sys_regs.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159
  1. /*
  2. * Copyright (C) 2012,2013 - ARM Ltd
  3. * Author: Marc Zyngier <marc.zyngier@arm.com>
  4. *
  5. * Derived from arch/arm/kvm/coproc.c:
  6. * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  7. * Authors: Rusty Russell <rusty@rustcorp.com.au>
  8. * Christoffer Dall <c.dall@virtualopensystems.com>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License, version 2, as
  12. * published by the Free Software Foundation.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  21. */
  22. #include <linux/kvm_host.h>
  23. #include <linux/mm.h>
  24. #include <linux/uaccess.h>
  25. #include <asm/cacheflush.h>
  26. #include <asm/cputype.h>
  27. #include <asm/debug-monitors.h>
  28. #include <asm/esr.h>
  29. #include <asm/kvm_arm.h>
  30. #include <asm/kvm_asm.h>
  31. #include <asm/kvm_coproc.h>
  32. #include <asm/kvm_emulate.h>
  33. #include <asm/kvm_host.h>
  34. #include <asm/kvm_mmu.h>
  35. #include <asm/perf_event.h>
  36. #include <trace/events/kvm.h>
  37. #include "sys_regs.h"
  38. #include "trace.h"
  39. /*
  40. * All of this file is extremly similar to the ARM coproc.c, but the
  41. * types are different. My gut feeling is that it should be pretty
  42. * easy to merge, but that would be an ABI breakage -- again. VFP
  43. * would also need to be abstracted.
  44. *
  45. * For AArch32, we only take care of what is being trapped. Anything
  46. * that has to do with init and userspace access has to go via the
  47. * 64bit interface.
  48. */
  49. /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
  50. static u32 cache_levels;
  51. /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
  52. #define CSSELR_MAX 12
  53. /* Which cache CCSIDR represents depends on CSSELR value. */
  54. static u32 get_ccsidr(u32 csselr)
  55. {
  56. u32 ccsidr;
  57. /* Make sure noone else changes CSSELR during this! */
  58. local_irq_disable();
  59. /* Put value into CSSELR */
  60. asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
  61. isb();
  62. /* Read result out of CCSIDR */
  63. asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
  64. local_irq_enable();
  65. return ccsidr;
  66. }
  67. /*
  68. * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
  69. */
  70. static bool access_dcsw(struct kvm_vcpu *vcpu,
  71. struct sys_reg_params *p,
  72. const struct sys_reg_desc *r)
  73. {
  74. if (!p->is_write)
  75. return read_from_write_only(vcpu, p);
  76. kvm_set_way_flush(vcpu);
  77. return true;
  78. }
  79. /*
  80. * Generic accessor for VM registers. Only called as long as HCR_TVM
  81. * is set. If the guest enables the MMU, we stop trapping the VM
  82. * sys_regs and leave it in complete control of the caches.
  83. */
  84. static bool access_vm_reg(struct kvm_vcpu *vcpu,
  85. struct sys_reg_params *p,
  86. const struct sys_reg_desc *r)
  87. {
  88. bool was_enabled = vcpu_has_cache_enabled(vcpu);
  89. BUG_ON(!p->is_write);
  90. if (!p->is_aarch32) {
  91. vcpu_sys_reg(vcpu, r->reg) = p->regval;
  92. } else {
  93. if (!p->is_32bit)
  94. vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
  95. vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
  96. }
  97. kvm_toggle_cache(vcpu, was_enabled);
  98. return true;
  99. }
  100. /*
  101. * Trap handler for the GICv3 SGI generation system register.
  102. * Forward the request to the VGIC emulation.
  103. * The cp15_64 code makes sure this automatically works
  104. * for both AArch64 and AArch32 accesses.
  105. */
  106. static bool access_gic_sgi(struct kvm_vcpu *vcpu,
  107. struct sys_reg_params *p,
  108. const struct sys_reg_desc *r)
  109. {
  110. if (!p->is_write)
  111. return read_from_write_only(vcpu, p);
  112. vgic_v3_dispatch_sgi(vcpu, p->regval);
  113. return true;
  114. }
  115. static bool trap_raz_wi(struct kvm_vcpu *vcpu,
  116. struct sys_reg_params *p,
  117. const struct sys_reg_desc *r)
  118. {
  119. if (p->is_write)
  120. return ignore_write(vcpu, p);
  121. else
  122. return read_zero(vcpu, p);
  123. }
  124. static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
  125. struct sys_reg_params *p,
  126. const struct sys_reg_desc *r)
  127. {
  128. if (p->is_write) {
  129. return ignore_write(vcpu, p);
  130. } else {
  131. p->regval = (1 << 3);
  132. return true;
  133. }
  134. }
  135. static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
  136. struct sys_reg_params *p,
  137. const struct sys_reg_desc *r)
  138. {
  139. if (p->is_write) {
  140. return ignore_write(vcpu, p);
  141. } else {
  142. u32 val;
  143. asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
  144. p->regval = val;
  145. return true;
  146. }
  147. }
  148. /*
  149. * We want to avoid world-switching all the DBG registers all the
  150. * time:
  151. *
  152. * - If we've touched any debug register, it is likely that we're
  153. * going to touch more of them. It then makes sense to disable the
  154. * traps and start doing the save/restore dance
  155. * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
  156. * then mandatory to save/restore the registers, as the guest
  157. * depends on them.
  158. *
  159. * For this, we use a DIRTY bit, indicating the guest has modified the
  160. * debug registers, used as follow:
  161. *
  162. * On guest entry:
  163. * - If the dirty bit is set (because we're coming back from trapping),
  164. * disable the traps, save host registers, restore guest registers.
  165. * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
  166. * set the dirty bit, disable the traps, save host registers,
  167. * restore guest registers.
  168. * - Otherwise, enable the traps
  169. *
  170. * On guest exit:
  171. * - If the dirty bit is set, save guest registers, restore host
  172. * registers and clear the dirty bit. This ensure that the host can
  173. * now use the debug registers.
  174. */
  175. static bool trap_debug_regs(struct kvm_vcpu *vcpu,
  176. struct sys_reg_params *p,
  177. const struct sys_reg_desc *r)
  178. {
  179. if (p->is_write) {
  180. vcpu_sys_reg(vcpu, r->reg) = p->regval;
  181. vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
  182. } else {
  183. p->regval = vcpu_sys_reg(vcpu, r->reg);
  184. }
  185. trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
  186. return true;
  187. }
  188. /*
  189. * reg_to_dbg/dbg_to_reg
  190. *
  191. * A 32 bit write to a debug register leave top bits alone
  192. * A 32 bit read from a debug register only returns the bottom bits
  193. *
  194. * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
  195. * hyp.S code switches between host and guest values in future.
