page_alloc.c 184 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_ext.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/compaction.h>
  54. #include <trace/events/kmem.h>
  55. #include <linux/prefetch.h>
  56. #include <linux/mm_inline.h>
  57. #include <linux/migrate.h>
  58. #include <linux/page_ext.h>
  59. #include <linux/hugetlb.h>
  60. #include <linux/sched/rt.h>
  61. #include <linux/page_owner.h>
  62. #include <asm/sections.h>
  63. #include <asm/tlbflush.h>
  64. #include <asm/div64.h>
  65. #include "internal.h"
  66. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  67. static DEFINE_MUTEX(pcp_batch_high_lock);
  68. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  69. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  70. DEFINE_PER_CPU(int, numa_node);
  71. EXPORT_PER_CPU_SYMBOL(numa_node);
  72. #endif
  73. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  74. /*
  75. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  76. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  77. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  78. * defined in <linux/topology.h>.
  79. */
  80. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  81. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  82. int _node_numa_mem_[MAX_NUMNODES];
  83. #endif
  84. /*
  85. * Array of node states.
  86. */
  87. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  88. [N_POSSIBLE] = NODE_MASK_ALL,
  89. [N_ONLINE] = { { [0] = 1UL } },
  90. #ifndef CONFIG_NUMA
  91. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  92. #ifdef CONFIG_HIGHMEM
  93. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  94. #endif
  95. #ifdef CONFIG_MOVABLE_NODE
  96. [N_MEMORY] = { { [0] = 1UL } },
  97. #endif
  98. [N_CPU] = { { [0] = 1UL } },
  99. #endif /* NUMA */
  100. };
  101. EXPORT_SYMBOL(node_states);
  102. /* Protect totalram_pages and zone->managed_pages */
  103. static DEFINE_SPINLOCK(managed_page_count_lock);
  104. unsigned long totalram_pages __read_mostly;
  105. unsigned long totalreserve_pages __read_mostly;
  106. unsigned long totalcma_pages __read_mostly;
  107. /*
  108. * When calculating the number of globally allowed dirty pages, there
  109. * is a certain number of per-zone reserves that should not be
  110. * considered dirtyable memory. This is the sum of those reserves
  111. * over all existing zones that contribute dirtyable memory.
  112. */
  113. unsigned long dirty_balance_reserve __read_mostly;
  114. int percpu_pagelist_fraction;
  115. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  116. #ifdef CONFIG_PM_SLEEP
  117. /*
  118. * The following functions are used by the suspend/hibernate code to temporarily
  119. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  120. * while devices are suspended. To avoid races with the suspend/hibernate code,
  121. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  122. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  123. * guaranteed not to run in parallel with that modification).
  124. */
  125. static gfp_t saved_gfp_mask;
  126. void pm_restore_gfp_mask(void)
  127. {
  128. WARN_ON(!mutex_is_locked(&pm_mutex));
  129. if (saved_gfp_mask) {
  130. gfp_allowed_mask = saved_gfp_mask;
  131. saved_gfp_mask = 0;
  132. }
  133. }
  134. void pm_restrict_gfp_mask(void)
  135. {
  136. WARN_ON(!mutex_is_locked(&pm_mutex));
  137. WARN_ON(saved_gfp_mask);
  138. saved_gfp_mask = gfp_allowed_mask;
  139. gfp_allowed_mask &= ~GFP_IOFS;
  140. }
  141. bool pm_suspended_storage(void)
  142. {
  143. if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
  144. return false;
  145. return true;
  146. }
  147. #endif /* CONFIG_PM_SLEEP */
  148. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  149. int pageblock_order __read_mostly;
  150. #endif
  151. static void __free_pages_ok(struct page *page, unsigned int order);
  152. /*
  153. * results with 256, 32 in the lowmem_reserve sysctl:
  154. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  155. * 1G machine -> (16M dma, 784M normal, 224M high)
  156. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  157. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  158. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  159. *
  160. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  161. * don't need any ZONE_NORMAL reservation
  162. */
  163. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  164. #ifdef CONFIG_ZONE_DMA
  165. 256,
  166. #endif
  167. #ifdef CONFIG_ZONE_DMA32
  168. 256,
  169. #endif
  170. #ifdef CONFIG_HIGHMEM
  171. 32,
  172. #endif
  173. 32,
  174. };
  175. EXPORT_SYMBOL(totalram_pages);
  176. static char * const zone_names[MAX_NR_ZONES] = {
  177. #ifdef CONFIG_ZONE_DMA
  178. "DMA",
  179. #endif
  180. #ifdef CONFIG_ZONE_DMA32
  181. "DMA32",
  182. #endif
  183. "Normal",
  184. #ifdef CONFIG_HIGHMEM
  185. "HighMem",
  186. #endif
  187. "Movable",
  188. };
  189. int min_free_kbytes = 1024;
  190. int user_min_free_kbytes = -1;
  191. static unsigned long __meminitdata nr_kernel_pages;
  192. static unsigned long __meminitdata nr_all_pages;
  193. static unsigned long __meminitdata dma_reserve;
  194. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  195. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  196. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  197. static unsigned long __initdata required_kernelcore;
  198. static unsigned long __initdata required_movablecore;
  199. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  200. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  201. int movable_zone;
  202. EXPORT_SYMBOL(movable_zone);
  203. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  204. #if MAX_NUMNODES > 1
  205. int nr_node_ids __read_mostly = MAX_NUMNODES;
  206. int nr_online_nodes __read_mostly = 1;
  207. EXPORT_SYMBOL(nr_node_ids);
  208. EXPORT_SYMBOL(nr_online_nodes);
  209. #endif
  210. int page_group_by_mobility_disabled __read_mostly;
  211. void set_pageblock_migratetype(struct page *page, int migratetype)
  212. {
  213. if (unlikely(page_group_by_mobility_disabled &&
  214. migratetype < MIGRATE_PCPTYPES))
  215. migratetype = MIGRATE_UNMOVABLE;
  216. set_pageblock_flags_group(page, (unsigned long)migratetype,
  217. PB_migrate, PB_migrate_end);
  218. }
  219. bool oom_killer_disabled __read_mostly;
  220. #ifdef CONFIG_DEBUG_VM
  221. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  222. {
  223. int ret = 0;
  224. unsigned seq;
  225. unsigned long pfn = page_to_pfn(page);
  226. unsigned long sp, start_pfn;
  227. do {
  228. seq = zone_span_seqbegin(zone);
  229. start_pfn = zone->zone_start_pfn;
  230. sp = zone->spanned_pages;
  231. if (!zone_spans_pfn(zone, pfn))
  232. ret = 1;
  233. } while (zone_span_seqretry(zone, seq));
  234. if (ret)
  235. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  236. pfn, zone_to_nid(zone), zone->name,
  237. start_pfn, start_pfn + sp);
  238. return ret;
  239. }
  240. static int page_is_consistent(struct zone *zone, struct page *page)
  241. {
  242. if (!pfn_valid_within(page_to_pfn(page)))
  243. return 0;
  244. if (zone != page_zone(page))
  245. return 0;
  246. return 1;
  247. }
  248. /*
  249. * Temporary debugging check for pages not lying within a given zone.
  250. */
  251. static int bad_range(struct zone *zone, struct page *page)
  252. {
  253. if (page_outside_zone_boundaries(zone, page))
  254. return 1;
  255. if (!page_is_consistent(zone, page))
  256. return 1;
  257. return 0;
  258. }
  259. #else
  260. static inline int bad_range(struct zone *zone, struct page *page)
  261. {
  262. return 0;
  263. }
  264. #endif
  265. static void bad_page(struct page *page, const char *reason,
  266. unsigned long bad_flags)
  267. {
  268. static unsigned long resume;
  269. static unsigned long nr_shown;
  270. static unsigned long nr_unshown;
  271. /* Don't complain about poisoned pages */
  272. if (PageHWPoison(page)) {
  273. page_mapcount_reset(page); /* remove PageBuddy */
  274. return;
  275. }
  276. /*
  277. * Allow a burst of 60 reports, then keep quiet for that minute;
  278. * or allow a steady drip of one report per second.
  279. */
  280. if (nr_shown == 60) {
  281. if (time_before(jiffies, resume)) {
  282. nr_unshown++;
  283. goto out;
  284. }
  285. if (nr_unshown) {
  286. printk(KERN_ALERT
  287. "BUG: Bad page state: %lu messages suppressed\n",
  288. nr_unshown);
  289. nr_unshown = 0;
  290. }
  291. nr_shown = 0;
  292. }
  293. if (nr_shown++ == 0)
  294. resume = jiffies + 60 * HZ;
  295. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  296. current->comm, page_to_pfn(page));
  297. dump_page_badflags(page, reason, bad_flags);
  298. print_modules();
  299. dump_stack();
  300. out:
  301. /* Leave bad fields for debug, except PageBuddy could make trouble */
  302. page_mapcount_reset(page); /* remove PageBuddy */
  303. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  304. }
  305. /*
  306. * Higher-order pages are called "compound pages". They are structured thusly:
  307. *
  308. * The first PAGE_SIZE page is called the "head page".
  309. *
  310. * The remaining PAGE_SIZE pages are called "tail pages".
  311. *
  312. * All pages have PG_compound set. All tail pages have their ->first_page
  313. * pointing at the head page.
  314. *
  315. * The first tail page's ->lru.next holds the address of the compound page's
  316. * put_page() function. Its ->lru.prev holds the order of allocation.
  317. * This usage means that zero-order pages may not be compound.
  318. */
  319. static void free_compound_page(struct page *page)
  320. {
  321. __free_pages_ok(page, compound_order(page));
  322. }
  323. void prep_compound_page(struct page *page, unsigned long order)
  324. {
  325. int i;
  326. int nr_pages = 1 << order;
  327. set_compound_page_dtor(page, free_compound_page);
  328. set_compound_order(page, order);
  329. __SetPageHead(page);
  330. for (i = 1; i < nr_pages; i++) {
  331. struct page *p = page + i;
  332. set_page_count(p, 0);
  333. p->first_page = page;
  334. /* Make sure p->first_page is always valid for PageTail() */
  335. smp_wmb();
  336. __SetPageTail(p);
  337. }
  338. }
  339. /* update __split_huge_page_refcount if you change this function */
  340. static int destroy_compound_page(struct page *page, unsigned long order)
  341. {
  342. int i;
  343. int nr_pages = 1 << order;
  344. int bad = 0;
  345. if (unlikely(compound_order(page) != order)) {
  346. bad_page(page, "wrong compound order", 0);
  347. bad++;
  348. }
  349. __ClearPageHead(page);
  350. for (i = 1; i < nr_pages; i++) {
  351. struct page *p = page + i;
  352. if (unlikely(!PageTail(p))) {
  353. bad_page(page, "PageTail not set", 0);
  354. bad++;
  355. } else if (unlikely(p->first_page != page)) {
  356. bad_page(page, "first_page not consistent", 0);
  357. bad++;
  358. }
  359. __ClearPageTail(p);
  360. }
  361. return bad;
  362. }
  363. static inline void prep_zero_page(struct page *page, unsigned int order,
  364. gfp_t gfp_flags)
  365. {
  366. int i;
  367. /*
  368. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  369. * and __GFP_HIGHMEM from hard or soft interrupt context.
  370. */
  371. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  372. for (i = 0; i < (1 << order); i++)
  373. clear_highpage(page + i);
  374. }
  375. #ifdef CONFIG_DEBUG_PAGEALLOC
  376. unsigned int _debug_guardpage_minorder;
  377. bool _debug_pagealloc_enabled __read_mostly;
  378. bool _debug_guardpage_enabled __read_mostly;
  379. static int __init early_debug_pagealloc(char *buf)
  380. {
  381. if (!buf)
  382. return -EINVAL;
  383. if (strcmp(buf, "on") == 0)
  384. _debug_pagealloc_enabled = true;
  385. return 0;
  386. }
  387. early_param("debug_pagealloc", early_debug_pagealloc);
  388. static bool need_debug_guardpage(void)
  389. {
  390. /* If we don't use debug_pagealloc, we don't need guard page */
  391. if (!debug_pagealloc_enabled())
  392. return false;
  393. return true;
  394. }
  395. static void init_debug_guardpage(void)
  396. {
  397. if (!debug_pagealloc_enabled())
  398. return;
  399. _debug_guardpage_enabled = true;
  400. }
  401. struct page_ext_operations debug_guardpage_ops = {
  402. .need = need_debug_guardpage,
  403. .init = init_debug_guardpage,
  404. };
  405. static int __init debug_guardpage_minorder_setup(char *buf)
  406. {
  407. unsigned long res;
  408. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  409. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  410. return 0;
  411. }
  412. _debug_guardpage_minorder = res;
  413. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  414. return 0;
  415. }
  416. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  417. static inline void set_page_guard(struct zone *zone, struct page *page,
  418. unsigned int order, int migratetype)
  419. {
  420. struct page_ext *page_ext;
  421. if (!debug_guardpage_enabled())
  422. return;
  423. page_ext = lookup_page_ext(page);
  424. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  425. INIT_LIST_HEAD(&page->lru);
  426. set_page_private(page, order);
  427. /* Guard pages are not available for any usage */
  428. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  429. }
  430. static inline void clear_page_guard(struct zone *zone, struct page *page,
  431. unsigned int order, int migratetype)
  432. {
  433. struct page_ext *page_ext;
  434. if (!debug_guardpage_enabled())
  435. return;
  436. page_ext = lookup_page_ext(page);
  437. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  438. set_page_private(page, 0);
  439. if (!is_migrate_isolate(migratetype))
  440. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  441. }
  442. #else
  443. struct page_ext_operations debug_guardpage_ops = { NULL, };
  444. static inline void set_page_guard(struct zone *zone, struct page *page,
  445. unsigned int order, int migratetype) {}
  446. static inline void clear_page_guard(struct zone *zone, struct page *page,
  447. unsigned int order, int migratetype) {}
  448. #endif
  449. static inline void set_page_order(struct page *page, unsigned int order)
  450. {
  451. set_page_private(page, order);
  452. __SetPageBuddy(page);
  453. }
  454. static inline void rmv_page_order(struct page *page)
  455. {
  456. __ClearPageBuddy(page);
  457. set_page_private(page, 0);
  458. }
  459. /*
  460. * This function checks whether a page is free && is the buddy
  461. * we can do coalesce a page and its buddy if
  462. * (a) the buddy is not in a hole &&
  463. * (b) the buddy is in the buddy system &&
  464. * (c) a page and its buddy have the same order &&
  465. * (d) a page and its buddy are in the same zone.
  466. *
  467. * For recording whether a page is in the buddy system, we set ->_mapcount
  468. * PAGE_BUDDY_MAPCOUNT_VALUE.
  469. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  470. * serialized by zone->lock.
  471. *
  472. * For recording page's order, we use page_private(page).
  473. */
  474. static inline int page_is_buddy(struct page *page, struct page *buddy,
  475. unsigned int order)
  476. {
  477. if (!pfn_valid_within(page_to_pfn(buddy)))
  478. return 0;
  479. if (page_is_guard(buddy) && page_order(buddy) == order) {
  480. if (page_zone_id(page) != page_zone_id(buddy))
  481. return 0;
  482. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  483. return 1;
  484. }
  485. if (PageBuddy(buddy) && page_order(buddy) == order) {
  486. /*
  487. * zone check is done late to avoid uselessly
  488. * calculating zone/node ids for pages that could
  489. * never merge.
  490. */
  491. if (page_zone_id(page) != page_zone_id(buddy))
  492. return 0;
  493. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  494. return 1;
  495. }
  496. return 0;
  497. }
  498. /*
  499. * Freeing function for a buddy system allocator.
  500. *
  501. * The concept of a buddy system is to maintain direct-mapped table
  502. * (containing bit values) for memory blocks of various "orders".
  503. * The bottom level table contains the map for the smallest allocatable
  504. * units of memory (here, pages), and each level above it describes
  505. * pairs of units from the levels below, hence, "buddies".
  506. * At a high level, all that happens here is marking the table entry
  507. * at the bottom level available, and propagating the changes upward
  508. * as necessary, plus some accounting needed to play nicely with other
  509. * parts of the VM system.
  510. * At each level, we keep a list of pages, which are heads of continuous
  511. * free pages of length of (1 << order) and marked with _mapcount
  512. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  513. * field.
  514. * So when we are allocating or freeing one, we can derive the state of the
  515. * other. That is, if we allocate a small block, and both were
  516. * free, the remainder of the region must be split into blocks.
  517. * If a block is freed, and its buddy is also free, then this
  518. * triggers coalescing into a block of larger size.
  519. *
  520. * -- nyc
  521. */
  522. static inline void __free_one_page(struct page *page,
  523. unsigned long pfn,
  524. struct zone *zone, unsigned int order,
  525. int migratetype)
  526. {
  527. unsigned long page_idx;
  528. unsigned long combined_idx;
  529. unsigned long uninitialized_var(buddy_idx);
  530. struct page *buddy;
  531. int max_order = MAX_ORDER;
  532. VM_BUG_ON(!zone_is_initialized(zone));
  533. if (unlikely(PageCompound(page)))
  534. if (unlikely(destroy_compound_page(page, order)))
  535. return;
  536. VM_BUG_ON(migratetype == -1);
  537. if (is_migrate_isolate(migratetype)) {
  538. /*
  539. * We restrict max order of merging to prevent merge
  540. * between freepages on isolate pageblock and normal
  541. * pageblock. Without this, pageblock isolation
  542. * could cause incorrect freepage accounting.
  543. */
  544. max_order = min(MAX_ORDER, pageblock_order + 1);
  545. } else {
  546. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  547. }
  548. page_idx = pfn & ((1 << max_order) - 1);
  549. VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
  550. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  551. while (order < max_order - 1) {
  552. buddy_idx = __find_buddy_index(page_idx, order);
  553. buddy = page + (buddy_idx - page_idx);
  554. if (!page_is_buddy(page, buddy, order))
  555. break;
  556. /*
  557. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  558. * merge with it and move up one order.
  559. */
  560. if (page_is_guard(buddy)) {
  561. clear_page_guard(zone, buddy, order, migratetype);
  562. } else {
  563. list_del(&buddy->lru);
  564. zone->free_area[order].nr_free--;
  565. rmv_page_order(buddy);
  566. }
  567. combined_idx = buddy_idx & page_idx;
  568. page = page + (combined_idx - page_idx);
  569. page_idx = combined_idx;
  570. order++;
  571. }
  572. set_page_order(page, order);
  573. /*
  574. * If this is not the largest possible page, check if the buddy
  575. * of the next-highest order is free. If it is, it's possible
  576. * that pages are being freed that will coalesce soon. In case,
  577. * that is happening, add the free page to the tail of the list
  578. * so it's less likely to be used soon and more likely to be merged
  579. * as a higher order page
  580. */
  581. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  582. struct page *higher_page, *higher_buddy;
  583. combined_idx = buddy_idx & page_idx;
  584. higher_page = page + (combined_idx - page_idx);
  585. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  586. higher_buddy = higher_page + (buddy_idx - combined_idx);
  587. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  588. list_add_tail(&page->lru,
  589. &zone->free_area[order].free_list[migratetype]);
  590. goto out;
  591. }
  592. }
  593. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  594. out:
  595. zone->free_area[order].nr_free++;
  596. }
  597. static inline int free_pages_check(struct page *page)
  598. {
  599. const char *bad_reason = NULL;
  600. unsigned long bad_flags = 0;
  601. if (unlikely(page_mapcount(page)))
  602. bad_reason = "nonzero mapcount";
  603. if (unlikely(page->mapping != NULL))
  604. bad_reason = "non-NULL mapping";
  605. if (unlikely(atomic_read(&page->_count) != 0))
  606. bad_reason = "nonzero _count";
  607. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  608. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  609. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  610. }
  611. #ifdef CONFIG_MEMCG
  612. if (unlikely(page->mem_cgroup))
  613. bad_reason = "page still charged to cgroup";
  614. #endif
  615. if (unlikely(bad_reason)) {
  616. bad_page(page, bad_reason, bad_flags);
  617. return 1;
  618. }
  619. page_cpupid_reset_last(page);
  620. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  621. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  622. return 0;
  623. }
  624. /*
  625. * Frees a number of pages from the PCP lists
  626. * Assumes all pages on list are in same zone, and of same order.
  627. * count is the number of pages to free.
  628. *
  629. * If the zone was previously in an "all pages pinned" state then look to
  630. * see if this freeing clears that state.
  631. *
  632. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  633. * pinned" detection logic.
