core.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360
  1. /*
  2. * Copyright (C) 2015 IT University of Copenhagen. All rights reserved.
  3. * Initial release: Matias Bjorling <m@bjorling.me>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License version
  7. * 2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but
  10. * WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; see the file COPYING. If not, write to
  16. * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
  17. * USA.
  18. *
  19. */
  20. #include <linux/list.h>
  21. #include <linux/types.h>
  22. #include <linux/sem.h>
  23. #include <linux/bitmap.h>
  24. #include <linux/moduleparam.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/lightnvm.h>
  27. #include <linux/sched/sysctl.h>
  28. static LIST_HEAD(nvm_tgt_types);
  29. static DECLARE_RWSEM(nvm_tgtt_lock);
  30. static LIST_HEAD(nvm_devices);
  31. static DECLARE_RWSEM(nvm_lock);
  32. /* Map between virtual and physical channel and lun */
  33. struct nvm_ch_map {
  34. int ch_off;
  35. int nr_luns;
  36. int *lun_offs;
  37. };
  38. struct nvm_dev_map {
  39. struct nvm_ch_map *chnls;
  40. int nr_chnls;
  41. };
  42. struct nvm_area {
  43. struct list_head list;
  44. sector_t begin;
  45. sector_t end; /* end is excluded */
  46. };
  47. static struct nvm_target *nvm_find_target(struct nvm_dev *dev, const char *name)
  48. {
  49. struct nvm_target *tgt;
  50. list_for_each_entry(tgt, &dev->targets, list)
  51. if (!strcmp(name, tgt->disk->disk_name))
  52. return tgt;
  53. return NULL;
  54. }
  55. static int nvm_reserve_luns(struct nvm_dev *dev, int lun_begin, int lun_end)
  56. {
  57. int i;
  58. for (i = lun_begin; i <= lun_end; i++) {
  59. if (test_and_set_bit(i, dev->lun_map)) {
  60. pr_err("nvm: lun %d already allocated\n", i);
  61. goto err;
  62. }
  63. }
  64. return 0;
  65. err:
  66. while (--i > lun_begin)
  67. clear_bit(i, dev->lun_map);
  68. return -EBUSY;
  69. }
  70. static void nvm_release_luns_err(struct nvm_dev *dev, int lun_begin,
  71. int lun_end)
  72. {
  73. int i;
  74. for (i = lun_begin; i <= lun_end; i++)
  75. WARN_ON(!test_and_clear_bit(i, dev->lun_map));
  76. }
  77. static void nvm_remove_tgt_dev(struct nvm_tgt_dev *tgt_dev, int clear)
  78. {
  79. struct nvm_dev *dev = tgt_dev->parent;
  80. struct nvm_dev_map *dev_map = tgt_dev->map;
  81. int i, j;
  82. for (i = 0; i < dev_map->nr_chnls; i++) {
  83. struct nvm_ch_map *ch_map = &dev_map->chnls[i];
  84. int *lun_offs = ch_map->lun_offs;
  85. int ch = i + ch_map->ch_off;
  86. if (clear) {
  87. for (j = 0; j < ch_map->nr_luns; j++) {
  88. int lun = j + lun_offs[j];
  89. int lunid = (ch * dev->geo.luns_per_chnl) + lun;
  90. WARN_ON(!test_and_clear_bit(lunid,
  91. dev->lun_map));
  92. }
  93. }
  94. kfree(ch_map->lun_offs);
  95. }
  96. kfree(dev_map->chnls);
  97. kfree(dev_map);
  98. kfree(tgt_dev->luns);
  99. kfree(tgt_dev);
  100. }
  101. static struct nvm_tgt_dev *nvm_create_tgt_dev(struct nvm_dev *dev,
  102. int lun_begin, int lun_end)
  103. {
  104. struct nvm_tgt_dev *tgt_dev = NULL;
  105. struct nvm_dev_map *dev_rmap = dev->rmap;
  106. struct nvm_dev_map *dev_map;
  107. struct ppa_addr *luns;
  108. int nr_luns = lun_end - lun_begin + 1;
  109. int luns_left = nr_luns;
  110. int nr_chnls = nr_luns / dev->geo.luns_per_chnl;
  111. int nr_chnls_mod = nr_luns % dev->geo.luns_per_chnl;
  112. int bch = lun_begin / dev->geo.luns_per_chnl;
  113. int blun = lun_begin % dev->geo.luns_per_chnl;
  114. int lunid = 0;
  115. int lun_balanced = 1;
  116. int prev_nr_luns;
  117. int i, j;
  118. nr_chnls = nr_luns / dev->geo.luns_per_chnl;
  119. nr_chnls = (nr_chnls_mod == 0) ? nr_chnls : nr_chnls + 1;
  120. dev_map = kmalloc(sizeof(struct nvm_dev_map), GFP_KERNEL);
  121. if (!dev_map)
  122. goto err_dev;
  123. dev_map->chnls = kcalloc(nr_chnls, sizeof(struct nvm_ch_map),
  124. GFP_KERNEL);
  125. if (!dev_map->chnls)
  126. goto err_chnls;
  127. luns = kcalloc(nr_luns, sizeof(struct ppa_addr), GFP_KERNEL);
  128. if (!luns)
  129. goto err_luns;
  130. prev_nr_luns = (luns_left > dev->geo.luns_per_chnl) ?
  131. dev->geo.luns_per_chnl : luns_left;
  132. for (i = 0; i < nr_chnls; i++) {
  133. struct nvm_ch_map *ch_rmap = &dev_rmap->chnls[i + bch];
  134. int *lun_roffs = ch_rmap->lun_offs;
  135. struct nvm_ch_map *ch_map = &dev_map->chnls[i];
  136. int *lun_offs;
  137. int luns_in_chnl = (luns_left > dev->geo.luns_per_chnl) ?