  196. */
  197. static void reg_to_dbg(struct kvm_vcpu *vcpu,
  198. struct sys_reg_params *p,
  199. u64 *dbg_reg)
  200. {
  201. u64 val = p->regval;
  202. if (p->is_32bit) {
  203. val &= 0xffffffffUL;
  204. val |= ((*dbg_reg >> 32) << 32);
  205. }
  206. *dbg_reg = val;
  207. vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
  208. }
  209. static void dbg_to_reg(struct kvm_vcpu *vcpu,
  210. struct sys_reg_params *p,
  211. u64 *dbg_reg)
  212. {
  213. p->regval = *dbg_reg;
  214. if (p->is_32bit)
  215. p->regval &= 0xffffffffUL;
  216. }
  217. static bool trap_bvr(struct kvm_vcpu *vcpu,
  218. struct sys_reg_params *p,
  219. const struct sys_reg_desc *rd)
  220. {
  221. u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
  222. if (p->is_write)
  223. reg_to_dbg(vcpu, p, dbg_reg);
  224. else
  225. dbg_to_reg(vcpu, p, dbg_reg);
  226. trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
  227. return true;
  228. }
  229. static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  230. const struct kvm_one_reg *reg, void __user *uaddr)
  231. {
  232. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
  233. if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
  234. return -EFAULT;
  235. return 0;
  236. }
  237. static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  238. const struct kvm_one_reg *reg, void __user *uaddr)
  239. {
  240. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
  241. if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
  242. return -EFAULT;
  243. return 0;
  244. }
  245. static void reset_bvr(struct kvm_vcpu *vcpu,
  246. const struct sys_reg_desc *rd)
  247. {
  248. vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
  249. }
  250. static bool trap_bcr(struct kvm_vcpu *vcpu,
  251. struct sys_reg_params *p,
  252. const struct sys_reg_desc *rd)
  253. {
  254. u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
  255. if (p->is_write)
  256. reg_to_dbg(vcpu, p, dbg_reg);
  257. else
  258. dbg_to_reg(vcpu, p, dbg_reg);
  259. trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
  260. return true;
  261. }
  262. static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  263. const struct kvm_one_reg *reg, void __user *uaddr)
  264. {
  265. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
  266. if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
  267. return -EFAULT;
  268. return 0;
  269. }
  270. static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  271. const struct kvm_one_reg *reg, void __user *uaddr)
  272. {
  273. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
  274. if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
  275. return -EFAULT;
  276. return 0;
  277. }
  278. static void reset_bcr(struct kvm_vcpu *vcpu,
  279. const struct sys_reg_desc *rd)
  280. {
  281. vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
  282. }
  283. static bool trap_wvr(struct kvm_vcpu *vcpu,
  284. struct sys_reg_params *p,
  285. const struct sys_reg_desc *rd)
  286. {
  287. u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
  288. if (p->is_write)
  289. reg_to_dbg(vcpu, p, dbg_reg);
  290. else
  291. dbg_to_reg(vcpu, p, dbg_reg);
  292. trace_trap_reg(__func__, rd->reg, p->is_write,
  293. vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
  294. return true;
  295. }
  296. static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  297. const struct kvm_one_reg *reg, void __user *uaddr)
  298. {
  299. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
  300. if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
  301. return -EFAULT;
  302. return 0;
  303. }
  304. static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  305. const struct kvm_one_reg *reg, void __user *uaddr)
  306. {
  307. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
  308. if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
  309. return -EFAULT;
  310. return 0;
  311. }
  312. static void reset_wvr(struct kvm_vcpu *vcpu,
  313. const struct sys_reg_desc *rd)
  314. {
  315. vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
  316. }
  317. static bool trap_wcr(struct kvm_vcpu *vcpu,
  318. struct sys_reg_params *p,
  319. const struct sys_reg_desc *rd)
  320. {
  321. u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
  322. if (p->is_write)
  323. reg_to_dbg(vcpu, p, dbg_reg);
  324. else
  325. dbg_to_reg(vcpu, p, dbg_reg);
  326. trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
  327. return true;
  328. }
  329. static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  330. const struct kvm_one_reg *reg, void __user *uaddr)
  331. {
  332. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
  333. if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
  334. return -EFAULT;
  335. return 0;
  336. }
  337. static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  338. const struct kvm_one_reg *reg, void __user *uaddr)
  339. {
  340. __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
  341. if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
  342. return -EFAULT;
  343. return 0;
  344. }
  345. static void reset_wcr(struct kvm_vcpu *vcpu,
  346. const struct sys_reg_desc *rd)
  347. {
  348. vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
  349. }
  350. static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
  351. {
  352. u64 amair;
  353. asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
  354. vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
  355. }
  356. static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
  357. {
  358. u64 mpidr;
  359. /*
  360. * Map the vcpu_id into the first three affinity level fields of
  361. * the MPIDR. We limit the number of VCPUs in level 0 due to a
  362. * limitation to 16 CPUs in that level in the ICC_SGIxR registers
  363. * of the GICv3 to be able to address each CPU directly when
  364. * sending IPIs.
  365. */
  366. mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
  367. mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
  368. mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
  369. vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
  370. }
  371. static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
  372. {
  373. u64 pmcr, val;
  374. asm volatile("mrs %0, pmcr_el0\n" : "=r" (pmcr));
  375. /* Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) is reset to UNKNOWN
  376. * except PMCR.E resetting to zero.
  377. */
  378. val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
  379. | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
  380. vcpu_sys_reg(vcpu, PMCR_EL0) = val;
  381. }
  382. static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  383. const struct sys_reg_desc *r)
  384. {
  385. u64 val;
  386. if (!kvm_arm_pmu_v3_ready(vcpu))
  387. return trap_raz_wi(vcpu, p, r);
  388. if (p->is_write) {
  389. /* Only update writeable bits of PMCR */
  390. val = vcpu_sys_reg(vcpu, PMCR_EL0);
  391. val &= ~ARMV8_PMU_PMCR_MASK;
  392. val |= p->regval & ARMV8_PMU_PMCR_MASK;
  393. vcpu_sys_reg(vcpu, PMCR_EL0) = val;
  394. } else {
  395. /* PMCR.P & PMCR.C are RAZ */
  396. val = vcpu_sys_reg(vcpu, PMCR_EL0)
  397. & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
  398. p->regval = val;
  399. }
  400. return true;
  401. }
  402. static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  403. const struct sys_reg_desc *r)
  404. {
  405. if (!kvm_arm_pmu_v3_ready(vcpu))
  406. return trap_raz_wi(vcpu, p, r);
  407. if (p->is_write)
  408. vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
  409. else
  410. /* return PMSELR.SEL field */
  411. p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
  412. & ARMV8_PMU_COUNTER_MASK;
  413. return true;
  414. }
  415. static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  416. const struct sys_reg_desc *r)
  417. {
  418. u64 pmceid;
  419. if (!kvm_arm_pmu_v3_ready(vcpu))
  420. return trap_raz_wi(vcpu, p, r);
  421. BUG_ON(p->is_write);
  422. if (!(p->Op2 & 1))
  423. asm volatile("mrs %0, pmceid0_el0\n" : "=r" (pmceid));
  424. else
  425. asm volatile("mrs %0, pmceid1_el0\n" : "=r" (pmceid));
  426. p->regval = pmceid;
  427. return true;
  428. }
  429. static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
  430. {
  431. u64 pmcr, val;
  432. pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
  433. val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
  434. if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX)
  435. return false;
  436. return true;
  437. }
  438. static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
  439. struct sys_reg_params *p,
  440. const struct sys_reg_desc *r)
  441. {
  442. u64 idx;
  443. if (!kvm_arm_pmu_v3_ready(vcpu))
  444. return trap_raz_wi(vcpu, p, r);
  445. if (r->CRn == 9 && r->CRm == 13) {
  446. if (r->Op2 == 2) {
  447. /* PMXEVCNTR_EL0 */
  448. idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
  449. & ARMV8_PMU_COUNTER_MASK;
  450. } else if (r->Op2 == 0) {
  451. /* PMCCNTR_EL0 */
  452. idx = ARMV8_PMU_CYCLE_IDX;
  453. } else {
  454. BUG();
  455. }
  456. } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
  457. /* PMEVCNTRn_EL0 */
  458. idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
  459. } else {
  460. BUG();
  461. }
  462. if (!pmu_counter_idx_valid(vcpu, idx))
  463. return false;
  464. if (p->is_write)
  465. kvm_pmu_set_counter_value(vcpu, idx, p->regval);
  466. else
  467. p->regval = kvm_pmu_get_counter_value(vcpu, idx);
  468. return true;
  469. }
  470. static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  471. const struct sys_reg_desc *r)
  472. {
  473. u64 idx, reg;
  474. if (!kvm_arm_pmu_v3_ready(vcpu))
  475. return trap_raz_wi(vcpu, p, r);
  476. if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
  477. /* PMXEVTYPER_EL0 */
  478. idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
  479. reg = PMEVTYPER0_EL0 + idx;
  480. } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
  481. idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
  482. if (idx == ARMV8_PMU_CYCLE_IDX)
  483. reg = PMCCFILTR_EL0;
  484. else
  485. /* PMEVTYPERn_EL0 */
  486. reg = PMEVTYPER0_EL0 + idx;
  487. } else {
  488. BUG();
  489. }
  490. if (!pmu_counter_idx_valid(vcpu, idx))
  491. return false;
  492. if (p->is_write) {
  493. kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
  494. vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
  495. } else {
  496. p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
  497. }
  498. return true;
  499. }
  500. static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  501. const struct sys_reg_desc *r)
  502. {
  503. u64 val, mask;
  504. if (!kvm_arm_pmu_v3_ready(vcpu))
  505. return trap_raz_wi(vcpu, p, r);
  506. mask = kvm_pmu_valid_counter_mask(vcpu);
  507. if (p->is_write) {
  508. val = p->regval & mask;
  509. if (r->Op2 & 0x1) {
  510. /* accessing PMCNTENSET_EL0 */
  511. vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
  512. kvm_pmu_enable_counter(vcpu, val);
  513. } else {
  514. /* accessing PMCNTENCLR_EL0 */
  515. vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
  516. kvm_pmu_disable_counter(vcpu, val);
  517. }
  518. } else {
  519. p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
  520. }
  521. return true;
  522. }
  523. static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  524. const struct sys_reg_desc *r)
  525. {
  526. u64 mask = kvm_pmu_valid_counter_mask(vcpu);
  527. if (!kvm_arm_pmu_v3_ready(vcpu))
  528. return trap_raz_wi(vcpu, p, r);
  529. if (p->is_write) {
  530. u64 val = p->regval & mask;
  531. if (r->Op2 & 0x1)
  532. /* accessing PMINTENSET_EL1 */
  533. vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
  534. else
  535. /* accessing PMINTENCLR_EL1 */
  536. vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
  537. } else {
  538. p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
  539. }
  540. return true;
  541. }
  542. static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  543. const struct sys_reg_desc *r)
  544. {
  545. u64 mask = kvm_pmu_valid_counter_mask(vcpu);
  546. if (!kvm_arm_pmu_v3_ready(vcpu))
  547. return trap_raz_wi(vcpu, p, r);
  548. if (p->is_write) {
  549. if (r->CRm & 0x2)
  550. /* accessing PMOVSSET_EL0 */
  551. kvm_pmu_overflow_set(vcpu, p->regval & mask);
  552. else
  553. /* accessing PMOVSCLR_EL0 */
  554. vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
  555. } else {
  556. p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
  557. }
  558. return true;
  559. }
  560. /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
  561. #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
  562. /* DBGBVRn_EL1 */ \
  563. { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
  564. trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
  565. /* DBGBCRn_EL1 */ \
  566. { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
  567. trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
  568. /* DBGWVRn_EL1 */ \
  569. { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
  570. trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
  571. /* DBGWCRn_EL1 */ \
  572. { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
  573. trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
  574. /* Macro to expand the PMEVCNTRn_EL0 register */
  575. #define PMU_PMEVCNTR_EL0(n) \
  576. /* PMEVCNTRn_EL0 */ \
  577. { Op0(0b11), Op1(0b011), CRn(0b1110), \
  578. CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
  579. access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
  580. /* Macro to expand the PMEVTYPERn_EL0 register */
  581. #define PMU_PMEVTYPER_EL0(n) \
  582. /* PMEVTYPERn_EL0 */ \
  583. { Op0(0b11), Op1(0b011), CRn(0b1110), \
  584. CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
  585. access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
  586. /*
  587. * Architected system registers.
