR_MIDDLE);
  2671. mac_addr_h = readl(port->priv->lms_base + MVPP2_SRC_ADDR_HIGH);
  2672. addr[0] = (mac_addr_h >> 24) & 0xFF;
  2673. addr[1] = (mac_addr_h >> 16) & 0xFF;
  2674. addr[2] = (mac_addr_h >> 8) & 0xFF;
  2675. addr[3] = mac_addr_h & 0xFF;
  2676. addr[4] = mac_addr_m & 0xFF;
  2677. addr[5] = (mac_addr_l >> MVPP2_GMAC_SA_LOW_OFFS) & 0xFF;
  2678. }
  2679. static int mvpp2_irqs_init(struct mvpp2_port *port)
  2680. {
  2681. int err, i;
  2682. for (i = 0; i < port->nqvecs; i++) {
  2683. struct mvpp2_queue_vector *qv = port->qvecs + i;
  2684. if (qv->type == MVPP2_QUEUE_VECTOR_PRIVATE)
  2685. irq_set_status_flags(qv->irq, IRQ_NO_BALANCING);
  2686. err = request_irq(qv->irq, mvpp2_isr, 0, port->dev->name, qv);
  2687. if (err)
  2688. goto err;
  2689. if (qv->type == MVPP2_QUEUE_VECTOR_PRIVATE)
  2690. irq_set_affinity_hint(qv->irq,
  2691. cpumask_of(qv->sw_thread_id));
  2692. }
  2693. return 0;
  2694. err:
  2695. for (i = 0; i < port->nqvecs; i++) {
  2696. struct mvpp2_queue_vector *qv = port->qvecs + i;
  2697. irq_set_affinity_hint(qv->irq, NULL);
  2698. free_irq(qv->irq, qv);
  2699. }
  2700. return err;
  2701. }
  2702. static void mvpp2_irqs_deinit(struct mvpp2_port *port)
  2703. {
  2704. int i;
  2705. for (i = 0; i < port->nqvecs; i++) {
  2706. struct mvpp2_queue_vector *qv = port->qvecs + i;
  2707. irq_set_affinity_hint(qv->irq, NULL);
  2708. irq_clear_status_flags(qv->irq, IRQ_NO_BALANCING);
  2709. free_irq(qv->irq, qv);
  2710. }
  2711. }
  2712. static bool mvpp22_rss_is_supported(void)
  2713. {
  2714. return queue_mode == MVPP2_QDIST_MULTI_MODE;
  2715. }
  2716. static int mvpp2_open(struct net_device *dev)
  2717. {
  2718. struct mvpp2_port *port = netdev_priv(dev);
  2719. struct mvpp2 *priv = port->priv;
  2720. unsigned char mac_bcast[ETH_ALEN] = {
  2721. 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
  2722. bool valid = false;
  2723. int err;
  2724. err = mvpp2_prs_mac_da_accept(port, mac_bcast, true);
  2725. if (err) {
  2726. netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
  2727. return err;
  2728. }
  2729. err = mvpp2_prs_mac_da_accept(port, dev->dev_addr, true);
  2730. if (err) {
  2731. netdev_err(dev, "mvpp2_prs_mac_da_accept own addr failed\n");
  2732. return err;
  2733. }
  2734. err = mvpp2_prs_tag_mode_set(port->priv, port->id, MVPP2_TAG_TYPE_MH);
  2735. if (err) {
  2736. netdev_err(dev, "mvpp2_prs_tag_mode_set failed\n");
  2737. return err;
  2738. }
  2739. err = mvpp2_prs_def_flow(port);
  2740. if (err) {
  2741. netdev_err(dev, "mvpp2_prs_def_flow failed\n");
  2742. return err;
  2743. }
  2744. /* Allocate the Rx/Tx queues */
  2745. err = mvpp2_setup_rxqs(port);
  2746. if (err) {
  2747. netdev_err(port->dev, "cannot allocate Rx queues\n");
  2748. return err;
  2749. }
  2750. err = mvpp2_setup_txqs(port);
  2751. if (err) {
  2752. netdev_err(port->dev, "cannot allocate Tx queues\n");
  2753. goto err_cleanup_rxqs;
  2754. }
  2755. err = mvpp2_irqs_init(port);
  2756. if (err) {
  2757. netdev_err(port->dev, "cannot init IRQs\n");
  2758. goto err_cleanup_txqs;
  2759. }
  2760. /* Phylink isn't supported yet in ACPI mode */
  2761. if (port->of_node) {
  2762. err = phylink_of_phy_connect(port->phylink, port->of_node, 0);
  2763. if (err) {
  2764. netdev_err(port->dev, "could not attach PHY (%d)\n",
  2765. err);
  2766. goto err_free_irq;
  2767. }
  2768. valid = true;
  2769. }
  2770. if (priv->hw_version == MVPP22 && port->link_irq && !port->phylink) {
  2771. err = request_irq(port->link_irq, mvpp2_link_status_isr, 0,
  2772. dev->name, port);
  2773. if (err) {
  2774. netdev_err(port->dev, "cannot request link IRQ %d\n",
  2775. port->link_irq);
  2776. goto err_free_irq;
  2777. }
  2778. mvpp22_gop_setup_irq(port);
  2779. /* In default link is down */
  2780. netif_carrier_off(port->dev);
  2781. valid = true;
  2782. } else {
  2783. port->link_irq = 0;
  2784. }
  2785. if (!valid) {
  2786. netdev_err(port->dev,
  2787. "invalid configuration: no dt or link IRQ");
  2788. goto err_free_irq;
  2789. }
  2790. /* Unmask interrupts on all CPUs */
  2791. on_each_cpu(mvpp2_interrupts_unmask, port, 1);
  2792. mvpp2_shared_interrupt_mask_unmask(port, false);
  2793. mvpp2_start_dev(port);
  2794. /* Start hardware statistics gathering */
  2795. queue_delayed_work(priv->stats_queue, &port->stats_work,
  2796. MVPP2_MIB_COUNTERS_STATS_DELAY);
  2797. return 0;
  2798. err_free_irq:
  2799. mvpp2_irqs_deinit(port);
  2800. err_cleanup_txqs:
  2801. mvpp2_cleanup_txqs(port);
  2802. err_cleanup_rxqs:
  2803. mvpp2_cleanup_rxqs(port);
  2804. return err;
  2805. }
  2806. static int mvpp2_stop(struct net_device *dev)
  2807. {
  2808. struct mvpp2_port *port = netdev_priv(dev);
  2809. struct mvpp2_port_pcpu *port_pcpu;
  2810. int cpu;
  2811. mvpp2_stop_dev(port);
  2812. /* Mask interrupts on all CPUs */
  2813. on_each_cpu(mvpp2_interrupts_mask, port, 1);
  2814. mvpp2_shared_interrupt_mask_unmask(port, true);
  2815. if (port->phylink)
  2816. phylink_disconnect_phy(port->phylink);
  2817. if (port->link_irq)
  2818. free_irq(port->link_irq, port);
  2819. mvpp2_irqs_deinit(port);
  2820. if (!port->has_tx_irqs) {
  2821. for_each_present_cpu(cpu) {
  2822. port_pcpu = per_cpu_ptr(port->pcpu, cpu);
  2823. hrtimer_cancel(&port_pcpu->tx_done_timer);
  2824. port_pcpu->timer_scheduled = false;
  2825. tasklet_kill(&port_pcpu->tx_done_tasklet);
  2826. }
  2827. }
  2828. mvpp2_cleanup_rxqs(port);
  2829. mvpp2_cleanup_txqs(port);
  2830. cancel_delayed_work_sync(&port->stats_work);
  2831. return 0;
  2832. }
  2833. static int mvpp2_prs_mac_da_accept_list(struct mvpp2_port *port,
  2834. struct netdev_hw_addr_list *list)
  2835. {
  2836. struct netdev_hw_addr *ha;
  2837. int ret;
  2838. netdev_hw_addr_list_for_each(ha, list) {
  2839. ret = mvpp2_prs_mac_da_accept(port, ha->addr, true);
  2840. if (ret)
  2841. return ret;
  2842. }
  2843. return 0;
  2844. }
  2845. static void mvpp2_set_rx_promisc(struct mvpp2_port *port, bool enable)
  2846. {
  2847. if (!enable && (port->dev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
  2848. mvpp2_prs_vid_enable_filtering(port);
  2849. else
  2850. mvpp2_prs_vid_disable_filtering(port);
  2851. mvpp2_prs_mac_promisc_set(port->priv, port->id,
  2852. MVPP2_PRS_L2_UNI_CAST, enable);
  2853. mvpp2_prs_mac_promisc_set(port->priv, port->id,
  2854. MVPP2_PRS_L2_MULTI_CAST, enable);
  2855. }
  2856. static void mvpp2_set_rx_mode(struct net_device *dev)
  2857. {
  2858. struct mvpp2_port *port = netdev_priv(dev);
  2859. /* Clear the whole UC and MC list */
  2860. mvpp2_prs_mac_del_all(port);
  2861. if (dev->flags & IFF_PROMISC) {
  2862. mvpp2_set_rx_promisc(port, true);
  2863. return;
  2864. }
  2865. mvpp2_set_rx_promisc(port, false);
  2866. if (netdev_uc_count(dev) > MVPP2_PRS_MAC_UC_FILT_MAX ||
  2867. mvpp2_prs_mac_da_accept_list(port, &dev->uc))
  2868. mvpp2_prs_mac_promisc_set(port->priv, port->id,
  2869. MVPP2_PRS_L2_UNI_CAST, true);
  2870. if (dev->flags & IFF_ALLMULTI) {
  2871. mvpp2_prs_mac_promisc_set(port->priv, port->id,
  2872. MVPP2_PRS_L2_MULTI_CAST, true);
  2873. return;
  2874. }
  2875. if (netdev_mc_count(dev) > MVPP2_PRS_MAC_MC_FILT_MAX ||
  2876. mvpp2_prs_mac_da_accept_list(port, &dev->mc))
  2877. mvpp2_prs_mac_promisc_set(port->priv, port->id,
  2878. MVPP2_PRS_L2_MULTI_CAST, true);
  2879. }
  2880. static int mvpp2_set_mac_address(struct net_device *dev, void *p)
  2881. {
  2882. const struct sockaddr *addr = p;
  2883. int err;
  2884. if (!is_valid_ether_addr(addr->sa_data))
  2885. return -EADDRNOTAVAIL;
  2886. err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
  2887. if (err) {
  2888. /* Reconfigure parser accept the original MAC address */
  2889. mvpp2_prs_update_mac_da(dev, dev->dev_addr);
  2890. netdev_err(dev, "failed to change MAC address\n");
  2891. }
  2892. return err;
  2893. }
  2894. static int mvpp2_change_mtu(struct net_device *dev, int mtu)
  2895. {
  2896. struct mvpp2_port *port = netdev_priv(dev);
  2897. int err;
  2898. if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu), 8)) {
  2899. netdev_info(dev, "illegal MTU value %d, round to %d\n", mtu,
  2900. ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8));
  2901. mtu = ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8);
  2902. }
  2903. if (!netif_running(dev)) {
  2904. err = mvpp2_bm_update_mtu(dev, mtu);
  2905. if (!err) {
  2906. port->pkt_size = MVPP2_RX_PKT_SIZE(mtu);
  2907. return 0;
  2908. }
  2909. /* Reconfigure BM to the original MTU */
  2910. err = mvpp2_bm_update_mtu(dev, dev->mtu);