  634. */
  635. static void free_pcppages_bulk(struct zone *zone, int count,
  636. struct per_cpu_pages *pcp)
  637. {
  638. int migratetype = 0;
  639. int batch_free = 0;
  640. int to_free = count;
  641. unsigned long nr_scanned;
  642. spin_lock(&zone->lock);
  643. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  644. if (nr_scanned)
  645. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  646. while (to_free) {
  647. struct page *page;
  648. struct list_head *list;
  649. /*
  650. * Remove pages from lists in a round-robin fashion. A
  651. * batch_free count is maintained that is incremented when an
  652. * empty list is encountered. This is so more pages are freed
  653. * off fuller lists instead of spinning excessively around empty
  654. * lists
  655. */
  656. do {
  657. batch_free++;
  658. if (++migratetype == MIGRATE_PCPTYPES)
  659. migratetype = 0;
  660. list = &pcp->lists[migratetype];
  661. } while (list_empty(list));
  662. /* This is the only non-empty list. Free them all. */
  663. if (batch_free == MIGRATE_PCPTYPES)
  664. batch_free = to_free;
  665. do {
  666. int mt; /* migratetype of the to-be-freed page */
  667. page = list_entry(list->prev, struct page, lru);
  668. /* must delete as __free_one_page list manipulates */
  669. list_del(&page->lru);
  670. mt = get_freepage_migratetype(page);
  671. if (unlikely(has_isolate_pageblock(zone)))
  672. mt = get_pageblock_migratetype(page);
  673. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  674. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  675. trace_mm_page_pcpu_drain(page, 0, mt);
  676. } while (--to_free && --batch_free && !list_empty(list));
  677. }
  678. spin_unlock(&zone->lock);
  679. }
  680. static void free_one_page(struct zone *zone,
  681. struct page *page, unsigned long pfn,
  682. unsigned int order,
  683. int migratetype)
  684. {
  685. unsigned long nr_scanned;
  686. spin_lock(&zone->lock);
  687. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  688. if (nr_scanned)
  689. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  690. if (unlikely(has_isolate_pageblock(zone) ||
  691. is_migrate_isolate(migratetype))) {
  692. migratetype = get_pfnblock_migratetype(page, pfn);
  693. }
  694. __free_one_page(page, pfn, zone, order, migratetype);
  695. spin_unlock(&zone->lock);
  696. }
  697. static bool free_pages_prepare(struct page *page, unsigned int order)
  698. {
  699. int i;
  700. int bad = 0;
  701. VM_BUG_ON_PAGE(PageTail(page), page);
  702. VM_BUG_ON_PAGE(PageHead(page) && compound_order(page) != order, page);
  703. trace_mm_page_free(page, order);
  704. kmemcheck_free_shadow(page, order);
  705. if (PageAnon(page))
  706. page->mapping = NULL;
  707. for (i = 0; i < (1 << order); i++)
  708. bad += free_pages_check(page + i);
  709. if (bad)
  710. return false;
  711. reset_page_owner(page, order);
  712. if (!PageHighMem(page)) {
  713. debug_check_no_locks_freed(page_address(page),
  714. PAGE_SIZE << order);
  715. debug_check_no_obj_freed(page_address(page),
  716. PAGE_SIZE << order);
  717. }
  718. arch_free_page(page, order);
  719. kernel_map_pages(page, 1 << order, 0);
  720. return true;
  721. }
  722. static void __free_pages_ok(struct page *page, unsigned int order)
  723. {
  724. unsigned long flags;
  725. int migratetype;
  726. unsigned long pfn = page_to_pfn(page);
  727. if (!free_pages_prepare(page, order))
  728. return;
  729. migratetype = get_pfnblock_migratetype(page, pfn);
  730. local_irq_save(flags);
  731. __count_vm_events(PGFREE, 1 << order);
  732. set_freepage_migratetype(page, migratetype);
  733. free_one_page(page_zone(page), page, pfn, order, migratetype);
  734. local_irq_restore(flags);
  735. }
  736. void __init __free_pages_bootmem(struct page *page, unsigned int order)
  737. {
  738. unsigned int nr_pages = 1 << order;
  739. struct page *p = page;
  740. unsigned int loop;
  741. prefetchw(p);
  742. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  743. prefetchw(p + 1);
  744. __ClearPageReserved(p);
  745. set_page_count(p, 0);
  746. }
  747. __ClearPageReserved(p);
  748. set_page_count(p, 0);
  749. page_zone(page)->managed_pages += nr_pages;
  750. set_page_refcounted(page);
  751. __free_pages(page, order);
  752. }
  753. #ifdef CONFIG_CMA
  754. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  755. void __init init_cma_reserved_pageblock(struct page *page)
  756. {
  757. unsigned i = pageblock_nr_pages;
  758. struct page *p = page;
  759. do {
  760. __ClearPageReserved(p);
  761. set_page_count(p, 0);
  762. } while (++p, --i);
  763. set_pageblock_migratetype(page, MIGRATE_CMA);
  764. if (pageblock_order >= MAX_ORDER) {
  765. i = pageblock_nr_pages;
  766. p = page;
  767. do {
  768. set_page_refcounted(p);
  769. __free_pages(p, MAX_ORDER - 1);
  770. p += MAX_ORDER_NR_PAGES;
  771. } while (i -= MAX_ORDER_NR_PAGES);
  772. } else {
  773. set_page_refcounted(page);
  774. __free_pages(page, pageblock_order);
  775. }
  776. adjust_managed_page_count(page, pageblock_nr_pages);
  777. }
  778. #endif
  779. /*
  780. * The order of subdivision here is critical for the IO subsystem.
  781. * Please do not alter this order without good reasons and regression
  782. * testing. Specifically, as large blocks of memory are subdivided,
  783. * the order in which smaller blocks are delivered depends on the order
  784. * they're subdivided in this function. This is the primary factor
  785. * influencing the order in which pages are delivered to the IO
  786. * subsystem according to empirical testing, and this is also justified
  787. * by considering the behavior of a buddy system containing a single
  788. * large block of memory acted on by a series of small allocations.
  789. * This behavior is a critical factor in sglist merging's success.
  790. *
  791. * -- nyc
  792. */
  793. static inline void expand(struct zone *zone, struct page *page,
  794. int low, int high, struct free_area *area,
  795. int migratetype)
  796. {
  797. unsigned long size = 1 << high;
  798. while (high > low) {
  799. area--;
  800. high--;
  801. size >>= 1;
  802. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  803. if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
  804. debug_guardpage_enabled() &&
  805. high < debug_guardpage_minorder()) {
  806. /*
  807. * Mark as guard pages (or page), that will allow to
  808. * merge back to allocator when buddy will be freed.
  809. * Corresponding page table entries will not be touched,
  810. * pages will stay not present in virtual address space
  811. */
  812. set_page_guard(zone, &page[size], high, migratetype);
  813. continue;
  814. }
  815. list_add(&page[size].lru, &area->free_list[migratetype]);
  816. area->nr_free++;
  817. set_page_order(&page[size], high);
  818. }
  819. }
  820. /*
  821. * This page is about to be returned from the page allocator
  822. */
  823. static inline int check_new_page(struct page *page)
  824. {
  825. const char *bad_reason = NULL;
  826. unsigned long bad_flags = 0;
  827. if (unlikely(page_mapcount(page)))
  828. bad_reason = "nonzero mapcount";
  829. if (unlikely(page->mapping != NULL))
  830. bad_reason = "non-NULL mapping";
  831. if (unlikely(atomic_read(&page->_count) != 0))
  832. bad_reason = "nonzero _count";
  833. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  834. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  835. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  836. }
  837. #ifdef CONFIG_MEMCG
  838. if (unlikely(page->mem_cgroup))
  839. bad_reason = "page still charged to cgroup";
  840. #endif
  841. if (unlikely(bad_reason)) {
  842. bad_page(page, bad_reason, bad_flags);
  843. return 1;
  844. }
  845. return 0;
  846. }
  847. static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  848. int alloc_flags)
  849. {
  850. int i;
  851. for (i = 0; i < (1 << order); i++) {
  852. struct page *p = page + i;
  853. if (unlikely(check_new_page(p)))
  854. return 1;
  855. }
  856. set_page_private(page, 0);
  857. set_page_refcounted(page);
  858. arch_alloc_page(page, order);
  859. kernel_map_pages(page, 1 << order, 1);
  860. if (gfp_flags & __GFP_ZERO)
  861. prep_zero_page(page, order, gfp_flags);
  862. if (order && (gfp_flags & __GFP_COMP))
  863. prep_compound_page(page, order);
  864. set_page_owner(page, order, gfp_flags);
  865. /*
  866. * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
  867. * allocate the page. The expectation is that the caller is taking
  868. * steps that will free more memory. The caller should avoid the page
  869. * being used for !PFMEMALLOC purposes.
  870. */
  871. page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
  872. return 0;
  873. }
  874. /*
  875. * Go through the free lists for the given migratetype and remove
  876. * the smallest available page from the freelists
  877. */
  878. static inline
  879. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  880. int migratetype)
  881. {
  882. unsigned int current_order;
  883. struct free_area *area;
  884. struct page *page;
  885. /* Find a page of the appropriate size in the preferred list */
  886. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  887. area = &(zone->free_area[current_order]);
  888. if (list_empty(&area->free_list[migratetype]))
  889. continue;
  890. page = list_entry(area->free_list[migratetype].next,
  891. struct page, lru);
  892. list_del(&page->lru);
  893. rmv_page_order(page);
  894. area->nr_free--;
  895. expand(zone, page, order, current_order, area, migratetype);
  896. set_freepage_migratetype(page, migratetype);
  897. return page;
  898. }
  899. return NULL;
  900. }
  901. /*
  902. * This array describes the order lists are fallen back to when
  903. * the free lists for the desirable migrate type are depleted
  904. */
  905. static int fallbacks[MIGRATE_TYPES][4] = {
  906. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  907. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  908. #ifdef CONFIG_CMA
  909. [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  910. [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
  911. #else
  912. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  913. #endif
  914. [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
  915. #ifdef CONFIG_MEMORY_ISOLATION
  916. [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
  917. #endif
  918. };
  919. /*
  920. * Move the free pages in a range to the free lists of the requested type.
  921. * Note that start_page and end_pages are not aligned on a pageblock
  922. * boundary. If alignment is required, use move_freepages_block()
  923. */
  924. int move_freepages(struct zone *zone,
  925. struct page *start_page, struct page *end_page,
  926. int migratetype)
  927. {
  928. struct page *page;
  929. unsigned long order;
  930. int pages_moved = 0;
  931. #ifndef CONFIG_HOLES_IN_ZONE
  932. /*
  933. * page_zone is not safe to call in this context when
  934. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  935. * anyway as we check zone boundaries in move_freepages_block().
  936. * Remove at a later date when no bug reports exist related to
  937. * grouping pages by mobility
  938. */
  939. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  940. #endif
  941. for (page = start_page; page <= end_page;) {
  942. /* Make sure we are not inadvertently changing nodes */
  943. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  944. if (!pfn_valid_within(page_to_pfn(page))) {
  945. page++;
  946. continue;
  947. }
  948. if (!PageBuddy(page)) {
  949. page++;
  950. continue;
  951. }
  952. order = page_order(page);
  953. list_move(&page->lru,
  954. &zone->free_area[order].free_list[migratetype]);
  955. set_freepage_migratetype(page, migratetype);
  956. page += 1 << order;
  957. pages_moved += 1 << order;
  958. }
  959. return pages_moved;
  960. }
  961. int move_freepages_block(struct zone *zone, struct page *page,
  962. int migratetype)
  963. {
  964. unsigned long start_pfn, end_pfn;
  965. struct page *start_page, *end_page;
  966. start_pfn = page_to_pfn(page);
  967. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  968. start_page = pfn_to_page(start_pfn);
  969. end_page = start_page + pageblock_nr_pages - 1;
  970. end_pfn = start_pfn + pageblock_nr_pages - 1;
  971. /* Do not cross zone boundaries */
  972. if (!zone_spans_pfn(zone, start_pfn))
  973. start_page = page;
  974. if (!zone_spans_pfn(zone, end_pfn))
  975. return 0;
  976. return move_freepages(zone, start_page, end_page, migratetype);
  977. }
  978. static void change_pageblock_range(struct page *pageblock_page,
  979. int start_order, int migratetype)
  980. {
  981. int nr_pageblocks = 1 << (start_order - pageblock_order);
  982. while (nr_pageblocks--) {
  983. set_pageblock_migratetype(pageblock_page, migratetype);
  984. pageblock_page += pageblock_nr_pages;
  985. }
  986. }
  987. /*
  988. * If breaking a large block of pages, move all free pages to the preferred
  989. * allocation list. If falling back for a reclaimable kernel allocation, be
  990. * more aggressive about taking ownership of free pages.
  991. *
  992. * On the other hand, never change migration type of MIGRATE_CMA pageblocks
  993. * nor move CMA pages to different free lists. We don't want unmovable pages
  994. * to be allocated from MIGRATE_CMA areas.
  995. *
  996. * Returns the new migratetype of the pageblock (or the same old migratetype
  997. * if it was unchanged).
  998. */
  999. static int try_to_steal_freepages(struct zone *zone, struct page *page,
  1000. int start_type, int fallback_type)
  1001. {
  1002. int current_order = page_order(page);
  1003. /*
  1004. * When borrowing from MIGRATE_CMA, we need to release the excess
  1005. * buddy pages to CMA itself. We also ensure the freepage_migratetype
  1006. * is set to CMA so it is returned to the correct freelist in case
  1007. * the page ends up being not actually allocated from the pcp lists.
  1008. */
  1009. if (is_migrate_cma(fallback_type))
  1010. return fallback_type;
  1011. /* Take ownership for orders >= pageblock_order */
  1012. if (current_order >= pageblock_order) {
  1013. change_pageblock_range(page, current_order, start_type);
  1014. return start_type;
  1015. }
  1016. if (current_order >= pageblock_order / 2 ||
  1017. start_type == MIGRATE_RECLAIMABLE ||
  1018. page_group_by_mobility_disabled) {
  1019. int pages;
  1020. pages = move_freepages_block(zone, page, start_type);
  1021. /* Claim the whole block if over half of it is free */
  1022. if (pages >= (1 << (pageblock_order-1)) ||
  1023. page_group_by_mobility_disabled) {
  1024. set_pageblock_migratetype(page, start_type);
  1025. return start_type;
  1026. }
  1027. }
  1028. return fallback_type;
  1029. }
  1030. /* Remove an element from the buddy allocator from the fallback list */
  1031. static inline struct page *
  1032. __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
  1033. {
  1034. struct free_area *area;
  1035. unsigned int current_order;
  1036. struct page *page;
  1037. int migratetype, new_type, i;
  1038. /* Find the largest possible block of pages in the other list */
  1039. for (current_order = MAX_ORDER-1;
  1040. current_order >= order && current_order <= MAX_ORDER-1;
  1041. --current_order) {
  1042. for (i = 0;; i++) {
  1043. migratetype = fallbacks[start_migratetype][i];
  1044. /* MIGRATE_RESERVE handled later if necessary */
  1045. if (migratetype == MIGRATE_RESERVE)
  1046. break;
  1047. area = &(zone->free_area[current_order]);
  1048. if (list_empty(&area->free_list[migratetype]))
  1049. continue;
  1050. page = list_entry(area->free_list[migratetype].next,
  1051. struct page, lru);
  1052. area->nr_free--;
  1053. new_type = try_to_steal_freepages(zone, page,
  1054. start_migratetype,
  1055. migratetype);
  1056. /* Remove the page from the freelists */
  1057. list_del(&page->lru);
  1058. rmv_page_order(page);
  1059. expand(zone, page, order, current_order, area,
  1060. new_type);
  1061. /* The freepage_migratetype may differ from pageblock's
  1062. * migratetype depending on the decisions in
  1063. * try_to_steal_freepages. This is OK as long as it does
  1064. * not differ for MIGRATE_CMA type.
  1065. */
  1066. set_freepage_migratetype(page, new_type);
  1067. trace_mm_page_alloc_extfrag(page, order, current_order,
  1068. start_migratetype, migratetype, new_type);
  1069. return page;
  1070. }
  1071. }
  1072. return NULL;
  1073. }
  1074. /*
  1075. * Do the hard work of removing an element from the buddy allocator.
  1076. * Call me with the zone->lock already held.
  1077. */
  1078. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  1079. int migratetype)
  1080. {
  1081. struct page *page;
  1082. retry_reserve:
  1083. page = __rmqueue_smallest(zone, order, migratetype);
  1084. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  1085. page = __rmqueue_fallback(zone, order, migratetype);
  1086. /*
  1087. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  1088. * is used because __rmqueue_smallest is an inline function
  1089. * and we want just one call site
  1090. */
  1091. if (!page) {
  1092. migratetype = MIGRATE_RESERVE;
  1093. goto retry_reserve;
  1094. }
  1095. }
  1096. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1097. return page;
  1098. }
  1099. /*
  1100. * Obtain a specified number of elements from the buddy allocator, all under
  1101. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1102. * Returns the number of new pages which were placed at *list.
  1103. */
  1104. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1105. unsigned long count, struct list_head *list,
  1106. int migratetype, bool cold)
  1107. {
  1108. int i;
  1109. spin_lock(&zone->lock);
  1110. for (i = 0; i < count; ++i) {
  1111. struct page *page = __rmqueue(zone, order, migratetype);
  1112. if (unlikely(page == NULL))
  1113. break;
  1114. /*
  1115. * Split buddy pages returned by expand() are received here
  1116. * in physical page order. The page is added to the callers and
  1117. * list and the list head then moves forward. From the callers
  1118. * perspective, the linked list is ordered by page number in
  1119. * some conditions. This is useful for IO devices that can
  1120. * merge IO requests if the physical pages are ordered
  1121. * properly.
  1122. */
  1123. if (likely(!cold))
  1124. list_add(&page->lru, list);
  1125. else
  1126. list_add_tail(&page->lru, list);
  1127. list = &page->lru;
  1128. if (is_migrate_cma(get_freepage_migratetype(page)))
  1129. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1130. -(1 << order));
  1131. }
  1132. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1133. spin_unlock(&zone->lock);
  1134. return i;
  1135. }
  1136. #ifdef CONFIG_NUMA
  1137. /*
  1138. * Called from the vmstat counter updater to drain pagesets of this
  1139. * currently executing processor on remote nodes after they have
  1140. * expired.
  1141. *
  1142. * Note that this function must be called with the thread pinned to
  1143. * a single processor.
  1144. */
  1145. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1146. {
  1147. unsigned long flags;
  1148. int to_drain, batch;
  1149. local_irq_save(flags);
  1150. batch = ACCESS_ONCE(pcp->batch);
  1151. to_drain = min(pcp->count, batch);
  1152. if (to_drain > 0) {
  1153. free_pcppages_bulk(zone, to_drain, pcp);
  1154. pcp->count -= to_drain;
  1155. }
  1156. local_irq_restore(flags);
  1157. }
  1158. #endif
  1159. /*
  1160. * Drain pcplists of the indicated processor and zone.
  1161. *
  1162. * The processor must either be the current processor and the
  1163. * thread pinned to the current processor or a processor that
  1164. * is not online.
  1165. */
  1166. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  1167. {
  1168. unsigned long flags;
  1169. struct per_cpu_pageset *pset;
  1170. struct per_cpu_pages *pcp;
  1171. local_irq_save(flags);
  1172. pset = per_cpu_ptr(zone->pageset, cpu);
  1173. pcp = &pset->pcp;
  1174. if (pcp->count) {
  1175. free_pcppages_bulk(zone, pcp->count, pcp);
  1176. pcp->count = 0;
  1177. }
  1178. local_irq_restore(flags);
  1179. }
  1180. /*
  1181. * Drain pcplists of all zones on the indicated processor.
  1182. *
  1183. * The processor must either be the current processor and the
  1184. * thread pinned to the current processor or a processor that
  1185. * is not online.
  1186. */
  1187. static void drain_pages(unsigned int cpu)
  1188. {
  1189. struct zone *zone;
  1190. for_each_populated_zone(zone) {
  1191. drain_pages_zone(cpu, zone);
  1192. }
  1193. }
  1194. /*
  1195. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1196. *
  1197. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  1198. * the single zone's pages.
  1199. */
  1200. void drain_local_pages(struct zone *zone)
  1201. {
  1202. int cpu = smp_processor_id();
  1203. if (zone)
  1204. drain_pages_zone(cpu, zone);
  1205. else
  1206. drain_pages(cpu);
  1207. }
  1208. /*
  1209. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1210. *
  1211. * When zone parameter is non-NULL, spill just the single zone's pages.
  1212. *
  1213. * Note that this code is protected against sending an IPI to an offline
  1214. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1215. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1216. * nothing keeps CPUs from showing up after we populated the cpumask and
  1217. * before the call to on_each_cpu_mask().