  138. dev->geo.luns_per_chnl : luns_left;
  139. if (lun_balanced && prev_nr_luns != luns_in_chnl)
  140. lun_balanced = 0;
  141. ch_map->ch_off = ch_rmap->ch_off = bch;
  142. ch_map->nr_luns = luns_in_chnl;
  143. lun_offs = kcalloc(luns_in_chnl, sizeof(int), GFP_KERNEL);
  144. if (!lun_offs)
  145. goto err_ch;
  146. for (j = 0; j < luns_in_chnl; j++) {
  147. luns[lunid].ppa = 0;
  148. luns[lunid].g.ch = i;
  149. luns[lunid++].g.lun = j;
  150. lun_offs[j] = blun;
  151. lun_roffs[j + blun] = blun;
  152. }
  153. ch_map->lun_offs = lun_offs;
  154. /* when starting a new channel, lun offset is reset */
  155. blun = 0;
  156. luns_left -= luns_in_chnl;
  157. }
  158. dev_map->nr_chnls = nr_chnls;
  159. tgt_dev = kmalloc(sizeof(struct nvm_tgt_dev), GFP_KERNEL);
  160. if (!tgt_dev)
  161. goto err_ch;
  162. memcpy(&tgt_dev->geo, &dev->geo, sizeof(struct nvm_geo));
  163. /* Target device only owns a portion of the physical device */
  164. tgt_dev->geo.nr_chnls = nr_chnls;
  165. tgt_dev->geo.nr_luns = nr_luns;
  166. tgt_dev->geo.luns_per_chnl = (lun_balanced) ? prev_nr_luns : -1;
  167. tgt_dev->total_secs = nr_luns * tgt_dev->geo.sec_per_lun;
  168. tgt_dev->q = dev->q;
  169. tgt_dev->map = dev_map;
  170. tgt_dev->luns = luns;
  171. memcpy(&tgt_dev->identity, &dev->identity, sizeof(struct nvm_id));
  172. tgt_dev->parent = dev;
  173. return tgt_dev;
  174. err_ch:
  175. while (--i > 0)
  176. kfree(dev_map->chnls[i].lun_offs);
  177. kfree(luns);
  178. err_luns:
  179. kfree(dev_map->chnls);
  180. err_chnls:
  181. kfree(dev_map);
  182. err_dev:
  183. return tgt_dev;
  184. }
  185. static const struct block_device_operations nvm_fops = {
  186. .owner = THIS_MODULE,
  187. };
  188. static int nvm_create_tgt(struct nvm_dev *dev, struct nvm_ioctl_create *create)
  189. {
  190. struct nvm_ioctl_create_simple *s = &create->conf.s;
  191. struct request_queue *tqueue;
  192. struct gendisk *tdisk;
  193. struct nvm_tgt_type *tt;
  194. struct nvm_target *t;
  195. struct nvm_tgt_dev *tgt_dev;
  196. void *targetdata;
  197. tt = nvm_find_target_type(create->tgttype, 1);
  198. if (!tt) {
  199. pr_err("nvm: target type %s not found\n", create->tgttype);
  200. return -EINVAL;
  201. }
  202. mutex_lock(&dev->mlock);
  203. t = nvm_find_target(dev, create->tgtname);
  204. if (t) {
  205. pr_err("nvm: target name already exists.\n");
  206. mutex_unlock(&dev->mlock);
  207. return -EINVAL;
  208. }
  209. mutex_unlock(&dev->mlock);
  210. if (nvm_reserve_luns(dev, s->lun_begin, s->lun_end))
  211. return -ENOMEM;
  212. t = kmalloc(sizeof(struct nvm_target), GFP_KERNEL);
  213. if (!t)
  214. goto err_reserve;
  215. tgt_dev = nvm_create_tgt_dev(dev, s->lun_begin, s->lun_end);
  216. if (!tgt_dev) {
  217. pr_err("nvm: could not create target device\n");
  218. goto err_t;
  219. }
  220. tdisk = alloc_disk(0);
  221. if (!tdisk)
  222. goto err_dev;
  223. tqueue = blk_alloc_queue_node(GFP_KERNEL, dev->q->node);
  224. if (!tqueue)
  225. goto err_disk;
  226. blk_queue_make_request(tqueue, tt->make_rq);
  227. strlcpy(tdisk->disk_name, create->tgtname, sizeof(tdisk->disk_name));
  228. tdisk->flags = GENHD_FL_EXT_DEVT;
  229. tdisk->major = 0;
  230. tdisk->first_minor = 0;
  231. tdisk->fops = &nvm_fops;
  232. tdisk->queue = tqueue;
  233. targetdata = tt->init(tgt_dev, tdisk, create->flags);
  234. if (IS_ERR(targetdata))
  235. goto err_init;
  236. tdisk->private_data = targetdata;
  237. tqueue->queuedata = targetdata;
  238. blk_queue_max_hw_sectors(tqueue, 8 * dev->ops->max_phys_sect);
  239. set_capacity(tdisk, tt->capacity(targetdata));
  240. add_disk(tdisk);
  241. if (tt->sysfs_init && tt->sysfs_init(tdisk))
  242. goto err_sysfs;
  243. t->type = tt;
  244. t->disk = tdisk;
  245. t->dev = tgt_dev;
  246. mutex_lock(&dev->mlock);
  247. list_add_tail(&t->list, &dev->targets);
  248. mutex_unlock(&dev->mlock);
  249. return 0;
  250. err_sysfs:
  251. if (tt->exit)
  252. tt->exit(targetdata);
  253. err_init:
  254. blk_cleanup_queue(tqueue);
  255. tdisk->queue = NULL;
  256. err_disk:
  257. put_disk(tdisk);
  258. err_dev:
  259. nvm_remove_tgt_dev(tgt_dev, 0);
  260. err_t:
  261. kfree(t);
  262. err_reserve:
  263. nvm_release_luns_err(dev, s->lun_begin, s->lun_end);
  264. return -ENOMEM;
  265. }
  266. static void __nvm_remove_target(struct nvm_target *t)
  267. {
  268. struct nvm_tgt_type *tt = t->type;
  269. struct gendisk *tdisk = t->disk;
  270. struct request_queue *q = tdisk->queue;
  271. del_gendisk(tdisk);
  272. blk_cleanup_queue(q);
  273. if (tt->sysfs_exit)
  274. tt->sysfs_exit(tdisk);
  275. if (tt->exit)
  276. tt->exit(tdisk->private_data);
  277. nvm_remove_tgt_dev(t->dev, 1);
  278. put_disk(tdisk);
  279. list_del(&t->list);
  280. kfree(t);
  281. }
  282. /**
  283. * nvm_remove_tgt - Removes a target from the media manager
  284. * @dev: device
  285. * @remove: ioctl structure with target name to remove.