  2911. if (err)
  2912. goto log_error;
  2913. }
  2914. mvpp2_stop_dev(port);
  2915. err = mvpp2_bm_update_mtu(dev, mtu);
  2916. if (!err) {
  2917. port->pkt_size = MVPP2_RX_PKT_SIZE(mtu);
  2918. goto out_start;
  2919. }
  2920. /* Reconfigure BM to the original MTU */
  2921. err = mvpp2_bm_update_mtu(dev, dev->mtu);
  2922. if (err)
  2923. goto log_error;
  2924. out_start:
  2925. mvpp2_start_dev(port);
  2926. mvpp2_egress_enable(port);
  2927. mvpp2_ingress_enable(port);
  2928. return 0;
  2929. log_error:
  2930. netdev_err(dev, "failed to change MTU\n");
  2931. return err;
  2932. }
  2933. static void
  2934. mvpp2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
  2935. {
  2936. struct mvpp2_port *port = netdev_priv(dev);
  2937. unsigned int start;
  2938. int cpu;
  2939. for_each_possible_cpu(cpu) {
  2940. struct mvpp2_pcpu_stats *cpu_stats;
  2941. u64 rx_packets;
  2942. u64 rx_bytes;
  2943. u64 tx_packets;
  2944. u64 tx_bytes;
  2945. cpu_stats = per_cpu_ptr(port->stats, cpu);
  2946. do {
  2947. start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
  2948. rx_packets = cpu_stats->rx_packets;
  2949. rx_bytes = cpu_stats->rx_bytes;
  2950. tx_packets = cpu_stats->tx_packets;
  2951. tx_bytes = cpu_stats->tx_bytes;
  2952. } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
  2953. stats->rx_packets += rx_packets;
  2954. stats->rx_bytes += rx_bytes;
  2955. stats->tx_packets += tx_packets;
  2956. stats->tx_bytes += tx_bytes;
  2957. }
  2958. stats->rx_errors = dev->stats.rx_errors;
  2959. stats->rx_dropped = dev->stats.rx_dropped;
  2960. stats->tx_dropped = dev->stats.tx_dropped;
  2961. }
  2962. static int mvpp2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2963. {
  2964. struct mvpp2_port *port = netdev_priv(dev);
  2965. if (!port->phylink)
  2966. return -ENOTSUPP;
  2967. return phylink_mii_ioctl(port->phylink, ifr, cmd);
  2968. }
  2969. static int mvpp2_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
  2970. {
  2971. struct mvpp2_port *port = netdev_priv(dev);
  2972. int ret;
  2973. ret = mvpp2_prs_vid_entry_add(port, vid);
  2974. if (ret)
  2975. netdev_err(dev, "rx-vlan-filter offloading cannot accept more than %d VIDs per port\n",
  2976. MVPP2_PRS_VLAN_FILT_MAX - 1);
  2977. return ret;
  2978. }
  2979. static int mvpp2_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
  2980. {
  2981. struct mvpp2_port *port = netdev_priv(dev);
  2982. mvpp2_prs_vid_entry_remove(port, vid);
  2983. return 0;
  2984. }
  2985. static int mvpp2_set_features(struct net_device *dev,
  2986. netdev_features_t features)
  2987. {
  2988. netdev_features_t changed = dev->features ^ features;
  2989. struct mvpp2_port *port = netdev_priv(dev);
  2990. if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
  2991. if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
  2992. mvpp2_prs_vid_enable_filtering(port);
  2993. } else {
  2994. /* Invalidate all registered VID filters for this
  2995. * port
  2996. */
  2997. mvpp2_prs_vid_remove_all(port);
  2998. mvpp2_prs_vid_disable_filtering(port);
  2999. }
  3000. }
  3001. if (changed & NETIF_F_RXHASH) {
  3002. if (features & NETIF_F_RXHASH)
  3003. mvpp22_rss_enable(port);
  3004. else
  3005. mvpp22_rss_disable(port);
  3006. }
  3007. return 0;
  3008. }
  3009. /* Ethtool methods */
  3010. static int mvpp2_ethtool_nway_reset(struct net_device *dev)
  3011. {
  3012. struct mvpp2_port *port = netdev_priv(dev);
  3013. if (!port->phylink)
  3014. return -ENOTSUPP;
  3015. return phylink_ethtool_nway_reset(port->phylink);
  3016. }
  3017. /* Set interrupt coalescing for ethtools */
  3018. static int mvpp2_ethtool_set_coalesce(struct net_device *dev,
  3019. struct ethtool_coalesce *c)
  3020. {
  3021. struct mvpp2_port *port = netdev_priv(dev);
  3022. int queue;
  3023. for (queue = 0; queue < port->nrxqs; queue++) {
  3024. struct mvpp2_rx_queue *rxq = port->rxqs[queue];
  3025. rxq->time_coal = c->rx_coalesce_usecs;
  3026. rxq->pkts_coal = c->rx_max_coalesced_frames;
  3027. mvpp2_rx_pkts_coal_set(port, rxq);
  3028. mvpp2_rx_time_coal_set(port, rxq);
  3029. }
  3030. if (port->has_tx_irqs) {
  3031. port->tx_time_coal = c->tx_coalesce_usecs;
  3032. mvpp2_tx_time_coal_set(port);
  3033. }
  3034. for (queue = 0; queue < port->ntxqs; queue++) {
  3035. struct mvpp2_tx_queue *txq = port->txqs[queue];
  3036. txq->done_pkts_coal = c->tx_max_coalesced_frames;
  3037. if (port->has_tx_irqs)
  3038. mvpp2_tx_pkts_coal_set(port, txq);
  3039. }
  3040. return 0;
  3041. }
  3042. /* get coalescing for ethtools */
  3043. static int mvpp2_ethtool_get_coalesce(struct net_device *dev,
  3044. struct ethtool_coalesce *c)
  3045. {
  3046. struct mvpp2_port *port = netdev_priv(dev);
  3047. c->rx_coalesce_usecs = port->rxqs[0]->time_coal;
  3048. c->rx_max_coalesced_frames = port->rxqs[0]->pkts_coal;
  3049. c->tx_max_coalesced_frames = port->txqs[0]->done_pkts_coal;
  3050. c->tx_coalesce_usecs = port->tx_time_coal;
  3051. return 0;
  3052. }
  3053. static void mvpp2_ethtool_get_drvinfo(struct net_device *dev,
  3054. struct ethtool_drvinfo *drvinfo)
  3055. {
  3056. strlcpy(drvinfo->driver, MVPP2_DRIVER_NAME,
  3057. sizeof(drvinfo->driver));
  3058. strlcpy(drvinfo->version, MVPP2_DRIVER_VERSION,
  3059. sizeof(drvinfo->version));
  3060. strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
  3061. sizeof(drvinfo->bus_info));
  3062. }
  3063. static void mvpp2_ethtool_get_ringparam(struct net_device *dev,
  3064. struct ethtool_ringparam *ring)
  3065. {
  3066. struct mvpp2_port *port = netdev_priv(dev);
  3067. ring->rx_max_pending = MVPP2_MAX_RXD_MAX;
  3068. ring->tx_max_pending = MVPP2_MAX_TXD_MAX;
  3069. ring->rx_pending = port->rx_ring_size;
  3070. ring->tx_pending = port->tx_ring_size;
  3071. }
  3072. static int mvpp2_ethtool_set_ringparam(struct net_device *dev,
  3073. struct ethtool_ringparam *ring)
  3074. {
  3075. struct mvpp2_port *port = netdev_priv(dev);
  3076. u16 prev_rx_ring_size = port->rx_ring_size;
  3077. u16 prev_tx_ring_size = port->tx_ring_size;
  3078. int err;
  3079. err = mvpp2_check_ringparam_valid(dev, ring);
  3080. if (err)
  3081. return err;
  3082. if (!netif_running(dev)) {
  3083. port->rx_ring_size = ring->rx_pending;
  3084. port->tx_ring_size = ring->tx_pending;
  3085. return 0;
  3086. }
  3087. /* The interface is running, so we have to force a
  3088. * reallocation of the queues
  3089. */
  3090. mvpp2_stop_dev(port);
  3091. mvpp2_cleanup_rxqs(port);
  3092. mvpp2_cleanup_txqs(port);
  3093. port->rx_ring_size = ring->rx_pending;
  3094. port->tx_ring_size = ring->tx_pending;
  3095. err = mvpp2_setup_rxqs(port);
  3096. if (err) {
  3097. /* Reallocate Rx queues with the original ring size */
  3098. port->rx_ring_size = prev_rx_ring_size;
  3099. ring->rx_pending = prev_rx_ring_size;
  3100. err = mvpp2_setup_rxqs(port);
  3101. if (err)
  3102. goto err_out;
  3103. }
  3104. err = mvpp2_setup_txqs(port);
  3105. if (err) {
  3106. /* Reallocate Tx queues with the original ring size */
  3107. port->tx_ring_size = prev_tx_ring_size;
  3108. ring->tx_pending = prev_tx_ring_size;
  3109. err = mvpp2_setup_txqs(port);
  3110. if (err)
  3111. goto err_clean_rxqs;
  3112. }
  3113. mvpp2_start_dev(port);
  3114. mvpp2_egress_enable(port);
  3115. mvpp2_ingress_enable(port);
  3116. return 0;
  3117. err_clean_rxqs:
  3118. mvpp2_cleanup_rxqs(port);
  3119. err_out:
  3120. netdev_err(dev, "failed to change ring parameters");
  3121. return err;
  3122. }
  3123. static void mvpp2_ethtool_get_pause_param(struct net_device *dev,
  3124. struct ethtool_pauseparam *pause)
  3125. {
  3126. struct mvpp2_port *port = netdev_priv(dev);
  3127. if (!port->phylink)
  3128. return;
  3129. phylink_ethtool_get_pauseparam(port->phylink, pause);
  3130. }
  3131. static int mvpp2_ethtool_set_pause_param(struct net_device *dev,
  3132. struct ethtool_pauseparam *pause)
  3133. {
  3134. struct mvpp2_port *port = netdev_priv(dev);
  3135. if (!port->phylink)
  3136. return -ENOTSUPP;
  3137. return phylink_ethtool_set_pauseparam(port->phylink, pause);
  3138. }
  3139. static int mvpp2_ethtool_get_link_ksettings(struct net_device *dev,
  3140. struct ethtool_link_ksettings *cmd)
  3141. {
  3142. struct mvpp2_port *port = netdev_priv(dev);
  3143. if (!port->phylink)
  3144. return -ENOTSUPP;
  3145. return phylink_ethtool_ksettings_get(port->phylink, cmd);
  3146. }
  3147. static int mvpp2_ethtool_set_link_ksettings(struct net_device *dev,
  3148. const struct ethtool_link_ksettings *cmd)
  3149. {