  1218. */
  1219. void drain_all_pages(struct zone *zone)
  1220. {
  1221. int cpu;
  1222. /*
  1223. * Allocate in the BSS so we wont require allocation in
  1224. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1225. */
  1226. static cpumask_t cpus_with_pcps;
  1227. /*
  1228. * We don't care about racing with CPU hotplug event
  1229. * as offline notification will cause the notified
  1230. * cpu to drain that CPU pcps and on_each_cpu_mask
  1231. * disables preemption as part of its processing
  1232. */
  1233. for_each_online_cpu(cpu) {
  1234. struct per_cpu_pageset *pcp;
  1235. struct zone *z;
  1236. bool has_pcps = false;
  1237. if (zone) {
  1238. pcp = per_cpu_ptr(zone->pageset, cpu);
  1239. if (pcp->pcp.count)
  1240. has_pcps = true;
  1241. } else {
  1242. for_each_populated_zone(z) {
  1243. pcp = per_cpu_ptr(z->pageset, cpu);
  1244. if (pcp->pcp.count) {
  1245. has_pcps = true;
  1246. break;
  1247. }
  1248. }
  1249. }
  1250. if (has_pcps)
  1251. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1252. else
  1253. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1254. }
  1255. on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
  1256. zone, 1);
  1257. }
  1258. #ifdef CONFIG_HIBERNATION
  1259. void mark_free_pages(struct zone *zone)
  1260. {
  1261. unsigned long pfn, max_zone_pfn;
  1262. unsigned long flags;
  1263. unsigned int order, t;
  1264. struct list_head *curr;
  1265. if (zone_is_empty(zone))
  1266. return;
  1267. spin_lock_irqsave(&zone->lock, flags);
  1268. max_zone_pfn = zone_end_pfn(zone);
  1269. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1270. if (pfn_valid(pfn)) {
  1271. struct page *page = pfn_to_page(pfn);
  1272. if (!swsusp_page_is_forbidden(page))
  1273. swsusp_unset_page_free(page);
  1274. }
  1275. for_each_migratetype_order(order, t) {
  1276. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1277. unsigned long i;
  1278. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1279. for (i = 0; i < (1UL << order); i++)
  1280. swsusp_set_page_free(pfn_to_page(pfn + i));
  1281. }
  1282. }
  1283. spin_unlock_irqrestore(&zone->lock, flags);
  1284. }
  1285. #endif /* CONFIG_PM */
  1286. /*
  1287. * Free a 0-order page
  1288. * cold == true ? free a cold page : free a hot page
  1289. */
  1290. void free_hot_cold_page(struct page *page, bool cold)
  1291. {
  1292. struct zone *zone = page_zone(page);
  1293. struct per_cpu_pages *pcp;
  1294. unsigned long flags;
  1295. unsigned long pfn = page_to_pfn(page);
  1296. int migratetype;
  1297. if (!free_pages_prepare(page, 0))
  1298. return;
  1299. migratetype = get_pfnblock_migratetype(page, pfn);
  1300. set_freepage_migratetype(page, migratetype);
  1301. local_irq_save(flags);
  1302. __count_vm_event(PGFREE);
  1303. /*
  1304. * We only track unmovable, reclaimable and movable on pcp lists.
  1305. * Free ISOLATE pages back to the allocator because they are being
  1306. * offlined but treat RESERVE as movable pages so we can get those
  1307. * areas back if necessary. Otherwise, we may have to free
  1308. * excessively into the page allocator
  1309. */
  1310. if (migratetype >= MIGRATE_PCPTYPES) {
  1311. if (unlikely(is_migrate_isolate(migratetype))) {
  1312. free_one_page(zone, page, pfn, 0, migratetype);
  1313. goto out;
  1314. }
  1315. migratetype = MIGRATE_MOVABLE;
  1316. }
  1317. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1318. if (!cold)
  1319. list_add(&page->lru, &pcp->lists[migratetype]);
  1320. else
  1321. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1322. pcp->count++;
  1323. if (pcp->count >= pcp->high) {
  1324. unsigned long batch = ACCESS_ONCE(pcp->batch);
  1325. free_pcppages_bulk(zone, batch, pcp);
  1326. pcp->count -= batch;
  1327. }
  1328. out:
  1329. local_irq_restore(flags);
  1330. }
  1331. /*
  1332. * Free a list of 0-order pages
  1333. */
  1334. void free_hot_cold_page_list(struct list_head *list, bool cold)
  1335. {
  1336. struct page *page, *next;
  1337. list_for_each_entry_safe(page, next, list, lru) {
  1338. trace_mm_page_free_batched(page, cold);
  1339. free_hot_cold_page(page, cold);
  1340. }
  1341. }
  1342. /*
  1343. * split_page takes a non-compound higher-order page, and splits it into
  1344. * n (1<<order) sub-pages: page[0..n]
  1345. * Each sub-page must be freed individually.
  1346. *
  1347. * Note: this is probably too low level an operation for use in drivers.
  1348. * Please consult with lkml before using this in your driver.
  1349. */
  1350. void split_page(struct page *page, unsigned int order)
  1351. {
  1352. int i;
  1353. VM_BUG_ON_PAGE(PageCompound(page), page);
  1354. VM_BUG_ON_PAGE(!page_count(page), page);
  1355. #ifdef CONFIG_KMEMCHECK
  1356. /*
  1357. * Split shadow pages too, because free(page[0]) would
  1358. * otherwise free the whole shadow.
  1359. */
  1360. if (kmemcheck_page_is_tracked(page))
  1361. split_page(virt_to_page(page[0].shadow), order);
  1362. #endif
  1363. set_page_owner(page, 0, 0);
  1364. for (i = 1; i < (1 << order); i++) {
  1365. set_page_refcounted(page + i);
  1366. set_page_owner(page + i, 0, 0);
  1367. }
  1368. }
  1369. EXPORT_SYMBOL_GPL(split_page);
  1370. int __isolate_free_page(struct page *page, unsigned int order)
  1371. {
  1372. unsigned long watermark;
  1373. struct zone *zone;
  1374. int mt;
  1375. BUG_ON(!PageBuddy(page));
  1376. zone = page_zone(page);
  1377. mt = get_pageblock_migratetype(page);
  1378. if (!is_migrate_isolate(mt)) {
  1379. /* Obey watermarks as if the page was being allocated */
  1380. watermark = low_wmark_pages(zone) + (1 << order);
  1381. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1382. return 0;
  1383. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  1384. }
  1385. /* Remove page from free list */
  1386. list_del(&page->lru);
  1387. zone->free_area[order].nr_free--;
  1388. rmv_page_order(page);
  1389. /* Set the pageblock if the isolated page is at least a pageblock */
  1390. if (order >= pageblock_order - 1) {
  1391. struct page *endpage = page + (1 << order) - 1;
  1392. for (; page < endpage; page += pageblock_nr_pages) {
  1393. int mt = get_pageblock_migratetype(page);
  1394. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  1395. set_pageblock_migratetype(page,
  1396. MIGRATE_MOVABLE);
  1397. }
  1398. }
  1399. set_page_owner(page, order, 0);
  1400. return 1UL << order;
  1401. }
  1402. /*
  1403. * Similar to split_page except the page is already free. As this is only
  1404. * being used for migration, the migratetype of the block also changes.
  1405. * As this is called with interrupts disabled, the caller is responsible
  1406. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1407. * are enabled.
  1408. *
  1409. * Note: this is probably too low level an operation for use in drivers.
  1410. * Please consult with lkml before using this in your driver.
  1411. */
  1412. int split_free_page(struct page *page)
  1413. {
  1414. unsigned int order;
  1415. int nr_pages;
  1416. order = page_order(page);
  1417. nr_pages = __isolate_free_page(page, order);
  1418. if (!nr_pages)
  1419. return 0;
  1420. /* Split into individual pages */
  1421. set_page_refcounted(page);
  1422. split_page(page, order);
  1423. return nr_pages;
  1424. }
  1425. /*
  1426. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  1427. */
  1428. static inline
  1429. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1430. struct zone *zone, unsigned int order,
  1431. gfp_t gfp_flags, int migratetype)
  1432. {
  1433. unsigned long flags;
  1434. struct page *page;
  1435. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  1436. if (likely(order == 0)) {
  1437. struct per_cpu_pages *pcp;
  1438. struct list_head *list;
  1439. local_irq_save(flags);
  1440. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1441. list = &pcp->lists[migratetype];
  1442. if (list_empty(list)) {
  1443. pcp->count += rmqueue_bulk(zone, 0,
  1444. pcp->batch, list,
  1445. migratetype, cold);
  1446. if (unlikely(list_empty(list)))
  1447. goto failed;
  1448. }
  1449. if (cold)
  1450. page = list_entry(list->prev, struct page, lru);
  1451. else
  1452. page = list_entry(list->next, struct page, lru);
  1453. list_del(&page->lru);
  1454. pcp->count--;
  1455. } else {
  1456. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1457. /*
  1458. * __GFP_NOFAIL is not to be used in new code.
  1459. *
  1460. * All __GFP_NOFAIL callers should be fixed so that they
  1461. * properly detect and handle allocation failures.
  1462. *
  1463. * We most definitely don't want callers attempting to
  1464. * allocate greater than order-1 page units with
  1465. * __GFP_NOFAIL.
  1466. */
  1467. WARN_ON_ONCE(order > 1);
  1468. }
  1469. spin_lock_irqsave(&zone->lock, flags);
  1470. page = __rmqueue(zone, order, migratetype);
  1471. spin_unlock(&zone->lock);
  1472. if (!page)
  1473. goto failed;
  1474. __mod_zone_freepage_state(zone, -(1 << order),
  1475. get_freepage_migratetype(page));
  1476. }
  1477. __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
  1478. if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
  1479. !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
  1480. set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  1481. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1482. zone_statistics(preferred_zone, zone, gfp_flags);
  1483. local_irq_restore(flags);
  1484. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  1485. return page;
  1486. failed:
  1487. local_irq_restore(flags);
  1488. return NULL;
  1489. }
  1490. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1491. static struct {
  1492. struct fault_attr attr;
  1493. u32 ignore_gfp_highmem;
  1494. u32 ignore_gfp_wait;
  1495. u32 min_order;
  1496. } fail_page_alloc = {
  1497. .attr = FAULT_ATTR_INITIALIZER,
  1498. .ignore_gfp_wait = 1,
  1499. .ignore_gfp_highmem = 1,
  1500. .min_order = 1,
  1501. };
  1502. static int __init setup_fail_page_alloc(char *str)
  1503. {
  1504. return setup_fault_attr(&fail_page_alloc.attr, str);
  1505. }
  1506. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1507. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1508. {
  1509. if (order < fail_page_alloc.min_order)
  1510. return false;
  1511. if (gfp_mask & __GFP_NOFAIL)
  1512. return false;
  1513. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1514. return false;
  1515. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1516. return false;
  1517. return should_fail(&fail_page_alloc.attr, 1 << order);
  1518. }
  1519. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1520. static int __init fail_page_alloc_debugfs(void)
  1521. {
  1522. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1523. struct dentry *dir;
  1524. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1525. &fail_page_alloc.attr);
  1526. if (IS_ERR(dir))
  1527. return PTR_ERR(dir);
  1528. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1529. &fail_page_alloc.ignore_gfp_wait))
  1530. goto fail;
  1531. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1532. &fail_page_alloc.ignore_gfp_highmem))
  1533. goto fail;
  1534. if (!debugfs_create_u32("min-order", mode, dir,
  1535. &fail_page_alloc.min_order))
  1536. goto fail;
  1537. return 0;
  1538. fail:
  1539. debugfs_remove_recursive(dir);
  1540. return -ENOMEM;
  1541. }
  1542. late_initcall(fail_page_alloc_debugfs);
  1543. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1544. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1545. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1546. {
  1547. return false;
  1548. }
  1549. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1550. /*
  1551. * Return true if free pages are above 'mark'. This takes into account the order
  1552. * of the allocation.
  1553. */
  1554. static bool __zone_watermark_ok(struct zone *z, unsigned int order,
  1555. unsigned long mark, int classzone_idx, int alloc_flags,
  1556. long free_pages)
  1557. {
  1558. /* free_pages may go negative - that's OK */
  1559. long min = mark;
  1560. int o;
  1561. long free_cma = 0;
  1562. free_pages -= (1 << order) - 1;
  1563. if (alloc_flags & ALLOC_HIGH)
  1564. min -= min / 2;
  1565. if (alloc_flags & ALLOC_HARDER)
  1566. min -= min / 4;
  1567. #ifdef CONFIG_CMA
  1568. /* If allocation can't use CMA areas don't use free CMA pages */
  1569. if (!(alloc_flags & ALLOC_CMA))
  1570. free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
  1571. #endif
  1572. if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
  1573. return false;
  1574. for (o = 0; o < order; o++) {
  1575. /* At the next order, this order's pages become unavailable */
  1576. free_pages -= z->free_area[o].nr_free << o;
  1577. /* Require fewer higher order pages to be free */
  1578. min >>= 1;
  1579. if (free_pages <= min)
  1580. return false;
  1581. }
  1582. return true;
  1583. }
  1584. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  1585. int classzone_idx, int alloc_flags)
  1586. {
  1587. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1588. zone_page_state(z, NR_FREE_PAGES));
  1589. }
  1590. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  1591. unsigned long mark, int classzone_idx, int alloc_flags)
  1592. {
  1593. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1594. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1595. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1596. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1597. free_pages);
  1598. }
  1599. #ifdef CONFIG_NUMA
  1600. /*
  1601. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1602. * skip over zones that are not allowed by the cpuset, or that have
  1603. * been recently (in last second) found to be nearly full. See further
  1604. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1605. * that have to skip over a lot of full or unallowed zones.
  1606. *
  1607. * If the zonelist cache is present in the passed zonelist, then
  1608. * returns a pointer to the allowed node mask (either the current
  1609. * tasks mems_allowed, or node_states[N_MEMORY].)
  1610. *
  1611. * If the zonelist cache is not available for this zonelist, does
  1612. * nothing and returns NULL.
  1613. *
  1614. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1615. * a second since last zap'd) then we zap it out (clear its bits.)
  1616. *
  1617. * We hold off even calling zlc_setup, until after we've checked the
  1618. * first zone in the zonelist, on the theory that most allocations will
  1619. * be satisfied from that first zone, so best to examine that zone as
  1620. * quickly as we can.
  1621. */
  1622. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1623. {
  1624. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1625. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1626. zlc = zonelist->zlcache_ptr;
  1627. if (!zlc)
  1628. return NULL;
  1629. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1630. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1631. zlc->last_full_zap = jiffies;
  1632. }
  1633. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1634. &cpuset_current_mems_allowed :
  1635. &node_states[N_MEMORY];
  1636. return allowednodes;
  1637. }
  1638. /*
  1639. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1640. * if it is worth looking at further for free memory:
  1641. * 1) Check that the zone isn't thought to be full (doesn't have its
  1642. * bit set in the zonelist_cache fullzones BITMAP).
  1643. * 2) Check that the zones node (obtained from the zonelist_cache
  1644. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1645. * Return true (non-zero) if zone is worth looking at further, or
  1646. * else return false (zero) if it is not.
  1647. *
  1648. * This check -ignores- the distinction between various watermarks,
  1649. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1650. * found to be full for any variation of these watermarks, it will
  1651. * be considered full for up to one second by all requests, unless
  1652. * we are so low on memory on all allowed nodes that we are forced
  1653. * into the second scan of the zonelist.
  1654. *
  1655. * In the second scan we ignore this zonelist cache and exactly
  1656. * apply the watermarks to all zones, even it is slower to do so.
  1657. * We are low on memory in the second scan, and should leave no stone
  1658. * unturned looking for a free page.
  1659. */
  1660. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1661. nodemask_t *allowednodes)
  1662. {
  1663. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1664. int i; /* index of *z in zonelist zones */
  1665. int n; /* node that zone *z is on */
  1666. zlc = zonelist->zlcache_ptr;
  1667. if (!zlc)
  1668. return 1;
  1669. i = z - zonelist->_zonerefs;
  1670. n = zlc->z_to_n[i];
  1671. /* This zone is worth trying if it is allowed but not full */
  1672. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1673. }
  1674. /*
  1675. * Given 'z' scanning a zonelist, set the corresponding bit in
  1676. * zlc->fullzones, so that subsequent attempts to allocate a page
  1677. * from that zone don't waste time re-examining it.
  1678. */
  1679. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1680. {
  1681. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1682. int i; /* index of *z in zonelist zones */
  1683. zlc = zonelist->zlcache_ptr;
  1684. if (!zlc)
  1685. return;
  1686. i = z - zonelist->_zonerefs;
  1687. set_bit(i, zlc->fullzones);
  1688. }
  1689. /*
  1690. * clear all zones full, called after direct reclaim makes progress so that
  1691. * a zone that was recently full is not skipped over for up to a second
  1692. */
  1693. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1694. {
  1695. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1696. zlc = zonelist->zlcache_ptr;
  1697. if (!zlc)
  1698. return;
  1699. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1700. }
  1701. static bool zone_local(struct zone *local_zone, struct zone *zone)
  1702. {
  1703. return local_zone->node == zone->node;
  1704. }
  1705. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1706. {
  1707. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
  1708. RECLAIM_DISTANCE;
  1709. }
  1710. #else /* CONFIG_NUMA */
  1711. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1712. {
  1713. return NULL;
  1714. }
  1715. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1716. nodemask_t *allowednodes)
  1717. {
  1718. return 1;
  1719. }
  1720. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1721. {
  1722. }
  1723. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1724. {
  1725. }
  1726. static bool zone_local(struct zone *local_zone, struct zone *zone)
  1727. {
  1728. return true;
  1729. }
  1730. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1731. {
  1732. return true;
  1733. }
  1734. #endif /* CONFIG_NUMA */
  1735. static void reset_alloc_batches(struct zone *preferred_zone)
  1736. {
  1737. struct zone *zone = preferred_zone->zone_pgdat->node_zones;
  1738. do {
  1739. mod_zone_page_state(zone, NR_ALLOC_BATCH,
  1740. high_wmark_pages(zone) - low_wmark_pages(zone) -
  1741. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  1742. clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  1743. } while (zone++ != preferred_zone);
  1744. }
  1745. /*
  1746. * get_page_from_freelist goes through the zonelist trying to allocate
  1747. * a page.
  1748. */
  1749. static struct page *
  1750. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1751. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1752. struct zone *preferred_zone, int classzone_idx, int migratetype)
  1753. {
  1754. struct zoneref *z;
  1755. struct page *page = NULL;
  1756. struct zone *zone;
  1757. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1758. int zlc_active = 0; /* set if using zonelist_cache */
  1759. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1760. bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
  1761. (gfp_mask & __GFP_WRITE);
  1762. int nr_fair_skipped = 0;
  1763. bool zonelist_rescan;
  1764. zonelist_scan:
  1765. zonelist_rescan = false;
  1766. /*
  1767. * Scan zonelist, looking for a zone with enough free.
  1768. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  1769. */
  1770. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1771. high_zoneidx, nodemask) {
  1772. unsigned long mark;
  1773. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1774. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1775. continue;
  1776. if (cpusets_enabled() &&
  1777. (alloc_flags & ALLOC_CPUSET) &&
  1778. !cpuset_zone_allowed(zone, gfp_mask))
  1779. continue;
  1780. /*
  1781. * Distribute pages in proportion to the individual
  1782. * zone size to ensure fair page aging. The zone a
  1783. * page was allocated in should have no effect on the
  1784. * time the page has in memory before being reclaimed.
  1785. */
  1786. if (alloc_flags & ALLOC_FAIR) {
  1787. if (!zone_local(preferred_zone, zone))
  1788. break;
  1789. if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
  1790. nr_fair_skipped++;
  1791. continue;
  1792. }
  1793. }
  1794. /*
  1795. * When allocating a page cache page for writing, we
  1796. * want to get it from a zone that is within its dirty
  1797. * limit, such that no single zone holds more than its
  1798. * proportional share of globally allowed dirty pages.
  1799. * The dirty limits take into account the zone's
  1800. * lowmem reserves and high watermark so that kswapd
  1801. * should be able to balance it without having to
  1802. * write pages from its LRU list.
  1803. *
  1804. * This may look like it could increase pressure on
  1805. * lower zones by failing allocations in higher zones
  1806. * before they are full. But the pages that do spill
  1807. * over are limited as the lower zones are protected
  1808. * by this very same mechanism. It should not become
  1809. * a practical burden to them.
  1810. *
  1811. * XXX: For now, allow allocations to potentially
  1812. * exceed the per-zone dirty limit in the slowpath
  1813. * (ALLOC_WMARK_LOW unset) before going into reclaim,
  1814. * which is important when on a NUMA setup the allowed
  1815. * zones are together not big enough to reach the
  1816. * global limit. The proper fix for these situations
  1817. * will require awareness of zones in the
  1818. * dirty-throttling and the flusher threads.
  1819. */
  1820. if (consider_zone_dirty && !zone_dirty_ok(zone))
  1821. continue;
  1822. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1823. if (!zone_watermark_ok(zone, order, mark,
  1824. classzone_idx, alloc_flags)) {
  1825. int ret;
  1826. /* Checked here to keep the fast path fast */
  1827. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1828. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1829. goto try_this_zone;
  1830. if (IS_ENABLED(CONFIG_NUMA) &&
  1831. !did_zlc_setup && nr_online_nodes > 1) {
  1832. /*
  1833. * we do zlc_setup if there are multiple nodes
  1834. * and before considering the first zone allowed
  1835. * by the cpuset.