  588. * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
  589. *
  590. * We could trap ID_DFR0 and tell the guest we don't support performance
  591. * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
  592. * NAKed, so it will read the PMCR anyway.
  593. *
  594. * Therefore we tell the guest we have 0 counters. Unfortunately, we
  595. * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
  596. * all PM registers, which doesn't crash the guest kernel at least.
  597. *
  598. * Debug handling: We do trap most, if not all debug related system
  599. * registers. The implementation is good enough to ensure that a guest
  600. * can use these with minimal performance degradation. The drawback is
  601. * that we don't implement any of the external debug, none of the
  602. * OSlock protocol. This should be revisited if we ever encounter a
  603. * more demanding guest...
  604. */
  605. static const struct sys_reg_desc sys_reg_descs[] = {
  606. /* DC ISW */
  607. { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
  608. access_dcsw },
  609. /* DC CSW */
  610. { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
  611. access_dcsw },
  612. /* DC CISW */
  613. { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
  614. access_dcsw },
  615. DBG_BCR_BVR_WCR_WVR_EL1(0),
  616. DBG_BCR_BVR_WCR_WVR_EL1(1),
  617. /* MDCCINT_EL1 */
  618. { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
  619. trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
  620. /* MDSCR_EL1 */
  621. { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
  622. trap_debug_regs, reset_val, MDSCR_EL1, 0 },
  623. DBG_BCR_BVR_WCR_WVR_EL1(2),
  624. DBG_BCR_BVR_WCR_WVR_EL1(3),
  625. DBG_BCR_BVR_WCR_WVR_EL1(4),
  626. DBG_BCR_BVR_WCR_WVR_EL1(5),
  627. DBG_BCR_BVR_WCR_WVR_EL1(6),
  628. DBG_BCR_BVR_WCR_WVR_EL1(7),
  629. DBG_BCR_BVR_WCR_WVR_EL1(8),
  630. DBG_BCR_BVR_WCR_WVR_EL1(9),
  631. DBG_BCR_BVR_WCR_WVR_EL1(10),
  632. DBG_BCR_BVR_WCR_WVR_EL1(11),
  633. DBG_BCR_BVR_WCR_WVR_EL1(12),
  634. DBG_BCR_BVR_WCR_WVR_EL1(13),
  635. DBG_BCR_BVR_WCR_WVR_EL1(14),
  636. DBG_BCR_BVR_WCR_WVR_EL1(15),
  637. /* MDRAR_EL1 */
  638. { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
  639. trap_raz_wi },
  640. /* OSLAR_EL1 */
  641. { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
  642. trap_raz_wi },
  643. /* OSLSR_EL1 */
  644. { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
  645. trap_oslsr_el1 },
  646. /* OSDLR_EL1 */
  647. { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
  648. trap_raz_wi },
  649. /* DBGPRCR_EL1 */
  650. { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
  651. trap_raz_wi },
  652. /* DBGCLAIMSET_EL1 */
  653. { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
  654. trap_raz_wi },
  655. /* DBGCLAIMCLR_EL1 */
  656. { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
  657. trap_raz_wi },
  658. /* DBGAUTHSTATUS_EL1 */
  659. { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
  660. trap_dbgauthstatus_el1 },
  661. /* MDCCSR_EL1 */
  662. { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
  663. trap_raz_wi },
  664. /* DBGDTR_EL0 */
  665. { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
  666. trap_raz_wi },
  667. /* DBGDTR[TR]X_EL0 */
  668. { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
  669. trap_raz_wi },
  670. /* DBGVCR32_EL2 */
  671. { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
  672. NULL, reset_val, DBGVCR32_EL2, 0 },
  673. /* MPIDR_EL1 */
  674. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
  675. NULL, reset_mpidr, MPIDR_EL1 },
  676. /* SCTLR_EL1 */
  677. { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
  678. access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
  679. /* CPACR_EL1 */
  680. { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
  681. NULL, reset_val, CPACR_EL1, 0 },
  682. /* TTBR0_EL1 */
  683. { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
  684. access_vm_reg, reset_unknown, TTBR0_EL1 },
  685. /* TTBR1_EL1 */
  686. { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
  687. access_vm_reg, reset_unknown, TTBR1_EL1 },
  688. /* TCR_EL1 */
  689. { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
  690. access_vm_reg, reset_val, TCR_EL1, 0 },
  691. /* AFSR0_EL1 */
  692. { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
  693. access_vm_reg, reset_unknown, AFSR0_EL1 },
  694. /* AFSR1_EL1 */
  695. { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
  696. access_vm_reg, reset_unknown, AFSR1_EL1 },
  697. /* ESR_EL1 */
  698. { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
  699. access_vm_reg, reset_unknown, ESR_EL1 },
  700. /* FAR_EL1 */
  701. { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
  702. access_vm_reg, reset_unknown, FAR_EL1 },
  703. /* PAR_EL1 */
  704. { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
  705. NULL, reset_unknown, PAR_EL1 },
  706. /* PMINTENSET_EL1 */
  707. { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
  708. access_pminten, reset_unknown, PMINTENSET_EL1 },
  709. /* PMINTENCLR_EL1 */
  710. { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
  711. access_pminten, NULL, PMINTENSET_EL1 },
  712. /* MAIR_EL1 */
  713. { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
  714. access_vm_reg, reset_unknown, MAIR_EL1 },
  715. /* AMAIR_EL1 */
  716. { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
  717. access_vm_reg, reset_amair_el1, AMAIR_EL1 },
  718. /* VBAR_EL1 */
  719. { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
  720. NULL, reset_val, VBAR_EL1, 0 },
  721. /* ICC_SGI1R_EL1 */
  722. { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
  723. access_gic_sgi },
  724. /* ICC_SRE_EL1 */
  725. { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
  726. trap_raz_wi },
  727. /* CONTEXTIDR_EL1 */
  728. { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
  729. access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
  730. /* TPIDR_EL1 */
  731. { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
  732. NULL, reset_unknown, TPIDR_EL1 },
  733. /* CNTKCTL_EL1 */
  734. { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
  735. NULL, reset_val, CNTKCTL_EL1, 0},
  736. /* CSSELR_EL1 */
  737. { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
  738. NULL, reset_unknown, CSSELR_EL1 },
  739. /* PMCR_EL0 */
  740. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
  741. access_pmcr, reset_pmcr, },
  742. /* PMCNTENSET_EL0 */
  743. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
  744. access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
  745. /* PMCNTENCLR_EL0 */
  746. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
  747. access_pmcnten, NULL, PMCNTENSET_EL0 },