  286. *
  287. * Returns:
  288. * 0: on success
  289. * 1: on not found
  290. * <0: on error
  291. */
  292. static int nvm_remove_tgt(struct nvm_dev *dev, struct nvm_ioctl_remove *remove)
  293. {
  294. struct nvm_target *t;
  295. mutex_lock(&dev->mlock);
  296. t = nvm_find_target(dev, remove->tgtname);
  297. if (!t) {
  298. mutex_unlock(&dev->mlock);
  299. return 1;
  300. }
  301. __nvm_remove_target(t);
  302. mutex_unlock(&dev->mlock);
  303. return 0;
  304. }
  305. static int nvm_register_map(struct nvm_dev *dev)
  306. {
  307. struct nvm_dev_map *rmap;
  308. int i, j;
  309. rmap = kmalloc(sizeof(struct nvm_dev_map), GFP_KERNEL);
  310. if (!rmap)
  311. goto err_rmap;
  312. rmap->chnls = kcalloc(dev->geo.nr_chnls, sizeof(struct nvm_ch_map),
  313. GFP_KERNEL);
  314. if (!rmap->chnls)
  315. goto err_chnls;
  316. for (i = 0; i < dev->geo.nr_chnls; i++) {
  317. struct nvm_ch_map *ch_rmap;
  318. int *lun_roffs;
  319. int luns_in_chnl = dev->geo.luns_per_chnl;
  320. ch_rmap = &rmap->chnls[i];
  321. ch_rmap->ch_off = -1;
  322. ch_rmap->nr_luns = luns_in_chnl;
  323. lun_roffs = kcalloc(luns_in_chnl, sizeof(int), GFP_KERNEL);
  324. if (!lun_roffs)
  325. goto err_ch;
  326. for (j = 0; j < luns_in_chnl; j++)
  327. lun_roffs[j] = -1;
  328. ch_rmap->lun_offs = lun_roffs;
  329. }
  330. dev->rmap = rmap;
  331. return 0;
  332. err_ch:
  333. while (--i >= 0)
  334. kfree(rmap->chnls[i].lun_offs);
  335. err_chnls:
  336. kfree(rmap);
  337. err_rmap:
  338. return -ENOMEM;
  339. }
  340. static void nvm_unregister_map(struct nvm_dev *dev)
  341. {
  342. struct nvm_dev_map *rmap = dev->rmap;
  343. int i;
  344. for (i = 0; i < dev->geo.nr_chnls; i++)
  345. kfree(rmap->chnls[i].lun_offs);
  346. kfree(rmap->chnls);
  347. kfree(rmap);
  348. }
  349. static void nvm_map_to_dev(struct nvm_tgt_dev *tgt_dev, struct ppa_addr *p)
  350. {
  351. struct nvm_dev_map *dev_map = tgt_dev->map;
  352. struct nvm_ch_map *ch_map = &dev_map->chnls[p->g.ch];
  353. int lun_off = ch_map->lun_offs[p->g.lun];
  354. p->g.ch += ch_map->ch_off;
  355. p->g.lun += lun_off;
  356. }
  357. static void nvm_map_to_tgt(struct nvm_tgt_dev *tgt_dev, struct ppa_addr *p)
  358. {
  359. struct nvm_dev *dev = tgt_dev->parent;
  360. struct nvm_dev_map *dev_rmap = dev->rmap;
  361. struct nvm_ch_map *ch_rmap = &dev_rmap->chnls[p->g.ch];
  362. int lun_roff = ch_rmap->lun_offs[p->g.lun];
  363. p->g.ch -= ch_rmap->ch_off;
  364. p->g.lun -= lun_roff;
  365. }
  366. static void nvm_ppa_tgt_to_dev(struct nvm_tgt_dev *tgt_dev,
  367. struct ppa_addr *ppa_list, int nr_ppas)
  368. {
  369. int i;
  370. for (i = 0; i < nr_ppas; i++) {
  371. nvm_map_to_dev(tgt_dev, &ppa_list[i]);
  372. ppa_list[i] = generic_to_dev_addr(tgt_dev, ppa_list[i]);
  373. }
  374. }
  375. static void nvm_ppa_dev_to_tgt(struct nvm_tgt_dev *tgt_dev,
  376. struct ppa_addr *ppa_list, int nr_ppas)
  377. {
  378. int i;
  379. for (i = 0; i < nr_ppas; i++) {
  380. ppa_list[i] = dev_to_generic_addr(tgt_dev, ppa_list[i]);
  381. nvm_map_to_tgt(tgt_dev, &ppa_list[i]);
  382. }
  383. }
  384. static void nvm_rq_tgt_to_dev(struct nvm_tgt_dev *tgt_dev, struct nvm_rq *rqd)
  385. {
  386. if (rqd->nr_ppas == 1) {
  387. nvm_ppa_tgt_to_dev(tgt_dev, &rqd->ppa_addr, 1);
  388. return;
  389. }
  390. nvm_ppa_tgt_to_dev(tgt_dev, rqd->ppa_list, rqd->nr_ppas);
  391. }
  392. static void nvm_rq_dev_to_tgt(struct nvm_tgt_dev *tgt_dev, struct nvm_rq *rqd)
  393. {
  394. if (rqd->nr_ppas == 1) {
  395. nvm_ppa_dev_to_tgt(tgt_dev, &rqd->ppa_addr, 1);
  396. return;
  397. }
  398. nvm_ppa_dev_to_tgt(tgt_dev, rqd->ppa_list, rqd->nr_ppas);
  399. }
  400. void nvm_part_to_tgt(struct nvm_dev *dev, sector_t *entries,
  401. int len)
  402. {
  403. struct nvm_geo *geo = &dev->geo;
  404. struct nvm_dev_map *dev_rmap = dev->rmap;
  405. u64 i;
  406. for (i = 0; i < len; i++) {
  407. struct nvm_ch_map *ch_rmap;
  408. int *lun_roffs;
  409. struct ppa_addr gaddr;
  410. u64 pba = le64_to_cpu(entries[i]);
  411. u64 diff;
  412. if (!pba)
  413. continue;
  414. gaddr = linear_to_generic_addr(geo, pba);
  415. ch_rmap = &dev_rmap->chnls[gaddr.g.ch];