  3150. struct mvpp2_port *port = netdev_priv(dev);
  3151. if (!port->phylink)
  3152. return -ENOTSUPP;
  3153. return phylink_ethtool_ksettings_set(port->phylink, cmd);
  3154. }
  3155. static int mvpp2_ethtool_get_rxnfc(struct net_device *dev,
  3156. struct ethtool_rxnfc *info, u32 *rules)
  3157. {
  3158. struct mvpp2_port *port = netdev_priv(dev);
  3159. int ret = 0;
  3160. if (!mvpp22_rss_is_supported())
  3161. return -EOPNOTSUPP;
  3162. switch (info->cmd) {
  3163. case ETHTOOL_GRXFH:
  3164. ret = mvpp2_ethtool_rxfh_get(port, info);
  3165. break;
  3166. case ETHTOOL_GRXRINGS:
  3167. info->data = port->nrxqs;
  3168. break;
  3169. default:
  3170. return -ENOTSUPP;
  3171. }
  3172. return ret;
  3173. }
  3174. static int mvpp2_ethtool_set_rxnfc(struct net_device *dev,
  3175. struct ethtool_rxnfc *info)
  3176. {
  3177. struct mvpp2_port *port = netdev_priv(dev);
  3178. int ret = 0;
  3179. if (!mvpp22_rss_is_supported())
  3180. return -EOPNOTSUPP;
  3181. switch (info->cmd) {
  3182. case ETHTOOL_SRXFH:
  3183. ret = mvpp2_ethtool_rxfh_set(port, info);
  3184. break;
  3185. default:
  3186. return -EOPNOTSUPP;
  3187. }
  3188. return ret;
  3189. }
  3190. static u32 mvpp2_ethtool_get_rxfh_indir_size(struct net_device *dev)
  3191. {
  3192. return mvpp22_rss_is_supported() ? MVPP22_RSS_TABLE_ENTRIES : 0;
  3193. }
  3194. static int mvpp2_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
  3195. u8 *hfunc)
  3196. {
  3197. struct mvpp2_port *port = netdev_priv(dev);
  3198. if (!mvpp22_rss_is_supported())
  3199. return -EOPNOTSUPP;
  3200. if (indir)
  3201. memcpy(indir, port->indir,
  3202. ARRAY_SIZE(port->indir) * sizeof(port->indir[0]));
  3203. if (hfunc)
  3204. *hfunc = ETH_RSS_HASH_CRC32;
  3205. return 0;
  3206. }
  3207. static int mvpp2_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
  3208. const u8 *key, const u8 hfunc)
  3209. {
  3210. struct mvpp2_port *port = netdev_priv(dev);
  3211. if (!mvpp22_rss_is_supported())
  3212. return -EOPNOTSUPP;
  3213. if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_CRC32)
  3214. return -EOPNOTSUPP;
  3215. if (key)
  3216. return -EOPNOTSUPP;
  3217. if (indir) {
  3218. memcpy(port->indir, indir,
  3219. ARRAY_SIZE(port->indir) * sizeof(port->indir[0]));
  3220. mvpp22_rss_fill_table(port, port->id);
  3221. }
  3222. return 0;
  3223. }
  3224. /* Device ops */
  3225. static const struct net_device_ops mvpp2_netdev_ops = {
  3226. .ndo_open = mvpp2_open,
  3227. .ndo_stop = mvpp2_stop,
  3228. .ndo_start_xmit = mvpp2_tx,
  3229. .ndo_set_rx_mode = mvpp2_set_rx_mode,
  3230. .ndo_set_mac_address = mvpp2_set_mac_address,
  3231. .ndo_change_mtu = mvpp2_change_mtu,
  3232. .ndo_get_stats64 = mvpp2_get_stats64,
  3233. .ndo_do_ioctl = mvpp2_ioctl,
  3234. .ndo_vlan_rx_add_vid = mvpp2_vlan_rx_add_vid,
  3235. .ndo_vlan_rx_kill_vid = mvpp2_vlan_rx_kill_vid,
  3236. .ndo_set_features = mvpp2_set_features,
  3237. };
  3238. static const struct ethtool_ops mvpp2_eth_tool_ops = {
  3239. .nway_reset = mvpp2_ethtool_nway_reset,
  3240. .get_link = ethtool_op_get_link,
  3241. .set_coalesce = mvpp2_ethtool_set_coalesce,
  3242. .get_coalesce = mvpp2_ethtool_get_coalesce,
  3243. .get_drvinfo = mvpp2_ethtool_get_drvinfo,
  3244. .get_ringparam = mvpp2_ethtool_get_ringparam,
  3245. .set_ringparam = mvpp2_ethtool_set_ringparam,
  3246. .get_strings = mvpp2_ethtool_get_strings,
  3247. .get_ethtool_stats = mvpp2_ethtool_get_stats,
  3248. .get_sset_count = mvpp2_ethtool_get_sset_count,
  3249. .get_pauseparam = mvpp2_ethtool_get_pause_param,
  3250. .set_pauseparam = mvpp2_ethtool_set_pause_param,
  3251. .get_link_ksettings = mvpp2_ethtool_get_link_ksettings,
  3252. .set_link_ksettings = mvpp2_ethtool_set_link_ksettings,
  3253. .get_rxnfc = mvpp2_ethtool_get_rxnfc,
  3254. .set_rxnfc = mvpp2_ethtool_set_rxnfc,
  3255. .get_rxfh_indir_size = mvpp2_ethtool_get_rxfh_indir_size,
  3256. .get_rxfh = mvpp2_ethtool_get_rxfh,
  3257. .set_rxfh = mvpp2_ethtool_set_rxfh,
  3258. };
  3259. /* Used for PPv2.1, or PPv2.2 with the old Device Tree binding that
  3260. * had a single IRQ defined per-port.
  3261. */
  3262. static int mvpp2_simple_queue_vectors_init(struct mvpp2_port *port,
  3263. struct device_node *port_node)
  3264. {
  3265. struct mvpp2_queue_vector *v = &port->qvecs[0];
  3266. v->first_rxq = 0;
  3267. v->nrxqs = port->nrxqs;
  3268. v->type = MVPP2_QUEUE_VECTOR_SHARED;
  3269. v->sw_thread_id = 0;
  3270. v->sw_thread_mask = *cpumask_bits(cpu_online_mask);
  3271. v->port = port;
  3272. v->irq = irq_of_parse_and_map(port_node, 0);
  3273. if (v->irq <= 0)
  3274. return -EINVAL;
  3275. netif_napi_add(port->dev, &v->napi, mvpp2_poll,
  3276. NAPI_POLL_WEIGHT);
  3277. port->nqvecs = 1;
  3278. return 0;
  3279. }
  3280. static int mvpp2_multi_queue_vectors_init(struct mvpp2_port *port,
  3281. struct device_node *port_node)
  3282. {
  3283. struct mvpp2_queue_vector *v;
  3284. int i, ret;
  3285. port->nqvecs = num_possible_cpus();
  3286. if (queue_mode == MVPP2_QDIST_SINGLE_MODE)
  3287. port->nqvecs += 1;
  3288. for (i = 0; i < port->nqvecs; i++) {
  3289. char irqname[16];
  3290. v = port->qvecs + i;
  3291. v->port = port;
  3292. v->type = MVPP2_QUEUE_VECTOR_PRIVATE;
  3293. v->sw_thread_id = i;
  3294. v->sw_thread_mask = BIT(i);
  3295. snprintf(irqname, sizeof(irqname), "tx-cpu%d", i);
  3296. if (queue_mode == MVPP2_QDIST_MULTI_MODE) {
  3297. v->first_rxq = i * MVPP2_DEFAULT_RXQ;
  3298. v->nrxqs = MVPP2_DEFAULT_RXQ;
  3299. } else if (queue_mode == MVPP2_QDIST_SINGLE_MODE &&
  3300. i == (port->nqvecs - 1)) {
  3301. v->first_rxq = 0;
  3302. v->nrxqs = port->nrxqs;
  3303. v->type = MVPP2_QUEUE_VECTOR_SHARED;
  3304. strncpy(irqname, "rx-shared", sizeof(irqname));
  3305. }
  3306. if (port_node)
  3307. v->irq = of_irq_get_byname(port_node, irqname);
  3308. else
  3309. v->irq = fwnode_irq_get(port->fwnode, i);
  3310. if (v->irq <= 0) {
  3311. ret = -EINVAL;
  3312. goto err;
  3313. }
  3314. netif_napi_add(port->dev, &v->napi, mvpp2_poll,
  3315. NAPI_POLL_WEIGHT);
  3316. }
  3317. return 0;
  3318. err:
  3319. for (i = 0; i < port->nqvecs; i++)
  3320. irq_dispose_mapping(port->qvecs[i].irq);
  3321. return ret;
  3322. }
  3323. static int mvpp2_queue_vectors_init(struct mvpp2_port *port,
  3324. struct device_node *port_node)
  3325. {
  3326. if (port->has_tx_irqs)
  3327. return mvpp2_multi_queue_vectors_init(port, port_node);
  3328. else
  3329. return mvpp2_simple_queue_vectors_init(port, port_node);
  3330. }
  3331. static void mvpp2_queue_vectors_deinit(struct mvpp2_port *port)
  3332. {
  3333. int i;
  3334. for (i = 0; i < port->nqvecs; i++)
  3335. irq_dispose_mapping(port->qvecs[i].irq);
  3336. }
  3337. /* Configure Rx queue group interrupt for this port */
  3338. static void mvpp2_rx_irqs_setup(struct mvpp2_port *port)
  3339. {
  3340. struct mvpp2 *priv = port->priv;
  3341. u32 val;
  3342. int i;
  3343. if (priv->hw_version == MVPP21) {
  3344. mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(port->id),
  3345. port->nrxqs);
  3346. return;
  3347. }
  3348. /* Handle the more complicated PPv2.2 case */
  3349. for (i = 0; i < port->nqvecs; i++) {
  3350. struct mvpp2_queue_vector *qv = port->qvecs + i;
  3351. if (!qv->nrxqs)
  3352. continue;
  3353. val = qv->sw_thread_id;
  3354. val |= port->id << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET;
  3355. mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val);
  3356. val = qv->first_rxq;
  3357. val |= qv->nrxqs << MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET;
  3358. mvpp2_write(priv, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val);
  3359. }
  3360. }
  3361. /* Initialize port HW */
  3362. static int mvpp2_port_init(struct mvpp2_port *port)
  3363. {
  3364. struct device *dev = port->dev->dev.parent;
  3365. struct mvpp2 *priv = port->priv;
  3366. struct mvpp2_txq_pcpu *txq_pcpu;
  3367. int queue, cpu, err;
  3368. /* Checks for hardware constraints */
  3369. if (port->first_rxq + port->nrxqs >
  3370. MVPP2_MAX_PORTS * priv->max_port_rxqs)
  3371. return -EINVAL;
  3372. if (port->nrxqs % MVPP2_DEFAULT_RXQ ||
  3373. port->nrxqs > priv->max_port_rxqs || port->ntxqs > MVPP2_MAX_TXQ)
  3374. return -EINVAL;
  3375. /* Disable port */
  3376. mvpp2_egress_disable(port);
  3377. mvpp2_port_disable(port);
  3378. port->tx_time_coal = MVPP2_TXDONE_COAL_USEC;
  3379. port->txqs = devm_kcalloc(dev, port->ntxqs, sizeof(*port->txqs),
  3380. GFP_KERNEL);
  3381. if (!port->txqs)
  3382. return -ENOMEM;
  3383. /* Associate physical Tx queues to this port and initialize.
