inline.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674
  1. /*
  2. * fs/f2fs/inline.c
  3. * Copyright (c) 2013, Intel Corporation
  4. * Authors: Huajun Li <huajun.li@intel.com>
  5. * Haicheng Li <haicheng.li@intel.com>
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/fs.h>
  11. #include <linux/f2fs_fs.h>
  12. #include "f2fs.h"
  13. #include "node.h"
  14. bool f2fs_may_inline_data(struct inode *inode)
  15. {
  16. if (f2fs_is_atomic_file(inode))
  17. return false;
  18. if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
  19. return false;
  20. if (i_size_read(inode) > MAX_INLINE_DATA)
  21. return false;
  22. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  23. return false;
  24. return true;
  25. }
  26. bool f2fs_may_inline_dentry(struct inode *inode)
  27. {
  28. if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
  29. return false;
  30. if (!S_ISDIR(inode->i_mode))
  31. return false;
  32. return true;
  33. }
  34. void read_inline_data(struct page *page, struct page *ipage)
  35. {
  36. void *src_addr, *dst_addr;
  37. if (PageUptodate(page))
  38. return;
  39. f2fs_bug_on(F2FS_P_SB(page), page->index);
  40. zero_user_segment(page, MAX_INLINE_DATA, PAGE_SIZE);
  41. /* Copy the whole inline data block */
  42. src_addr = inline_data_addr(ipage);
  43. dst_addr = kmap_atomic(page);
  44. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  45. flush_dcache_page(page);
  46. kunmap_atomic(dst_addr);
  47. if (!PageUptodate(page))
  48. SetPageUptodate(page);
  49. }
  50. void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from)
  51. {
  52. void *addr;
  53. if (from >= MAX_INLINE_DATA)
  54. return;
  55. addr = inline_data_addr(ipage);
  56. f2fs_wait_on_page_writeback(ipage, NODE, true);
  57. memset(addr + from, 0, MAX_INLINE_DATA - from);
  58. set_page_dirty(ipage);
  59. if (from == 0)
  60. clear_inode_flag(inode, FI_DATA_EXIST);
  61. }
  62. int f2fs_read_inline_data(struct inode *inode, struct page *page)
  63. {
  64. struct page *ipage;
  65. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  66. if (IS_ERR(ipage)) {
  67. unlock_page(page);
  68. return PTR_ERR(ipage);
  69. }
  70. if (!f2fs_has_inline_data(inode)) {
  71. f2fs_put_page(ipage, 1);
  72. return -EAGAIN;
  73. }
  74. if (page->index)
  75. zero_user_segment(page, 0, PAGE_SIZE);
  76. else
  77. read_inline_data(page, ipage);
  78. if (!PageUptodate(page))
  79. SetPageUptodate(page);
  80. f2fs_put_page(ipage, 1);
  81. unlock_page(page);
  82. return 0;
  83. }
  84. int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
  85. {
  86. struct f2fs_io_info fio = {
  87. .sbi = F2FS_I_SB(dn->inode),
  88. .type = DATA,
  89. .op = REQ_OP_WRITE,
  90. .op_flags = REQ_SYNC | REQ_PRIO,
  91. .page = page,
  92. .encrypted_page = NULL,
  93. };
  94. int dirty, err;
  95. if (!f2fs_exist_data(dn->inode))
  96. goto clear_out;
  97. err = f2fs_reserve_block(dn, 0);
  98. if (err)
  99. return err;
  100. f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));
  101. read_inline_data(page, dn->inode_page);
  102. set_page_dirty(page);
  103. /* clear dirty state */
  104. dirty = clear_page_dirty_for_io(page);
  105. /* write data page to try to make data consistent */
  106. set_page_writeback(page);
  107. fio.old_blkaddr = dn->data_blkaddr;
  108. set_inode_flag(dn->inode, FI_HOT_DATA);
  109. write_data_page(dn, &fio);
  110. f2fs_wait_on_page_writeback(page, DATA, true);