  416. lun_roffs = ch_rmap->lun_offs;
  417. diff = ((ch_rmap->ch_off * geo->luns_per_chnl) +
  418. (lun_roffs[gaddr.g.lun])) * geo->sec_per_lun;
  419. entries[i] -= cpu_to_le64(diff);
  420. }
  421. }
  422. EXPORT_SYMBOL(nvm_part_to_tgt);
  423. struct nvm_tgt_type *nvm_find_target_type(const char *name, int lock)
  424. {
  425. struct nvm_tgt_type *tmp, *tt = NULL;
  426. if (lock)
  427. down_write(&nvm_tgtt_lock);
  428. list_for_each_entry(tmp, &nvm_tgt_types, list)
  429. if (!strcmp(name, tmp->name)) {
  430. tt = tmp;
  431. break;
  432. }
  433. if (lock)
  434. up_write(&nvm_tgtt_lock);
  435. return tt;
  436. }
  437. EXPORT_SYMBOL(nvm_find_target_type);
  438. int nvm_register_tgt_type(struct nvm_tgt_type *tt)
  439. {
  440. int ret = 0;
  441. down_write(&nvm_tgtt_lock);
  442. if (nvm_find_target_type(tt->name, 0))
  443. ret = -EEXIST;
  444. else
  445. list_add(&tt->list, &nvm_tgt_types);
  446. up_write(&nvm_tgtt_lock);
  447. return ret;
  448. }
  449. EXPORT_SYMBOL(nvm_register_tgt_type);
  450. void nvm_unregister_tgt_type(struct nvm_tgt_type *tt)
  451. {
  452. if (!tt)
  453. return;
  454. down_write(&nvm_lock);
  455. list_del(&tt->list);
  456. up_write(&nvm_lock);
  457. }
  458. EXPORT_SYMBOL(nvm_unregister_tgt_type);
  459. void *nvm_dev_dma_alloc(struct nvm_dev *dev, gfp_t mem_flags,
  460. dma_addr_t *dma_handler)
  461. {
  462. return dev->ops->dev_dma_alloc(dev, dev->dma_pool, mem_flags,
  463. dma_handler);
  464. }
  465. EXPORT_SYMBOL(nvm_dev_dma_alloc);
  466. void nvm_dev_dma_free(struct nvm_dev *dev, void *addr, dma_addr_t dma_handler)
  467. {
  468. dev->ops->dev_dma_free(dev->dma_pool, addr, dma_handler);
  469. }
  470. EXPORT_SYMBOL(nvm_dev_dma_free);
  471. static struct nvm_dev *nvm_find_nvm_dev(const char *name)
  472. {
  473. struct nvm_dev *dev;
  474. list_for_each_entry(dev, &nvm_devices, devices)
  475. if (!strcmp(name, dev->name))
  476. return dev;
  477. return NULL;
  478. }
  479. int nvm_set_tgt_bb_tbl(struct nvm_tgt_dev *tgt_dev, struct ppa_addr *ppas,
  480. int nr_ppas, int type)
  481. {
  482. struct nvm_dev *dev = tgt_dev->parent;
  483. struct nvm_rq rqd;
  484. int ret;
  485. if (nr_ppas > dev->ops->max_phys_sect) {
  486. pr_err("nvm: unable to update all blocks atomically\n");
  487. return -EINVAL;
  488. }
  489. memset(&rqd, 0, sizeof(struct nvm_rq));
  490. nvm_set_rqd_ppalist(tgt_dev, &rqd, ppas, nr_ppas, 1);
  491. nvm_rq_tgt_to_dev(tgt_dev, &rqd);
  492. ret = dev->ops->set_bb_tbl(dev, &rqd.ppa_addr, rqd.nr_ppas, type);
  493. nvm_free_rqd_ppalist(tgt_dev, &rqd);
  494. if (ret) {
  495. pr_err("nvm: failed bb mark\n");
  496. return -EINVAL;
  497. }
  498. return 0;
  499. }
  500. EXPORT_SYMBOL(nvm_set_tgt_bb_tbl);
  501. int nvm_max_phys_sects(struct nvm_tgt_dev *tgt_dev)
  502. {
  503. struct nvm_dev *dev = tgt_dev->parent;
  504. return dev->ops->max_phys_sect;
  505. }
  506. EXPORT_SYMBOL(nvm_max_phys_sects);
  507. int nvm_submit_io(struct nvm_tgt_dev *tgt_dev, struct nvm_rq *rqd)
  508. {
  509. struct nvm_dev *dev = tgt_dev->parent;
  510. if (!dev->ops->submit_io)
  511. return -ENODEV;
  512. nvm_rq_tgt_to_dev(tgt_dev, rqd);
  513. rqd->dev = tgt_dev;
  514. return dev->ops->submit_io(dev, rqd);
  515. }
  516. EXPORT_SYMBOL(nvm_submit_io);
  517. static void nvm_end_io_sync(struct nvm_rq *rqd)
  518. {
  519. struct completion *waiting = rqd->private;
  520. complete(waiting);
  521. }
  522. int nvm_erase_sync(struct nvm_tgt_dev *tgt_dev, struct ppa_addr *ppas,
  523. int nr_ppas)
  524. {
  525. struct nvm_geo *geo = &tgt_dev->geo;
  526. struct nvm_rq rqd;
  527. int ret;
  528. DECLARE_COMPLETION_ONSTACK(wait);
  529. memset(&rqd, 0, sizeof(struct nvm_rq));
  530. rqd.opcode = NVM_OP_ERASE;
  531. rqd.end_io = nvm_end_io_sync;
  532. rqd.private = &wait;
  533. rqd.flags = geo->plane_mode >> 1;
  534. ret = nvm_set_rqd_ppalist(tgt_dev, &rqd, ppas, nr_ppas, 1);
  535. if (ret)
  536. return ret;
  537. ret = nvm_submit_io(tgt_dev, &rqd);
  538. if (ret) {
  539. pr_err("rrpr: erase I/O submission failed: %d\n", ret);
  540. goto free_ppa_list;
  541. }
  542. wait_for_completion_io(&wait);