  3384. * The mapping is predefined.
  3385. */
  3386. for (queue = 0; queue < port->ntxqs; queue++) {
  3387. int queue_phy_id = mvpp2_txq_phys(port->id, queue);
  3388. struct mvpp2_tx_queue *txq;
  3389. txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
  3390. if (!txq) {
  3391. err = -ENOMEM;
  3392. goto err_free_percpu;
  3393. }
  3394. txq->pcpu = alloc_percpu(struct mvpp2_txq_pcpu);
  3395. if (!txq->pcpu) {
  3396. err = -ENOMEM;
  3397. goto err_free_percpu;
  3398. }
  3399. txq->id = queue_phy_id;
  3400. txq->log_id = queue;
  3401. txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
  3402. for_each_present_cpu(cpu) {
  3403. txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
  3404. txq_pcpu->cpu = cpu;
  3405. }
  3406. port->txqs[queue] = txq;
  3407. }
  3408. port->rxqs = devm_kcalloc(dev, port->nrxqs, sizeof(*port->rxqs),
  3409. GFP_KERNEL);
  3410. if (!port->rxqs) {
  3411. err = -ENOMEM;
  3412. goto err_free_percpu;
  3413. }
  3414. /* Allocate and initialize Rx queue for this port */
  3415. for (queue = 0; queue < port->nrxqs; queue++) {
  3416. struct mvpp2_rx_queue *rxq;
  3417. /* Map physical Rx queue to port's logical Rx queue */
  3418. rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
  3419. if (!rxq) {
  3420. err = -ENOMEM;
  3421. goto err_free_percpu;
  3422. }
  3423. /* Map this Rx queue to a physical queue */
  3424. rxq->id = port->first_rxq + queue;
  3425. rxq->port = port->id;
  3426. rxq->logic_rxq = queue;
  3427. port->rxqs[queue] = rxq;
  3428. }
  3429. mvpp2_rx_irqs_setup(port);
  3430. /* Create Rx descriptor rings */
  3431. for (queue = 0; queue < port->nrxqs; queue++) {
  3432. struct mvpp2_rx_queue *rxq = port->rxqs[queue];
  3433. rxq->size = port->rx_ring_size;
  3434. rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
  3435. rxq->time_coal = MVPP2_RX_COAL_USEC;
  3436. }
  3437. mvpp2_ingress_disable(port);
  3438. /* Port default configuration */
  3439. mvpp2_defaults_set(port);
  3440. /* Port's classifier configuration */
  3441. mvpp2_cls_oversize_rxq_set(port);
  3442. mvpp2_cls_port_config(port);
  3443. if (mvpp22_rss_is_supported())
  3444. mvpp22_rss_port_init(port);
  3445. /* Provide an initial Rx packet size */
  3446. port->pkt_size = MVPP2_RX_PKT_SIZE(port->dev->mtu);
  3447. /* Initialize pools for swf */
  3448. err = mvpp2_swf_bm_pool_init(port);
  3449. if (err)
  3450. goto err_free_percpu;
  3451. return 0;
  3452. err_free_percpu:
  3453. for (queue = 0; queue < port->ntxqs; queue++) {
  3454. if (!port->txqs[queue])
  3455. continue;
  3456. free_percpu(port->txqs[queue]->pcpu);
  3457. }
  3458. return err;
  3459. }
  3460. /* Checks if the port DT description has the TX interrupts
  3461. * described. On PPv2.1, there are no such interrupts. On PPv2.2,
  3462. * there are available, but we need to keep support for old DTs.
  3463. */
  3464. static bool mvpp2_port_has_tx_irqs(struct mvpp2 *priv,
  3465. struct device_node *port_node)
  3466. {
  3467. char *irqs[5] = { "rx-shared", "tx-cpu0", "tx-cpu1",
  3468. "tx-cpu2", "tx-cpu3" };
  3469. int ret, i;
  3470. if (priv->hw_version == MVPP21)
  3471. return false;
  3472. for (i = 0; i < 5; i++) {
  3473. ret = of_property_match_string(port_node, "interrupt-names",
  3474. irqs[i]);
  3475. if (ret < 0)
  3476. return false;
  3477. }
  3478. return true;
  3479. }
  3480. static void mvpp2_port_copy_mac_addr(struct net_device *dev, struct mvpp2 *priv,
  3481. struct fwnode_handle *fwnode,
  3482. char **mac_from)
  3483. {
  3484. struct mvpp2_port *port = netdev_priv(dev);
  3485. char hw_mac_addr[ETH_ALEN] = {0};
  3486. char fw_mac_addr[ETH_ALEN];
  3487. if (fwnode_get_mac_address(fwnode, fw_mac_addr, ETH_ALEN)) {
  3488. *mac_from = "firmware node";
  3489. ether_addr_copy(dev->dev_addr, fw_mac_addr);
  3490. return;
  3491. }
  3492. if (priv->hw_version == MVPP21) {
  3493. mvpp21_get_mac_address(port, hw_mac_addr);
  3494. if (is_valid_ether_addr(hw_mac_addr)) {
  3495. *mac_from = "hardware";
  3496. ether_addr_copy(dev->dev_addr, hw_mac_addr);
  3497. return;
  3498. }
  3499. }
  3500. *mac_from = "random";
  3501. eth_hw_addr_random(dev);
  3502. }
  3503. static void mvpp2_phylink_validate(struct net_device *dev,
  3504. unsigned long *supported,
  3505. struct phylink_link_state *state)
  3506. {
  3507. __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
  3508. phylink_set(mask, Autoneg);
  3509. phylink_set_port_modes(mask);
  3510. phylink_set(mask, Pause);
  3511. phylink_set(mask, Asym_Pause);
  3512. switch (state->interface) {
  3513. case PHY_INTERFACE_MODE_10GKR:
  3514. phylink_set(mask, 10000baseCR_Full);
  3515. phylink_set(mask, 10000baseSR_Full);
  3516. phylink_set(mask, 10000baseLR_Full);
  3517. phylink_set(mask, 10000baseLRM_Full);
  3518. phylink_set(mask, 10000baseER_Full);
  3519. phylink_set(mask, 10000baseKR_Full);
  3520. /* Fall-through */
  3521. default:
  3522. phylink_set(mask, 10baseT_Half);
  3523. phylink_set(mask, 10baseT_Full);
  3524. phylink_set(mask, 100baseT_Half);
  3525. phylink_set(mask, 100baseT_Full);
  3526. phylink_set(mask, 10000baseT_Full);
  3527. /* Fall-through */
  3528. case PHY_INTERFACE_MODE_1000BASEX:
  3529. case PHY_INTERFACE_MODE_2500BASEX:
  3530. phylink_set(mask, 1000baseT_Full);
  3531. phylink_set(mask, 1000baseX_Full);
  3532. phylink_set(mask, 2500baseX_Full);
  3533. }
  3534. bitmap_and(supported, supported, mask, __ETHTOOL_LINK_MODE_MASK_NBITS);
  3535. bitmap_and(state->advertising, state->advertising, mask,
  3536. __ETHTOOL_LINK_MODE_MASK_NBITS);
  3537. }
  3538. static void mvpp22_xlg_link_state(struct mvpp2_port *port,
  3539. struct phylink_link_state *state)
  3540. {
  3541. u32 val;
  3542. state->speed = SPEED_10000;
  3543. state->duplex = 1;
  3544. state->an_complete = 1;
  3545. val = readl(port->base + MVPP22_XLG_STATUS);
  3546. state->link = !!(val & MVPP22_XLG_STATUS_LINK_UP);
  3547. state->pause = 0;
  3548. val = readl(port->base + MVPP22_XLG_CTRL0_REG);
  3549. if (val & MVPP22_XLG_CTRL0_TX_FLOW_CTRL_EN)
  3550. state->pause |= MLO_PAUSE_TX;
  3551. if (val & MVPP22_XLG_CTRL0_RX_FLOW_CTRL_EN)
  3552. state->pause |= MLO_PAUSE_RX;
  3553. }
  3554. static void mvpp2_gmac_link_state(struct mvpp2_port *port,
  3555. struct phylink_link_state *state)
  3556. {
  3557. u32 val;
  3558. val = readl(port->base + MVPP2_GMAC_STATUS0);
  3559. state->an_complete = !!(val & MVPP2_GMAC_STATUS0_AN_COMPLETE);
  3560. state->link = !!(val & MVPP2_GMAC_STATUS0_LINK_UP);
  3561. state->duplex = !!(val & MVPP2_GMAC_STATUS0_FULL_DUPLEX);
  3562. switch (port->phy_interface) {
  3563. case PHY_INTERFACE_MODE_1000BASEX:
  3564. state->speed = SPEED_1000;
  3565. break;
  3566. case PHY_INTERFACE_MODE_2500BASEX:
  3567. state->speed = SPEED_2500;
  3568. break;
  3569. default:
  3570. if (val & MVPP2_GMAC_STATUS0_GMII_SPEED)
  3571. state->speed = SPEED_1000;
  3572. else if (val & MVPP2_GMAC_STATUS0_MII_SPEED)
  3573. state->speed = SPEED_100;
  3574. else
  3575. state->speed = SPEED_10;
  3576. }
  3577. state->pause = 0;
  3578. if (val & MVPP2_GMAC_STATUS0_RX_PAUSE)
  3579. state->pause |= MLO_PAUSE_RX;
  3580. if (val & MVPP2_GMAC_STATUS0_TX_PAUSE)
  3581. state->pause |= MLO_PAUSE_TX;
  3582. }
  3583. static int mvpp2_phylink_mac_link_state(struct net_device *dev,
  3584. struct phylink_link_state *state)
  3585. {
  3586. struct mvpp2_port *port = netdev_priv(dev);
  3587. if (port->priv->hw_version == MVPP22 && port->gop_id == 0) {
  3588. u32 mode = readl(port->base + MVPP22_XLG_CTRL3_REG);
  3589. mode &= MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
  3590. if (mode == MVPP22_XLG_CTRL3_MACMODESELECT_10G) {
  3591. mvpp22_xlg_link_state(port, state);
  3592. return 1;
  3593. }
  3594. }
  3595. mvpp2_gmac_link_state(port, state);
  3596. return 1;
  3597. }
  3598. static void mvpp2_mac_an_restart(struct net_device *dev)
  3599. {
  3600. struct mvpp2_port *port = netdev_priv(dev);
  3601. u32 val;
  3602. if (port->phy_interface != PHY_INTERFACE_MODE_SGMII)
  3603. return;
  3604. val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  3605. /* The RESTART_AN bit is cleared by the h/w after restarting the AN
  3606. * process.