  748. /* PMOVSCLR_EL0 */
  749. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
  750. access_pmovs, NULL, PMOVSSET_EL0 },
  751. /* PMSWINC_EL0 */
  752. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
  753. trap_raz_wi },
  754. /* PMSELR_EL0 */
  755. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
  756. access_pmselr, reset_unknown, PMSELR_EL0 },
  757. /* PMCEID0_EL0 */
  758. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
  759. access_pmceid },
  760. /* PMCEID1_EL0 */
  761. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
  762. access_pmceid },
  763. /* PMCCNTR_EL0 */
  764. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
  765. access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
  766. /* PMXEVTYPER_EL0 */
  767. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
  768. access_pmu_evtyper },
  769. /* PMXEVCNTR_EL0 */
  770. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
  771. access_pmu_evcntr },
  772. /* PMUSERENR_EL0 */
  773. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
  774. trap_raz_wi },
  775. /* PMOVSSET_EL0 */
  776. { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
  777. access_pmovs, reset_unknown, PMOVSSET_EL0 },
  778. /* TPIDR_EL0 */
  779. { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
  780. NULL, reset_unknown, TPIDR_EL0 },
  781. /* TPIDRRO_EL0 */
  782. { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
  783. NULL, reset_unknown, TPIDRRO_EL0 },
  784. /* PMEVCNTRn_EL0 */
  785. PMU_PMEVCNTR_EL0(0),
  786. PMU_PMEVCNTR_EL0(1),
  787. PMU_PMEVCNTR_EL0(2),
  788. PMU_PMEVCNTR_EL0(3),
  789. PMU_PMEVCNTR_EL0(4),
  790. PMU_PMEVCNTR_EL0(5),
  791. PMU_PMEVCNTR_EL0(6),
  792. PMU_PMEVCNTR_EL0(7),
  793. PMU_PMEVCNTR_EL0(8),
  794. PMU_PMEVCNTR_EL0(9),
  795. PMU_PMEVCNTR_EL0(10),
  796. PMU_PMEVCNTR_EL0(11),
  797. PMU_PMEVCNTR_EL0(12),
  798. PMU_PMEVCNTR_EL0(13),
  799. PMU_PMEVCNTR_EL0(14),
  800. PMU_PMEVCNTR_EL0(15),
  801. PMU_PMEVCNTR_EL0(16),
  802. PMU_PMEVCNTR_EL0(17),
  803. PMU_PMEVCNTR_EL0(18),
  804. PMU_PMEVCNTR_EL0(19),
  805. PMU_PMEVCNTR_EL0(20),
  806. PMU_PMEVCNTR_EL0(21),
  807. PMU_PMEVCNTR_EL0(22),
  808. PMU_PMEVCNTR_EL0(23),
  809. PMU_PMEVCNTR_EL0(24),
  810. PMU_PMEVCNTR_EL0(25),
  811. PMU_PMEVCNTR_EL0(26),
  812. PMU_PMEVCNTR_EL0(27),
  813. PMU_PMEVCNTR_EL0(28),
  814. PMU_PMEVCNTR_EL0(29),
  815. PMU_PMEVCNTR_EL0(30),
  816. /* PMEVTYPERn_EL0 */
  817. PMU_PMEVTYPER_EL0(0),
  818. PMU_PMEVTYPER_EL0(1),
  819. PMU_PMEVTYPER_EL0(2),
  820. PMU_PMEVTYPER_EL0(3),
  821. PMU_PMEVTYPER_EL0(4),
  822. PMU_PMEVTYPER_EL0(5),
  823. PMU_PMEVTYPER_EL0(6),
  824. PMU_PMEVTYPER_EL0(7),
  825. PMU_PMEVTYPER_EL0(8),
  826. PMU_PMEVTYPER_EL0(9),
  827. PMU_PMEVTYPER_EL0(10),
  828. PMU_PMEVTYPER_EL0(11),
  829. PMU_PMEVTYPER_EL0(12),
  830. PMU_PMEVTYPER_EL0(13),
  831. PMU_PMEVTYPER_EL0(14),
  832. PMU_PMEVTYPER_EL0(15),
  833. PMU_PMEVTYPER_EL0(16),
  834. PMU_PMEVTYPER_EL0(17),
  835. PMU_PMEVTYPER_EL0(18),
  836. PMU_PMEVTYPER_EL0(19),
  837. PMU_PMEVTYPER_EL0(20),
  838. PMU_PMEVTYPER_EL0(21),
  839. PMU_PMEVTYPER_EL0(22),
  840. PMU_PMEVTYPER_EL0(23),
  841. PMU_PMEVTYPER_EL0(24),
  842. PMU_PMEVTYPER_EL0(25),
  843. PMU_PMEVTYPER_EL0(26),
  844. PMU_PMEVTYPER_EL0(27),
  845. PMU_PMEVTYPER_EL0(28),
  846. PMU_PMEVTYPER_EL0(29),
  847. PMU_PMEVTYPER_EL0(30),
  848. /* PMCCFILTR_EL0
  849. * This register resets as unknown in 64bit mode while it resets as zero
  850. * in 32bit mode. Here we choose to reset it as zero for consistency.
  851. */
  852. { Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b1111), Op2(0b111),
  853. access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
  854. /* DACR32_EL2 */
  855. { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
  856. NULL, reset_unknown, DACR32_EL2 },
  857. /* IFSR32_EL2 */
  858. { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
  859. NULL, reset_unknown, IFSR32_EL2 },
  860. /* FPEXC32_EL2 */
  861. { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
  862. NULL, reset_val, FPEXC32_EL2, 0x70 },
  863. };
  864. static bool trap_dbgidr(struct kvm_vcpu *vcpu,
  865. struct sys_reg_params *p,
  866. const struct sys_reg_desc *r)
  867. {
  868. if (p->is_write) {
  869. return ignore_write(vcpu, p);
  870. } else {
  871. u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
  872. u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
  873. u32 el3 = !!cpuid_feature_extract_field(pfr, ID_AA64PFR0_EL3_SHIFT);
  874. p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
  875. (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
  876. (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
  877. | (6 << 16) | (el3 << 14) | (el3 << 12));
  878. return true;
  879. }
  880. }
  881. static bool trap_debug32(struct kvm_vcpu *vcpu,
  882. struct sys_reg_params *p,
  883. const struct sys_reg_desc *r)
  884. {
  885. if (p->is_write) {
  886. vcpu_cp14(vcpu, r->reg) = p->regval;
  887. vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
  888. } else {
  889. p->regval = vcpu_cp14(vcpu, r->reg);
  890. }
  891. return true;
  892. }
  893. /* AArch32 debug register mappings
  894. *
  895. * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
  896. * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
  897. *
  898. * All control registers and watchpoint value registers are mapped to
  899. * the lower 32 bits of their AArch64 equivalents. We share the trap
  900. * handlers with the above AArch64 code which checks what mode the
  901. * system is in.
  902. */
  903. static bool trap_xvr(struct kvm_vcpu *vcpu,
  904. struct sys_reg_params *p,
  905. const struct sys_reg_desc *rd)
  906. {
  907. u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
  908. if (p->is_write) {
  909. u64 val = *dbg_reg;
  910. val &= 0xffffffffUL;
  911. val |= p->regval << 32;
  912. *dbg_reg = val;
  913. vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
  914. } else {
  915. p->regval = *dbg_reg >> 32;
  916. }
  917. trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
  918. return true;
  919. }
  920. #define DBG_BCR_BVR_WCR_WVR(n) \
  921. /* DBGBVRn */ \
  922. { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
  923. /* DBGBCRn */ \
  924. { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
  925. /* DBGWVRn */ \
  926. { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
  927. /* DBGWCRn */ \
  928. { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
  929. #define DBGBXVR(n) \
  930. { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
  931. /*
  932. * Trapped cp14 registers. We generally ignore most of the external
  933. * debug, on the principle that they don't really make sense to a
  934. * guest. Revisit this one day, would this principle change.