  543. free_ppa_list:
  544. nvm_free_rqd_ppalist(tgt_dev, &rqd);
  545. return ret;
  546. }
  547. EXPORT_SYMBOL(nvm_erase_sync);
  548. int nvm_get_l2p_tbl(struct nvm_tgt_dev *tgt_dev, u64 slba, u32 nlb,
  549. nvm_l2p_update_fn *update_l2p, void *priv)
  550. {
  551. struct nvm_dev *dev = tgt_dev->parent;
  552. if (!dev->ops->get_l2p_tbl)
  553. return 0;
  554. return dev->ops->get_l2p_tbl(dev, slba, nlb, update_l2p, priv);
  555. }
  556. EXPORT_SYMBOL(nvm_get_l2p_tbl);
  557. int nvm_get_area(struct nvm_tgt_dev *tgt_dev, sector_t *lba, sector_t len)
  558. {
  559. struct nvm_dev *dev = tgt_dev->parent;
  560. struct nvm_geo *geo = &dev->geo;
  561. struct nvm_area *area, *prev, *next;
  562. sector_t begin = 0;
  563. sector_t max_sectors = (geo->sec_size * dev->total_secs) >> 9;
  564. if (len > max_sectors)
  565. return -EINVAL;
  566. area = kmalloc(sizeof(struct nvm_area), GFP_KERNEL);
  567. if (!area)
  568. return -ENOMEM;
  569. prev = NULL;
  570. spin_lock(&dev->lock);
  571. list_for_each_entry(next, &dev->area_list, list) {
  572. if (begin + len > next->begin) {
  573. begin = next->end;
  574. prev = next;
  575. continue;
  576. }
  577. break;
  578. }
  579. if ((begin + len) > max_sectors) {
  580. spin_unlock(&dev->lock);
  581. kfree(area);
  582. return -EINVAL;
  583. }
  584. area->begin = *lba = begin;
  585. area->end = begin + len;
  586. if (prev) /* insert into sorted order */
  587. list_add(&area->list, &prev->list);
  588. else
  589. list_add(&area->list, &dev->area_list);
  590. spin_unlock(&dev->lock);
  591. return 0;
  592. }
  593. EXPORT_SYMBOL(nvm_get_area);
  594. void nvm_put_area(struct nvm_tgt_dev *tgt_dev, sector_t begin)
  595. {
  596. struct nvm_dev *dev = tgt_dev->parent;
  597. struct nvm_area *area;
  598. spin_lock(&dev->lock);
  599. list_for_each_entry(area, &dev->area_list, list) {
  600. if (area->begin != begin)
  601. continue;
  602. list_del(&area->list);
  603. spin_unlock(&dev->lock);
  604. kfree(area);
  605. return;
  606. }
  607. spin_unlock(&dev->lock);
  608. }
  609. EXPORT_SYMBOL(nvm_put_area);
  610. int nvm_set_rqd_ppalist(struct nvm_tgt_dev *tgt_dev, struct nvm_rq *rqd,
  611. const struct ppa_addr *ppas, int nr_ppas, int vblk)
  612. {
  613. struct nvm_dev *dev = tgt_dev->parent;
  614. struct nvm_geo *geo = &tgt_dev->geo;
  615. int i, plane_cnt, pl_idx;
  616. struct ppa_addr ppa;
  617. if ((!vblk || geo->plane_mode == NVM_PLANE_SINGLE) && nr_ppas == 1) {
  618. rqd->nr_ppas = nr_ppas;
  619. rqd->ppa_addr = ppas[0];
  620. return 0;
  621. }
  622. rqd->nr_ppas = nr_ppas;
  623. rqd->ppa_list = nvm_dev_dma_alloc(dev, GFP_KERNEL, &rqd->dma_ppa_list);
  624. if (!rqd->ppa_list) {
  625. pr_err("nvm: failed to allocate dma memory\n");
  626. return -ENOMEM;
  627. }
  628. if (!vblk) {
  629. for (i = 0; i < nr_ppas; i++)
  630. rqd->ppa_list[i] = ppas[i];
  631. } else {
  632. plane_cnt = geo->plane_mode;
  633. rqd->nr_ppas *= plane_cnt;
  634. for (i = 0; i < nr_ppas; i++) {
  635. for (pl_idx = 0; pl_idx < plane_cnt; pl_idx++) {
  636. ppa = ppas[i];
  637. ppa.g.pl = pl_idx;
  638. rqd->ppa_list[(pl_idx * nr_ppas) + i] = ppa;
  639. }
  640. }
  641. }
  642. return 0;
  643. }
  644. EXPORT_SYMBOL(nvm_set_rqd_ppalist);
  645. void nvm_free_rqd_ppalist(struct nvm_tgt_dev *tgt_dev, struct nvm_rq *rqd)
  646. {
  647. if (!rqd->ppa_list)
  648. return;
  649. nvm_dev_dma_free(tgt_dev->parent, rqd->ppa_list, rqd->dma_ppa_list);
  650. }
  651. EXPORT_SYMBOL(nvm_free_rqd_ppalist);
  652. void nvm_end_io(struct nvm_rq *rqd)
  653. {
  654. struct nvm_tgt_dev *tgt_dev = rqd->dev;
  655. /* Convert address space */
  656. if (tgt_dev)
  657. nvm_rq_dev_to_tgt(tgt_dev, rqd);
  658. if (rqd->end_io)
  659. rqd->end_io(rqd);
  660. }
  661. EXPORT_SYMBOL(nvm_end_io);
  662. /*
  663. * folds a bad block list from its plane representation to its virtual
  664. * block representation. The fold is done in place and reduced size is
  665. * returned.
  666. *
  667. * If any of the planes status are bad or grown bad block, the virtual block
  668. * is marked bad. If not bad, the first plane state acts as the block state.