  3607. */
  3608. val |= MVPP2_GMAC_IN_BAND_RESTART_AN | MVPP2_GMAC_IN_BAND_AUTONEG;
  3609. writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  3610. }
  3611. static void mvpp2_xlg_config(struct mvpp2_port *port, unsigned int mode,
  3612. const struct phylink_link_state *state)
  3613. {
  3614. u32 ctrl0, ctrl4;
  3615. ctrl0 = readl(port->base + MVPP22_XLG_CTRL0_REG);
  3616. ctrl4 = readl(port->base + MVPP22_XLG_CTRL4_REG);
  3617. if (state->pause & MLO_PAUSE_TX)
  3618. ctrl0 |= MVPP22_XLG_CTRL0_TX_FLOW_CTRL_EN;
  3619. if (state->pause & MLO_PAUSE_RX)
  3620. ctrl0 |= MVPP22_XLG_CTRL0_RX_FLOW_CTRL_EN;
  3621. ctrl4 &= ~MVPP22_XLG_CTRL4_MACMODSELECT_GMAC;
  3622. ctrl4 |= MVPP22_XLG_CTRL4_FWD_FC | MVPP22_XLG_CTRL4_FWD_PFC |
  3623. MVPP22_XLG_CTRL4_EN_IDLE_CHECK;
  3624. writel(ctrl0, port->base + MVPP22_XLG_CTRL0_REG);
  3625. writel(ctrl4, port->base + MVPP22_XLG_CTRL4_REG);
  3626. }
  3627. static void mvpp2_gmac_config(struct mvpp2_port *port, unsigned int mode,
  3628. const struct phylink_link_state *state)
  3629. {
  3630. u32 an, ctrl0, ctrl2, ctrl4;
  3631. an = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  3632. ctrl0 = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
  3633. ctrl2 = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
  3634. ctrl4 = readl(port->base + MVPP22_GMAC_CTRL_4_REG);
  3635. /* Force link down */
  3636. an &= ~MVPP2_GMAC_FORCE_LINK_PASS;
  3637. an |= MVPP2_GMAC_FORCE_LINK_DOWN;
  3638. writel(an, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  3639. /* Set the GMAC in a reset state */
  3640. ctrl2 |= MVPP2_GMAC_PORT_RESET_MASK;
  3641. writel(ctrl2, port->base + MVPP2_GMAC_CTRL_2_REG);
  3642. an &= ~(MVPP2_GMAC_CONFIG_MII_SPEED | MVPP2_GMAC_CONFIG_GMII_SPEED |
  3643. MVPP2_GMAC_AN_SPEED_EN | MVPP2_GMAC_FC_ADV_EN |
  3644. MVPP2_GMAC_FC_ADV_ASM_EN | MVPP2_GMAC_FLOW_CTRL_AUTONEG |
  3645. MVPP2_GMAC_CONFIG_FULL_DUPLEX | MVPP2_GMAC_AN_DUPLEX_EN |
  3646. MVPP2_GMAC_FORCE_LINK_DOWN);
  3647. ctrl0 &= ~MVPP2_GMAC_PORT_TYPE_MASK;
  3648. ctrl2 &= ~(MVPP2_GMAC_PORT_RESET_MASK | MVPP2_GMAC_PCS_ENABLE_MASK);
  3649. if (state->interface == PHY_INTERFACE_MODE_1000BASEX ||
  3650. state->interface == PHY_INTERFACE_MODE_2500BASEX) {
  3651. /* 1000BaseX and 2500BaseX ports cannot negotiate speed nor can
  3652. * they negotiate duplex: they are always operating with a fixed
  3653. * speed of 1000/2500Mbps in full duplex, so force 1000/2500
  3654. * speed and full duplex here.
  3655. */
  3656. ctrl0 |= MVPP2_GMAC_PORT_TYPE_MASK;
  3657. an |= MVPP2_GMAC_CONFIG_GMII_SPEED |
  3658. MVPP2_GMAC_CONFIG_FULL_DUPLEX;
  3659. } else if (!phy_interface_mode_is_rgmii(state->interface)) {
  3660. an |= MVPP2_GMAC_AN_SPEED_EN | MVPP2_GMAC_FLOW_CTRL_AUTONEG;
  3661. }
  3662. if (state->duplex)
  3663. an |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
  3664. if (phylink_test(state->advertising, Pause))
  3665. an |= MVPP2_GMAC_FC_ADV_EN;
  3666. if (phylink_test(state->advertising, Asym_Pause))
  3667. an |= MVPP2_GMAC_FC_ADV_ASM_EN;
  3668. if (state->interface == PHY_INTERFACE_MODE_SGMII ||
  3669. state->interface == PHY_INTERFACE_MODE_1000BASEX ||
  3670. state->interface == PHY_INTERFACE_MODE_2500BASEX) {
  3671. an |= MVPP2_GMAC_IN_BAND_AUTONEG;
  3672. ctrl2 |= MVPP2_GMAC_INBAND_AN_MASK | MVPP2_GMAC_PCS_ENABLE_MASK;
  3673. ctrl4 &= ~(MVPP22_CTRL4_EXT_PIN_GMII_SEL |
  3674. MVPP22_CTRL4_RX_FC_EN | MVPP22_CTRL4_TX_FC_EN);
  3675. ctrl4 |= MVPP22_CTRL4_SYNC_BYPASS_DIS |
  3676. MVPP22_CTRL4_DP_CLK_SEL |
  3677. MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE;
  3678. if (state->pause & MLO_PAUSE_TX)
  3679. ctrl4 |= MVPP22_CTRL4_TX_FC_EN;
  3680. if (state->pause & MLO_PAUSE_RX)
  3681. ctrl4 |= MVPP22_CTRL4_RX_FC_EN;
  3682. } else if (phy_interface_mode_is_rgmii(state->interface)) {
  3683. an |= MVPP2_GMAC_IN_BAND_AUTONEG_BYPASS;
  3684. if (state->speed == SPEED_1000)
  3685. an |= MVPP2_GMAC_CONFIG_GMII_SPEED;
  3686. else if (state->speed == SPEED_100)
  3687. an |= MVPP2_GMAC_CONFIG_MII_SPEED;
  3688. ctrl4 &= ~MVPP22_CTRL4_DP_CLK_SEL;
  3689. ctrl4 |= MVPP22_CTRL4_EXT_PIN_GMII_SEL |
  3690. MVPP22_CTRL4_SYNC_BYPASS_DIS |
  3691. MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE;
  3692. }
  3693. writel(ctrl0, port->base + MVPP2_GMAC_CTRL_0_REG);
  3694. writel(ctrl2, port->base + MVPP2_GMAC_CTRL_2_REG);
  3695. writel(ctrl4, port->base + MVPP22_GMAC_CTRL_4_REG);
  3696. writel(an, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  3697. }
  3698. static void mvpp2_mac_config(struct net_device *dev, unsigned int mode,
  3699. const struct phylink_link_state *state)
  3700. {
  3701. struct mvpp2_port *port = netdev_priv(dev);
  3702. /* Check for invalid configuration */
  3703. if (state->interface == PHY_INTERFACE_MODE_10GKR && port->gop_id != 0) {
  3704. netdev_err(dev, "Invalid mode on %s\n", dev->name);
  3705. return;
  3706. }
  3707. /* Make sure the port is disabled when reconfiguring the mode */
  3708. mvpp2_port_disable(port);
  3709. if (port->priv->hw_version == MVPP22 &&
  3710. port->phy_interface != state->interface) {
  3711. port->phy_interface = state->interface;
  3712. /* Reconfigure the serdes lanes */
  3713. phy_power_off(port->comphy);
  3714. mvpp22_mode_reconfigure(port);
  3715. }
  3716. /* mac (re)configuration */
  3717. if (state->interface == PHY_INTERFACE_MODE_10GKR)
  3718. mvpp2_xlg_config(port, mode, state);
  3719. else if (phy_interface_mode_is_rgmii(state->interface) ||
  3720. state->interface == PHY_INTERFACE_MODE_SGMII ||
  3721. state->interface == PHY_INTERFACE_MODE_1000BASEX ||
  3722. state->interface == PHY_INTERFACE_MODE_2500BASEX)
  3723. mvpp2_gmac_config(port, mode, state);
  3724. if (port->priv->hw_version == MVPP21 && port->flags & MVPP2_F_LOOPBACK)
  3725. mvpp2_port_loopback_set(port, state);
  3726. mvpp2_port_enable(port);
  3727. }
  3728. static void mvpp2_mac_link_up(struct net_device *dev, unsigned int mode,
  3729. phy_interface_t interface, struct phy_device *phy)
  3730. {
  3731. struct mvpp2_port *port = netdev_priv(dev);
  3732. u32 val;
  3733. if (!phylink_autoneg_inband(mode) &&
  3734. interface != PHY_INTERFACE_MODE_10GKR) {
  3735. val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  3736. val &= ~MVPP2_GMAC_FORCE_LINK_DOWN;
  3737. if (phy_interface_mode_is_rgmii(interface))
  3738. val |= MVPP2_GMAC_FORCE_LINK_PASS;
  3739. writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  3740. }
  3741. mvpp2_port_enable(port);
  3742. mvpp2_egress_enable(port);
  3743. mvpp2_ingress_enable(port);
  3744. netif_tx_wake_all_queues(dev);
  3745. }
  3746. static void mvpp2_mac_link_down(struct net_device *dev, unsigned int mode,
  3747. phy_interface_t interface)
  3748. {
  3749. struct mvpp2_port *port = netdev_priv(dev);
  3750. u32 val;
  3751. if (!phylink_autoneg_inband(mode) &&
  3752. interface != PHY_INTERFACE_MODE_10GKR) {
  3753. val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  3754. val &= ~MVPP2_GMAC_FORCE_LINK_PASS;
  3755. val |= MVPP2_GMAC_FORCE_LINK_DOWN;
  3756. writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  3757. }
  3758. netif_tx_stop_all_queues(dev);
  3759. mvpp2_egress_disable(port);
  3760. mvpp2_ingress_disable(port);
  3761. /* When using link interrupts to notify phylink of a MAC state change,
  3762. * we do not want the port to be disabled (we want to receive further
  3763. * interrupts, to be notified when the port will have a link later).