  935. */
  936. static const struct sys_reg_desc cp14_regs[] = {
  937. /* DBGIDR */
  938. { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
  939. /* DBGDTRRXext */
  940. { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
  941. DBG_BCR_BVR_WCR_WVR(0),
  942. /* DBGDSCRint */
  943. { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
  944. DBG_BCR_BVR_WCR_WVR(1),
  945. /* DBGDCCINT */
  946. { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
  947. /* DBGDSCRext */
  948. { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
  949. DBG_BCR_BVR_WCR_WVR(2),
  950. /* DBGDTR[RT]Xint */
  951. { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
  952. /* DBGDTR[RT]Xext */
  953. { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
  954. DBG_BCR_BVR_WCR_WVR(3),
  955. DBG_BCR_BVR_WCR_WVR(4),
  956. DBG_BCR_BVR_WCR_WVR(5),
  957. /* DBGWFAR */
  958. { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
  959. /* DBGOSECCR */
  960. { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
  961. DBG_BCR_BVR_WCR_WVR(6),
  962. /* DBGVCR */
  963. { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
  964. DBG_BCR_BVR_WCR_WVR(7),
  965. DBG_BCR_BVR_WCR_WVR(8),
  966. DBG_BCR_BVR_WCR_WVR(9),
  967. DBG_BCR_BVR_WCR_WVR(10),
  968. DBG_BCR_BVR_WCR_WVR(11),
  969. DBG_BCR_BVR_WCR_WVR(12),
  970. DBG_BCR_BVR_WCR_WVR(13),
  971. DBG_BCR_BVR_WCR_WVR(14),
  972. DBG_BCR_BVR_WCR_WVR(15),
  973. /* DBGDRAR (32bit) */
  974. { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
  975. DBGBXVR(0),
  976. /* DBGOSLAR */
  977. { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
  978. DBGBXVR(1),
  979. /* DBGOSLSR */
  980. { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
  981. DBGBXVR(2),
  982. DBGBXVR(3),
  983. /* DBGOSDLR */
  984. { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
  985. DBGBXVR(4),
  986. /* DBGPRCR */
  987. { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
  988. DBGBXVR(5),
  989. DBGBXVR(6),
  990. DBGBXVR(7),
  991. DBGBXVR(8),
  992. DBGBXVR(9),
  993. DBGBXVR(10),
  994. DBGBXVR(11),
  995. DBGBXVR(12),
  996. DBGBXVR(13),
  997. DBGBXVR(14),
  998. DBGBXVR(15),
  999. /* DBGDSAR (32bit) */
  1000. { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
  1001. /* DBGDEVID2 */
  1002. { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
  1003. /* DBGDEVID1 */
  1004. { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
  1005. /* DBGDEVID */
  1006. { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
  1007. /* DBGCLAIMSET */
  1008. { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
  1009. /* DBGCLAIMCLR */
  1010. { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
  1011. /* DBGAUTHSTATUS */
  1012. { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
  1013. };
  1014. /* Trapped cp14 64bit registers */
  1015. static const struct sys_reg_desc cp14_64_regs[] = {
  1016. /* DBGDRAR (64bit) */
  1017. { Op1( 0), CRm( 1), .access = trap_raz_wi },
  1018. /* DBGDSAR (64bit) */
  1019. { Op1( 0), CRm( 2), .access = trap_raz_wi },
  1020. };
  1021. /* Macro to expand the PMEVCNTRn register */
  1022. #define PMU_PMEVCNTR(n) \
  1023. /* PMEVCNTRn */ \
  1024. { Op1(0), CRn(0b1110), \
  1025. CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
  1026. access_pmu_evcntr }
  1027. /* Macro to expand the PMEVTYPERn register */
  1028. #define PMU_PMEVTYPER(n) \
  1029. /* PMEVTYPERn */ \
  1030. { Op1(0), CRn(0b1110), \
  1031. CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
  1032. access_pmu_evtyper }
  1033. /*
  1034. * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
  1035. * depending on the way they are accessed (as a 32bit or a 64bit
  1036. * register).
  1037. */
  1038. static const struct sys_reg_desc cp15_regs[] = {
  1039. { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
  1040. { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
  1041. { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
  1042. { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
  1043. { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
  1044. { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
  1045. { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
  1046. { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
  1047. { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
  1048. { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
  1049. { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
  1050. { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
  1051. /*
  1052. * DC{C,I,CI}SW operations:
  1053. */
  1054. { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
  1055. { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
  1056. { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
  1057. /* PMU */
  1058. { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
  1059. { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
  1060. { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
  1061. { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
  1062. { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
  1063. { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
  1064. { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
  1065. { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
  1066. { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
  1067. { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
  1068. { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
  1069. { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
  1070. { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
  1071. { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
  1072. { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
  1073. { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
  1074. { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
  1075. { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
  1076. /* ICC_SRE */
  1077. { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
  1078. { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
  1079. /* PMEVCNTRn */
  1080. PMU_PMEVCNTR(0),
  1081. PMU_PMEVCNTR(1),
  1082. PMU_PMEVCNTR(2),
  1083. PMU_PMEVCNTR(3),
  1084. PMU_PMEVCNTR(4),
  1085. PMU_PMEVCNTR(5),
  1086. PMU_PMEVCNTR(6),
  1087. PMU_PMEVCNTR(7),
  1088. PMU_PMEVCNTR(8),
  1089. PMU_PMEVCNTR(9),
  1090. PMU_PMEVCNTR(10),
  1091. PMU_PMEVCNTR(11),
  1092. PMU_PMEVCNTR(12),
  1093. PMU_PMEVCNTR(13),
  1094. PMU_PMEVCNTR(14),
  1095. PMU_PMEVCNTR(15),
  1096. PMU_PMEVCNTR(16),
  1097. PMU_PMEVCNTR(17),
  1098. PMU_PMEVCNTR(18),
  1099. PMU_PMEVCNTR(19),
  1100. PMU_PMEVCNTR(20),
  1101. PMU_PMEVCNTR(21),
  1102. PMU_PMEVCNTR(22),
  1103. PMU_PMEVCNTR(23),
  1104. PMU_PMEVCNTR(24),
  1105. PMU_PMEVCNTR(25),
  1106. PMU_PMEVCNTR(26),
  1107. PMU_PMEVCNTR(27),
  1108. PMU_PMEVCNTR(28),
  1109. PMU_PMEVCNTR(29),
  1110. PMU_PMEVCNTR(30),
  1111. /* PMEVTYPERn */
  1112. PMU_PMEVTYPER(0),
  1113. PMU_PMEVTYPER(1),
  1114. PMU_PMEVTYPER(2),
  1115. PMU_PMEVTYPER(3),
  1116. PMU_PMEVTYPER(4),
  1117. PMU_PMEVTYPER(5),
  1118. PMU_PMEVTYPER(6),
  1119. PMU_PMEVTYPER(7),
  1120. PMU_PMEVTYPER(8),
  1121. PMU_PMEVTYPER(9),
  1122. PMU_PMEVTYPER(10),
  1123. PMU_PMEVTYPER(11),
  1124. PMU_PMEVTYPER(12),
  1125. PMU_PMEVTYPER(13),
  1126. PMU_PMEVTYPER(14),
  1127. PMU_PMEVTYPER(15),
  1128. PMU_PMEVTYPER(16),
  1129. PMU_PMEVTYPER(17),
  1130. PMU_PMEVTYPER(18),
  1131. PMU_PMEVTYPER(19),
  1132. PMU_PMEVTYPER(20),
  1133. PMU_PMEVTYPER(21),
  1134. PMU_PMEVTYPER(22),
  1135. PMU_PMEVTYPER(23),
  1136. PMU_PMEVTYPER(24),
  1137. PMU_PMEVTYPER(25),
  1138. PMU_PMEVTYPER(26),
  1139. PMU_PMEVTYPER(27),
  1140. PMU_PMEVTYPER(28),
  1141. PMU_PMEVTYPER(29),
  1142. PMU_PMEVTYPER(30),
  1143. /* PMCCFILTR */
  1144. { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
  1145. };
  1146. static const struct sys_reg_desc cp15_64_regs[] = {
  1147. { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
  1148. { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
  1149. { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
  1150. { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
  1151. };
  1152. /* Target specific emulation tables */
  1153. static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
  1154. void kvm_register_target_sys_reg_table(unsigned int target,
  1155. struct kvm_sys_reg_target_table *table)
  1156. {
  1157. target_tables[target] = table;
  1158. }
  1159. /* Get specific register table for this target. */
  1160. static const struct sys_reg_desc *get_target_table(unsigned target,
  1161. bool mode_is_64,
  1162. size_t *num)
  1163. {
  1164. struct kvm_sys_reg_target_table *table;
  1165. table = target_tables[target];
  1166. if (mode_is_64) {
  1167. *num = table->table64.num;
  1168. return table->table64.table;
  1169. } else {
  1170. *num = table->table32.num;
  1171. return table->table32.table;
  1172. }
  1173. }
  1174. static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
  1175. const struct sys_reg_desc table[],
  1176. unsigned int num)
  1177. {
  1178. unsigned int i;
  1179. for (i = 0; i < num; i++) {
  1180. const struct sys_reg_desc *r = &table[i];
  1181. if (params->Op0 != r->Op0)
  1182. continue;
  1183. if (params->Op1 != r->Op1)
  1184. continue;
  1185. if (params->CRn != r->CRn)
  1186. continue;
  1187. if (params->CRm != r->CRm)
  1188. continue;
  1189. if (params->Op2 != r->Op2)
  1190. continue;
  1191. return r;
  1192. }
  1193. return NULL;
  1194. }
  1195. int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1196. {
  1197. kvm_inject_undefined(vcpu);
  1198. return 1;
  1199. }
  1200. /*
  1201. * emulate_cp -- tries to match a sys_reg access in a handling table, and
  1202. * call the corresponding trap handler.