  669. */
  670. int nvm_bb_tbl_fold(struct nvm_dev *dev, u8 *blks, int nr_blks)
  671. {
  672. struct nvm_geo *geo = &dev->geo;
  673. int blk, offset, pl, blktype;
  674. if (nr_blks != geo->blks_per_lun * geo->plane_mode)
  675. return -EINVAL;
  676. for (blk = 0; blk < geo->blks_per_lun; blk++) {
  677. offset = blk * geo->plane_mode;
  678. blktype = blks[offset];
  679. /* Bad blocks on any planes take precedence over other types */
  680. for (pl = 0; pl < geo->plane_mode; pl++) {
  681. if (blks[offset + pl] &
  682. (NVM_BLK_T_BAD|NVM_BLK_T_GRWN_BAD)) {
  683. blktype = blks[offset + pl];
  684. break;
  685. }
  686. }
  687. blks[blk] = blktype;
  688. }
  689. return geo->blks_per_lun;
  690. }
  691. EXPORT_SYMBOL(nvm_bb_tbl_fold);
  692. int nvm_get_tgt_bb_tbl(struct nvm_tgt_dev *tgt_dev, struct ppa_addr ppa,
  693. u8 *blks)
  694. {
  695. struct nvm_dev *dev = tgt_dev->parent;
  696. nvm_ppa_tgt_to_dev(tgt_dev, &ppa, 1);
  697. return dev->ops->get_bb_tbl(dev, ppa, blks);
  698. }
  699. EXPORT_SYMBOL(nvm_get_tgt_bb_tbl);
  700. static int nvm_init_slc_tbl(struct nvm_dev *dev, struct nvm_id_group *grp)
  701. {
  702. struct nvm_geo *geo = &dev->geo;
  703. int i;
  704. dev->lps_per_blk = geo->pgs_per_blk;
  705. dev->lptbl = kcalloc(dev->lps_per_blk, sizeof(int), GFP_KERNEL);
  706. if (!dev->lptbl)
  707. return -ENOMEM;
  708. /* Just a linear array */
  709. for (i = 0; i < dev->lps_per_blk; i++)
  710. dev->lptbl[i] = i;
  711. return 0;
  712. }
  713. static int nvm_init_mlc_tbl(struct nvm_dev *dev, struct nvm_id_group *grp)
  714. {
  715. int i, p;
  716. struct nvm_id_lp_mlc *mlc = &grp->lptbl.mlc;
  717. if (!mlc->num_pairs)
  718. return 0;
  719. dev->lps_per_blk = mlc->num_pairs;
  720. dev->lptbl = kcalloc(dev->lps_per_blk, sizeof(int), GFP_KERNEL);
  721. if (!dev->lptbl)
  722. return -ENOMEM;
  723. /* The lower page table encoding consists of a list of bytes, where each
  724. * has a lower and an upper half. The first half byte maintains the
  725. * increment value and every value after is an offset added to the
  726. * previous incrementation value
  727. */
  728. dev->lptbl[0] = mlc->pairs[0] & 0xF;
  729. for (i = 1; i < dev->lps_per_blk; i++) {
  730. p = mlc->pairs[i >> 1];
  731. if (i & 0x1) /* upper */
  732. dev->lptbl[i] = dev->lptbl[i - 1] + ((p & 0xF0) >> 4);
  733. else /* lower */
  734. dev->lptbl[i] = dev->lptbl[i - 1] + (p & 0xF);
  735. }
  736. return 0;
  737. }
  738. static int nvm_core_init(struct nvm_dev *dev)
  739. {
  740. struct nvm_id *id = &dev->identity;
  741. struct nvm_id_group *grp = &id->grp;
  742. struct nvm_geo *geo = &dev->geo;
  743. int ret;
  744. /* Whole device values */
  745. geo->nr_chnls = grp->num_ch;
  746. geo->luns_per_chnl = grp->num_lun;
  747. /* Generic device values */
  748. geo->pgs_per_blk = grp->num_pg;
  749. geo->blks_per_lun = grp->num_blk;
  750. geo->nr_planes = grp->num_pln;
  751. geo->fpg_size = grp->fpg_sz;
  752. geo->pfpg_size = grp->fpg_sz * grp->num_pln;
  753. geo->sec_size = grp->csecs;
  754. geo->oob_size = grp->sos;
  755. geo->sec_per_pg = grp->fpg_sz / grp->csecs;
  756. geo->mccap = grp->mccap;
  757. memcpy(&geo->ppaf, &id->ppaf, sizeof(struct nvm_addr_format));
  758. geo->plane_mode = NVM_PLANE_SINGLE;
  759. geo->max_rq_size = dev->ops->max_phys_sect * geo->sec_size;
  760. if (grp->mpos & 0x020202)
  761. geo->plane_mode = NVM_PLANE_DOUBLE;
  762. if (grp->mpos & 0x040404)
  763. geo->plane_mode = NVM_PLANE_QUAD;
  764. if (grp->mtype != 0) {
  765. pr_err("nvm: memory type not supported\n");
  766. return -EINVAL;
  767. }
  768. /* calculated values */
  769. geo->sec_per_pl = geo->sec_per_pg * geo->nr_planes;
  770. geo->sec_per_blk = geo->sec_per_pl * geo->pgs_per_blk;
  771. geo->sec_per_lun = geo->sec_per_blk * geo->blks_per_lun;
  772. geo->nr_luns = geo->luns_per_chnl * geo->nr_chnls;
  773. dev->total_secs = geo->nr_luns * geo->sec_per_lun;
  774. dev->lun_map = kcalloc(BITS_TO_LONGS(geo->nr_luns),
  775. sizeof(unsigned long), GFP_KERNEL);
  776. if (!dev->lun_map)
  777. return -ENOMEM;
  778. switch (grp->fmtype) {
  779. case NVM_ID_FMTYPE_SLC:
  780. if (nvm_init_slc_tbl(dev, grp)) {
  781. ret = -ENOMEM;
  782. goto err_fmtype;
  783. }
  784. break;
  785. case NVM_ID_FMTYPE_MLC:
  786. if (nvm_init_mlc_tbl(dev, grp)) {
  787. ret = -ENOMEM;
  788. goto err_fmtype;
  789. }
  790. break;
  791. default:
  792. pr_err("nvm: flash type not supported\n");
  793. ret = -EINVAL;
  794. goto err_fmtype;
  795. }
  796. INIT_LIST_HEAD(&dev->area_list);
  797. INIT_LIST_HEAD(&dev->targets);
  798. mutex_init(&dev->mlock);
  799. spin_lock_init(&dev->lock);
  800. ret = nvm_register_map(dev);
  801. if (ret)