  1836. */
  1837. allowednodes = zlc_setup(zonelist, alloc_flags);
  1838. zlc_active = 1;
  1839. did_zlc_setup = 1;
  1840. }
  1841. if (zone_reclaim_mode == 0 ||
  1842. !zone_allows_reclaim(preferred_zone, zone))
  1843. goto this_zone_full;
  1844. /*
  1845. * As we may have just activated ZLC, check if the first
  1846. * eligible zone has failed zone_reclaim recently.
  1847. */
  1848. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1849. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1850. continue;
  1851. ret = zone_reclaim(zone, gfp_mask, order);
  1852. switch (ret) {
  1853. case ZONE_RECLAIM_NOSCAN:
  1854. /* did not scan */
  1855. continue;
  1856. case ZONE_RECLAIM_FULL:
  1857. /* scanned but unreclaimable */
  1858. continue;
  1859. default:
  1860. /* did we reclaim enough */
  1861. if (zone_watermark_ok(zone, order, mark,
  1862. classzone_idx, alloc_flags))
  1863. goto try_this_zone;
  1864. /*
  1865. * Failed to reclaim enough to meet watermark.
  1866. * Only mark the zone full if checking the min
  1867. * watermark or if we failed to reclaim just
  1868. * 1<<order pages or else the page allocator
  1869. * fastpath will prematurely mark zones full
  1870. * when the watermark is between the low and
  1871. * min watermarks.
  1872. */
  1873. if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
  1874. ret == ZONE_RECLAIM_SOME)
  1875. goto this_zone_full;
  1876. continue;
  1877. }
  1878. }
  1879. try_this_zone:
  1880. page = buffered_rmqueue(preferred_zone, zone, order,
  1881. gfp_mask, migratetype);
  1882. if (page) {
  1883. if (prep_new_page(page, order, gfp_mask, alloc_flags))
  1884. goto try_this_zone;
  1885. return page;
  1886. }
  1887. this_zone_full:
  1888. if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
  1889. zlc_mark_zone_full(zonelist, z);
  1890. }
  1891. /*
  1892. * The first pass makes sure allocations are spread fairly within the
  1893. * local node. However, the local node might have free pages left
  1894. * after the fairness batches are exhausted, and remote zones haven't
  1895. * even been considered yet. Try once more without fairness, and
  1896. * include remote zones now, before entering the slowpath and waking
  1897. * kswapd: prefer spilling to a remote zone over swapping locally.
  1898. */
  1899. if (alloc_flags & ALLOC_FAIR) {
  1900. alloc_flags &= ~ALLOC_FAIR;
  1901. if (nr_fair_skipped) {
  1902. zonelist_rescan = true;
  1903. reset_alloc_batches(preferred_zone);
  1904. }
  1905. if (nr_online_nodes > 1)
  1906. zonelist_rescan = true;
  1907. }
  1908. if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
  1909. /* Disable zlc cache for second zonelist scan */
  1910. zlc_active = 0;
  1911. zonelist_rescan = true;
  1912. }
  1913. if (zonelist_rescan)
  1914. goto zonelist_scan;
  1915. return NULL;
  1916. }
  1917. /*
  1918. * Large machines with many possible nodes should not always dump per-node
  1919. * meminfo in irq context.
  1920. */
  1921. static inline bool should_suppress_show_mem(void)
  1922. {
  1923. bool ret = false;
  1924. #if NODES_SHIFT > 8
  1925. ret = in_interrupt();
  1926. #endif
  1927. return ret;
  1928. }
  1929. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1930. DEFAULT_RATELIMIT_INTERVAL,
  1931. DEFAULT_RATELIMIT_BURST);
  1932. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1933. {
  1934. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1935. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  1936. debug_guardpage_minorder() > 0)
  1937. return;
  1938. /*
  1939. * This documents exceptions given to allocations in certain
  1940. * contexts that are allowed to allocate outside current's set
  1941. * of allowed nodes.
  1942. */
  1943. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1944. if (test_thread_flag(TIF_MEMDIE) ||
  1945. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1946. filter &= ~SHOW_MEM_FILTER_NODES;
  1947. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1948. filter &= ~SHOW_MEM_FILTER_NODES;
  1949. if (fmt) {
  1950. struct va_format vaf;
  1951. va_list args;
  1952. va_start(args, fmt);
  1953. vaf.fmt = fmt;
  1954. vaf.va = &args;
  1955. pr_warn("%pV", &vaf);
  1956. va_end(args);
  1957. }
  1958. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  1959. current->comm, order, gfp_mask);
  1960. dump_stack();
  1961. if (!should_suppress_show_mem())
  1962. show_mem(filter);
  1963. }
  1964. static inline int
  1965. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1966. unsigned long did_some_progress,
  1967. unsigned long pages_reclaimed)
  1968. {
  1969. /* Do not loop if specifically requested */
  1970. if (gfp_mask & __GFP_NORETRY)
  1971. return 0;
  1972. /* Always retry if specifically requested */
  1973. if (gfp_mask & __GFP_NOFAIL)
  1974. return 1;
  1975. /*
  1976. * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
  1977. * making forward progress without invoking OOM. Suspend also disables
  1978. * storage devices so kswapd will not help. Bail if we are suspending.
  1979. */
  1980. if (!did_some_progress && pm_suspended_storage())
  1981. return 0;
  1982. /*
  1983. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1984. * means __GFP_NOFAIL, but that may not be true in other
  1985. * implementations.
  1986. */
  1987. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1988. return 1;
  1989. /*
  1990. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1991. * specified, then we retry until we no longer reclaim any pages
  1992. * (above), or we've reclaimed an order of pages at least as
  1993. * large as the allocation's order. In both cases, if the
  1994. * allocation still fails, we stop retrying.
  1995. */
  1996. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1997. return 1;
  1998. return 0;
  1999. }
  2000. static inline struct page *
  2001. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  2002. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2003. nodemask_t *nodemask, struct zone *preferred_zone,
  2004. int classzone_idx, int migratetype, unsigned long *did_some_progress)
  2005. {
  2006. struct page *page;
  2007. *did_some_progress = 0;
  2008. if (oom_killer_disabled)
  2009. return NULL;
  2010. /*
  2011. * Acquire the per-zone oom lock for each zone. If that
  2012. * fails, somebody else is making progress for us.
  2013. */
  2014. if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
  2015. *did_some_progress = 1;
  2016. schedule_timeout_uninterruptible(1);
  2017. return NULL;
  2018. }
  2019. /*
  2020. * PM-freezer should be notified that there might be an OOM killer on
  2021. * its way to kill and wake somebody up. This is too early and we might
  2022. * end up not killing anything but false positives are acceptable.
  2023. * See freeze_processes.
  2024. */
  2025. note_oom_kill();
  2026. /*
  2027. * Go through the zonelist yet one more time, keep very high watermark
  2028. * here, this is only to catch a parallel oom killing, we must fail if
  2029. * we're still under heavy pressure.
  2030. */
  2031. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  2032. order, zonelist, high_zoneidx,
  2033. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  2034. preferred_zone, classzone_idx, migratetype);
  2035. if (page)
  2036. goto out;
  2037. if (!(gfp_mask & __GFP_NOFAIL)) {
  2038. /* Coredumps can quickly deplete all memory reserves */
  2039. if (current->flags & PF_DUMPCORE)
  2040. goto out;
  2041. /* The OOM killer will not help higher order allocs */
  2042. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2043. goto out;
  2044. /* The OOM killer does not needlessly kill tasks for lowmem */
  2045. if (high_zoneidx < ZONE_NORMAL)
  2046. goto out;
  2047. /* The OOM killer does not compensate for light reclaim */
  2048. if (!(gfp_mask & __GFP_FS))
  2049. goto out;
  2050. /*
  2051. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  2052. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  2053. * The caller should handle page allocation failure by itself if
  2054. * it specifies __GFP_THISNODE.
  2055. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  2056. */
  2057. if (gfp_mask & __GFP_THISNODE)
  2058. goto out;
  2059. }
  2060. /* Exhausted what can be done so it's blamo time */
  2061. out_of_memory(zonelist, gfp_mask, order, nodemask, false);
  2062. *did_some_progress = 1;
  2063. out:
  2064. oom_zonelist_unlock(zonelist, gfp_mask);
  2065. return page;
  2066. }
  2067. #ifdef CONFIG_COMPACTION
  2068. /* Try memory compaction for high-order allocations before reclaim */
  2069. static struct page *
  2070. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2071. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2072. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  2073. int classzone_idx, int migratetype, enum migrate_mode mode,
  2074. int *contended_compaction, bool *deferred_compaction)
  2075. {
  2076. unsigned long compact_result;
  2077. struct page *page;
  2078. if (!order)
  2079. return NULL;
  2080. current->flags |= PF_MEMALLOC;
  2081. compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
  2082. nodemask, mode,
  2083. contended_compaction,
  2084. alloc_flags, classzone_idx);
  2085. current->flags &= ~PF_MEMALLOC;
  2086. switch (compact_result) {
  2087. case COMPACT_DEFERRED:
  2088. *deferred_compaction = true;
  2089. /* fall-through */
  2090. case COMPACT_SKIPPED:
  2091. return NULL;
  2092. default:
  2093. break;
  2094. }
  2095. /*
  2096. * At least in one zone compaction wasn't deferred or skipped, so let's
  2097. * count a compaction stall
  2098. */
  2099. count_vm_event(COMPACTSTALL);
  2100. page = get_page_from_freelist(gfp_mask, nodemask,
  2101. order, zonelist, high_zoneidx,
  2102. alloc_flags & ~ALLOC_NO_WATERMARKS,
  2103. preferred_zone, classzone_idx, migratetype);
  2104. if (page) {
  2105. struct zone *zone = page_zone(page);
  2106. zone->compact_blockskip_flush = false;
  2107. compaction_defer_reset(zone, order, true);
  2108. count_vm_event(COMPACTSUCCESS);
  2109. return page;
  2110. }
  2111. /*
  2112. * It's bad if compaction run occurs and fails. The most likely reason
  2113. * is that pages exist, but not enough to satisfy watermarks.
  2114. */
  2115. count_vm_event(COMPACTFAIL);
  2116. cond_resched();
  2117. return NULL;
  2118. }
  2119. #else
  2120. static inline struct page *
  2121. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2122. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2123. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  2124. int classzone_idx, int migratetype, enum migrate_mode mode,
  2125. int *contended_compaction, bool *deferred_compaction)
  2126. {
  2127. return NULL;
  2128. }
  2129. #endif /* CONFIG_COMPACTION */
  2130. /* Perform direct synchronous page reclaim */
  2131. static int
  2132. __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
  2133. nodemask_t *nodemask)
  2134. {
  2135. struct reclaim_state reclaim_state;
  2136. int progress;
  2137. cond_resched();
  2138. /* We now go into synchronous reclaim */
  2139. cpuset_memory_pressure_bump();
  2140. current->flags |= PF_MEMALLOC;
  2141. lockdep_set_current_reclaim_state(gfp_mask);
  2142. reclaim_state.reclaimed_slab = 0;
  2143. current->reclaim_state = &reclaim_state;
  2144. progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  2145. current->reclaim_state = NULL;
  2146. lockdep_clear_current_reclaim_state();
  2147. current->flags &= ~PF_MEMALLOC;
  2148. cond_resched();
  2149. return progress;
  2150. }
  2151. /* The really slow allocator path where we enter direct reclaim */
  2152. static inline struct page *
  2153. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2154. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2155. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  2156. int classzone_idx, int migratetype, unsigned long *did_some_progress)
  2157. {
  2158. struct page *page = NULL;
  2159. bool drained = false;
  2160. *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
  2161. nodemask);
  2162. if (unlikely(!(*did_some_progress)))
  2163. return NULL;
  2164. /* After successful reclaim, reconsider all zones for allocation */
  2165. if (IS_ENABLED(CONFIG_NUMA))
  2166. zlc_clear_zones_full(zonelist);
  2167. retry:
  2168. page = get_page_from_freelist(gfp_mask, nodemask, order,
  2169. zonelist, high_zoneidx,
  2170. alloc_flags & ~ALLOC_NO_WATERMARKS,
  2171. preferred_zone, classzone_idx,
  2172. migratetype);
  2173. /*
  2174. * If an allocation failed after direct reclaim, it could be because
  2175. * pages are pinned on the per-cpu lists. Drain them and try again
  2176. */
  2177. if (!page && !drained) {
  2178. drain_all_pages(NULL);
  2179. drained = true;
  2180. goto retry;
  2181. }
  2182. return page;
  2183. }
  2184. /*
  2185. * This is called in the allocator slow-path if the allocation request is of
  2186. * sufficient urgency to ignore watermarks and take other desperate measures
  2187. */
  2188. static inline struct page *
  2189. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  2190. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2191. nodemask_t *nodemask, struct zone *preferred_zone,
  2192. int classzone_idx, int migratetype)
  2193. {
  2194. struct page *page;
  2195. do {
  2196. page = get_page_from_freelist(gfp_mask, nodemask, order,
  2197. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  2198. preferred_zone, classzone_idx, migratetype);
  2199. if (!page && gfp_mask & __GFP_NOFAIL)
  2200. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2201. } while (!page && (gfp_mask & __GFP_NOFAIL));
  2202. return page;
  2203. }
  2204. static void wake_all_kswapds(unsigned int order,
  2205. struct zonelist *zonelist,
  2206. enum zone_type high_zoneidx,
  2207. struct zone *preferred_zone,
  2208. nodemask_t *nodemask)
  2209. {
  2210. struct zoneref *z;
  2211. struct zone *zone;
  2212. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  2213. high_zoneidx, nodemask)
  2214. wakeup_kswapd(zone, order, zone_idx(preferred_zone));
  2215. }
  2216. static inline int
  2217. gfp_to_alloc_flags(gfp_t gfp_mask)
  2218. {
  2219. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2220. const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
  2221. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2222. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2223. /*
  2224. * The caller may dip into page reserves a bit more if the caller
  2225. * cannot run direct reclaim, or if the caller has realtime scheduling
  2226. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2227. * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
  2228. */
  2229. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2230. if (atomic) {
  2231. /*
  2232. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2233. * if it can't schedule.
  2234. */
  2235. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2236. alloc_flags |= ALLOC_HARDER;
  2237. /*
  2238. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2239. * comment for __cpuset_node_allowed().
  2240. */
  2241. alloc_flags &= ~ALLOC_CPUSET;
  2242. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2243. alloc_flags |= ALLOC_HARDER;
  2244. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2245. if (gfp_mask & __GFP_MEMALLOC)
  2246. alloc_flags |= ALLOC_NO_WATERMARKS;
  2247. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2248. alloc_flags |= ALLOC_NO_WATERMARKS;
  2249. else if (!in_interrupt() &&
  2250. ((current->flags & PF_MEMALLOC) ||
  2251. unlikely(test_thread_flag(TIF_MEMDIE))))
  2252. alloc_flags |= ALLOC_NO_WATERMARKS;
  2253. }
  2254. #ifdef CONFIG_CMA
  2255. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2256. alloc_flags |= ALLOC_CMA;
  2257. #endif
  2258. return alloc_flags;
  2259. }
  2260. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2261. {
  2262. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2263. }
  2264. static inline struct page *
  2265. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2266. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2267. nodemask_t *nodemask, struct zone *preferred_zone,
  2268. int classzone_idx, int migratetype)
  2269. {
  2270. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2271. struct page *page = NULL;
  2272. int alloc_flags;
  2273. unsigned long pages_reclaimed = 0;
  2274. unsigned long did_some_progress;
  2275. enum migrate_mode migration_mode = MIGRATE_ASYNC;
  2276. bool deferred_compaction = false;
  2277. int contended_compaction = COMPACT_CONTENDED_NONE;
  2278. /*
  2279. * In the slowpath, we sanity check order to avoid ever trying to
  2280. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2281. * be using allocators in order of preference for an area that is
  2282. * too large.
  2283. */
  2284. if (order >= MAX_ORDER) {
  2285. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2286. return NULL;
  2287. }
  2288. /*
  2289. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  2290. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  2291. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  2292. * using a larger set of nodes after it has established that the
  2293. * allowed per node queues are empty and that nodes are
  2294. * over allocated.
  2295. */
  2296. if (IS_ENABLED(CONFIG_NUMA) &&
  2297. (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  2298. goto nopage;
  2299. retry:
  2300. if (!(gfp_mask & __GFP_NO_KSWAPD))
  2301. wake_all_kswapds(order, zonelist, high_zoneidx,
  2302. preferred_zone, nodemask);
  2303. /*
  2304. * OK, we're below the kswapd watermark and have kicked background
  2305. * reclaim. Now things get more complex, so set up alloc_flags according
  2306. * to how we want to proceed.
  2307. */
  2308. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2309. /*
  2310. * Find the true preferred zone if the allocation is unconstrained by
  2311. * cpusets.
  2312. */
  2313. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
  2314. struct zoneref *preferred_zoneref;
  2315. preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
  2316. NULL, &preferred_zone);
  2317. classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2318. }
  2319. /* This is the last chance, in general, before the goto nopage. */
  2320. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  2321. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  2322. preferred_zone, classzone_idx, migratetype);
  2323. if (page)
  2324. goto got_pg;
  2325. /* Allocate without watermarks if the context allows */
  2326. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2327. /*
  2328. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  2329. * the allocation is high priority and these type of
  2330. * allocations are system rather than user orientated
  2331. */
  2332. zonelist = node_zonelist(numa_node_id(), gfp_mask);
  2333. page = __alloc_pages_high_priority(gfp_mask, order,
  2334. zonelist, high_zoneidx, nodemask,
  2335. preferred_zone, classzone_idx, migratetype);
  2336. if (page) {
  2337. goto got_pg;
  2338. }
  2339. }
  2340. /* Atomic allocations - we can't balance anything */
  2341. if (!wait) {
  2342. /*
  2343. * All existing users of the deprecated __GFP_NOFAIL are
  2344. * blockable, so warn of any new users that actually allow this
  2345. * type of allocation to fail.
  2346. */
  2347. WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
  2348. goto nopage;
  2349. }
  2350. /* Avoid recursion of direct reclaim */
  2351. if (current->flags & PF_MEMALLOC)
  2352. goto nopage;
  2353. /* Avoid allocations with no watermarks from looping endlessly */
  2354. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2355. goto nopage;
  2356. /*
  2357. * Try direct compaction. The first pass is asynchronous. Subsequent
  2358. * attempts after direct reclaim are synchronous
  2359. */
  2360. page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
  2361. high_zoneidx, nodemask, alloc_flags,
  2362. preferred_zone,
  2363. classzone_idx, migratetype,
  2364. migration_mode, &contended_compaction,
  2365. &deferred_compaction);
  2366. if (page)
  2367. goto got_pg;
  2368. /* Checks for THP-specific high-order allocations */
  2369. if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
  2370. /*
  2371. * If compaction is deferred for high-order allocations, it is
  2372. * because sync compaction recently failed. If this is the case
  2373. * and the caller requested a THP allocation, we do not want
  2374. * to heavily disrupt the system, so we fail the allocation
  2375. * instead of entering direct reclaim.
  2376. */
  2377. if (deferred_compaction)
  2378. goto nopage;
  2379. /*
  2380. * In all zones where compaction was attempted (and not
  2381. * deferred or skipped), lock contention has been detected.
  2382. * For THP allocation we do not want to disrupt the others
  2383. * so we fallback to base pages instead.
  2384. */
  2385. if (contended_compaction == COMPACT_CONTENDED_LOCK)
  2386. goto nopage;
  2387. /*
  2388. * If compaction was aborted due to need_resched(), we do not
  2389. * want to further increase allocation latency, unless it is
  2390. * khugepaged trying to collapse.
  2391. */
  2392. if (contended_compaction == COMPACT_CONTENDED_SCHED
  2393. && !(current->flags & PF_KTHREAD))
  2394. goto nopage;
  2395. }
  2396. /*
  2397. * It can become very expensive to allocate transparent hugepages at
  2398. * fault, so use asynchronous memory compaction for THP unless it is
  2399. * khugepaged trying to collapse.
  2400. */
  2401. if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
  2402. (current->flags & PF_KTHREAD))
  2403. migration_mode = MIGRATE_SYNC_LIGHT;
  2404. /* Try direct reclaim and then allocating */
  2405. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  2406. zonelist, high_zoneidx,
  2407. nodemask,
  2408. alloc_flags, preferred_zone,
  2409. classzone_idx, migratetype,
  2410. &did_some_progress);
  2411. if (page)
  2412. goto got_pg;
  2413. /* Check if we should retry the allocation */
  2414. pages_reclaimed += did_some_progress;
  2415. if (should_alloc_retry(gfp_mask, order, did_some_progress,
  2416. pages_reclaimed)) {
  2417. /*
  2418. * If we fail to make progress by freeing individual
  2419. * pages, but the allocation wants us to keep going,
  2420. * start OOM killing tasks.