  1203. *
  1204. * @params: pointer to the descriptor of the access
  1205. * @table: array of trap descriptors
  1206. * @num: size of the trap descriptor array
  1207. *
  1208. * Return 0 if the access has been handled, and -1 if not.
  1209. */
  1210. static int emulate_cp(struct kvm_vcpu *vcpu,
  1211. struct sys_reg_params *params,
  1212. const struct sys_reg_desc *table,
  1213. size_t num)
  1214. {
  1215. const struct sys_reg_desc *r;
  1216. if (!table)
  1217. return -1; /* Not handled */
  1218. r = find_reg(params, table, num);
  1219. if (r) {
  1220. /*
  1221. * Not having an accessor means that we have
  1222. * configured a trap that we don't know how to
  1223. * handle. This certainly qualifies as a gross bug
  1224. * that should be fixed right away.
  1225. */
  1226. BUG_ON(!r->access);
  1227. if (likely(r->access(vcpu, params, r))) {
  1228. /* Skip instruction, since it was emulated */
  1229. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  1230. /* Handled */
  1231. return 0;
  1232. }
  1233. }
  1234. /* Not handled */
  1235. return -1;
  1236. }
  1237. static void unhandled_cp_access(struct kvm_vcpu *vcpu,
  1238. struct sys_reg_params *params)
  1239. {
  1240. u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
  1241. int cp;
  1242. switch(hsr_ec) {
  1243. case ESR_ELx_EC_CP15_32:
  1244. case ESR_ELx_EC_CP15_64:
  1245. cp = 15;
  1246. break;
  1247. case ESR_ELx_EC_CP14_MR:
  1248. case ESR_ELx_EC_CP14_64:
  1249. cp = 14;
  1250. break;
  1251. default:
  1252. WARN_ON((cp = -1));
  1253. }
  1254. kvm_err("Unsupported guest CP%d access at: %08lx\n",
  1255. cp, *vcpu_pc(vcpu));
  1256. print_sys_reg_instr(params);
  1257. kvm_inject_undefined(vcpu);
  1258. }
  1259. /**
  1260. * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
  1261. * @vcpu: The VCPU pointer
  1262. * @run: The kvm_run struct
  1263. */
  1264. static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
  1265. const struct sys_reg_desc *global,
  1266. size_t nr_global,
  1267. const struct sys_reg_desc *target_specific,
  1268. size_t nr_specific)
  1269. {
  1270. struct sys_reg_params params;
  1271. u32 hsr = kvm_vcpu_get_hsr(vcpu);
  1272. int Rt = (hsr >> 5) & 0xf;
  1273. int Rt2 = (hsr >> 10) & 0xf;
  1274. params.is_aarch32 = true;
  1275. params.is_32bit = false;
  1276. params.CRm = (hsr >> 1) & 0xf;
  1277. params.is_write = ((hsr & 1) == 0);
  1278. params.Op0 = 0;
  1279. params.Op1 = (hsr >> 16) & 0xf;
  1280. params.Op2 = 0;
  1281. params.CRn = 0;
  1282. /*
  1283. * Make a 64-bit value out of Rt and Rt2. As we use the same trap
  1284. * backends between AArch32 and AArch64, we get away with it.
  1285. */
  1286. if (params.is_write) {
  1287. params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
  1288. params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
  1289. }
  1290. if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
  1291. goto out;
  1292. if (!emulate_cp(vcpu, &params, global, nr_global))
  1293. goto out;
  1294. unhandled_cp_access(vcpu, &params);
  1295. out:
  1296. /* Split up the value between registers for the read side */
  1297. if (!params.is_write) {
  1298. vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
  1299. vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
  1300. }
  1301. return 1;
  1302. }
  1303. /**
  1304. * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
  1305. * @vcpu: The VCPU pointer
  1306. * @run: The kvm_run struct
  1307. */
  1308. static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
  1309. const struct sys_reg_desc *global,
  1310. size_t nr_global,
  1311. const struct sys_reg_desc *target_specific,
  1312. size_t nr_specific)
  1313. {
  1314. struct sys_reg_params params;
  1315. u32 hsr = kvm_vcpu_get_hsr(vcpu);
  1316. int Rt = (hsr >> 5) & 0xf;
  1317. params.is_aarch32 = true;
  1318. params.is_32bit = true;
  1319. params.CRm = (hsr >> 1) & 0xf;
  1320. params.regval = vcpu_get_reg(vcpu, Rt);
  1321. params.is_write = ((hsr & 1) == 0);
  1322. params.CRn = (hsr >> 10) & 0xf;
  1323. params.Op0 = 0;
  1324. params.Op1 = (hsr >> 14) & 0x7;
  1325. params.Op2 = (hsr >> 17) & 0x7;
  1326. if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
  1327. !emulate_cp(vcpu, &params, global, nr_global)) {
  1328. if (!params.is_write)
  1329. vcpu_set_reg(vcpu, Rt, params.regval);
  1330. return 1;
  1331. }
  1332. unhandled_cp_access(vcpu, &params);
  1333. return 1;
  1334. }
  1335. int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1336. {
  1337. const struct sys_reg_desc *target_specific;
  1338. size_t num;
  1339. target_specific = get_target_table(vcpu->arch.target, false, &num);
  1340. return kvm_handle_cp_64(vcpu,
  1341. cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
  1342. target_specific, num);
  1343. }
  1344. int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1345. {
  1346. const struct sys_reg_desc *target_specific;
  1347. size_t num;
  1348. target_specific = get_target_table(vcpu->arch.target, false, &num);
  1349. return kvm_handle_cp_32(vcpu,
  1350. cp15_regs, ARRAY_SIZE(cp15_regs),
  1351. target_specific, num);
  1352. }
  1353. int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1354. {
  1355. return kvm_handle_cp_64(vcpu,
  1356. cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
  1357. NULL, 0);
  1358. }
  1359. int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1360. {
  1361. return kvm_handle_cp_32(vcpu,
  1362. cp14_regs, ARRAY_SIZE(cp14_regs),
  1363. NULL, 0);
  1364. }
  1365. static int emulate_sys_reg(struct kvm_vcpu *vcpu,
  1366. struct sys_reg_params *params)
  1367. {
  1368. size_t num;
  1369. const struct sys_reg_desc *table, *r;
  1370. table = get_target_table(vcpu->arch.target, true, &num);
  1371. /* Search target-specific then generic table. */
  1372. r = find_reg(params, table, num);
  1373. if (!r)
  1374. r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
  1375. if (likely(r)) {
  1376. /*
  1377. * Not having an accessor means that we have
  1378. * configured a trap that we don't know how to
  1379. * handle. This certainly qualifies as a gross bug
  1380. * that should be fixed right away.