  111. if (dirty) {
  112. inode_dec_dirty_pages(dn->inode);
  113. remove_dirty_inode(dn->inode);
  114. }
  115. /* this converted inline_data should be recovered. */
  116. set_inode_flag(dn->inode, FI_APPEND_WRITE);
  117. /* clear inline data and flag after data writeback */
  118. truncate_inline_inode(dn->inode, dn->inode_page, 0);
  119. clear_inline_node(dn->inode_page);
  120. clear_out:
  121. stat_dec_inline_inode(dn->inode);
  122. clear_inode_flag(dn->inode, FI_INLINE_DATA);
  123. f2fs_put_dnode(dn);
  124. return 0;
  125. }
  126. int f2fs_convert_inline_inode(struct inode *inode)
  127. {
  128. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  129. struct dnode_of_data dn;
  130. struct page *ipage, *page;
  131. int err = 0;
  132. if (!f2fs_has_inline_data(inode))
  133. return 0;
  134. page = f2fs_grab_cache_page(inode->i_mapping, 0, false);
  135. if (!page)
  136. return -ENOMEM;
  137. f2fs_lock_op(sbi);
  138. ipage = get_node_page(sbi, inode->i_ino);
  139. if (IS_ERR(ipage)) {
  140. err = PTR_ERR(ipage);
  141. goto out;
  142. }
  143. set_new_dnode(&dn, inode, ipage, ipage, 0);
  144. if (f2fs_has_inline_data(inode))
  145. err = f2fs_convert_inline_page(&dn, page);
  146. f2fs_put_dnode(&dn);
  147. out:
  148. f2fs_unlock_op(sbi);
  149. f2fs_put_page(page, 1);
  150. f2fs_balance_fs(sbi, dn.node_changed);
  151. return err;
  152. }
  153. int f2fs_write_inline_data(struct inode *inode, struct page *page)
  154. {
  155. void *src_addr, *dst_addr;
  156. struct dnode_of_data dn;
  157. int err;
  158. set_new_dnode(&dn, inode, NULL, NULL, 0);
  159. err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
  160. if (err)
  161. return err;
  162. if (!f2fs_has_inline_data(inode)) {
  163. f2fs_put_dnode(&dn);
  164. return -EAGAIN;
  165. }
  166. f2fs_bug_on(F2FS_I_SB(inode), page->index);
  167. f2fs_wait_on_page_writeback(dn.inode_page, NODE, true);
  168. src_addr = kmap_atomic(page);
  169. dst_addr = inline_data_addr(dn.inode_page);
  170. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  171. kunmap_atomic(src_addr);
  172. set_page_dirty(dn.inode_page);
  173. set_inode_flag(inode, FI_APPEND_WRITE);
  174. set_inode_flag(inode, FI_DATA_EXIST);
  175. clear_inline_node(dn.inode_page);
  176. f2fs_put_dnode(&dn);
  177. return 0;
  178. }
  179. bool recover_inline_data(struct inode *inode, struct page *npage)
  180. {
  181. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  182. struct f2fs_inode *ri = NULL;
  183. void *src_addr, *dst_addr;
  184. struct page *ipage;
  185. /*
  186. * The inline_data recovery policy is as follows.
  187. * [prev.] [next] of inline_data flag
  188. * o o -> recover inline_data
  189. * o x -> remove inline_data, and then recover data blocks
  190. * x o -> remove inline_data, and then recover inline_data
  191. * x x -> recover data blocks
  192. */
  193. if (IS_INODE(npage))
  194. ri = F2FS_INODE(npage);
  195. if (f2fs_has_inline_data(inode) &&
  196. ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  197. process_inline:
  198. ipage = get_node_page(sbi, inode->i_ino);
  199. f2fs_bug_on(sbi, IS_ERR(ipage));
  200. f2fs_wait_on_page_writeback(ipage, NODE, true);
  201. src_addr = inline_data_addr(npage);
  202. dst_addr = inline_data_addr(ipage);
  203. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  204. set_inode_flag(inode, FI_INLINE_DATA);
  205. set_inode_flag(inode, FI_DATA_EXIST);