  2421. */
  2422. if (!did_some_progress) {
  2423. page = __alloc_pages_may_oom(gfp_mask, order, zonelist,
  2424. high_zoneidx, nodemask,
  2425. preferred_zone, classzone_idx,
  2426. migratetype,&did_some_progress);
  2427. if (page)
  2428. goto got_pg;
  2429. if (!did_some_progress)
  2430. goto nopage;
  2431. }
  2432. /* Wait for some write requests to complete then retry */
  2433. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2434. goto retry;
  2435. } else {
  2436. /*
  2437. * High-order allocations do not necessarily loop after
  2438. * direct reclaim and reclaim/compaction depends on compaction
  2439. * being called after reclaim so call directly if necessary
  2440. */
  2441. page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
  2442. high_zoneidx, nodemask, alloc_flags,
  2443. preferred_zone,
  2444. classzone_idx, migratetype,
  2445. migration_mode, &contended_compaction,
  2446. &deferred_compaction);
  2447. if (page)
  2448. goto got_pg;
  2449. }
  2450. nopage:
  2451. warn_alloc_failed(gfp_mask, order, NULL);
  2452. got_pg:
  2453. return page;
  2454. }
  2455. /*
  2456. * This is the 'heart' of the zoned buddy allocator.
  2457. */
  2458. struct page *
  2459. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2460. struct zonelist *zonelist, nodemask_t *nodemask)
  2461. {
  2462. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  2463. struct zone *preferred_zone;
  2464. struct zoneref *preferred_zoneref;
  2465. struct page *page = NULL;
  2466. int migratetype = gfpflags_to_migratetype(gfp_mask);
  2467. unsigned int cpuset_mems_cookie;
  2468. int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
  2469. int classzone_idx;
  2470. gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
  2471. gfp_mask &= gfp_allowed_mask;
  2472. lockdep_trace_alloc(gfp_mask);
  2473. might_sleep_if(gfp_mask & __GFP_WAIT);
  2474. if (should_fail_alloc_page(gfp_mask, order))
  2475. return NULL;
  2476. /*
  2477. * Check the zones suitable for the gfp_mask contain at least one
  2478. * valid zone. It's possible to have an empty zonelist as a result
  2479. * of GFP_THISNODE and a memoryless node
  2480. */
  2481. if (unlikely(!zonelist->_zonerefs->zone))
  2482. return NULL;
  2483. if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
  2484. alloc_flags |= ALLOC_CMA;
  2485. retry_cpuset:
  2486. cpuset_mems_cookie = read_mems_allowed_begin();
  2487. /* The preferred zone is used for statistics later */
  2488. preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
  2489. nodemask ? : &cpuset_current_mems_allowed,
  2490. &preferred_zone);
  2491. if (!preferred_zone)
  2492. goto out;
  2493. classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2494. /* First allocation attempt */
  2495. alloc_mask = gfp_mask|__GFP_HARDWALL;
  2496. page = get_page_from_freelist(alloc_mask, nodemask, order, zonelist,
  2497. high_zoneidx, alloc_flags, preferred_zone,
  2498. classzone_idx, migratetype);
  2499. if (unlikely(!page)) {
  2500. /*
  2501. * Runtime PM, block IO and its error handling path
  2502. * can deadlock because I/O on the device might not
  2503. * complete.
  2504. */
  2505. alloc_mask = memalloc_noio_flags(gfp_mask);
  2506. page = __alloc_pages_slowpath(alloc_mask, order,
  2507. zonelist, high_zoneidx, nodemask,
  2508. preferred_zone, classzone_idx, migratetype);
  2509. }
  2510. if (kmemcheck_enabled && page)
  2511. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2512. trace_mm_page_alloc(page, order, alloc_mask, migratetype);
  2513. out:
  2514. /*
  2515. * When updating a task's mems_allowed, it is possible to race with
  2516. * parallel threads in such a way that an allocation can fail while
  2517. * the mask is being updated. If a page allocation is about to fail,
  2518. * check if the cpuset changed during allocation and if so, retry.
  2519. */
  2520. if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
  2521. goto retry_cpuset;
  2522. return page;
  2523. }
  2524. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2525. /*
  2526. * Common helper functions.
  2527. */
  2528. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2529. {
  2530. struct page *page;
  2531. /*
  2532. * __get_free_pages() returns a 32-bit address, which cannot represent
  2533. * a highmem page
  2534. */
  2535. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2536. page = alloc_pages(gfp_mask, order);
  2537. if (!page)
  2538. return 0;
  2539. return (unsigned long) page_address(page);
  2540. }
  2541. EXPORT_SYMBOL(__get_free_pages);
  2542. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2543. {
  2544. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2545. }
  2546. EXPORT_SYMBOL(get_zeroed_page);
  2547. void __free_pages(struct page *page, unsigned int order)
  2548. {
  2549. if (put_page_testzero(page)) {
  2550. if (order == 0)
  2551. free_hot_cold_page(page, false);
  2552. else
  2553. __free_pages_ok(page, order);
  2554. }
  2555. }
  2556. EXPORT_SYMBOL(__free_pages);
  2557. void free_pages(unsigned long addr, unsigned int order)
  2558. {
  2559. if (addr != 0) {
  2560. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2561. __free_pages(virt_to_page((void *)addr), order);
  2562. }
  2563. }
  2564. EXPORT_SYMBOL(free_pages);
  2565. /*
  2566. * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
  2567. * of the current memory cgroup.
  2568. *
  2569. * It should be used when the caller would like to use kmalloc, but since the
  2570. * allocation is large, it has to fall back to the page allocator.
  2571. */
  2572. struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
  2573. {
  2574. struct page *page;
  2575. struct mem_cgroup *memcg = NULL;
  2576. if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
  2577. return NULL;
  2578. page = alloc_pages(gfp_mask, order);
  2579. memcg_kmem_commit_charge(page, memcg, order);
  2580. return page;
  2581. }
  2582. struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
  2583. {
  2584. struct page *page;
  2585. struct mem_cgroup *memcg = NULL;
  2586. if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
  2587. return NULL;
  2588. page = alloc_pages_node(nid, gfp_mask, order);
  2589. memcg_kmem_commit_charge(page, memcg, order);
  2590. return page;
  2591. }
  2592. /*
  2593. * __free_kmem_pages and free_kmem_pages will free pages allocated with
  2594. * alloc_kmem_pages.
  2595. */
  2596. void __free_kmem_pages(struct page *page, unsigned int order)
  2597. {
  2598. memcg_kmem_uncharge_pages(page, order);
  2599. __free_pages(page, order);
  2600. }
  2601. void free_kmem_pages(unsigned long addr, unsigned int order)
  2602. {
  2603. if (addr != 0) {
  2604. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2605. __free_kmem_pages(virt_to_page((void *)addr), order);
  2606. }
  2607. }
  2608. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2609. {
  2610. if (addr) {
  2611. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2612. unsigned long used = addr + PAGE_ALIGN(size);
  2613. split_page(virt_to_page((void *)addr), order);
  2614. while (used < alloc_end) {
  2615. free_page(used);
  2616. used += PAGE_SIZE;
  2617. }
  2618. }
  2619. return (void *)addr;
  2620. }
  2621. /**
  2622. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2623. * @size: the number of bytes to allocate
  2624. * @gfp_mask: GFP flags for the allocation
  2625. *
  2626. * This function is similar to alloc_pages(), except that it allocates the
  2627. * minimum number of pages to satisfy the request. alloc_pages() can only
  2628. * allocate memory in power-of-two pages.
  2629. *
  2630. * This function is also limited by MAX_ORDER.
  2631. *
  2632. * Memory allocated by this function must be released by free_pages_exact().
  2633. */
  2634. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2635. {
  2636. unsigned int order = get_order(size);
  2637. unsigned long addr;
  2638. addr = __get_free_pages(gfp_mask, order);
  2639. return make_alloc_exact(addr, order, size);
  2640. }
  2641. EXPORT_SYMBOL(alloc_pages_exact);
  2642. /**
  2643. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2644. * pages on a node.
  2645. * @nid: the preferred node ID where memory should be allocated
  2646. * @size: the number of bytes to allocate
  2647. * @gfp_mask: GFP flags for the allocation
  2648. *
  2649. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2650. * back.
  2651. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2652. * but is not exact.
  2653. */
  2654. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2655. {
  2656. unsigned order = get_order(size);
  2657. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2658. if (!p)
  2659. return NULL;
  2660. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2661. }
  2662. /**
  2663. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2664. * @virt: the value returned by alloc_pages_exact.
  2665. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2666. *
  2667. * Release the memory allocated by a previous call to alloc_pages_exact.
  2668. */
  2669. void free_pages_exact(void *virt, size_t size)
  2670. {
  2671. unsigned long addr = (unsigned long)virt;
  2672. unsigned long end = addr + PAGE_ALIGN(size);
  2673. while (addr < end) {
  2674. free_page(addr);
  2675. addr += PAGE_SIZE;
  2676. }
  2677. }
  2678. EXPORT_SYMBOL(free_pages_exact);
  2679. /**
  2680. * nr_free_zone_pages - count number of pages beyond high watermark
  2681. * @offset: The zone index of the highest zone
  2682. *
  2683. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  2684. * high watermark within all zones at or below a given zone index. For each
  2685. * zone, the number of pages is calculated as:
  2686. * managed_pages - high_pages
  2687. */
  2688. static unsigned long nr_free_zone_pages(int offset)
  2689. {
  2690. struct zoneref *z;
  2691. struct zone *zone;
  2692. /* Just pick one node, since fallback list is circular */
  2693. unsigned long sum = 0;
  2694. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2695. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2696. unsigned long size = zone->managed_pages;
  2697. unsigned long high = high_wmark_pages(zone);
  2698. if (size > high)
  2699. sum += size - high;
  2700. }
  2701. return sum;
  2702. }
  2703. /**
  2704. * nr_free_buffer_pages - count number of pages beyond high watermark
  2705. *
  2706. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  2707. * watermark within ZONE_DMA and ZONE_NORMAL.
  2708. */
  2709. unsigned long nr_free_buffer_pages(void)
  2710. {
  2711. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2712. }
  2713. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2714. /**
  2715. * nr_free_pagecache_pages - count number of pages beyond high watermark
  2716. *
  2717. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  2718. * high watermark within all zones.
  2719. */
  2720. unsigned long nr_free_pagecache_pages(void)
  2721. {
  2722. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2723. }
  2724. static inline void show_node(struct zone *zone)
  2725. {
  2726. if (IS_ENABLED(CONFIG_NUMA))
  2727. printk("Node %d ", zone_to_nid(zone));
  2728. }
  2729. void si_meminfo(struct sysinfo *val)
  2730. {
  2731. val->totalram = totalram_pages;
  2732. val->sharedram = global_page_state(NR_SHMEM);
  2733. val->freeram = global_page_state(NR_FREE_PAGES);
  2734. val->bufferram = nr_blockdev_pages();
  2735. val->totalhigh = totalhigh_pages;
  2736. val->freehigh = nr_free_highpages();
  2737. val->mem_unit = PAGE_SIZE;
  2738. }
  2739. EXPORT_SYMBOL(si_meminfo);
  2740. #ifdef CONFIG_NUMA
  2741. void si_meminfo_node(struct sysinfo *val, int nid)
  2742. {
  2743. int zone_type; /* needs to be signed */
  2744. unsigned long managed_pages = 0;
  2745. pg_data_t *pgdat = NODE_DATA(nid);
  2746. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  2747. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  2748. val->totalram = managed_pages;
  2749. val->sharedram = node_page_state(nid, NR_SHMEM);
  2750. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2751. #ifdef CONFIG_HIGHMEM
  2752. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
  2753. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2754. NR_FREE_PAGES);
  2755. #else
  2756. val->totalhigh = 0;
  2757. val->freehigh = 0;
  2758. #endif
  2759. val->mem_unit = PAGE_SIZE;
  2760. }
  2761. #endif
  2762. /*
  2763. * Determine whether the node should be displayed or not, depending on whether
  2764. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2765. */
  2766. bool skip_free_areas_node(unsigned int flags, int nid)
  2767. {
  2768. bool ret = false;
  2769. unsigned int cpuset_mems_cookie;
  2770. if (!(flags & SHOW_MEM_FILTER_NODES))
  2771. goto out;
  2772. do {
  2773. cpuset_mems_cookie = read_mems_allowed_begin();
  2774. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2775. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  2776. out:
  2777. return ret;
  2778. }
  2779. #define K(x) ((x) << (PAGE_SHIFT-10))
  2780. static void show_migration_types(unsigned char type)
  2781. {
  2782. static const char types[MIGRATE_TYPES] = {
  2783. [MIGRATE_UNMOVABLE] = 'U',
  2784. [MIGRATE_RECLAIMABLE] = 'E',
  2785. [MIGRATE_MOVABLE] = 'M',
  2786. [MIGRATE_RESERVE] = 'R',
  2787. #ifdef CONFIG_CMA
  2788. [MIGRATE_CMA] = 'C',
  2789. #endif
  2790. #ifdef CONFIG_MEMORY_ISOLATION
  2791. [MIGRATE_ISOLATE] = 'I',
  2792. #endif
  2793. };
  2794. char tmp[MIGRATE_TYPES + 1];
  2795. char *p = tmp;
  2796. int i;
  2797. for (i = 0; i < MIGRATE_TYPES; i++) {
  2798. if (type & (1 << i))
  2799. *p++ = types[i];
  2800. }
  2801. *p = '\0';
  2802. printk("(%s) ", tmp);
  2803. }
  2804. /*
  2805. * Show free area list (used inside shift_scroll-lock stuff)
  2806. * We also calculate the percentage fragmentation. We do this by counting the
  2807. * memory on each free list with the exception of the first item on the list.
  2808. * Suppresses nodes that are not allowed by current's cpuset if
  2809. * SHOW_MEM_FILTER_NODES is passed.
  2810. */
  2811. void show_free_areas(unsigned int filter)
  2812. {
  2813. int cpu;
  2814. struct zone *zone;
  2815. for_each_populated_zone(zone) {
  2816. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2817. continue;
  2818. show_node(zone);
  2819. printk("%s per-cpu:\n", zone->name);
  2820. for_each_online_cpu(cpu) {
  2821. struct per_cpu_pageset *pageset;
  2822. pageset = per_cpu_ptr(zone->pageset, cpu);
  2823. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2824. cpu, pageset->pcp.high,
  2825. pageset->pcp.batch, pageset->pcp.count);
  2826. }
  2827. }
  2828. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2829. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2830. " unevictable:%lu"
  2831. " dirty:%lu writeback:%lu unstable:%lu\n"
  2832. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2833. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  2834. " free_cma:%lu\n",
  2835. global_page_state(NR_ACTIVE_ANON),
  2836. global_page_state(NR_INACTIVE_ANON),
  2837. global_page_state(NR_ISOLATED_ANON),
  2838. global_page_state(NR_ACTIVE_FILE),
  2839. global_page_state(NR_INACTIVE_FILE),
  2840. global_page_state(NR_ISOLATED_FILE),
  2841. global_page_state(NR_UNEVICTABLE),
  2842. global_page_state(NR_FILE_DIRTY),
  2843. global_page_state(NR_WRITEBACK),
  2844. global_page_state(NR_UNSTABLE_NFS),
  2845. global_page_state(NR_FREE_PAGES),
  2846. global_page_state(NR_SLAB_RECLAIMABLE),
  2847. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2848. global_page_state(NR_FILE_MAPPED),
  2849. global_page_state(NR_SHMEM),
  2850. global_page_state(NR_PAGETABLE),
  2851. global_page_state(NR_BOUNCE),
  2852. global_page_state(NR_FREE_CMA_PAGES));
  2853. for_each_populated_zone(zone) {
  2854. int i;
  2855. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2856. continue;
  2857. show_node(zone);
  2858. printk("%s"
  2859. " free:%lukB"
  2860. " min:%lukB"
  2861. " low:%lukB"
  2862. " high:%lukB"
  2863. " active_anon:%lukB"
  2864. " inactive_anon:%lukB"
  2865. " active_file:%lukB"
  2866. " inactive_file:%lukB"
  2867. " unevictable:%lukB"
  2868. " isolated(anon):%lukB"
  2869. " isolated(file):%lukB"
  2870. " present:%lukB"
  2871. " managed:%lukB"
  2872. " mlocked:%lukB"
  2873. " dirty:%lukB"
  2874. " writeback:%lukB"
  2875. " mapped:%lukB"
  2876. " shmem:%lukB"
  2877. " slab_reclaimable:%lukB"
  2878. " slab_unreclaimable:%lukB"
  2879. " kernel_stack:%lukB"
  2880. " pagetables:%lukB"
  2881. " unstable:%lukB"
  2882. " bounce:%lukB"
  2883. " free_cma:%lukB"
  2884. " writeback_tmp:%lukB"
  2885. " pages_scanned:%lu"
  2886. " all_unreclaimable? %s"
  2887. "\n",
  2888. zone->name,
  2889. K(zone_page_state(zone, NR_FREE_PAGES)),
  2890. K(min_wmark_pages(zone)),
  2891. K(low_wmark_pages(zone)),
  2892. K(high_wmark_pages(zone)),
  2893. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2894. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2895. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2896. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2897. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2898. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2899. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2900. K(zone->present_pages),
  2901. K(zone->managed_pages),
  2902. K(zone_page_state(zone, NR_MLOCK)),
  2903. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2904. K(zone_page_state(zone, NR_WRITEBACK)),
  2905. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2906. K(zone_page_state(zone, NR_SHMEM)),
  2907. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2908. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2909. zone_page_state(zone, NR_KERNEL_STACK) *
  2910. THREAD_SIZE / 1024,
  2911. K(zone_page_state(zone, NR_PAGETABLE)),
  2912. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2913. K(zone_page_state(zone, NR_BOUNCE)),
  2914. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  2915. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2916. K(zone_page_state(zone, NR_PAGES_SCANNED)),
  2917. (!zone_reclaimable(zone) ? "yes" : "no")
  2918. );
  2919. printk("lowmem_reserve[]:");
  2920. for (i = 0; i < MAX_NR_ZONES; i++)
  2921. printk(" %ld", zone->lowmem_reserve[i]);
  2922. printk("\n");
  2923. }
  2924. for_each_populated_zone(zone) {
  2925. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2926. unsigned char types[MAX_ORDER];
  2927. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2928. continue;
  2929. show_node(zone);
  2930. printk("%s: ", zone->name);
  2931. spin_lock_irqsave(&zone->lock, flags);
  2932. for (order = 0; order < MAX_ORDER; order++) {
  2933. struct free_area *area = &zone->free_area[order];
  2934. int type;
  2935. nr[order] = area->nr_free;
  2936. total += nr[order] << order;
  2937. types[order] = 0;
  2938. for (type = 0; type < MIGRATE_TYPES; type++) {
  2939. if (!list_empty(&area->free_list[type]))
  2940. types[order] |= 1 << type;
  2941. }
  2942. }
  2943. spin_unlock_irqrestore(&zone->lock, flags);
  2944. for (order = 0; order < MAX_ORDER; order++) {
  2945. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2946. if (nr[order])
  2947. show_migration_types(types[order]);
  2948. }
  2949. printk("= %lukB\n", K(total));
  2950. }
  2951. hugetlb_show_meminfo();
  2952. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2953. show_swap_cache_info();
  2954. }
  2955. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2956. {
  2957. zoneref->zone = zone;
  2958. zoneref->zone_idx = zone_idx(zone);
  2959. }
  2960. /*
  2961. * Builds allocation fallback zone lists.
  2962. *
  2963. * Add all populated zones of a node to the zonelist.
  2964. */
  2965. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2966. int nr_zones)
  2967. {
  2968. struct zone *zone;
  2969. enum zone_type zone_type = MAX_NR_ZONES;
  2970. do {
  2971. zone_type--;
  2972. zone = pgdat->node_zones + zone_type;
  2973. if (populated_zone(zone)) {
  2974. zoneref_set_zone(zone,
  2975. &zonelist->_zonerefs[nr_zones++]);
  2976. check_highest_zone(zone_type);
  2977. }
  2978. } while (zone_type);
  2979. return nr_zones;
  2980. }
  2981. /*
  2982. * zonelist_order:
  2983. * 0 = automatic detection of better ordering.
  2984. * 1 = order by ([node] distance, -zonetype)
  2985. * 2 = order by (-zonetype, [node] distance)
  2986. *
  2987. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2988. * the same zonelist. So only NUMA can configure this param.
  2989. */
  2990. #define ZONELIST_ORDER_DEFAULT 0
  2991. #define ZONELIST_ORDER_NODE 1
  2992. #define ZONELIST_ORDER_ZONE 2
  2993. /* zonelist order in the kernel.
  2994. * set_zonelist_order() will set this to NODE or ZONE.
  2995. */
  2996. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2997. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2998. #ifdef CONFIG_NUMA
  2999. /* The value user specified ....changed by config */
  3000. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3001. /* string for sysctl */
  3002. #define NUMA_ZONELIST_ORDER_LEN 16
  3003. char numa_zonelist_order[16] = "default";
  3004. /*
  3005. * interface for configure zonelist ordering.
  3006. * command line option "numa_zonelist_order"
  3007. * = "[dD]efault - default, automatic configuration.