  1381. */
  1382. BUG_ON(!r->access);
  1383. if (likely(r->access(vcpu, params, r))) {
  1384. /* Skip instruction, since it was emulated */
  1385. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  1386. return 1;
  1387. }
  1388. /* If access function fails, it should complain. */
  1389. } else {
  1390. kvm_err("Unsupported guest sys_reg access at: %lx\n",
  1391. *vcpu_pc(vcpu));
  1392. print_sys_reg_instr(params);
  1393. }
  1394. kvm_inject_undefined(vcpu);
  1395. return 1;
  1396. }
  1397. static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
  1398. const struct sys_reg_desc *table, size_t num)
  1399. {
  1400. unsigned long i;
  1401. for (i = 0; i < num; i++)
  1402. if (table[i].reset)
  1403. table[i].reset(vcpu, &table[i]);
  1404. }
  1405. /**
  1406. * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
  1407. * @vcpu: The VCPU pointer
  1408. * @run: The kvm_run struct
  1409. */
  1410. int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1411. {
  1412. struct sys_reg_params params;
  1413. unsigned long esr = kvm_vcpu_get_hsr(vcpu);
  1414. int Rt = (esr >> 5) & 0x1f;
  1415. int ret;
  1416. trace_kvm_handle_sys_reg(esr);
  1417. params.is_aarch32 = false;
  1418. params.is_32bit = false;
  1419. params.Op0 = (esr >> 20) & 3;
  1420. params.Op1 = (esr >> 14) & 0x7;
  1421. params.CRn = (esr >> 10) & 0xf;
  1422. params.CRm = (esr >> 1) & 0xf;
  1423. params.Op2 = (esr >> 17) & 0x7;
  1424. params.regval = vcpu_get_reg(vcpu, Rt);
  1425. params.is_write = !(esr & 1);
  1426. ret = emulate_sys_reg(vcpu, &params);
  1427. if (!params.is_write)
  1428. vcpu_set_reg(vcpu, Rt, params.regval);
  1429. return ret;
  1430. }
  1431. /******************************************************************************
  1432. * Userspace API
  1433. *****************************************************************************/
  1434. static bool index_to_params(u64 id, struct sys_reg_params *params)
  1435. {
  1436. switch (id & KVM_REG_SIZE_MASK) {
  1437. case KVM_REG_SIZE_U64:
  1438. /* Any unused index bits means it's not valid. */
  1439. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  1440. | KVM_REG_ARM_COPROC_MASK
  1441. | KVM_REG_ARM64_SYSREG_OP0_MASK
  1442. | KVM_REG_ARM64_SYSREG_OP1_MASK
  1443. | KVM_REG_ARM64_SYSREG_CRN_MASK
  1444. | KVM_REG_ARM64_SYSREG_CRM_MASK
  1445. | KVM_REG_ARM64_SYSREG_OP2_MASK))
  1446. return false;
  1447. params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
  1448. >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
  1449. params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
  1450. >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
  1451. params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
  1452. >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
  1453. params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
  1454. >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
  1455. params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
  1456. >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
  1457. return true;
  1458. default:
  1459. return false;
  1460. }
  1461. }
  1462. /* Decode an index value, and find the sys_reg_desc entry. */
  1463. static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
  1464. u64 id)
  1465. {
  1466. size_t num;
  1467. const struct sys_reg_desc *table, *r;
  1468. struct sys_reg_params params;
  1469. /* We only do sys_reg for now. */
  1470. if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
  1471. return NULL;
  1472. if (!index_to_params(id, &params))
  1473. return NULL;
  1474. table = get_target_table(vcpu->arch.target, true, &num);
  1475. r = find_reg(&params, table, num);
  1476. if (!r)
  1477. r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
  1478. /* Not saved in the sys_reg array? */
  1479. if (r && !r->reg)
  1480. r = NULL;
  1481. return r;
  1482. }
  1483. /*
  1484. * These are the invariant sys_reg registers: we let the guest see the
  1485. * host versions of these, so they're part of the guest state.
  1486. *
  1487. * A future CPU may provide a mechanism to present different values to
  1488. * the guest, or a future kvm may trap them.
  1489. */
  1490. #define FUNCTION_INVARIANT(reg) \
  1491. static void get_##reg(struct kvm_vcpu *v, \
  1492. const struct sys_reg_desc *r) \
  1493. { \
  1494. u64 val; \
  1495. \
  1496. asm volatile("mrs %0, " __stringify(reg) "\n" \
  1497. : "=r" (val)); \
  1498. ((struct sys_reg_desc *)r)->val = val; \
  1499. }
  1500. FUNCTION_INVARIANT(midr_el1)
  1501. FUNCTION_INVARIANT(ctr_el0)
  1502. FUNCTION_INVARIANT(revidr_el1)
  1503. FUNCTION_INVARIANT(id_pfr0_el1)
  1504. FUNCTION_INVARIANT(id_pfr1_el1)
  1505. FUNCTION_INVARIANT(id_dfr0_el1)
  1506. FUNCTION_INVARIANT(id_afr0_el1)
  1507. FUNCTION_INVARIANT(id_mmfr0_el1)
  1508. FUNCTION_INVARIANT(id_mmfr1_el1)
  1509. FUNCTION_INVARIANT(id_mmfr2_el1)
  1510. FUNCTION_INVARIANT(id_mmfr3_el1)
  1511. FUNCTION_INVARIANT(id_isar0_el1)
  1512. FUNCTION_INVARIANT(id_isar1_el1)
  1513. FUNCTION_INVARIANT(id_isar2_el1)
  1514. FUNCTION_INVARIANT(id_isar3_el1)
  1515. FUNCTION_INVARIANT(id_isar4_el1)
  1516. FUNCTION_INVARIANT(id_isar5_el1)
  1517. FUNCTION_INVARIANT(clidr_el1)
  1518. FUNCTION_INVARIANT(aidr_el1)
  1519. /* ->val is filled in by kvm_sys_reg_table_init() */
  1520. static struct sys_reg_desc invariant_sys_regs[] = {
  1521. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
  1522. NULL, get_midr_el1 },
  1523. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
  1524. NULL, get_revidr_el1 },
  1525. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
  1526. NULL, get_id_pfr0_el1 },
  1527. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
  1528. NULL, get_id_pfr1_el1 },
  1529. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
  1530. NULL, get_id_dfr0_el1 },
  1531. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
  1532. NULL, get_id_afr0_el1 },
  1533. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
  1534. NULL, get_id_mmfr0_el1 },
  1535. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
  1536. NULL, get_id_mmfr1_el1 },
  1537. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
  1538. NULL, get_id_mmfr2_el1 },
  1539. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
  1540. NULL, get_id_mmfr3_el1 },
  1541. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
  1542. NULL, get_id_isar0_el1 },
  1543. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
  1544. NULL, get_id_isar1_el1 },
  1545. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
  1546. NULL, get_id_isar2_el1 },
  1547. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
  1548. NULL, get_id_isar3_el1 },
  1549. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
  1550. NULL, get_id_isar4_el1 },
  1551. { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
  1552. NULL, get_id_isar5_el1 },
  1553. { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
  1554. NULL, get_clidr_el1 },
  1555. { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
  1556. NULL, get_aidr_el1 },
  1557. { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
  1558. NULL, get_ctr_el0 },
  1559. };
  1560. static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
  1561. {
  1562. if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
  1563. return -EFAULT;
  1564. return 0;
  1565. }
  1566. static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
  1567. {
  1568. if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
  1569. return -EFAULT;
  1570. return 0;
  1571. }
  1572. static int get_invariant_sys_reg(u64 id, void __user *uaddr)
  1573. {
  1574. struct sys_reg_params params;
  1575. const struct sys_reg_desc *r;
  1576. if (!index_to_params(id, &params))
  1577. return -ENOENT;
  1578. r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
  1579. if (!r)
  1580. return -ENOENT;
  1581. return reg_to_user(uaddr, &r->val, id);
  1582. }
  1583. static int set_invariant_sys_reg(u64 id, void __user *uaddr)
  1584. {
  1585. struct sys_reg_params params;
  1586. const struct sys_reg_desc *r;
  1587. int err;
  1588. u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
  1589. if (!index_to_params(id, &params))
  1590. return -ENOENT;
  1591. r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
  1592. if (!r)
  1593. return -ENOENT;
  1594. err = reg_from_user(&val, uaddr, id);
  1595. if (err)
  1596. return err;
  1597. /* This is what we mean by invariant: you can't change it. */
  1598. if (r->val != val)
  1599. return -EINVAL;
  1600. return 0;
  1601. }
  1602. static bool is_valid_cache(u32 val)
  1603. {
  1604. u32 level, ctype;
  1605. if (val >= CSSELR_MAX)
  1606. return false;
  1607. /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
  1608. level = (val >> 1);
  1609. ctype = (cache_levels >> (level * 3)) & 7;
  1610. switch (ctype) {
  1611. case 0: /* No cache */
  1612. return false;
  1613. case 1: /* Instruction cache only */
  1614. return (val & 1);
  1615. case 2: /* Data cache only */
  1616. case 4: /* Unified cache */
  1617. return !(val & 1);
  1618. case 3: /* Separate instruction and data caches */
  1619. return true;
  1620. default: /* Reserved: we can't know instruction or data. */