  3764. */
  3765. if (!port->has_phy)
  3766. return;
  3767. mvpp2_port_disable(port);
  3768. }
  3769. static const struct phylink_mac_ops mvpp2_phylink_ops = {
  3770. .validate = mvpp2_phylink_validate,
  3771. .mac_link_state = mvpp2_phylink_mac_link_state,
  3772. .mac_an_restart = mvpp2_mac_an_restart,
  3773. .mac_config = mvpp2_mac_config,
  3774. .mac_link_up = mvpp2_mac_link_up,
  3775. .mac_link_down = mvpp2_mac_link_down,
  3776. };
  3777. /* Ports initialization */
  3778. static int mvpp2_port_probe(struct platform_device *pdev,
  3779. struct fwnode_handle *port_fwnode,
  3780. struct mvpp2 *priv)
  3781. {
  3782. struct phy *comphy = NULL;
  3783. struct mvpp2_port *port;
  3784. struct mvpp2_port_pcpu *port_pcpu;
  3785. struct device_node *port_node = to_of_node(port_fwnode);
  3786. struct net_device *dev;
  3787. struct resource *res;
  3788. struct phylink *phylink;
  3789. char *mac_from = "";
  3790. unsigned int ntxqs, nrxqs;
  3791. bool has_tx_irqs;
  3792. u32 id;
  3793. int features;
  3794. int phy_mode;
  3795. int err, i, cpu;
  3796. if (port_node) {
  3797. has_tx_irqs = mvpp2_port_has_tx_irqs(priv, port_node);
  3798. } else {
  3799. has_tx_irqs = true;
  3800. queue_mode = MVPP2_QDIST_MULTI_MODE;
  3801. }
  3802. if (!has_tx_irqs)
  3803. queue_mode = MVPP2_QDIST_SINGLE_MODE;
  3804. ntxqs = MVPP2_MAX_TXQ;
  3805. if (priv->hw_version == MVPP22 && queue_mode == MVPP2_QDIST_MULTI_MODE)
  3806. nrxqs = MVPP2_DEFAULT_RXQ * num_possible_cpus();
  3807. else
  3808. nrxqs = MVPP2_DEFAULT_RXQ;
  3809. dev = alloc_etherdev_mqs(sizeof(*port), ntxqs, nrxqs);
  3810. if (!dev)
  3811. return -ENOMEM;
  3812. phy_mode = fwnode_get_phy_mode(port_fwnode);
  3813. if (phy_mode < 0) {
  3814. dev_err(&pdev->dev, "incorrect phy mode\n");
  3815. err = phy_mode;
  3816. goto err_free_netdev;
  3817. }
  3818. if (port_node) {
  3819. comphy = devm_of_phy_get(&pdev->dev, port_node, NULL);
  3820. if (IS_ERR(comphy)) {
  3821. if (PTR_ERR(comphy) == -EPROBE_DEFER) {
  3822. err = -EPROBE_DEFER;
  3823. goto err_free_netdev;
  3824. }
  3825. comphy = NULL;
  3826. }
  3827. }
  3828. if (fwnode_property_read_u32(port_fwnode, "port-id", &id)) {
  3829. err = -EINVAL;
  3830. dev_err(&pdev->dev, "missing port-id value\n");
  3831. goto err_free_netdev;
  3832. }
  3833. dev->tx_queue_len = MVPP2_MAX_TXD_MAX;
  3834. dev->watchdog_timeo = 5 * HZ;
  3835. dev->netdev_ops = &mvpp2_netdev_ops;
  3836. dev->ethtool_ops = &mvpp2_eth_tool_ops;
  3837. port = netdev_priv(dev);
  3838. port->dev = dev;
  3839. port->fwnode = port_fwnode;
  3840. port->has_phy = !!of_find_property(port_node, "phy", NULL);
  3841. port->ntxqs = ntxqs;
  3842. port->nrxqs = nrxqs;
  3843. port->priv = priv;
  3844. port->has_tx_irqs = has_tx_irqs;
  3845. err = mvpp2_queue_vectors_init(port, port_node);
  3846. if (err)
  3847. goto err_free_netdev;
  3848. if (port_node)
  3849. port->link_irq = of_irq_get_byname(port_node, "link");
  3850. else
  3851. port->link_irq = fwnode_irq_get(port_fwnode, port->nqvecs + 1);
  3852. if (port->link_irq == -EPROBE_DEFER) {
  3853. err = -EPROBE_DEFER;
  3854. goto err_deinit_qvecs;
  3855. }
  3856. if (port->link_irq <= 0)
  3857. /* the link irq is optional */
  3858. port->link_irq = 0;
  3859. if (fwnode_property_read_bool(port_fwnode, "marvell,loopback"))
  3860. port->flags |= MVPP2_F_LOOPBACK;
  3861. port->id = id;
  3862. if (priv->hw_version == MVPP21)
  3863. port->first_rxq = port->id * port->nrxqs;
  3864. else
  3865. port->first_rxq = port->id * priv->max_port_rxqs;
  3866. port->of_node = port_node;
  3867. port->phy_interface = phy_mode;
  3868. port->comphy = comphy;
  3869. if (priv->hw_version == MVPP21) {
  3870. res = platform_get_resource(pdev, IORESOURCE_MEM, 2 + id);
  3871. port->base = devm_ioremap_resource(&pdev->dev, res);
  3872. if (IS_ERR(port->base)) {
  3873. err = PTR_ERR(port->base);
  3874. goto err_free_irq;
  3875. }
  3876. port->stats_base = port->priv->lms_base +
  3877. MVPP21_MIB_COUNTERS_OFFSET +
  3878. port->gop_id * MVPP21_MIB_COUNTERS_PORT_SZ;
  3879. } else {
  3880. if (fwnode_property_read_u32(port_fwnode, "gop-port-id",
  3881. &port->gop_id)) {
  3882. err = -EINVAL;
  3883. dev_err(&pdev->dev, "missing gop-port-id value\n");
  3884. goto err_deinit_qvecs;
  3885. }
  3886. port->base = priv->iface_base + MVPP22_GMAC_BASE(port->gop_id);
  3887. port->stats_base = port->priv->iface_base +
  3888. MVPP22_MIB_COUNTERS_OFFSET +
  3889. port->gop_id * MVPP22_MIB_COUNTERS_PORT_SZ;
  3890. }
  3891. /* Alloc per-cpu and ethtool stats */
  3892. port->stats = netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats);
  3893. if (!port->stats) {
  3894. err = -ENOMEM;
  3895. goto err_free_irq;
  3896. }
  3897. port->ethtool_stats = devm_kcalloc(&pdev->dev,
  3898. ARRAY_SIZE(mvpp2_ethtool_regs),
  3899. sizeof(u64), GFP_KERNEL);
  3900. if (!port->ethtool_stats) {
  3901. err = -ENOMEM;
  3902. goto err_free_stats;
  3903. }
  3904. mutex_init(&port->gather_stats_lock);
  3905. INIT_DELAYED_WORK(&port->stats_work, mvpp2_gather_hw_statistics);
  3906. mvpp2_port_copy_mac_addr(dev, priv, port_fwnode, &mac_from);
  3907. port->tx_ring_size = MVPP2_MAX_TXD_DFLT;
  3908. port->rx_ring_size = MVPP2_MAX_RXD_DFLT;
  3909. SET_NETDEV_DEV(dev, &pdev->dev);
  3910. err = mvpp2_port_init(port);
  3911. if (err < 0) {
  3912. dev_err(&pdev->dev, "failed to init port %d\n", id);
  3913. goto err_free_stats;
  3914. }
  3915. mvpp2_port_periodic_xon_disable(port);
  3916. mvpp2_port_reset(port);
  3917. port->pcpu = alloc_percpu(struct mvpp2_port_pcpu);
  3918. if (!port->pcpu) {
  3919. err = -ENOMEM;
  3920. goto err_free_txq_pcpu;
  3921. }
  3922. if (!port->has_tx_irqs) {
  3923. for_each_present_cpu(cpu) {
  3924. port_pcpu = per_cpu_ptr(port->pcpu, cpu);
  3925. hrtimer_init(&port_pcpu->tx_done_timer, CLOCK_MONOTONIC,
  3926. HRTIMER_MODE_REL_PINNED);
  3927. port_pcpu->tx_done_timer.function = mvpp2_hr_timer_cb;
  3928. port_pcpu->timer_scheduled = false;
  3929. tasklet_init(&port_pcpu->tx_done_tasklet,
  3930. mvpp2_tx_proc_cb,
  3931. (unsigned long)dev);
  3932. }
  3933. }
  3934. features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
  3935. NETIF_F_TSO;
  3936. dev->features = features | NETIF_F_RXCSUM;
  3937. dev->hw_features |= features | NETIF_F_RXCSUM | NETIF_F_GRO |
  3938. NETIF_F_HW_VLAN_CTAG_FILTER;
  3939. if (mvpp22_rss_is_supported())
  3940. dev->hw_features |= NETIF_F_RXHASH;
  3941. if (port->pool_long->id == MVPP2_BM_JUMBO && port->id != 0) {
  3942. dev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
  3943. dev->hw_features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
  3944. }
  3945. dev->vlan_features |= features;
  3946. dev->gso_max_segs = MVPP2_MAX_TSO_SEGS;
  3947. dev->priv_flags |= IFF_UNICAST_FLT;
  3948. /* MTU range: 68 - 9704 */
  3949. dev->min_mtu = ETH_MIN_MTU;
  3950. /* 9704 == 9728 - 20 and rounding to 8 */
  3951. dev->max_mtu = MVPP2_BM_JUMBO_PKT_SIZE;
  3952. dev->dev.of_node = port_node;
  3953. /* Phylink isn't used w/ ACPI as of now */
  3954. if (port_node) {
  3955. phylink = phylink_create(dev, port_fwnode, phy_mode,
  3956. &mvpp2_phylink_ops);
  3957. if (IS_ERR(phylink)) {
  3958. err = PTR_ERR(phylink);
  3959. goto err_free_port_pcpu;
  3960. }
  3961. port->phylink = phylink;
  3962. } else {
  3963. port->phylink = NULL;
  3964. }
  3965. err = register_netdev(dev);
  3966. if (err < 0) {
  3967. dev_err(&pdev->dev, "failed to register netdev\n");
  3968. goto err_phylink;
  3969. }
  3970. netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr);
  3971. priv->port_list[priv->port_count++] = port;
  3972. return 0;
  3973. err_phylink:
  3974. if (port->phylink)
  3975. phylink_destroy(port->phylink);
  3976. err_free_port_pcpu:
  3977. free_percpu(port->pcpu);
  3978. err_free_txq_pcpu:
  3979. for (i = 0; i < port->ntxqs; i++)
  3980. free_percpu(port->txqs[i]->pcpu);
  3981. err_free_stats:
  3982. free_percpu(port->stats);
  3983. err_free_irq:
  3984. if (port->link_irq)
  3985. irq_dispose_mapping(port->link_irq);
  3986. err_deinit_qvecs:
  3987. mvpp2_queue_vectors_deinit(port);
  3988. err_free_netdev:
  3989. free_netdev(dev);
  3990. return err;
  3991. }
  3992. /* Ports removal routine */
  3993. static void mvpp2_port_remove(struct mvpp2_port *port)
  3994. {
  3995. int i;
  3996. unregister_netdev(port->dev);
  3997. if (port->phylink)
  3998. phylink_destroy(port->phylink);
  3999. free_percpu(port->pcpu);
  4000. free_percpu(port->stats);
  4001. for (i = 0; i < port->ntxqs; i++)
  4002. free_percpu(port->txqs[i]->pcpu);
  4003. mvpp2_queue_vectors_deinit(port);
  4004. if (port->link_irq)
  4005. irq_dispose_mapping(port->link_irq);
  4006. free_netdev(port->dev);
  4007. }
  4008. /* Initialize decoding windows */
  4009. static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
  4010. struct mvpp2 *priv)
  4011. {
  4012. u32 win_enable;
  4013. int i;
  4014. for (i = 0; i < 6; i++) {
  4015. mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
  4016. mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
  4017. if (i < 4)
  4018. mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