  3008. * = "[nN]ode - order by node locality, then by zone within node
  3009. * = "[zZ]one - order by zone, then by locality within zone
  3010. */
  3011. static int __parse_numa_zonelist_order(char *s)
  3012. {
  3013. if (*s == 'd' || *s == 'D') {
  3014. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3015. } else if (*s == 'n' || *s == 'N') {
  3016. user_zonelist_order = ZONELIST_ORDER_NODE;
  3017. } else if (*s == 'z' || *s == 'Z') {
  3018. user_zonelist_order = ZONELIST_ORDER_ZONE;
  3019. } else {
  3020. printk(KERN_WARNING
  3021. "Ignoring invalid numa_zonelist_order value: "
  3022. "%s\n", s);
  3023. return -EINVAL;
  3024. }
  3025. return 0;
  3026. }
  3027. static __init int setup_numa_zonelist_order(char *s)
  3028. {
  3029. int ret;
  3030. if (!s)
  3031. return 0;
  3032. ret = __parse_numa_zonelist_order(s);
  3033. if (ret == 0)
  3034. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  3035. return ret;
  3036. }
  3037. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  3038. /*
  3039. * sysctl handler for numa_zonelist_order
  3040. */
  3041. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  3042. void __user *buffer, size_t *length,
  3043. loff_t *ppos)
  3044. {
  3045. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  3046. int ret;
  3047. static DEFINE_MUTEX(zl_order_mutex);
  3048. mutex_lock(&zl_order_mutex);
  3049. if (write) {
  3050. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  3051. ret = -EINVAL;
  3052. goto out;
  3053. }
  3054. strcpy(saved_string, (char *)table->data);
  3055. }
  3056. ret = proc_dostring(table, write, buffer, length, ppos);
  3057. if (ret)
  3058. goto out;
  3059. if (write) {
  3060. int oldval = user_zonelist_order;
  3061. ret = __parse_numa_zonelist_order((char *)table->data);
  3062. if (ret) {
  3063. /*
  3064. * bogus value. restore saved string
  3065. */
  3066. strncpy((char *)table->data, saved_string,
  3067. NUMA_ZONELIST_ORDER_LEN);
  3068. user_zonelist_order = oldval;
  3069. } else if (oldval != user_zonelist_order) {
  3070. mutex_lock(&zonelists_mutex);
  3071. build_all_zonelists(NULL, NULL);
  3072. mutex_unlock(&zonelists_mutex);
  3073. }
  3074. }
  3075. out:
  3076. mutex_unlock(&zl_order_mutex);
  3077. return ret;
  3078. }
  3079. #define MAX_NODE_LOAD (nr_online_nodes)
  3080. static int node_load[MAX_NUMNODES];
  3081. /**
  3082. * find_next_best_node - find the next node that should appear in a given node's fallback list
  3083. * @node: node whose fallback list we're appending
  3084. * @used_node_mask: nodemask_t of already used nodes
  3085. *
  3086. * We use a number of factors to determine which is the next node that should
  3087. * appear on a given node's fallback list. The node should not have appeared
  3088. * already in @node's fallback list, and it should be the next closest node
  3089. * according to the distance array (which contains arbitrary distance values
  3090. * from each node to each node in the system), and should also prefer nodes
  3091. * with no CPUs, since presumably they'll have very little allocation pressure
  3092. * on them otherwise.
  3093. * It returns -1 if no node is found.
  3094. */
  3095. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  3096. {
  3097. int n, val;
  3098. int min_val = INT_MAX;
  3099. int best_node = NUMA_NO_NODE;
  3100. const struct cpumask *tmp = cpumask_of_node(0);
  3101. /* Use the local node if we haven't already */
  3102. if (!node_isset(node, *used_node_mask)) {
  3103. node_set(node, *used_node_mask);
  3104. return node;
  3105. }
  3106. for_each_node_state(n, N_MEMORY) {
  3107. /* Don't want a node to appear more than once */
  3108. if (node_isset(n, *used_node_mask))
  3109. continue;
  3110. /* Use the distance array to find the distance */
  3111. val = node_distance(node, n);
  3112. /* Penalize nodes under us ("prefer the next node") */
  3113. val += (n < node);
  3114. /* Give preference to headless and unused nodes */
  3115. tmp = cpumask_of_node(n);
  3116. if (!cpumask_empty(tmp))
  3117. val += PENALTY_FOR_NODE_WITH_CPUS;
  3118. /* Slight preference for less loaded node */
  3119. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  3120. val += node_load[n];
  3121. if (val < min_val) {
  3122. min_val = val;
  3123. best_node = n;
  3124. }
  3125. }
  3126. if (best_node >= 0)
  3127. node_set(best_node, *used_node_mask);
  3128. return best_node;
  3129. }
  3130. /*
  3131. * Build zonelists ordered by node and zones within node.
  3132. * This results in maximum locality--normal zone overflows into local
  3133. * DMA zone, if any--but risks exhausting DMA zone.
  3134. */
  3135. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  3136. {
  3137. int j;
  3138. struct zonelist *zonelist;
  3139. zonelist = &pgdat->node_zonelists[0];
  3140. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  3141. ;
  3142. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3143. zonelist->_zonerefs[j].zone = NULL;
  3144. zonelist->_zonerefs[j].zone_idx = 0;
  3145. }
  3146. /*
  3147. * Build gfp_thisnode zonelists
  3148. */
  3149. static void build_thisnode_zonelists(pg_data_t *pgdat)
  3150. {
  3151. int j;
  3152. struct zonelist *zonelist;
  3153. zonelist = &pgdat->node_zonelists[1];
  3154. j = build_zonelists_node(pgdat, zonelist, 0);
  3155. zonelist->_zonerefs[j].zone = NULL;
  3156. zonelist->_zonerefs[j].zone_idx = 0;
  3157. }
  3158. /*
  3159. * Build zonelists ordered by zone and nodes within zones.
  3160. * This results in conserving DMA zone[s] until all Normal memory is
  3161. * exhausted, but results in overflowing to remote node while memory
  3162. * may still exist in local DMA zone.
  3163. */
  3164. static int node_order[MAX_NUMNODES];
  3165. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  3166. {
  3167. int pos, j, node;
  3168. int zone_type; /* needs to be signed */
  3169. struct zone *z;
  3170. struct zonelist *zonelist;
  3171. zonelist = &pgdat->node_zonelists[0];
  3172. pos = 0;
  3173. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  3174. for (j = 0; j < nr_nodes; j++) {
  3175. node = node_order[j];
  3176. z = &NODE_DATA(node)->node_zones[zone_type];
  3177. if (populated_zone(z)) {
  3178. zoneref_set_zone(z,
  3179. &zonelist->_zonerefs[pos++]);
  3180. check_highest_zone(zone_type);
  3181. }
  3182. }
  3183. }
  3184. zonelist->_zonerefs[pos].zone = NULL;
  3185. zonelist->_zonerefs[pos].zone_idx = 0;
  3186. }
  3187. #if defined(CONFIG_64BIT)
  3188. /*
  3189. * Devices that require DMA32/DMA are relatively rare and do not justify a
  3190. * penalty to every machine in case the specialised case applies. Default
  3191. * to Node-ordering on 64-bit NUMA machines
  3192. */
  3193. static int default_zonelist_order(void)
  3194. {
  3195. return ZONELIST_ORDER_NODE;
  3196. }
  3197. #else
  3198. /*
  3199. * On 32-bit, the Normal zone needs to be preserved for allocations accessible
  3200. * by the kernel. If processes running on node 0 deplete the low memory zone
  3201. * then reclaim will occur more frequency increasing stalls and potentially
  3202. * be easier to OOM if a large percentage of the zone is under writeback or
  3203. * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
  3204. * Hence, default to zone ordering on 32-bit.
  3205. */
  3206. static int default_zonelist_order(void)
  3207. {
  3208. return ZONELIST_ORDER_ZONE;
  3209. }
  3210. #endif /* CONFIG_64BIT */
  3211. static void set_zonelist_order(void)
  3212. {
  3213. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  3214. current_zonelist_order = default_zonelist_order();
  3215. else
  3216. current_zonelist_order = user_zonelist_order;
  3217. }
  3218. static void build_zonelists(pg_data_t *pgdat)
  3219. {
  3220. int j, node, load;
  3221. enum zone_type i;
  3222. nodemask_t used_mask;
  3223. int local_node, prev_node;
  3224. struct zonelist *zonelist;
  3225. int order = current_zonelist_order;
  3226. /* initialize zonelists */
  3227. for (i = 0; i < MAX_ZONELISTS; i++) {
  3228. zonelist = pgdat->node_zonelists + i;
  3229. zonelist->_zonerefs[0].zone = NULL;
  3230. zonelist->_zonerefs[0].zone_idx = 0;
  3231. }
  3232. /* NUMA-aware ordering of nodes */
  3233. local_node = pgdat->node_id;
  3234. load = nr_online_nodes;
  3235. prev_node = local_node;
  3236. nodes_clear(used_mask);
  3237. memset(node_order, 0, sizeof(node_order));
  3238. j = 0;
  3239. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  3240. /*
  3241. * We don't want to pressure a particular node.
  3242. * So adding penalty to the first node in same
  3243. * distance group to make it round-robin.
  3244. */
  3245. if (node_distance(local_node, node) !=
  3246. node_distance(local_node, prev_node))
  3247. node_load[node] = load;
  3248. prev_node = node;
  3249. load--;
  3250. if (order == ZONELIST_ORDER_NODE)
  3251. build_zonelists_in_node_order(pgdat, node);
  3252. else
  3253. node_order[j++] = node; /* remember order */
  3254. }
  3255. if (order == ZONELIST_ORDER_ZONE) {
  3256. /* calculate node order -- i.e., DMA last! */
  3257. build_zonelists_in_zone_order(pgdat, j);
  3258. }
  3259. build_thisnode_zonelists(pgdat);
  3260. }
  3261. /* Construct the zonelist performance cache - see further mmzone.h */
  3262. static void build_zonelist_cache(pg_data_t *pgdat)
  3263. {
  3264. struct zonelist *zonelist;
  3265. struct zonelist_cache *zlc;
  3266. struct zoneref *z;
  3267. zonelist = &pgdat->node_zonelists[0];
  3268. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  3269. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  3270. for (z = zonelist->_zonerefs; z->zone; z++)
  3271. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  3272. }
  3273. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3274. /*
  3275. * Return node id of node used for "local" allocations.
  3276. * I.e., first node id of first zone in arg node's generic zonelist.
  3277. * Used for initializing percpu 'numa_mem', which is used primarily
  3278. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  3279. */
  3280. int local_memory_node(int node)
  3281. {
  3282. struct zone *zone;
  3283. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  3284. gfp_zone(GFP_KERNEL),
  3285. NULL,
  3286. &zone);
  3287. return zone->node;
  3288. }
  3289. #endif
  3290. #else /* CONFIG_NUMA */
  3291. static void set_zonelist_order(void)
  3292. {
  3293. current_zonelist_order = ZONELIST_ORDER_ZONE;
  3294. }
  3295. static void build_zonelists(pg_data_t *pgdat)
  3296. {
  3297. int node, local_node;
  3298. enum zone_type j;
  3299. struct zonelist *zonelist;
  3300. local_node = pgdat->node_id;
  3301. zonelist = &pgdat->node_zonelists[0];
  3302. j = build_zonelists_node(pgdat, zonelist, 0);
  3303. /*
  3304. * Now we build the zonelist so that it contains the zones
  3305. * of all the other nodes.
  3306. * We don't want to pressure a particular node, so when
  3307. * building the zones for node N, we make sure that the
  3308. * zones coming right after the local ones are those from
  3309. * node N+1 (modulo N)
  3310. */
  3311. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  3312. if (!node_online(node))
  3313. continue;
  3314. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3315. }
  3316. for (node = 0; node < local_node; node++) {
  3317. if (!node_online(node))
  3318. continue;
  3319. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3320. }
  3321. zonelist->_zonerefs[j].zone = NULL;
  3322. zonelist->_zonerefs[j].zone_idx = 0;
  3323. }
  3324. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  3325. static void build_zonelist_cache(pg_data_t *pgdat)
  3326. {
  3327. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  3328. }
  3329. #endif /* CONFIG_NUMA */
  3330. /*
  3331. * Boot pageset table. One per cpu which is going to be used for all
  3332. * zones and all nodes. The parameters will be set in such a way
  3333. * that an item put on a list will immediately be handed over to
  3334. * the buddy list. This is safe since pageset manipulation is done
  3335. * with interrupts disabled.
  3336. *
  3337. * The boot_pagesets must be kept even after bootup is complete for
  3338. * unused processors and/or zones. They do play a role for bootstrapping
  3339. * hotplugged processors.
  3340. *
  3341. * zoneinfo_show() and maybe other functions do
  3342. * not check if the processor is online before following the pageset pointer.
  3343. * Other parts of the kernel may not check if the zone is available.
  3344. */
  3345. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3346. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3347. static void setup_zone_pageset(struct zone *zone);
  3348. /*
  3349. * Global mutex to protect against size modification of zonelists
  3350. * as well as to serialize pageset setup for the new populated zone.
  3351. */
  3352. DEFINE_MUTEX(zonelists_mutex);
  3353. /* return values int ....just for stop_machine() */
  3354. static int __build_all_zonelists(void *data)
  3355. {
  3356. int nid;
  3357. int cpu;
  3358. pg_data_t *self = data;
  3359. #ifdef CONFIG_NUMA
  3360. memset(node_load, 0, sizeof(node_load));
  3361. #endif
  3362. if (self && !node_online(self->node_id)) {
  3363. build_zonelists(self);
  3364. build_zonelist_cache(self);
  3365. }
  3366. for_each_online_node(nid) {
  3367. pg_data_t *pgdat = NODE_DATA(nid);
  3368. build_zonelists(pgdat);
  3369. build_zonelist_cache(pgdat);
  3370. }
  3371. /*
  3372. * Initialize the boot_pagesets that are going to be used
  3373. * for bootstrapping processors. The real pagesets for
  3374. * each zone will be allocated later when the per cpu
  3375. * allocator is available.
  3376. *
  3377. * boot_pagesets are used also for bootstrapping offline
  3378. * cpus if the system is already booted because the pagesets
  3379. * are needed to initialize allocators on a specific cpu too.
  3380. * F.e. the percpu allocator needs the page allocator which
  3381. * needs the percpu allocator in order to allocate its pagesets
  3382. * (a chicken-egg dilemma).
  3383. */
  3384. for_each_possible_cpu(cpu) {
  3385. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3386. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3387. /*
  3388. * We now know the "local memory node" for each node--
  3389. * i.e., the node of the first zone in the generic zonelist.
  3390. * Set up numa_mem percpu variable for on-line cpus. During
  3391. * boot, only the boot cpu should be on-line; we'll init the
  3392. * secondary cpus' numa_mem as they come on-line. During
  3393. * node/memory hotplug, we'll fixup all on-line cpus.
  3394. */
  3395. if (cpu_online(cpu))
  3396. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3397. #endif
  3398. }
  3399. return 0;
  3400. }
  3401. /*
  3402. * Called with zonelists_mutex held always
  3403. * unless system_state == SYSTEM_BOOTING.
  3404. */
  3405. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  3406. {
  3407. set_zonelist_order();
  3408. if (system_state == SYSTEM_BOOTING) {
  3409. __build_all_zonelists(NULL);
  3410. mminit_verify_zonelist();
  3411. cpuset_init_current_mems_allowed();
  3412. } else {
  3413. #ifdef CONFIG_MEMORY_HOTPLUG
  3414. if (zone)
  3415. setup_zone_pageset(zone);
  3416. #endif
  3417. /* we have to stop all cpus to guarantee there is no user
  3418. of zonelist */
  3419. stop_machine(__build_all_zonelists, pgdat, NULL);
  3420. /* cpuset refresh routine should be here */
  3421. }
  3422. vm_total_pages = nr_free_pagecache_pages();
  3423. /*
  3424. * Disable grouping by mobility if the number of pages in the
  3425. * system is too low to allow the mechanism to work. It would be
  3426. * more accurate, but expensive to check per-zone. This check is
  3427. * made on memory-hotadd so a system can start with mobility
  3428. * disabled and enable it later
  3429. */
  3430. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3431. page_group_by_mobility_disabled = 1;
  3432. else
  3433. page_group_by_mobility_disabled = 0;
  3434. pr_info("Built %i zonelists in %s order, mobility grouping %s. "
  3435. "Total pages: %ld\n",
  3436. nr_online_nodes,
  3437. zonelist_order_name[current_zonelist_order],
  3438. page_group_by_mobility_disabled ? "off" : "on",
  3439. vm_total_pages);
  3440. #ifdef CONFIG_NUMA
  3441. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  3442. #endif
  3443. }
  3444. /*
  3445. * Helper functions to size the waitqueue hash table.
  3446. * Essentially these want to choose hash table sizes sufficiently
  3447. * large so that collisions trying to wait on pages are rare.
  3448. * But in fact, the number of active page waitqueues on typical
  3449. * systems is ridiculously low, less than 200. So this is even
  3450. * conservative, even though it seems large.
  3451. *
  3452. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3453. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3454. */
  3455. #define PAGES_PER_WAITQUEUE 256
  3456. #ifndef CONFIG_MEMORY_HOTPLUG
  3457. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3458. {
  3459. unsigned long size = 1;
  3460. pages /= PAGES_PER_WAITQUEUE;
  3461. while (size < pages)
  3462. size <<= 1;
  3463. /*
  3464. * Once we have dozens or even hundreds of threads sleeping
  3465. * on IO we've got bigger problems than wait queue collision.
  3466. * Limit the size of the wait table to a reasonable size.
  3467. */
  3468. size = min(size, 4096UL);
  3469. return max(size, 4UL);
  3470. }
  3471. #else
  3472. /*
  3473. * A zone's size might be changed by hot-add, so it is not possible to determine
  3474. * a suitable size for its wait_table. So we use the maximum size now.
  3475. *
  3476. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3477. *
  3478. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3479. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3480. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3481. *
  3482. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3483. * or more by the traditional way. (See above). It equals:
  3484. *
  3485. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3486. * ia64(16K page size) : = ( 8G + 4M)byte.
  3487. * powerpc (64K page size) : = (32G +16M)byte.
  3488. */
  3489. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3490. {
  3491. return 4096UL;
  3492. }
  3493. #endif
  3494. /*
  3495. * This is an integer logarithm so that shifts can be used later
  3496. * to extract the more random high bits from the multiplicative
  3497. * hash function before the remainder is taken.
  3498. */
  3499. static inline unsigned long wait_table_bits(unsigned long size)
  3500. {
  3501. return ffz(~size);
  3502. }
  3503. /*
  3504. * Check if a pageblock contains reserved pages
  3505. */
  3506. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  3507. {
  3508. unsigned long pfn;
  3509. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3510. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  3511. return 1;
  3512. }
  3513. return 0;
  3514. }
  3515. /*
  3516. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  3517. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  3518. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  3519. * higher will lead to a bigger reserve which will get freed as contiguous
  3520. * blocks as reclaim kicks in
  3521. */
  3522. static void setup_zone_migrate_reserve(struct zone *zone)
  3523. {
  3524. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  3525. struct page *page;
  3526. unsigned long block_migratetype;
  3527. int reserve;
  3528. int old_reserve;
  3529. /*
  3530. * Get the start pfn, end pfn and the number of blocks to reserve
  3531. * We have to be careful to be aligned to pageblock_nr_pages to
  3532. * make sure that we always check pfn_valid for the first page in
  3533. * the block.
  3534. */
  3535. start_pfn = zone->zone_start_pfn;
  3536. end_pfn = zone_end_pfn(zone);
  3537. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  3538. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  3539. pageblock_order;
  3540. /*
  3541. * Reserve blocks are generally in place to help high-order atomic
  3542. * allocations that are short-lived. A min_free_kbytes value that
  3543. * would result in more than 2 reserve blocks for atomic allocations
  3544. * is assumed to be in place to help anti-fragmentation for the
  3545. * future allocation of hugepages at runtime.
  3546. */
  3547. reserve = min(2, reserve);
  3548. old_reserve = zone->nr_migrate_reserve_block;
  3549. /* When memory hot-add, we almost always need to do nothing */
  3550. if (reserve == old_reserve)
  3551. return;
  3552. zone->nr_migrate_reserve_block = reserve;
  3553. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  3554. if (!pfn_valid(pfn))
  3555. continue;
  3556. page = pfn_to_page(pfn);
  3557. /* Watch out for overlapping nodes */
  3558. if (page_to_nid(page) != zone_to_nid(zone))
  3559. continue;
  3560. block_migratetype = get_pageblock_migratetype(page);
  3561. /* Only test what is necessary when the reserves are not met */
  3562. if (reserve > 0) {
  3563. /*
  3564. * Blocks with reserved pages will never free, skip
  3565. * them.