  1621. return false;
  1622. }
  1623. }
  1624. static int demux_c15_get(u64 id, void __user *uaddr)
  1625. {
  1626. u32 val;
  1627. u32 __user *uval = uaddr;
  1628. /* Fail if we have unknown bits set. */
  1629. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  1630. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  1631. return -ENOENT;
  1632. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  1633. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  1634. if (KVM_REG_SIZE(id) != 4)
  1635. return -ENOENT;
  1636. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  1637. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  1638. if (!is_valid_cache(val))
  1639. return -ENOENT;
  1640. return put_user(get_ccsidr(val), uval);
  1641. default:
  1642. return -ENOENT;
  1643. }
  1644. }
  1645. static int demux_c15_set(u64 id, void __user *uaddr)
  1646. {
  1647. u32 val, newval;
  1648. u32 __user *uval = uaddr;
  1649. /* Fail if we have unknown bits set. */
  1650. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  1651. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  1652. return -ENOENT;
  1653. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  1654. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  1655. if (KVM_REG_SIZE(id) != 4)
  1656. return -ENOENT;
  1657. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  1658. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  1659. if (!is_valid_cache(val))
  1660. return -ENOENT;
  1661. if (get_user(newval, uval))
  1662. return -EFAULT;
  1663. /* This is also invariant: you can't change it. */
  1664. if (newval != get_ccsidr(val))
  1665. return -EINVAL;
  1666. return 0;
  1667. default:
  1668. return -ENOENT;
  1669. }
  1670. }
  1671. int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  1672. {
  1673. const struct sys_reg_desc *r;
  1674. void __user *uaddr = (void __user *)(unsigned long)reg->addr;
  1675. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  1676. return demux_c15_get(reg->id, uaddr);
  1677. if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
  1678. return -ENOENT;
  1679. r = index_to_sys_reg_desc(vcpu, reg->id);
  1680. if (!r)
  1681. return get_invariant_sys_reg(reg->id, uaddr);
  1682. if (r->get_user)
  1683. return (r->get_user)(vcpu, r, reg, uaddr);
  1684. return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
  1685. }
  1686. int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  1687. {
  1688. const struct sys_reg_desc *r;
  1689. void __user *uaddr = (void __user *)(unsigned long)reg->addr;
  1690. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  1691. return demux_c15_set(reg->id, uaddr);
  1692. if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
  1693. return -ENOENT;
  1694. r = index_to_sys_reg_desc(vcpu, reg->id);
  1695. if (!r)
  1696. return set_invariant_sys_reg(reg->id, uaddr);
  1697. if (r->set_user)
  1698. return (r->set_user)(vcpu, r, reg, uaddr);
  1699. return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
  1700. }
  1701. static unsigned int num_demux_regs(void)
  1702. {
  1703. unsigned int i, count = 0;
  1704. for (i = 0; i < CSSELR_MAX; i++)
  1705. if (is_valid_cache(i))
  1706. count++;
  1707. return count;
  1708. }
  1709. static int write_demux_regids(u64 __user *uindices)
  1710. {
  1711. u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
  1712. unsigned int i;
  1713. val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
  1714. for (i = 0; i < CSSELR_MAX; i++) {
  1715. if (!is_valid_cache(i))
  1716. continue;
  1717. if (put_user(val | i, uindices))
  1718. return -EFAULT;
  1719. uindices++;
  1720. }
  1721. return 0;
  1722. }
  1723. static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
  1724. {
  1725. return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
  1726. KVM_REG_ARM64_SYSREG |
  1727. (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
  1728. (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
  1729. (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
  1730. (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
  1731. (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
  1732. }
  1733. static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
  1734. {
  1735. if (!*uind)
  1736. return true;
  1737. if (put_user(sys_reg_to_index(reg), *uind))
  1738. return false;
  1739. (*uind)++;
  1740. return true;
  1741. }
  1742. /* Assumed ordered tables, see kvm_sys_reg_table_init. */
  1743. static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
  1744. {
  1745. const struct sys_reg_desc *i1, *i2, *end1, *end2;
  1746. unsigned int total = 0;
  1747. size_t num;
  1748. /* We check for duplicates here, to allow arch-specific overrides. */
  1749. i1 = get_target_table(vcpu->arch.target, true, &num);
  1750. end1 = i1 + num;
  1751. i2 = sys_reg_descs;
  1752. end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
  1753. BUG_ON(i1 == end1 || i2 == end2);
  1754. /* Walk carefully, as both tables may refer to the same register. */
  1755. while (i1 || i2) {
  1756. int cmp = cmp_sys_reg(i1, i2);
  1757. /* target-specific overrides generic entry. */
  1758. if (cmp <= 0) {
  1759. /* Ignore registers we trap but don't save. */
  1760. if (i1->reg) {
  1761. if (!copy_reg_to_user(i1, &uind))
  1762. return -EFAULT;
  1763. total++;
  1764. }
  1765. } else {
  1766. /* Ignore registers we trap but don't save. */
  1767. if (i2->reg) {
  1768. if (!copy_reg_to_user(i2, &uind))
  1769. return -EFAULT;
  1770. total++;
  1771. }
  1772. }
  1773. if (cmp <= 0 && ++i1 == end1)
  1774. i1 = NULL;
  1775. if (cmp >= 0 && ++i2 == end2)
  1776. i2 = NULL;
  1777. }
  1778. return total;
  1779. }
  1780. unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
  1781. {
  1782. return ARRAY_SIZE(invariant_sys_regs)
  1783. + num_demux_regs()
  1784. + walk_sys_regs(vcpu, (u64 __user *)NULL);
  1785. }
  1786. int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
  1787. {
  1788. unsigned int i;
  1789. int err;
  1790. /* Then give them all the invariant registers' indices. */
  1791. for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
  1792. if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
  1793. return -EFAULT;
  1794. uindices++;
  1795. }
  1796. err = walk_sys_regs(vcpu, uindices);
  1797. if (err < 0)
  1798. return err;
  1799. uindices += err;
  1800. return write_demux_regids(uindices);
  1801. }
  1802. static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
  1803. {
  1804. unsigned int i;
  1805. for (i = 1; i < n; i++) {
  1806. if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
  1807. kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
  1808. return 1;
  1809. }
  1810. }
  1811. return 0;
  1812. }
  1813. void kvm_sys_reg_table_init(void)
  1814. {
  1815. unsigned int i;
  1816. struct sys_reg_desc clidr;
  1817. /* Make sure tables are unique and in order. */
  1818. BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
  1819. BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
  1820. BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
  1821. BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
  1822. BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
  1823. BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
  1824. /* We abuse the reset function to overwrite the table itself. */
  1825. for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
  1826. invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
  1827. /*
  1828. * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
  1829. *
  1830. * If software reads the Cache Type fields from Ctype1
  1831. * upwards, once it has seen a value of 0b000, no caches
  1832. * exist at further-out levels of the hierarchy. So, for
  1833. * example, if Ctype3 is the first Cache Type field with a
  1834. * value of 0b000, the values of Ctype4 to Ctype7 must be
  1835. * ignored.
  1836. */
  1837. get_clidr_el1(NULL, &clidr); /* Ugly... */
  1838. cache_levels = clidr.val;
  1839. for (i = 0; i < 7; i++)
  1840. if (((cache_levels >> (i*3)) & 7) == 0)
  1841. break;
  1842. /* Clear all higher bits. */
  1843. cache_levels &= (1 << (i*3))-1;
  1844. }
  1845. /**
  1846. * kvm_reset_sys_regs - sets system registers to reset value
  1847. * @vcpu: The VCPU pointer
  1848. *
  1849. * This function finds the right table above and sets the registers on the
  1850. * virtual CPU struct to their architecturally defined reset values.
  1851. */
  1852. void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
  1853. {
  1854. size_t num;
  1855. const struct sys_reg_desc *table;
  1856. /* Catch someone adding a register without putting in reset entry. */
  1857. memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
  1858. /* Generic chip reset first (so target could override). */
  1859. reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
  1860. table = get_target_table(vcpu->arch.target, true, &num);
  1861. reset_sys_reg_descs(vcpu, table, num);
  1862. for (num = 1; num < NR_SYS_REGS; num++)
  1863. if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
  1864. panic("Didn't reset vcpu_sys_reg(%zi)", num);
  1865. }