  4019. }
  4020. win_enable = 0;
  4021. for (i = 0; i < dram->num_cs; i++) {
  4022. const struct mbus_dram_window *cs = dram->cs + i;
  4023. mvpp2_write(priv, MVPP2_WIN_BASE(i),
  4024. (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
  4025. dram->mbus_dram_target_id);
  4026. mvpp2_write(priv, MVPP2_WIN_SIZE(i),
  4027. (cs->size - 1) & 0xffff0000);
  4028. win_enable |= (1 << i);
  4029. }
  4030. mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
  4031. }
  4032. /* Initialize Rx FIFO's */
  4033. static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
  4034. {
  4035. int port;
  4036. for (port = 0; port < MVPP2_MAX_PORTS; port++) {
  4037. mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
  4038. MVPP2_RX_FIFO_PORT_DATA_SIZE_4KB);
  4039. mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
  4040. MVPP2_RX_FIFO_PORT_ATTR_SIZE_4KB);
  4041. }
  4042. mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
  4043. MVPP2_RX_FIFO_PORT_MIN_PKT);
  4044. mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
  4045. }
  4046. static void mvpp22_rx_fifo_init(struct mvpp2 *priv)
  4047. {
  4048. int port;
  4049. /* The FIFO size parameters are set depending on the maximum speed a
  4050. * given port can handle:
  4051. * - Port 0: 10Gbps
  4052. * - Port 1: 2.5Gbps
  4053. * - Ports 2 and 3: 1Gbps
  4054. */
  4055. mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(0),
  4056. MVPP2_RX_FIFO_PORT_DATA_SIZE_32KB);
  4057. mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(0),
  4058. MVPP2_RX_FIFO_PORT_ATTR_SIZE_32KB);
  4059. mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(1),
  4060. MVPP2_RX_FIFO_PORT_DATA_SIZE_8KB);
  4061. mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(1),
  4062. MVPP2_RX_FIFO_PORT_ATTR_SIZE_8KB);
  4063. for (port = 2; port < MVPP2_MAX_PORTS; port++) {
  4064. mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
  4065. MVPP2_RX_FIFO_PORT_DATA_SIZE_4KB);
  4066. mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
  4067. MVPP2_RX_FIFO_PORT_ATTR_SIZE_4KB);
  4068. }
  4069. mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
  4070. MVPP2_RX_FIFO_PORT_MIN_PKT);
  4071. mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
  4072. }
  4073. /* Initialize Tx FIFO's: the total FIFO size is 19kB on PPv2.2 and 10G
  4074. * interfaces must have a Tx FIFO size of 10kB. As only port 0 can do 10G,
  4075. * configure its Tx FIFO size to 10kB and the others ports Tx FIFO size to 3kB.
  4076. */
  4077. static void mvpp22_tx_fifo_init(struct mvpp2 *priv)
  4078. {
  4079. int port, size, thrs;
  4080. for (port = 0; port < MVPP2_MAX_PORTS; port++) {
  4081. if (port == 0) {
  4082. size = MVPP22_TX_FIFO_DATA_SIZE_10KB;
  4083. thrs = MVPP2_TX_FIFO_THRESHOLD_10KB;
  4084. } else {
  4085. size = MVPP22_TX_FIFO_DATA_SIZE_3KB;
  4086. thrs = MVPP2_TX_FIFO_THRESHOLD_3KB;
  4087. }
  4088. mvpp2_write(priv, MVPP22_TX_FIFO_SIZE_REG(port), size);
  4089. mvpp2_write(priv, MVPP22_TX_FIFO_THRESH_REG(port), thrs);
  4090. }
  4091. }
  4092. static void mvpp2_axi_init(struct mvpp2 *priv)
  4093. {
  4094. u32 val, rdval, wrval;
  4095. mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0);
  4096. /* AXI Bridge Configuration */
  4097. rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE
  4098. << MVPP22_AXI_ATTR_CACHE_OFFS;
  4099. rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
  4100. << MVPP22_AXI_ATTR_DOMAIN_OFFS;
  4101. wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE
  4102. << MVPP22_AXI_ATTR_CACHE_OFFS;
  4103. wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
  4104. << MVPP22_AXI_ATTR_DOMAIN_OFFS;
  4105. /* BM */
  4106. mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval);
  4107. mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval);
  4108. /* Descriptors */
  4109. mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval);
  4110. mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval);
  4111. mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval);
  4112. mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval);
  4113. /* Buffer Data */
  4114. mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval);
  4115. mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval);
  4116. val = MVPP22_AXI_CODE_CACHE_NON_CACHE
  4117. << MVPP22_AXI_CODE_CACHE_OFFS;
  4118. val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM
  4119. << MVPP22_AXI_CODE_DOMAIN_OFFS;
  4120. mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val);
  4121. mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val);
  4122. val = MVPP22_AXI_CODE_CACHE_RD_CACHE
  4123. << MVPP22_AXI_CODE_CACHE_OFFS;
  4124. val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
  4125. << MVPP22_AXI_CODE_DOMAIN_OFFS;
  4126. mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val);
  4127. val = MVPP22_AXI_CODE_CACHE_WR_CACHE
  4128. << MVPP22_AXI_CODE_CACHE_OFFS;
  4129. val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
  4130. << MVPP22_AXI_CODE_DOMAIN_OFFS;
  4131. mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val);
  4132. }
  4133. /* Initialize network controller common part HW */
  4134. static int mvpp2_init(struct platform_device *pdev, struct mvpp2 *priv)
  4135. {
  4136. const struct mbus_dram_target_info *dram_target_info;
  4137. int err, i;
  4138. u32 val;
  4139. /* MBUS windows configuration */
  4140. dram_target_info = mv_mbus_dram_info();
  4141. if (dram_target_info)
  4142. mvpp2_conf_mbus_windows(dram_target_info, priv);
  4143. if (priv->hw_version == MVPP22)
  4144. mvpp2_axi_init(priv);
  4145. /* Disable HW PHY polling */
  4146. if (priv->hw_version == MVPP21) {
  4147. val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
  4148. val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
  4149. writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
  4150. } else {
  4151. val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
  4152. val &= ~MVPP22_SMI_POLLING_EN;
  4153. writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
  4154. }
  4155. /* Allocate and initialize aggregated TXQs */
  4156. priv->aggr_txqs = devm_kcalloc(&pdev->dev, num_present_cpus(),
  4157. sizeof(*priv->aggr_txqs),
  4158. GFP_KERNEL);
  4159. if (!priv->aggr_txqs)
  4160. return -ENOMEM;
  4161. for_each_present_cpu(i) {
  4162. priv->aggr_txqs[i].id = i;
  4163. priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
  4164. err = mvpp2_aggr_txq_init(pdev, &priv->aggr_txqs[i], i, priv);
  4165. if (err < 0)
  4166. return err;
  4167. }
  4168. /* Fifo Init */
  4169. if (priv->hw_version == MVPP21) {
  4170. mvpp2_rx_fifo_init(priv);
  4171. } else {
  4172. mvpp22_rx_fifo_init(priv);
  4173. mvpp22_tx_fifo_init(priv);
  4174. }
  4175. if (priv->hw_version == MVPP21)
  4176. writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
  4177. priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
  4178. /* Allow cache snoop when transmiting packets */
  4179. mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
  4180. /* Buffer Manager initialization */
  4181. err = mvpp2_bm_init(pdev, priv);
  4182. if (err < 0)
  4183. return err;
  4184. /* Parser default initialization */
  4185. err = mvpp2_prs_default_init(pdev, priv);
  4186. if (err < 0)
  4187. return err;
  4188. /* Classifier default initialization */
  4189. mvpp2_cls_init(priv);
  4190. return 0;
  4191. }
  4192. static int mvpp2_probe(struct platform_device *pdev)
  4193. {
  4194. const struct acpi_device_id *acpi_id;
  4195. struct fwnode_handle *fwnode = pdev->dev.fwnode;
  4196. struct fwnode_handle *port_fwnode;
  4197. struct mvpp2 *priv;
  4198. struct resource *res;
  4199. void __iomem *base;
  4200. int i;
  4201. int err;
  4202. priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
  4203. if (!priv)
  4204. return -ENOMEM;
  4205. if (has_acpi_companion(&pdev->dev)) {
  4206. acpi_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
  4207. &pdev->dev);
  4208. priv->hw_version = (unsigned long)acpi_id->driver_data;
  4209. } else {
  4210. priv->hw_version =
  4211. (unsigned long)of_device_get_match_data(&pdev->dev);
  4212. }
  4213. /* multi queue mode isn't supported on PPV2.1, fallback to single
  4214. * mode
  4215. */
  4216. if (priv->hw_version == MVPP21)
  4217. queue_mode = MVPP2_QDIST_SINGLE_MODE;
  4218. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  4219. base = devm_ioremap_resource(&pdev->dev, res);
  4220. if (IS_ERR(base))
  4221. return PTR_ERR(base);
  4222. if (priv->hw_version == MVPP21) {
  4223. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  4224. priv->lms_base = devm_ioremap_resource(&pdev->dev, res);
  4225. if (IS_ERR(priv->lms_base))
  4226. return PTR_ERR(priv->lms_base);
  4227. } else {
  4228. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  4229. if (has_acpi_companion(&pdev->dev)) {
  4230. /* In case the MDIO memory region is declared in
  4231. * the ACPI, it can already appear as 'in-use'
  4232. * in the OS. Because it is overlapped by second
  4233. * region of the network controller, make
  4234. * sure it is released, before requesting it again.