  3566. */
  3567. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  3568. if (pageblock_is_reserved(pfn, block_end_pfn))
  3569. continue;
  3570. /* If this block is reserved, account for it */
  3571. if (block_migratetype == MIGRATE_RESERVE) {
  3572. reserve--;
  3573. continue;
  3574. }
  3575. /* Suitable for reserving if this block is movable */
  3576. if (block_migratetype == MIGRATE_MOVABLE) {
  3577. set_pageblock_migratetype(page,
  3578. MIGRATE_RESERVE);
  3579. move_freepages_block(zone, page,
  3580. MIGRATE_RESERVE);
  3581. reserve--;
  3582. continue;
  3583. }
  3584. } else if (!old_reserve) {
  3585. /*
  3586. * At boot time we don't need to scan the whole zone
  3587. * for turning off MIGRATE_RESERVE.
  3588. */
  3589. break;
  3590. }
  3591. /*
  3592. * If the reserve is met and this is a previous reserved block,
  3593. * take it back
  3594. */
  3595. if (block_migratetype == MIGRATE_RESERVE) {
  3596. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3597. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3598. }
  3599. }
  3600. }
  3601. /*
  3602. * Initially all pages are reserved - free ones are freed
  3603. * up by free_all_bootmem() once the early boot process is
  3604. * done. Non-atomic initialization, single-pass.
  3605. */
  3606. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3607. unsigned long start_pfn, enum memmap_context context)
  3608. {
  3609. struct page *page;
  3610. unsigned long end_pfn = start_pfn + size;
  3611. unsigned long pfn;
  3612. struct zone *z;
  3613. if (highest_memmap_pfn < end_pfn - 1)
  3614. highest_memmap_pfn = end_pfn - 1;
  3615. z = &NODE_DATA(nid)->node_zones[zone];
  3616. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3617. /*
  3618. * There can be holes in boot-time mem_map[]s
  3619. * handed to this function. They do not
  3620. * exist on hotplugged memory.
  3621. */
  3622. if (context == MEMMAP_EARLY) {
  3623. if (!early_pfn_valid(pfn))
  3624. continue;
  3625. if (!early_pfn_in_nid(pfn, nid))
  3626. continue;
  3627. }
  3628. page = pfn_to_page(pfn);
  3629. set_page_links(page, zone, nid, pfn);
  3630. mminit_verify_page_links(page, zone, nid, pfn);
  3631. init_page_count(page);
  3632. page_mapcount_reset(page);
  3633. page_cpupid_reset_last(page);
  3634. SetPageReserved(page);
  3635. /*
  3636. * Mark the block movable so that blocks are reserved for
  3637. * movable at startup. This will force kernel allocations
  3638. * to reserve their blocks rather than leaking throughout
  3639. * the address space during boot when many long-lived
  3640. * kernel allocations are made. Later some blocks near
  3641. * the start are marked MIGRATE_RESERVE by
  3642. * setup_zone_migrate_reserve()
  3643. *
  3644. * bitmap is created for zone's valid pfn range. but memmap
  3645. * can be created for invalid pages (for alignment)
  3646. * check here not to call set_pageblock_migratetype() against
  3647. * pfn out of zone.
  3648. */
  3649. if ((z->zone_start_pfn <= pfn)
  3650. && (pfn < zone_end_pfn(z))
  3651. && !(pfn & (pageblock_nr_pages - 1)))
  3652. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3653. INIT_LIST_HEAD(&page->lru);
  3654. #ifdef WANT_PAGE_VIRTUAL
  3655. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3656. if (!is_highmem_idx(zone))
  3657. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3658. #endif
  3659. }
  3660. }
  3661. static void __meminit zone_init_free_lists(struct zone *zone)
  3662. {
  3663. unsigned int order, t;
  3664. for_each_migratetype_order(order, t) {
  3665. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3666. zone->free_area[order].nr_free = 0;
  3667. }
  3668. }
  3669. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3670. #define memmap_init(size, nid, zone, start_pfn) \
  3671. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3672. #endif
  3673. static int zone_batchsize(struct zone *zone)
  3674. {
  3675. #ifdef CONFIG_MMU
  3676. int batch;
  3677. /*
  3678. * The per-cpu-pages pools are set to around 1000th of the
  3679. * size of the zone. But no more than 1/2 of a meg.
  3680. *
  3681. * OK, so we don't know how big the cache is. So guess.
  3682. */
  3683. batch = zone->managed_pages / 1024;
  3684. if (batch * PAGE_SIZE > 512 * 1024)
  3685. batch = (512 * 1024) / PAGE_SIZE;
  3686. batch /= 4; /* We effectively *= 4 below */
  3687. if (batch < 1)
  3688. batch = 1;
  3689. /*
  3690. * Clamp the batch to a 2^n - 1 value. Having a power
  3691. * of 2 value was found to be more likely to have
  3692. * suboptimal cache aliasing properties in some cases.
  3693. *
  3694. * For example if 2 tasks are alternately allocating
  3695. * batches of pages, one task can end up with a lot
  3696. * of pages of one half of the possible page colors
  3697. * and the other with pages of the other colors.
  3698. */
  3699. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3700. return batch;
  3701. #else
  3702. /* The deferral and batching of frees should be suppressed under NOMMU
  3703. * conditions.
  3704. *
  3705. * The problem is that NOMMU needs to be able to allocate large chunks
  3706. * of contiguous memory as there's no hardware page translation to
  3707. * assemble apparent contiguous memory from discontiguous pages.
  3708. *
  3709. * Queueing large contiguous runs of pages for batching, however,
  3710. * causes the pages to actually be freed in smaller chunks. As there
  3711. * can be a significant delay between the individual batches being
  3712. * recycled, this leads to the once large chunks of space being
  3713. * fragmented and becoming unavailable for high-order allocations.
  3714. */
  3715. return 0;
  3716. #endif
  3717. }
  3718. /*
  3719. * pcp->high and pcp->batch values are related and dependent on one another:
  3720. * ->batch must never be higher then ->high.
  3721. * The following function updates them in a safe manner without read side
  3722. * locking.
  3723. *
  3724. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  3725. * those fields changing asynchronously (acording the the above rule).
  3726. *
  3727. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  3728. * outside of boot time (or some other assurance that no concurrent updaters
  3729. * exist).
  3730. */
  3731. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  3732. unsigned long batch)
  3733. {
  3734. /* start with a fail safe value for batch */
  3735. pcp->batch = 1;
  3736. smp_wmb();
  3737. /* Update high, then batch, in order */
  3738. pcp->high = high;
  3739. smp_wmb();
  3740. pcp->batch = batch;
  3741. }
  3742. /* a companion to pageset_set_high() */
  3743. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  3744. {
  3745. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  3746. }
  3747. static void pageset_init(struct per_cpu_pageset *p)
  3748. {
  3749. struct per_cpu_pages *pcp;
  3750. int migratetype;
  3751. memset(p, 0, sizeof(*p));
  3752. pcp = &p->pcp;
  3753. pcp->count = 0;
  3754. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3755. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3756. }
  3757. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3758. {
  3759. pageset_init(p);
  3760. pageset_set_batch(p, batch);
  3761. }
  3762. /*
  3763. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  3764. * to the value high for the pageset p.
  3765. */
  3766. static void pageset_set_high(struct per_cpu_pageset *p,
  3767. unsigned long high)
  3768. {
  3769. unsigned long batch = max(1UL, high / 4);
  3770. if ((high / 4) > (PAGE_SHIFT * 8))
  3771. batch = PAGE_SHIFT * 8;
  3772. pageset_update(&p->pcp, high, batch);
  3773. }
  3774. static void pageset_set_high_and_batch(struct zone *zone,
  3775. struct per_cpu_pageset *pcp)
  3776. {
  3777. if (percpu_pagelist_fraction)
  3778. pageset_set_high(pcp,
  3779. (zone->managed_pages /
  3780. percpu_pagelist_fraction));
  3781. else
  3782. pageset_set_batch(pcp, zone_batchsize(zone));
  3783. }
  3784. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  3785. {
  3786. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3787. pageset_init(pcp);
  3788. pageset_set_high_and_batch(zone, pcp);
  3789. }
  3790. static void __meminit setup_zone_pageset(struct zone *zone)
  3791. {
  3792. int cpu;
  3793. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3794. for_each_possible_cpu(cpu)
  3795. zone_pageset_init(zone, cpu);
  3796. }
  3797. /*
  3798. * Allocate per cpu pagesets and initialize them.
  3799. * Before this call only boot pagesets were available.
  3800. */
  3801. void __init setup_per_cpu_pageset(void)
  3802. {
  3803. struct zone *zone;
  3804. for_each_populated_zone(zone)
  3805. setup_zone_pageset(zone);
  3806. }
  3807. static noinline __init_refok
  3808. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3809. {
  3810. int i;
  3811. size_t alloc_size;
  3812. /*
  3813. * The per-page waitqueue mechanism uses hashed waitqueues
  3814. * per zone.
  3815. */
  3816. zone->wait_table_hash_nr_entries =
  3817. wait_table_hash_nr_entries(zone_size_pages);
  3818. zone->wait_table_bits =
  3819. wait_table_bits(zone->wait_table_hash_nr_entries);
  3820. alloc_size = zone->wait_table_hash_nr_entries
  3821. * sizeof(wait_queue_head_t);
  3822. if (!slab_is_available()) {
  3823. zone->wait_table = (wait_queue_head_t *)
  3824. memblock_virt_alloc_node_nopanic(
  3825. alloc_size, zone->zone_pgdat->node_id);
  3826. } else {
  3827. /*
  3828. * This case means that a zone whose size was 0 gets new memory
  3829. * via memory hot-add.
  3830. * But it may be the case that a new node was hot-added. In
  3831. * this case vmalloc() will not be able to use this new node's
  3832. * memory - this wait_table must be initialized to use this new
  3833. * node itself as well.
  3834. * To use this new node's memory, further consideration will be
  3835. * necessary.
  3836. */
  3837. zone->wait_table = vmalloc(alloc_size);
  3838. }
  3839. if (!zone->wait_table)
  3840. return -ENOMEM;
  3841. for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3842. init_waitqueue_head(zone->wait_table + i);
  3843. return 0;
  3844. }
  3845. static __meminit void zone_pcp_init(struct zone *zone)
  3846. {
  3847. /*
  3848. * per cpu subsystem is not up at this point. The following code
  3849. * relies on the ability of the linker to provide the
  3850. * offset of a (static) per cpu variable into the per cpu area.
  3851. */
  3852. zone->pageset = &boot_pageset;
  3853. if (populated_zone(zone))
  3854. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3855. zone->name, zone->present_pages,
  3856. zone_batchsize(zone));
  3857. }
  3858. int __meminit init_currently_empty_zone(struct zone *zone,
  3859. unsigned long zone_start_pfn,
  3860. unsigned long size,
  3861. enum memmap_context context)
  3862. {
  3863. struct pglist_data *pgdat = zone->zone_pgdat;
  3864. int ret;
  3865. ret = zone_wait_table_init(zone, size);
  3866. if (ret)
  3867. return ret;
  3868. pgdat->nr_zones = zone_idx(zone) + 1;
  3869. zone->zone_start_pfn = zone_start_pfn;
  3870. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3871. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3872. pgdat->node_id,
  3873. (unsigned long)zone_idx(zone),
  3874. zone_start_pfn, (zone_start_pfn + size));
  3875. zone_init_free_lists(zone);
  3876. return 0;
  3877. }
  3878. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3879. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3880. /*
  3881. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3882. */
  3883. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3884. {
  3885. unsigned long start_pfn, end_pfn;
  3886. int nid;
  3887. /*
  3888. * NOTE: The following SMP-unsafe globals are only used early in boot
  3889. * when the kernel is running single-threaded.
  3890. */
  3891. static unsigned long __meminitdata last_start_pfn, last_end_pfn;
  3892. static int __meminitdata last_nid;
  3893. if (last_start_pfn <= pfn && pfn < last_end_pfn)
  3894. return last_nid;
  3895. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  3896. if (nid != -1) {
  3897. last_start_pfn = start_pfn;
  3898. last_end_pfn = end_pfn;
  3899. last_nid = nid;
  3900. }
  3901. return nid;
  3902. }
  3903. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3904. int __meminit early_pfn_to_nid(unsigned long pfn)
  3905. {
  3906. int nid;
  3907. nid = __early_pfn_to_nid(pfn);
  3908. if (nid >= 0)
  3909. return nid;
  3910. /* just returns 0 */
  3911. return 0;
  3912. }
  3913. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3914. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3915. {
  3916. int nid;
  3917. nid = __early_pfn_to_nid(pfn);
  3918. if (nid >= 0 && nid != node)
  3919. return false;
  3920. return true;
  3921. }
  3922. #endif
  3923. /**
  3924. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  3925. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3926. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  3927. *
  3928. * If an architecture guarantees that all ranges registered contain no holes
  3929. * and may be freed, this this function may be used instead of calling
  3930. * memblock_free_early_nid() manually.
  3931. */
  3932. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  3933. {
  3934. unsigned long start_pfn, end_pfn;
  3935. int i, this_nid;
  3936. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  3937. start_pfn = min(start_pfn, max_low_pfn);
  3938. end_pfn = min(end_pfn, max_low_pfn);
  3939. if (start_pfn < end_pfn)
  3940. memblock_free_early_nid(PFN_PHYS(start_pfn),
  3941. (end_pfn - start_pfn) << PAGE_SHIFT,
  3942. this_nid);
  3943. }
  3944. }
  3945. /**
  3946. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3947. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3948. *
  3949. * If an architecture guarantees that all ranges registered contain no holes and may
  3950. * be freed, this function may be used instead of calling memory_present() manually.
  3951. */
  3952. void __init sparse_memory_present_with_active_regions(int nid)
  3953. {
  3954. unsigned long start_pfn, end_pfn;
  3955. int i, this_nid;
  3956. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  3957. memory_present(this_nid, start_pfn, end_pfn);
  3958. }
  3959. /**
  3960. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3961. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3962. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3963. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3964. *
  3965. * It returns the start and end page frame of a node based on information
  3966. * provided by memblock_set_node(). If called for a node
  3967. * with no available memory, a warning is printed and the start and end
  3968. * PFNs will be 0.
  3969. */
  3970. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3971. unsigned long *start_pfn, unsigned long *end_pfn)
  3972. {
  3973. unsigned long this_start_pfn, this_end_pfn;
  3974. int i;
  3975. *start_pfn = -1UL;
  3976. *end_pfn = 0;
  3977. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  3978. *start_pfn = min(*start_pfn, this_start_pfn);
  3979. *end_pfn = max(*end_pfn, this_end_pfn);
  3980. }
  3981. if (*start_pfn == -1UL)
  3982. *start_pfn = 0;
  3983. }
  3984. /*
  3985. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3986. * assumption is made that zones within a node are ordered in monotonic
  3987. * increasing memory addresses so that the "highest" populated zone is used
  3988. */
  3989. static void __init find_usable_zone_for_movable(void)
  3990. {
  3991. int zone_index;
  3992. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3993. if (zone_index == ZONE_MOVABLE)
  3994. continue;
  3995. if (arch_zone_highest_possible_pfn[zone_index] >
  3996. arch_zone_lowest_possible_pfn[zone_index])
  3997. break;
  3998. }
  3999. VM_BUG_ON(zone_index == -1);
  4000. movable_zone = zone_index;
  4001. }
  4002. /*
  4003. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  4004. * because it is sized independent of architecture. Unlike the other zones,
  4005. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  4006. * in each node depending on the size of each node and how evenly kernelcore
  4007. * is distributed. This helper function adjusts the zone ranges
  4008. * provided by the architecture for a given node by using the end of the
  4009. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  4010. * zones within a node are in order of monotonic increases memory addresses
  4011. */
  4012. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  4013. unsigned long zone_type,
  4014. unsigned long node_start_pfn,
  4015. unsigned long node_end_pfn,
  4016. unsigned long *zone_start_pfn,
  4017. unsigned long *zone_end_pfn)
  4018. {
  4019. /* Only adjust if ZONE_MOVABLE is on this node */
  4020. if (zone_movable_pfn[nid]) {
  4021. /* Size ZONE_MOVABLE */
  4022. if (zone_type == ZONE_MOVABLE) {
  4023. *zone_start_pfn = zone_movable_pfn[nid];
  4024. *zone_end_pfn = min(node_end_pfn,
  4025. arch_zone_highest_possible_pfn[movable_zone]);
  4026. /* Adjust for ZONE_MOVABLE starting within this range */
  4027. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  4028. *zone_end_pfn > zone_movable_pfn[nid]) {
  4029. *zone_end_pfn = zone_movable_pfn[nid];
  4030. /* Check if this whole range is within ZONE_MOVABLE */
  4031. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  4032. *zone_start_pfn = *zone_end_pfn;
  4033. }
  4034. }
  4035. /*
  4036. * Return the number of pages a zone spans in a node, including holes
  4037. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  4038. */
  4039. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4040. unsigned long zone_type,
  4041. unsigned long node_start_pfn,
  4042. unsigned long node_end_pfn,
  4043. unsigned long *ignored)
  4044. {
  4045. unsigned long zone_start_pfn, zone_end_pfn;
  4046. /* Get the start and end of the zone */
  4047. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  4048. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  4049. adjust_zone_range_for_zone_movable(nid, zone_type,
  4050. node_start_pfn, node_end_pfn,
  4051. &zone_start_pfn, &zone_end_pfn);
  4052. /* Check that this node has pages within the zone's required range */
  4053. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  4054. return 0;
  4055. /* Move the zone boundaries inside the node if necessary */
  4056. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  4057. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  4058. /* Return the spanned pages */
  4059. return zone_end_pfn - zone_start_pfn;
  4060. }
  4061. /*
  4062. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  4063. * then all holes in the requested range will be accounted for.
  4064. */
  4065. unsigned long __meminit __absent_pages_in_range(int nid,
  4066. unsigned long range_start_pfn,
  4067. unsigned long range_end_pfn)
  4068. {
  4069. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  4070. unsigned long start_pfn, end_pfn;
  4071. int i;
  4072. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4073. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  4074. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  4075. nr_absent -= end_pfn - start_pfn;
  4076. }
  4077. return nr_absent;
  4078. }
  4079. /**
  4080. * absent_pages_in_range - Return number of page frames in holes within a range
  4081. * @start_pfn: The start PFN to start searching for holes
  4082. * @end_pfn: The end PFN to stop searching for holes
  4083. *
  4084. * It returns the number of pages frames in memory holes within a range.
  4085. */
  4086. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  4087. unsigned long end_pfn)
  4088. {
  4089. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  4090. }
  4091. /* Return the number of page frames in holes in a zone on a node */
  4092. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  4093. unsigned long zone_type,
  4094. unsigned long node_start_pfn,
  4095. unsigned long node_end_pfn,
  4096. unsigned long *ignored)
  4097. {
  4098. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4099. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4100. unsigned long zone_start_pfn, zone_end_pfn;
  4101. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4102. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4103. adjust_zone_range_for_zone_movable(nid, zone_type,
  4104. node_start_pfn, node_end_pfn,
  4105. &zone_start_pfn, &zone_end_pfn);
  4106. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  4107. }
  4108. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4109. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4110. unsigned long zone_type,
  4111. unsigned long node_start_pfn,
  4112. unsigned long node_end_pfn,
  4113. unsigned long *zones_size)
  4114. {
  4115. return zones_size[zone_type];
  4116. }
  4117. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  4118. unsigned long zone_type,
  4119. unsigned long node_start_pfn,
  4120. unsigned long node_end_pfn,
  4121. unsigned long *zholes_size)
  4122. {
  4123. if (!zholes_size)
  4124. return 0;
  4125. return zholes_size[zone_type];
  4126. }
  4127. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4128. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  4129. unsigned long node_start_pfn,
  4130. unsigned long node_end_pfn,
  4131. unsigned long *zones_size,
  4132. unsigned long *zholes_size)
  4133. {
  4134. unsigned long realtotalpages, totalpages = 0;
  4135. enum zone_type i;
  4136. for (i = 0; i < MAX_NR_ZONES; i++)
  4137. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  4138. node_start_pfn,
  4139. node_end_pfn,
  4140. zones_size);
  4141. pgdat->node_spanned_pages = totalpages;
  4142. realtotalpages = totalpages;
  4143. for (i = 0; i < MAX_NR_ZONES; i++)
  4144. realtotalpages -=
  4145. zone_absent_pages_in_node(pgdat->node_id, i,
  4146. node_start_pfn, node_end_pfn,
  4147. zholes_size);
  4148. pgdat->node_present_pages = realtotalpages;
  4149. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  4150. realtotalpages);
  4151. }
  4152. #ifndef CONFIG_SPARSEMEM
  4153. /*
  4154. * Calculate the size of the zone->blockflags rounded to an unsigned long
  4155. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  4156. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  4157. * round what is now in bits to nearest long in bits, then return it in
  4158. * bytes.