  206. set_page_dirty(ipage);
  207. f2fs_put_page(ipage, 1);
  208. return true;
  209. }
  210. if (f2fs_has_inline_data(inode)) {
  211. ipage = get_node_page(sbi, inode->i_ino);
  212. f2fs_bug_on(sbi, IS_ERR(ipage));
  213. truncate_inline_inode(inode, ipage, 0);
  214. clear_inode_flag(inode, FI_INLINE_DATA);
  215. f2fs_put_page(ipage, 1);
  216. } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  217. if (truncate_blocks(inode, 0, false))
  218. return false;
  219. goto process_inline;
  220. }
  221. return false;
  222. }
  223. struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
  224. struct fscrypt_name *fname, struct page **res_page)
  225. {
  226. struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
  227. struct f2fs_inline_dentry *inline_dentry;
  228. struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
  229. struct f2fs_dir_entry *de;
  230. struct f2fs_dentry_ptr d;
  231. struct page *ipage;
  232. f2fs_hash_t namehash;
  233. ipage = get_node_page(sbi, dir->i_ino);
  234. if (IS_ERR(ipage)) {
  235. *res_page = ipage;
  236. return NULL;
  237. }
  238. namehash = f2fs_dentry_hash(&name, fname);
  239. inline_dentry = inline_data_addr(ipage);
  240. make_dentry_ptr_inline(NULL, &d, inline_dentry);
  241. de = find_target_dentry(fname, namehash, NULL, &d);
  242. unlock_page(ipage);
  243. if (de)
  244. *res_page = ipage;
  245. else
  246. f2fs_put_page(ipage, 0);
  247. return de;
  248. }
  249. int make_empty_inline_dir(struct inode *inode, struct inode *parent,
  250. struct page *ipage)
  251. {
  252. struct f2fs_inline_dentry *inline_dentry;
  253. struct f2fs_dentry_ptr d;
  254. inline_dentry = inline_data_addr(ipage);
  255. make_dentry_ptr_inline(NULL, &d, inline_dentry);
  256. do_make_empty_dir(inode, parent, &d);
  257. set_page_dirty(ipage);
  258. /* update i_size to MAX_INLINE_DATA */
  259. if (i_size_read(inode) < MAX_INLINE_DATA)
  260. f2fs_i_size_write(inode, MAX_INLINE_DATA);
  261. return 0;
  262. }
  263. /*
  264. * NOTE: ipage is grabbed by caller, but if any error occurs, we should
  265. * release ipage in this function.
  266. */
  267. static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage,
  268. struct f2fs_inline_dentry *inline_dentry)
  269. {
  270. struct page *page;
  271. struct dnode_of_data dn;
  272. struct f2fs_dentry_block *dentry_blk;
  273. struct f2fs_dentry_ptr src, dst;
  274. int err;
  275. page = f2fs_grab_cache_page(dir->i_mapping, 0, false);
  276. if (!page) {
  277. f2fs_put_page(ipage, 1);
  278. return -ENOMEM;
  279. }
  280. set_new_dnode(&dn, dir, ipage, NULL, 0);
  281. err = f2fs_reserve_block(&dn, 0);
  282. if (err)
  283. goto out;
  284. f2fs_wait_on_page_writeback(page, DATA, true);
  285. zero_user_segment(page, MAX_INLINE_DATA, PAGE_SIZE);
  286. dentry_blk = kmap_atomic(page);
  287. make_dentry_ptr_inline(NULL, &src, inline_dentry);
  288. make_dentry_ptr_block(NULL, &dst, dentry_blk);
  289. /* copy data from inline dentry block to new dentry block */
  290. memcpy(dst.bitmap, src.bitmap, src.nr_bitmap);
  291. memset(dst.bitmap + src.nr_bitmap, 0, dst.nr_bitmap - src.nr_bitmap);
  292. /*
  293. * we do not need to zero out remainder part of dentry and filename
  294. * field, since we have used bitmap for marking the usage status of
  295. * them, besides, we can also ignore copying/zeroing reserved space
  296. * of dentry block, because them haven't been used so far.