  802. goto err_fmtype;
  803. blk_queue_logical_block_size(dev->q, geo->sec_size);
  804. return 0;
  805. err_fmtype:
  806. kfree(dev->lun_map);
  807. return ret;
  808. }
  809. static void nvm_free(struct nvm_dev *dev)
  810. {
  811. if (!dev)
  812. return;
  813. if (dev->dma_pool)
  814. dev->ops->destroy_dma_pool(dev->dma_pool);
  815. nvm_unregister_map(dev);
  816. kfree(dev->lptbl);
  817. kfree(dev->lun_map);
  818. kfree(dev);
  819. }
  820. static int nvm_init(struct nvm_dev *dev)
  821. {
  822. struct nvm_geo *geo = &dev->geo;
  823. int ret = -EINVAL;
  824. if (dev->ops->identity(dev, &dev->identity)) {
  825. pr_err("nvm: device could not be identified\n");
  826. goto err;
  827. }
  828. pr_debug("nvm: ver:%x nvm_vendor:%x\n",
  829. dev->identity.ver_id, dev->identity.vmnt);
  830. if (dev->identity.ver_id != 1) {
  831. pr_err("nvm: device not supported by kernel.");
  832. goto err;
  833. }
  834. ret = nvm_core_init(dev);
  835. if (ret) {
  836. pr_err("nvm: could not initialize core structures.\n");
  837. goto err;
  838. }
  839. pr_info("nvm: registered %s [%u/%u/%u/%u/%u/%u]\n",
  840. dev->name, geo->sec_per_pg, geo->nr_planes,
  841. geo->pgs_per_blk, geo->blks_per_lun,
  842. geo->nr_luns, geo->nr_chnls);
  843. return 0;
  844. err:
  845. pr_err("nvm: failed to initialize nvm\n");
  846. return ret;
  847. }
  848. struct nvm_dev *nvm_alloc_dev(int node)
  849. {
  850. return kzalloc_node(sizeof(struct nvm_dev), GFP_KERNEL, node);
  851. }
  852. EXPORT_SYMBOL(nvm_alloc_dev);
  853. int nvm_register(struct nvm_dev *dev)
  854. {
  855. int ret;
  856. if (!dev->q || !dev->ops)
  857. return -EINVAL;
  858. if (dev->ops->max_phys_sect > 256) {
  859. pr_info("nvm: max sectors supported is 256.\n");
  860. return -EINVAL;
  861. }
  862. if (dev->ops->max_phys_sect > 1) {
  863. dev->dma_pool = dev->ops->create_dma_pool(dev, "ppalist");
  864. if (!dev->dma_pool) {
  865. pr_err("nvm: could not create dma pool\n");
  866. return -ENOMEM;
  867. }
  868. }
  869. ret = nvm_init(dev);
  870. if (ret)
  871. goto err_init;
  872. /* register device with a supported media manager */
  873. down_write(&nvm_lock);
  874. list_add(&dev->devices, &nvm_devices);
  875. up_write(&nvm_lock);
  876. return 0;
  877. err_init:
  878. dev->ops->destroy_dma_pool(dev->dma_pool);
  879. return ret;
  880. }
  881. EXPORT_SYMBOL(nvm_register);
  882. void nvm_unregister(struct nvm_dev *dev)
  883. {
  884. struct nvm_target *t, *tmp;
  885. mutex_lock(&dev->mlock);
  886. list_for_each_entry_safe(t, tmp, &dev->targets, list) {
  887. if (t->dev->parent != dev)
  888. continue;
  889. __nvm_remove_target(t);
  890. }
  891. mutex_unlock(&dev->mlock);
  892. down_write(&nvm_lock);
  893. list_del(&dev->devices);
  894. up_write(&nvm_lock);
  895. nvm_free(dev);
  896. }
  897. EXPORT_SYMBOL(nvm_unregister);
  898. static int __nvm_configure_create(struct nvm_ioctl_create *create)
  899. {
  900. struct nvm_dev *dev;
  901. struct nvm_ioctl_create_simple *s;
  902. down_write(&nvm_lock);
  903. dev = nvm_find_nvm_dev(create->dev);
  904. up_write(&nvm_lock);
  905. if (!dev) {
  906. pr_err("nvm: device not found\n");
  907. return -EINVAL;
  908. }
  909. if (create->conf.type != NVM_CONFIG_TYPE_SIMPLE) {
  910. pr_err("nvm: config type not valid\n");
  911. return -EINVAL;
  912. }
  913. s = &create->conf.s;
  914. if (s->lun_begin == -1 && s->lun_end == -1) {
  915. s->lun_begin = 0;
  916. s->lun_end = dev->geo.nr_luns - 1;
  917. }
  918. if (s->lun_begin > s->lun_end || s->lun_end >= dev->geo.nr_luns) {
  919. pr_err("nvm: lun out of bound (%u:%u > %u)\n",
  920. s->lun_begin, s->lun_end, dev->geo.nr_luns - 1);
  921. return -EINVAL;
  922. }
  923. return nvm_create_tgt(dev, create);
  924. }
  925. static long nvm_ioctl_info(struct file *file, void __user *arg)
  926. {
  927. struct nvm_ioctl_info *info;
  928. struct nvm_tgt_type *tt;
  929. int tgt_iter = 0;
  930. if (!capable(CAP_SYS_ADMIN))
  931. return -EPERM;
  932. info = memdup_user(arg, sizeof(struct nvm_ioctl_info));
  933. if (IS_ERR(info))
  934. return -EFAULT;
  935. info->version[0] = NVM_VERSION_MAJOR;
  936. info->version[1] = NVM_VERSION_MINOR;
  937. info->version[2] = NVM_VERSION_PATCH;
  938. down_write(&nvm_lock);
  939. list_for_each_entry(tt, &nvm_tgt_types, list) {
  940. struct nvm_ioctl_info_tgt *tgt = &info->tgts[tgt_iter];
  941. tgt->version[0] = tt->version[0];
  942. tgt->version[1] = tt->version[1];
  943. tgt->version[2] = tt->version[2];
  944. strncpy(tgt->tgtname, tt->name, NVM_TTYPE_NAME_MAX);
  945. tgt_iter++;
  946. }
  947. info->tgtsize = tgt_iter;
  948. up_write(&nvm_lock);
  949. if (copy_to_user(arg, info, sizeof(struct nvm_ioctl_info))) {