  4235. * The care is taken by mvpp2 driver to avoid
  4236. * concurrent access to this memory region.
  4237. */
  4238. release_resource(res);
  4239. }
  4240. priv->iface_base = devm_ioremap_resource(&pdev->dev, res);
  4241. if (IS_ERR(priv->iface_base))
  4242. return PTR_ERR(priv->iface_base);
  4243. }
  4244. if (priv->hw_version == MVPP22 && dev_of_node(&pdev->dev)) {
  4245. priv->sysctrl_base =
  4246. syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
  4247. "marvell,system-controller");
  4248. if (IS_ERR(priv->sysctrl_base))
  4249. /* The system controller regmap is optional for dt
  4250. * compatibility reasons. When not provided, the
  4251. * configuration of the GoP relies on the
  4252. * firmware/bootloader.
  4253. */
  4254. priv->sysctrl_base = NULL;
  4255. }
  4256. mvpp2_setup_bm_pool();
  4257. for (i = 0; i < MVPP2_MAX_THREADS; i++) {
  4258. u32 addr_space_sz;
  4259. addr_space_sz = (priv->hw_version == MVPP21 ?
  4260. MVPP21_ADDR_SPACE_SZ : MVPP22_ADDR_SPACE_SZ);
  4261. priv->swth_base[i] = base + i * addr_space_sz;
  4262. }
  4263. if (priv->hw_version == MVPP21)
  4264. priv->max_port_rxqs = 8;
  4265. else
  4266. priv->max_port_rxqs = 32;
  4267. if (dev_of_node(&pdev->dev)) {
  4268. priv->pp_clk = devm_clk_get(&pdev->dev, "pp_clk");
  4269. if (IS_ERR(priv->pp_clk))
  4270. return PTR_ERR(priv->pp_clk);
  4271. err = clk_prepare_enable(priv->pp_clk);
  4272. if (err < 0)
  4273. return err;
  4274. priv->gop_clk = devm_clk_get(&pdev->dev, "gop_clk");
  4275. if (IS_ERR(priv->gop_clk)) {
  4276. err = PTR_ERR(priv->gop_clk);
  4277. goto err_pp_clk;
  4278. }
  4279. err = clk_prepare_enable(priv->gop_clk);
  4280. if (err < 0)
  4281. goto err_pp_clk;
  4282. if (priv->hw_version == MVPP22) {
  4283. priv->mg_clk = devm_clk_get(&pdev->dev, "mg_clk");
  4284. if (IS_ERR(priv->mg_clk)) {
  4285. err = PTR_ERR(priv->mg_clk);
  4286. goto err_gop_clk;
  4287. }
  4288. err = clk_prepare_enable(priv->mg_clk);
  4289. if (err < 0)
  4290. goto err_gop_clk;
  4291. priv->mg_core_clk = devm_clk_get(&pdev->dev, "mg_core_clk");
  4292. if (IS_ERR(priv->mg_core_clk)) {
  4293. priv->mg_core_clk = NULL;
  4294. } else {
  4295. err = clk_prepare_enable(priv->mg_core_clk);
  4296. if (err < 0)
  4297. goto err_mg_clk;
  4298. }
  4299. }
  4300. priv->axi_clk = devm_clk_get(&pdev->dev, "axi_clk");
  4301. if (IS_ERR(priv->axi_clk)) {
  4302. err = PTR_ERR(priv->axi_clk);
  4303. if (err == -EPROBE_DEFER)
  4304. goto err_mg_core_clk;
  4305. priv->axi_clk = NULL;
  4306. } else {
  4307. err = clk_prepare_enable(priv->axi_clk);
  4308. if (err < 0)
  4309. goto err_mg_core_clk;
  4310. }
  4311. /* Get system's tclk rate */
  4312. priv->tclk = clk_get_rate(priv->pp_clk);
  4313. } else if (device_property_read_u32(&pdev->dev, "clock-frequency",
  4314. &priv->tclk)) {
  4315. dev_err(&pdev->dev, "missing clock-frequency value\n");
  4316. return -EINVAL;
  4317. }
  4318. if (priv->hw_version == MVPP22) {
  4319. err = dma_set_mask(&pdev->dev, MVPP2_DESC_DMA_MASK);
  4320. if (err)
  4321. goto err_axi_clk;
  4322. /* Sadly, the BM pools all share the same register to
  4323. * store the high 32 bits of their address. So they
  4324. * must all have the same high 32 bits, which forces
  4325. * us to restrict coherent memory to DMA_BIT_MASK(32).
  4326. */
  4327. err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
  4328. if (err)
  4329. goto err_axi_clk;
  4330. }
  4331. /* Initialize network controller */
  4332. err = mvpp2_init(pdev, priv);
  4333. if (err < 0) {
  4334. dev_err(&pdev->dev, "failed to initialize controller\n");
  4335. goto err_axi_clk;
  4336. }
  4337. /* Initialize ports */
  4338. fwnode_for_each_available_child_node(fwnode, port_fwnode) {
  4339. err = mvpp2_port_probe(pdev, port_fwnode, priv);
  4340. if (err < 0)
  4341. goto err_port_probe;
  4342. }
  4343. if (priv->port_count == 0) {
  4344. dev_err(&pdev->dev, "no ports enabled\n");
  4345. err = -ENODEV;
  4346. goto err_axi_clk;
  4347. }
  4348. /* Statistics must be gathered regularly because some of them (like
  4349. * packets counters) are 32-bit registers and could overflow quite
  4350. * quickly. For instance, a 10Gb link used at full bandwidth with the
  4351. * smallest packets (64B) will overflow a 32-bit counter in less than
  4352. * 30 seconds. Then, use a workqueue to fill 64-bit counters.
  4353. */
  4354. snprintf(priv->queue_name, sizeof(priv->queue_name),
  4355. "stats-wq-%s%s", netdev_name(priv->port_list[0]->dev),
  4356. priv->port_count > 1 ? "+" : "");
  4357. priv->stats_queue = create_singlethread_workqueue(priv->queue_name);
  4358. if (!priv->stats_queue) {
  4359. err = -ENOMEM;
  4360. goto err_port_probe;
  4361. }
  4362. mvpp2_dbgfs_init(priv, pdev->name);
  4363. platform_set_drvdata(pdev, priv);
  4364. return 0;
  4365. err_port_probe:
  4366. i = 0;
  4367. fwnode_for_each_available_child_node(fwnode, port_fwnode) {
  4368. if (priv->port_list[i])
  4369. mvpp2_port_remove(priv->port_list[i]);
  4370. i++;
  4371. }
  4372. err_axi_clk:
  4373. clk_disable_unprepare(priv->axi_clk);
  4374. err_mg_core_clk:
  4375. if (priv->hw_version == MVPP22)
  4376. clk_disable_unprepare(priv->mg_core_clk);
  4377. err_mg_clk:
  4378. if (priv->hw_version == MVPP22)
  4379. clk_disable_unprepare(priv->mg_clk);
  4380. err_gop_clk:
  4381. clk_disable_unprepare(priv->gop_clk);
  4382. err_pp_clk:
  4383. clk_disable_unprepare(priv->pp_clk);
  4384. return err;
  4385. }
  4386. static int mvpp2_remove(struct platform_device *pdev)
  4387. {
  4388. struct mvpp2 *priv = platform_get_drvdata(pdev);
  4389. struct fwnode_handle *fwnode = pdev->dev.fwnode;
  4390. struct fwnode_handle *port_fwnode;
  4391. int i = 0;
  4392. mvpp2_dbgfs_cleanup(priv);
  4393. flush_workqueue(priv->stats_queue);
  4394. destroy_workqueue(priv->stats_queue);
  4395. fwnode_for_each_available_child_node(fwnode, port_fwnode) {
  4396. if (priv->port_list[i]) {
  4397. mutex_destroy(&priv->port_list[i]->gather_stats_lock);
  4398. mvpp2_port_remove(priv->port_list[i]);
  4399. }
  4400. i++;
  4401. }
  4402. for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
  4403. struct mvpp2_bm_pool *bm_pool = &priv->bm_pools[i];
  4404. mvpp2_bm_pool_destroy(pdev, priv, bm_pool);
  4405. }
  4406. for_each_present_cpu(i) {
  4407. struct mvpp2_tx_queue *aggr_txq = &priv->aggr_txqs[i];
  4408. dma_free_coherent(&pdev->dev,
  4409. MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
  4410. aggr_txq->descs,
  4411. aggr_txq->descs_dma);
  4412. }
  4413. if (is_acpi_node(port_fwnode))
  4414. return 0;
  4415. clk_disable_unprepare(priv->axi_clk);
  4416. clk_disable_unprepare(priv->mg_core_clk);
  4417. clk_disable_unprepare(priv->mg_clk);
  4418. clk_disable_unprepare(priv->pp_clk);
  4419. clk_disable_unprepare(priv->gop_clk);
  4420. return 0;
  4421. }
  4422. static const struct of_device_id mvpp2_match[] = {
  4423. {
  4424. .compatible = "marvell,armada-375-pp2",
  4425. .data = (void *)MVPP21,
  4426. },
  4427. {
  4428. .compatible = "marvell,armada-7k-pp22",
  4429. .data = (void *)MVPP22,
  4430. },
  4431. { }
  4432. };
  4433. MODULE_DEVICE_TABLE(of, mvpp2_match);
  4434. static const struct acpi_device_id mvpp2_acpi_match[] = {
  4435. { "MRVL0110", MVPP22 },
  4436. { },
  4437. };
  4438. MODULE_DEVICE_TABLE(acpi, mvpp2_acpi_match);
  4439. static struct platform_driver mvpp2_driver = {
  4440. .probe = mvpp2_probe,
  4441. .remove = mvpp2_remove,
  4442. .driver = {
  4443. .name = MVPP2_DRIVER_NAME,
  4444. .of_match_table = mvpp2_match,
  4445. .acpi_match_table = ACPI_PTR(mvpp2_acpi_match),
  4446. },
  4447. };
  4448. module_platform_driver(mvpp2_driver);
  4449. MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com");
  4450. MODULE_AUTHOR("Marcin Wojtas <mw@semihalf.com>");
  4451. MODULE_LICENSE("GPL v2");