  297. */
  298. memcpy(dst.dentry, src.dentry, SIZE_OF_DIR_ENTRY * src.max);
  299. memcpy(dst.filename, src.filename, src.max * F2FS_SLOT_LEN);
  300. kunmap_atomic(dentry_blk);
  301. if (!PageUptodate(page))
  302. SetPageUptodate(page);
  303. set_page_dirty(page);
  304. /* clear inline dir and flag after data writeback */
  305. truncate_inline_inode(dir, ipage, 0);
  306. stat_dec_inline_dir(dir);
  307. clear_inode_flag(dir, FI_INLINE_DENTRY);
  308. f2fs_i_depth_write(dir, 1);
  309. if (i_size_read(dir) < PAGE_SIZE)
  310. f2fs_i_size_write(dir, PAGE_SIZE);
  311. out:
  312. f2fs_put_page(page, 1);
  313. return err;
  314. }
  315. static int f2fs_add_inline_entries(struct inode *dir,
  316. struct f2fs_inline_dentry *inline_dentry)
  317. {
  318. struct f2fs_dentry_ptr d;
  319. unsigned long bit_pos = 0;
  320. int err = 0;
  321. make_dentry_ptr_inline(NULL, &d, inline_dentry);
  322. while (bit_pos < d.max) {
  323. struct f2fs_dir_entry *de;
  324. struct qstr new_name;
  325. nid_t ino;
  326. umode_t fake_mode;
  327. if (!test_bit_le(bit_pos, d.bitmap)) {
  328. bit_pos++;
  329. continue;
  330. }
  331. de = &d.dentry[bit_pos];
  332. if (unlikely(!de->name_len)) {
  333. bit_pos++;
  334. continue;
  335. }
  336. new_name.name = d.filename[bit_pos];
  337. new_name.len = le16_to_cpu(de->name_len);
  338. ino = le32_to_cpu(de->ino);
  339. fake_mode = get_de_type(de) << S_SHIFT;
  340. err = f2fs_add_regular_entry(dir, &new_name, NULL, NULL,
  341. ino, fake_mode);
  342. if (err)
  343. goto punch_dentry_pages;
  344. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  345. }
  346. return 0;
  347. punch_dentry_pages:
  348. truncate_inode_pages(&dir->i_data, 0);
  349. truncate_blocks(dir, 0, false);
  350. remove_dirty_inode(dir);
  351. return err;
  352. }
  353. static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage,
  354. struct f2fs_inline_dentry *inline_dentry)
  355. {
  356. struct f2fs_inline_dentry *backup_dentry;
  357. int err;
  358. backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir),
  359. sizeof(struct f2fs_inline_dentry), GFP_F2FS_ZERO);
  360. if (!backup_dentry) {
  361. f2fs_put_page(ipage, 1);
  362. return -ENOMEM;
  363. }
  364. memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA);
  365. truncate_inline_inode(dir, ipage, 0);
  366. unlock_page(ipage);
  367. err = f2fs_add_inline_entries(dir, backup_dentry);
  368. if (err)
  369. goto recover;
  370. lock_page(ipage);
  371. stat_dec_inline_dir(dir);
  372. clear_inode_flag(dir, FI_INLINE_DENTRY);
  373. kfree(backup_dentry);
  374. return 0;
  375. recover:
  376. lock_page(ipage);
  377. memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA);
  378. f2fs_i_depth_write(dir, 0);
  379. f2fs_i_size_write(dir, MAX_INLINE_DATA);
  380. set_page_dirty(ipage);
  381. f2fs_put_page(ipage, 1);
  382. kfree(backup_dentry);
  383. return err;
  384. }
  385. static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
  386. struct f2fs_inline_dentry *inline_dentry)
  387. {
  388. if (!F2FS_I(dir)->i_dir_level)
  389. return f2fs_move_inline_dirents(dir, ipage, inline_dentry);
  390. else
  391. return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry);
  392. }
  393. int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
  394. const struct qstr *orig_name,
  395. struct inode *inode, nid_t ino, umode_t mode)
  396. {
  397. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  398. struct page *ipage;
  399. unsigned int bit_pos;
  400. f2fs_hash_t name_hash;
  401. struct f2fs_inline_dentry *inline_dentry = NULL;
  402. struct f2fs_dentry_ptr d;
  403. int slots = GET_DENTRY_SLOTS(new_name->len);
  404. struct page *page = NULL;
  405. int err = 0;
  406. ipage = get_node_page(sbi, dir->i_ino);
  407. if (IS_ERR(ipage))
  408. return PTR_ERR(ipage);
  409. inline_dentry = inline_data_addr(ipage);
  410. make_dentry_ptr_inline(NULL, &d, inline_dentry);
  411. bit_pos = room_for_filename(d.bitmap, slots, d.max);
  412. if (bit_pos >= d.max) {
  413. err = f2fs_convert_inline_dir(dir, ipage, inline_dentry);
  414. if (err)
  415. return err;