  950. kfree(info);
  951. return -EFAULT;
  952. }
  953. kfree(info);
  954. return 0;
  955. }
  956. static long nvm_ioctl_get_devices(struct file *file, void __user *arg)
  957. {
  958. struct nvm_ioctl_get_devices *devices;
  959. struct nvm_dev *dev;
  960. int i = 0;
  961. if (!capable(CAP_SYS_ADMIN))
  962. return -EPERM;
  963. devices = kzalloc(sizeof(struct nvm_ioctl_get_devices), GFP_KERNEL);
  964. if (!devices)
  965. return -ENOMEM;
  966. down_write(&nvm_lock);
  967. list_for_each_entry(dev, &nvm_devices, devices) {
  968. struct nvm_ioctl_device_info *info = &devices->info[i];
  969. strlcpy(info->devname, dev->name, sizeof(info->devname));
  970. /* kept for compatibility */
  971. info->bmversion[0] = 1;
  972. info->bmversion[1] = 0;
  973. info->bmversion[2] = 0;
  974. strlcpy(info->bmname, "gennvm", sizeof(info->bmname));
  975. i++;
  976. if (i > 31) {
  977. pr_err("nvm: max 31 devices can be reported.\n");
  978. break;
  979. }
  980. }
  981. up_write(&nvm_lock);
  982. devices->nr_devices = i;
  983. if (copy_to_user(arg, devices,
  984. sizeof(struct nvm_ioctl_get_devices))) {
  985. kfree(devices);
  986. return -EFAULT;
  987. }
  988. kfree(devices);
  989. return 0;
  990. }
  991. static long nvm_ioctl_dev_create(struct file *file, void __user *arg)
  992. {
  993. struct nvm_ioctl_create create;
  994. if (!capable(CAP_SYS_ADMIN))
  995. return -EPERM;
  996. if (copy_from_user(&create, arg, sizeof(struct nvm_ioctl_create)))
  997. return -EFAULT;
  998. create.dev[DISK_NAME_LEN - 1] = '\0';
  999. create.tgttype[NVM_TTYPE_NAME_MAX - 1] = '\0';
  1000. create.tgtname[DISK_NAME_LEN - 1] = '\0';
  1001. if (create.flags != 0) {
  1002. __u32 flags = create.flags;
  1003. /* Check for valid flags */
  1004. if (flags & NVM_TARGET_FACTORY)
  1005. flags &= ~NVM_TARGET_FACTORY;
  1006. if (flags) {
  1007. pr_err("nvm: flag not supported\n");
  1008. return -EINVAL;
  1009. }
  1010. }
  1011. return __nvm_configure_create(&create);
  1012. }
  1013. static long nvm_ioctl_dev_remove(struct file *file, void __user *arg)
  1014. {
  1015. struct nvm_ioctl_remove remove;
  1016. struct nvm_dev *dev;
  1017. int ret = 0;
  1018. if (!capable(CAP_SYS_ADMIN))
  1019. return -EPERM;
  1020. if (copy_from_user(&remove, arg, sizeof(struct nvm_ioctl_remove)))
  1021. return -EFAULT;
  1022. remove.tgtname[DISK_NAME_LEN - 1] = '\0';
  1023. if (remove.flags != 0) {
  1024. pr_err("nvm: no flags supported\n");
  1025. return -EINVAL;
  1026. }
  1027. list_for_each_entry(dev, &nvm_devices, devices) {
  1028. ret = nvm_remove_tgt(dev, &remove);
  1029. if (!ret)
  1030. break;
  1031. }
  1032. return ret;
  1033. }
  1034. /* kept for compatibility reasons */
  1035. static long nvm_ioctl_dev_init(struct file *file, void __user *arg)
  1036. {
  1037. struct nvm_ioctl_dev_init init;
  1038. if (!capable(CAP_SYS_ADMIN))
  1039. return -EPERM;
  1040. if (copy_from_user(&init, arg, sizeof(struct nvm_ioctl_dev_init)))
  1041. return -EFAULT;
  1042. if (init.flags != 0) {
  1043. pr_err("nvm: no flags supported\n");
  1044. return -EINVAL;
  1045. }
  1046. return 0;
  1047. }
  1048. /* Kept for compatibility reasons */
  1049. static long nvm_ioctl_dev_factory(struct file *file, void __user *arg)
  1050. {
  1051. struct nvm_ioctl_dev_factory fact;
  1052. if (!capable(CAP_SYS_ADMIN))
  1053. return -EPERM;
  1054. if (copy_from_user(&fact, arg, sizeof(struct nvm_ioctl_dev_factory)))
  1055. return -EFAULT;
  1056. fact.dev[DISK_NAME_LEN - 1] = '\0';
  1057. if (fact.flags & ~(NVM_FACTORY_NR_BITS - 1))
  1058. return -EINVAL;
  1059. return 0;
  1060. }
  1061. static long nvm_ctl_ioctl(struct file *file, uint cmd, unsigned long arg)
  1062. {
  1063. void __user *argp = (void __user *)arg;
  1064. switch (cmd) {
  1065. case NVM_INFO:
  1066. return nvm_ioctl_info(file, argp);
  1067. case NVM_GET_DEVICES:
  1068. return nvm_ioctl_get_devices(file, argp);
  1069. case NVM_DEV_CREATE:
  1070. return nvm_ioctl_dev_create(file, argp);
  1071. case NVM_DEV_REMOVE:
  1072. return nvm_ioctl_dev_remove(file, argp);
  1073. case NVM_DEV_INIT:
  1074. return nvm_ioctl_dev_init(file, argp);
  1075. case NVM_DEV_FACTORY:
  1076. return nvm_ioctl_dev_factory(file, argp);
  1077. }
  1078. return 0;
  1079. }
  1080. static const struct file_operations _ctl_fops = {
  1081. .open = nonseekable_open,
  1082. .unlocked_ioctl = nvm_ctl_ioctl,
  1083. .owner = THIS_MODULE,
  1084. .llseek = noop_llseek,
  1085. };
  1086. static struct miscdevice _nvm_misc = {
  1087. .minor = MISC_DYNAMIC_MINOR,
  1088. .name = "lightnvm",
  1089. .nodename = "lightnvm/control",
  1090. .fops = &_ctl_fops,
  1091. };
  1092. builtin_misc_device(_nvm_misc);