  416. err = -EAGAIN;
  417. goto out;
  418. }
  419. if (inode) {
  420. down_write(&F2FS_I(inode)->i_sem);
  421. page = init_inode_metadata(inode, dir, new_name,
  422. orig_name, ipage);
  423. if (IS_ERR(page)) {
  424. err = PTR_ERR(page);
  425. goto fail;
  426. }
  427. }
  428. f2fs_wait_on_page_writeback(ipage, NODE, true);
  429. name_hash = f2fs_dentry_hash(new_name, NULL);
  430. f2fs_update_dentry(ino, mode, &d, new_name, name_hash, bit_pos);
  431. set_page_dirty(ipage);
  432. /* we don't need to mark_inode_dirty now */
  433. if (inode) {
  434. f2fs_i_pino_write(inode, dir->i_ino);
  435. f2fs_put_page(page, 1);
  436. }
  437. update_parent_metadata(dir, inode, 0);
  438. fail:
  439. if (inode)
  440. up_write(&F2FS_I(inode)->i_sem);
  441. out:
  442. f2fs_put_page(ipage, 1);
  443. return err;
  444. }
  445. void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
  446. struct inode *dir, struct inode *inode)
  447. {
  448. struct f2fs_inline_dentry *inline_dentry;
  449. struct f2fs_dentry_ptr d;
  450. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  451. unsigned int bit_pos;
  452. int i;
  453. lock_page(page);
  454. f2fs_wait_on_page_writeback(page, NODE, true);
  455. inline_dentry = inline_data_addr(page);
  456. make_dentry_ptr_inline(NULL, &d, inline_dentry);
  457. bit_pos = dentry - d.dentry;
  458. for (i = 0; i < slots; i++)
  459. __clear_bit_le(bit_pos + i, d.bitmap);
  460. set_page_dirty(page);
  461. f2fs_put_page(page, 1);
  462. dir->i_ctime = dir->i_mtime = current_time(dir);
  463. f2fs_mark_inode_dirty_sync(dir, false);
  464. if (inode)
  465. f2fs_drop_nlink(dir, inode);
  466. }
  467. bool f2fs_empty_inline_dir(struct inode *dir)
  468. {
  469. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  470. struct page *ipage;
  471. unsigned int bit_pos = 2;
  472. struct f2fs_inline_dentry *inline_dentry;
  473. struct f2fs_dentry_ptr d;
  474. ipage = get_node_page(sbi, dir->i_ino);
  475. if (IS_ERR(ipage))
  476. return false;
  477. inline_dentry = inline_data_addr(ipage);
  478. make_dentry_ptr_inline(NULL, &d, inline_dentry);
  479. bit_pos = find_next_bit_le(d.bitmap, d.max, bit_pos);
  480. f2fs_put_page(ipage, 1);
  481. if (bit_pos < d.max)
  482. return false;
  483. return true;
  484. }
  485. int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
  486. struct fscrypt_str *fstr)
  487. {
  488. struct inode *inode = file_inode(file);
  489. struct f2fs_inline_dentry *inline_dentry = NULL;
  490. struct page *ipage = NULL;
  491. struct f2fs_dentry_ptr d;
  492. int err;
  493. make_dentry_ptr_inline(inode, &d, inline_dentry);
  494. if (ctx->pos == d.max)
  495. return 0;
  496. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  497. if (IS_ERR(ipage))
  498. return PTR_ERR(ipage);
  499. inline_dentry = inline_data_addr(ipage);
  500. make_dentry_ptr_inline(inode, &d, inline_dentry);
  501. err = f2fs_fill_dentries(ctx, &d, 0, fstr);
  502. if (!err)
  503. ctx->pos = d.max;
  504. f2fs_put_page(ipage, 1);
  505. return err < 0 ? err : 0;
  506. }
  507. int f2fs_inline_data_fiemap(struct inode *inode,
  508. struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
  509. {
  510. __u64 byteaddr, ilen;
  511. __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
  512. FIEMAP_EXTENT_LAST;
  513. struct node_info ni;
  514. struct page *ipage;
  515. int err = 0;
  516. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  517. if (IS_ERR(ipage))
  518. return PTR_ERR(ipage);
  519. if (!f2fs_has_inline_data(inode)) {
  520. err = -EAGAIN;
  521. goto out;
  522. }
  523. ilen = min_t(size_t, MAX_INLINE_DATA, i_size_read(inode));
  524. if (start >= ilen)
  525. goto out;
  526. if (start + len < ilen)
  527. ilen = start + len;
  528. ilen -= start;
  529. get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni);
  530. byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
  531. byteaddr += (char *)inline_data_addr(ipage) - (char *)F2FS_INODE(ipage);
  532. err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
  533. out:
  534. f2fs_put_page(ipage, 1);
  535. return err;
  536. }