  4159. */
  4160. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  4161. {
  4162. unsigned long usemapsize;
  4163. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  4164. usemapsize = roundup(zonesize, pageblock_nr_pages);
  4165. usemapsize = usemapsize >> pageblock_order;
  4166. usemapsize *= NR_PAGEBLOCK_BITS;
  4167. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  4168. return usemapsize / 8;
  4169. }
  4170. static void __init setup_usemap(struct pglist_data *pgdat,
  4171. struct zone *zone,
  4172. unsigned long zone_start_pfn,
  4173. unsigned long zonesize)
  4174. {
  4175. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  4176. zone->pageblock_flags = NULL;
  4177. if (usemapsize)
  4178. zone->pageblock_flags =
  4179. memblock_virt_alloc_node_nopanic(usemapsize,
  4180. pgdat->node_id);
  4181. }
  4182. #else
  4183. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  4184. unsigned long zone_start_pfn, unsigned long zonesize) {}
  4185. #endif /* CONFIG_SPARSEMEM */
  4186. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  4187. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  4188. void __paginginit set_pageblock_order(void)
  4189. {
  4190. unsigned int order;
  4191. /* Check that pageblock_nr_pages has not already been setup */
  4192. if (pageblock_order)
  4193. return;
  4194. if (HPAGE_SHIFT > PAGE_SHIFT)
  4195. order = HUGETLB_PAGE_ORDER;
  4196. else
  4197. order = MAX_ORDER - 1;
  4198. /*
  4199. * Assume the largest contiguous order of interest is a huge page.
  4200. * This value may be variable depending on boot parameters on IA64 and
  4201. * powerpc.
  4202. */
  4203. pageblock_order = order;
  4204. }
  4205. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4206. /*
  4207. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  4208. * is unused as pageblock_order is set at compile-time. See
  4209. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  4210. * the kernel config
  4211. */
  4212. void __paginginit set_pageblock_order(void)
  4213. {
  4214. }
  4215. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4216. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  4217. unsigned long present_pages)
  4218. {
  4219. unsigned long pages = spanned_pages;
  4220. /*
  4221. * Provide a more accurate estimation if there are holes within
  4222. * the zone and SPARSEMEM is in use. If there are holes within the
  4223. * zone, each populated memory region may cost us one or two extra
  4224. * memmap pages due to alignment because memmap pages for each
  4225. * populated regions may not naturally algined on page boundary.
  4226. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  4227. */
  4228. if (spanned_pages > present_pages + (present_pages >> 4) &&
  4229. IS_ENABLED(CONFIG_SPARSEMEM))
  4230. pages = present_pages;
  4231. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  4232. }
  4233. /*
  4234. * Set up the zone data structures:
  4235. * - mark all pages reserved
  4236. * - mark all memory queues empty
  4237. * - clear the memory bitmaps
  4238. *
  4239. * NOTE: pgdat should get zeroed by caller.
  4240. */
  4241. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  4242. unsigned long node_start_pfn, unsigned long node_end_pfn,
  4243. unsigned long *zones_size, unsigned long *zholes_size)
  4244. {
  4245. enum zone_type j;
  4246. int nid = pgdat->node_id;
  4247. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  4248. int ret;
  4249. pgdat_resize_init(pgdat);
  4250. #ifdef CONFIG_NUMA_BALANCING
  4251. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  4252. pgdat->numabalancing_migrate_nr_pages = 0;
  4253. pgdat->numabalancing_migrate_next_window = jiffies;
  4254. #endif
  4255. init_waitqueue_head(&pgdat->kswapd_wait);
  4256. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  4257. pgdat_page_ext_init(pgdat);
  4258. for (j = 0; j < MAX_NR_ZONES; j++) {
  4259. struct zone *zone = pgdat->node_zones + j;
  4260. unsigned long size, realsize, freesize, memmap_pages;
  4261. size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
  4262. node_end_pfn, zones_size);
  4263. realsize = freesize = size - zone_absent_pages_in_node(nid, j,
  4264. node_start_pfn,
  4265. node_end_pfn,
  4266. zholes_size);
  4267. /*
  4268. * Adjust freesize so that it accounts for how much memory
  4269. * is used by this zone for memmap. This affects the watermark
  4270. * and per-cpu initialisations
  4271. */
  4272. memmap_pages = calc_memmap_size(size, realsize);
  4273. if (!is_highmem_idx(j)) {
  4274. if (freesize >= memmap_pages) {
  4275. freesize -= memmap_pages;
  4276. if (memmap_pages)
  4277. printk(KERN_DEBUG
  4278. " %s zone: %lu pages used for memmap\n",
  4279. zone_names[j], memmap_pages);
  4280. } else
  4281. printk(KERN_WARNING
  4282. " %s zone: %lu pages exceeds freesize %lu\n",
  4283. zone_names[j], memmap_pages, freesize);
  4284. }
  4285. /* Account for reserved pages */
  4286. if (j == 0 && freesize > dma_reserve) {
  4287. freesize -= dma_reserve;
  4288. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  4289. zone_names[0], dma_reserve);
  4290. }
  4291. if (!is_highmem_idx(j))
  4292. nr_kernel_pages += freesize;
  4293. /* Charge for highmem memmap if there are enough kernel pages */
  4294. else if (nr_kernel_pages > memmap_pages * 2)
  4295. nr_kernel_pages -= memmap_pages;
  4296. nr_all_pages += freesize;
  4297. zone->spanned_pages = size;
  4298. zone->present_pages = realsize;
  4299. /*
  4300. * Set an approximate value for lowmem here, it will be adjusted
  4301. * when the bootmem allocator frees pages into the buddy system.
  4302. * And all highmem pages will be managed by the buddy system.
  4303. */
  4304. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  4305. #ifdef CONFIG_NUMA
  4306. zone->node = nid;
  4307. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  4308. / 100;
  4309. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  4310. #endif
  4311. zone->name = zone_names[j];
  4312. spin_lock_init(&zone->lock);
  4313. spin_lock_init(&zone->lru_lock);
  4314. zone_seqlock_init(zone);
  4315. zone->zone_pgdat = pgdat;
  4316. zone_pcp_init(zone);
  4317. /* For bootup, initialized properly in watermark setup */
  4318. mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
  4319. lruvec_init(&zone->lruvec);
  4320. if (!size)
  4321. continue;
  4322. set_pageblock_order();
  4323. setup_usemap(pgdat, zone, zone_start_pfn, size);
  4324. ret = init_currently_empty_zone(zone, zone_start_pfn,
  4325. size, MEMMAP_EARLY);
  4326. BUG_ON(ret);
  4327. memmap_init(size, nid, j, zone_start_pfn);
  4328. zone_start_pfn += size;
  4329. }
  4330. }
  4331. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  4332. {
  4333. /* Skip empty nodes */
  4334. if (!pgdat->node_spanned_pages)
  4335. return;
  4336. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4337. /* ia64 gets its own node_mem_map, before this, without bootmem */
  4338. if (!pgdat->node_mem_map) {
  4339. unsigned long size, start, end;
  4340. struct page *map;
  4341. /*
  4342. * The zone's endpoints aren't required to be MAX_ORDER
  4343. * aligned but the node_mem_map endpoints must be in order
  4344. * for the buddy allocator to function correctly.
  4345. */
  4346. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  4347. end = pgdat_end_pfn(pgdat);
  4348. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  4349. size = (end - start) * sizeof(struct page);
  4350. map = alloc_remap(pgdat->node_id, size);
  4351. if (!map)
  4352. map = memblock_virt_alloc_node_nopanic(size,
  4353. pgdat->node_id);
  4354. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  4355. }
  4356. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4357. /*
  4358. * With no DISCONTIG, the global mem_map is just set as node 0's
  4359. */
  4360. if (pgdat == NODE_DATA(0)) {
  4361. mem_map = NODE_DATA(0)->node_mem_map;
  4362. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4363. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  4364. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  4365. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4366. }
  4367. #endif
  4368. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  4369. }
  4370. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  4371. unsigned long node_start_pfn, unsigned long *zholes_size)
  4372. {
  4373. pg_data_t *pgdat = NODE_DATA(nid);
  4374. unsigned long start_pfn = 0;
  4375. unsigned long end_pfn = 0;
  4376. /* pg_data_t should be reset to zero when it's allocated */
  4377. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  4378. pgdat->node_id = nid;
  4379. pgdat->node_start_pfn = node_start_pfn;
  4380. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4381. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  4382. printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
  4383. (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
  4384. #endif
  4385. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  4386. zones_size, zholes_size);
  4387. alloc_node_mem_map(pgdat);
  4388. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4389. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  4390. nid, (unsigned long)pgdat,
  4391. (unsigned long)pgdat->node_mem_map);
  4392. #endif
  4393. free_area_init_core(pgdat, start_pfn, end_pfn,
  4394. zones_size, zholes_size);
  4395. }
  4396. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4397. #if MAX_NUMNODES > 1
  4398. /*
  4399. * Figure out the number of possible node ids.
  4400. */
  4401. void __init setup_nr_node_ids(void)
  4402. {
  4403. unsigned int node;
  4404. unsigned int highest = 0;
  4405. for_each_node_mask(node, node_possible_map)
  4406. highest = node;
  4407. nr_node_ids = highest + 1;
  4408. }
  4409. #endif
  4410. /**
  4411. * node_map_pfn_alignment - determine the maximum internode alignment
  4412. *
  4413. * This function should be called after node map is populated and sorted.
  4414. * It calculates the maximum power of two alignment which can distinguish
  4415. * all the nodes.
  4416. *
  4417. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  4418. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  4419. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  4420. * shifted, 1GiB is enough and this function will indicate so.
  4421. *
  4422. * This is used to test whether pfn -> nid mapping of the chosen memory
  4423. * model has fine enough granularity to avoid incorrect mapping for the
  4424. * populated node map.
  4425. *
  4426. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4427. * requirement (single node).
  4428. */
  4429. unsigned long __init node_map_pfn_alignment(void)
  4430. {
  4431. unsigned long accl_mask = 0, last_end = 0;
  4432. unsigned long start, end, mask;
  4433. int last_nid = -1;
  4434. int i, nid;
  4435. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4436. if (!start || last_nid < 0 || last_nid == nid) {
  4437. last_nid = nid;
  4438. last_end = end;
  4439. continue;
  4440. }
  4441. /*
  4442. * Start with a mask granular enough to pin-point to the
  4443. * start pfn and tick off bits one-by-one until it becomes
  4444. * too coarse to separate the current node from the last.
  4445. */
  4446. mask = ~((1 << __ffs(start)) - 1);
  4447. while (mask && last_end <= (start & (mask << 1)))
  4448. mask <<= 1;
  4449. /* accumulate all internode masks */
  4450. accl_mask |= mask;
  4451. }
  4452. /* convert mask to number of pages */
  4453. return ~accl_mask + 1;
  4454. }
  4455. /* Find the lowest pfn for a node */
  4456. static unsigned long __init find_min_pfn_for_node(int nid)
  4457. {
  4458. unsigned long min_pfn = ULONG_MAX;
  4459. unsigned long start_pfn;
  4460. int i;
  4461. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4462. min_pfn = min(min_pfn, start_pfn);
  4463. if (min_pfn == ULONG_MAX) {
  4464. printk(KERN_WARNING
  4465. "Could not find start_pfn for node %d\n", nid);
  4466. return 0;
  4467. }
  4468. return min_pfn;
  4469. }
  4470. /**
  4471. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4472. *
  4473. * It returns the minimum PFN based on information provided via
  4474. * memblock_set_node().
  4475. */
  4476. unsigned long __init find_min_pfn_with_active_regions(void)
  4477. {
  4478. return find_min_pfn_for_node(MAX_NUMNODES);
  4479. }
  4480. /*
  4481. * early_calculate_totalpages()
  4482. * Sum pages in active regions for movable zone.
  4483. * Populate N_MEMORY for calculating usable_nodes.
  4484. */
  4485. static unsigned long __init early_calculate_totalpages(void)
  4486. {
  4487. unsigned long totalpages = 0;
  4488. unsigned long start_pfn, end_pfn;
  4489. int i, nid;
  4490. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4491. unsigned long pages = end_pfn - start_pfn;
  4492. totalpages += pages;
  4493. if (pages)
  4494. node_set_state(nid, N_MEMORY);
  4495. }
  4496. return totalpages;
  4497. }
  4498. /*
  4499. * Find the PFN the Movable zone begins in each node. Kernel memory
  4500. * is spread evenly between nodes as long as the nodes have enough
  4501. * memory. When they don't, some nodes will have more kernelcore than
  4502. * others
  4503. */
  4504. static void __init find_zone_movable_pfns_for_nodes(void)
  4505. {
  4506. int i, nid;
  4507. unsigned long usable_startpfn;
  4508. unsigned long kernelcore_node, kernelcore_remaining;
  4509. /* save the state before borrow the nodemask */
  4510. nodemask_t saved_node_state = node_states[N_MEMORY];
  4511. unsigned long totalpages = early_calculate_totalpages();
  4512. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  4513. struct memblock_region *r;
  4514. /* Need to find movable_zone earlier when movable_node is specified. */
  4515. find_usable_zone_for_movable();
  4516. /*
  4517. * If movable_node is specified, ignore kernelcore and movablecore
  4518. * options.
  4519. */
  4520. if (movable_node_is_enabled()) {
  4521. for_each_memblock(memory, r) {
  4522. if (!memblock_is_hotpluggable(r))
  4523. continue;
  4524. nid = r->nid;
  4525. usable_startpfn = PFN_DOWN(r->base);
  4526. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  4527. min(usable_startpfn, zone_movable_pfn[nid]) :
  4528. usable_startpfn;
  4529. }
  4530. goto out2;
  4531. }
  4532. /*
  4533. * If movablecore=nn[KMG] was specified, calculate what size of
  4534. * kernelcore that corresponds so that memory usable for
  4535. * any allocation type is evenly spread. If both kernelcore
  4536. * and movablecore are specified, then the value of kernelcore
  4537. * will be used for required_kernelcore if it's greater than
  4538. * what movablecore would have allowed.
  4539. */
  4540. if (required_movablecore) {
  4541. unsigned long corepages;
  4542. /*
  4543. * Round-up so that ZONE_MOVABLE is at least as large as what
  4544. * was requested by the user
  4545. */
  4546. required_movablecore =
  4547. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4548. corepages = totalpages - required_movablecore;
  4549. required_kernelcore = max(required_kernelcore, corepages);
  4550. }
  4551. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  4552. if (!required_kernelcore)
  4553. goto out;
  4554. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4555. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4556. restart:
  4557. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4558. kernelcore_node = required_kernelcore / usable_nodes;
  4559. for_each_node_state(nid, N_MEMORY) {
  4560. unsigned long start_pfn, end_pfn;
  4561. /*
  4562. * Recalculate kernelcore_node if the division per node
  4563. * now exceeds what is necessary to satisfy the requested
  4564. * amount of memory for the kernel
  4565. */
  4566. if (required_kernelcore < kernelcore_node)
  4567. kernelcore_node = required_kernelcore / usable_nodes;
  4568. /*
  4569. * As the map is walked, we track how much memory is usable
  4570. * by the kernel using kernelcore_remaining. When it is
  4571. * 0, the rest of the node is usable by ZONE_MOVABLE
  4572. */
  4573. kernelcore_remaining = kernelcore_node;
  4574. /* Go through each range of PFNs within this node */
  4575. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4576. unsigned long size_pages;
  4577. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4578. if (start_pfn >= end_pfn)
  4579. continue;
  4580. /* Account for what is only usable for kernelcore */
  4581. if (start_pfn < usable_startpfn) {
  4582. unsigned long kernel_pages;
  4583. kernel_pages = min(end_pfn, usable_startpfn)
  4584. - start_pfn;
  4585. kernelcore_remaining -= min(kernel_pages,
  4586. kernelcore_remaining);
  4587. required_kernelcore -= min(kernel_pages,
  4588. required_kernelcore);
  4589. /* Continue if range is now fully accounted */
  4590. if (end_pfn <= usable_startpfn) {
  4591. /*
  4592. * Push zone_movable_pfn to the end so
  4593. * that if we have to rebalance
  4594. * kernelcore across nodes, we will
  4595. * not double account here
  4596. */
  4597. zone_movable_pfn[nid] = end_pfn;
  4598. continue;
  4599. }
  4600. start_pfn = usable_startpfn;
  4601. }
  4602. /*
  4603. * The usable PFN range for ZONE_MOVABLE is from
  4604. * start_pfn->end_pfn. Calculate size_pages as the
  4605. * number of pages used as kernelcore
  4606. */
  4607. size_pages = end_pfn - start_pfn;
  4608. if (size_pages > kernelcore_remaining)
  4609. size_pages = kernelcore_remaining;
  4610. zone_movable_pfn[nid] = start_pfn + size_pages;
  4611. /*
  4612. * Some kernelcore has been met, update counts and
  4613. * break if the kernelcore for this node has been
  4614. * satisfied
  4615. */
  4616. required_kernelcore -= min(required_kernelcore,
  4617. size_pages);
  4618. kernelcore_remaining -= size_pages;
  4619. if (!kernelcore_remaining)
  4620. break;
  4621. }
  4622. }
  4623. /*
  4624. * If there is still required_kernelcore, we do another pass with one
  4625. * less node in the count. This will push zone_movable_pfn[nid] further
  4626. * along on the nodes that still have memory until kernelcore is
  4627. * satisfied
  4628. */
  4629. usable_nodes--;
  4630. if (usable_nodes && required_kernelcore > usable_nodes)
  4631. goto restart;
  4632. out2:
  4633. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4634. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4635. zone_movable_pfn[nid] =
  4636. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4637. out:
  4638. /* restore the node_state */
  4639. node_states[N_MEMORY] = saved_node_state;
  4640. }
  4641. /* Any regular or high memory on that node ? */
  4642. static void check_for_memory(pg_data_t *pgdat, int nid)
  4643. {
  4644. enum zone_type zone_type;
  4645. if (N_MEMORY == N_NORMAL_MEMORY)
  4646. return;
  4647. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  4648. struct zone *zone = &pgdat->node_zones[zone_type];
  4649. if (populated_zone(zone)) {
  4650. node_set_state(nid, N_HIGH_MEMORY);
  4651. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  4652. zone_type <= ZONE_NORMAL)
  4653. node_set_state(nid, N_NORMAL_MEMORY);
  4654. break;
  4655. }
  4656. }
  4657. }
  4658. /**
  4659. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4660. * @max_zone_pfn: an array of max PFNs for each zone
  4661. *
  4662. * This will call free_area_init_node() for each active node in the system.
  4663. * Using the page ranges provided by memblock_set_node(), the size of each
  4664. * zone in each node and their holes is calculated. If the maximum PFN
  4665. * between two adjacent zones match, it is assumed that the zone is empty.
  4666. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4667. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4668. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4669. * at arch_max_dma_pfn.
  4670. */
  4671. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4672. {
  4673. unsigned long start_pfn, end_pfn;
  4674. int i, nid;
  4675. /* Record where the zone boundaries are */
  4676. memset(arch_zone_lowest_possible_pfn, 0,
  4677. sizeof(arch_zone_lowest_possible_pfn));
  4678. memset(arch_zone_highest_possible_pfn, 0,
  4679. sizeof(arch_zone_highest_possible_pfn));
  4680. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4681. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4682. for (i = 1; i < MAX_NR_ZONES; i++) {
  4683. if (i == ZONE_MOVABLE)
  4684. continue;
  4685. arch_zone_lowest_possible_pfn[i] =
  4686. arch_zone_highest_possible_pfn[i-1];
  4687. arch_zone_highest_possible_pfn[i] =
  4688. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4689. }
  4690. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4691. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4692. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4693. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4694. find_zone_movable_pfns_for_nodes();
  4695. /* Print out the zone ranges */
  4696. pr_info("Zone ranges:\n");
  4697. for (i = 0; i < MAX_NR_ZONES; i++) {
  4698. if (i == ZONE_MOVABLE)
  4699. continue;
  4700. pr_info(" %-8s ", zone_names[i]);
  4701. if (arch_zone_lowest_possible_pfn[i] ==
  4702. arch_zone_highest_possible_pfn[i])
  4703. pr_cont("empty\n");
  4704. else
  4705. pr_cont("[mem %0#10lx-%0#10lx]\n",
  4706. arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
  4707. (arch_zone_highest_possible_pfn[i]
  4708. << PAGE_SHIFT) - 1);
  4709. }
  4710. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4711. pr_info("Movable zone start for each node\n");
  4712. for (i = 0; i < MAX_NUMNODES; i++) {
  4713. if (zone_movable_pfn[i])
  4714. pr_info(" Node %d: %#010lx\n", i,
  4715. zone_movable_pfn[i] << PAGE_SHIFT);
  4716. }
  4717. /* Print out the early node map */
  4718. pr_info("Early memory node ranges\n");
  4719. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4720. pr_info(" node %3d: [mem %#010lx-%#010lx]\n", nid,
  4721. start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
  4722. /* Initialise every node */
  4723. mminit_verify_pageflags_layout();
  4724. setup_nr_node_ids();
  4725. for_each_online_node(nid) {
  4726. pg_data_t *pgdat = NODE_DATA(nid);
  4727. free_area_init_node(nid, NULL,
  4728. find_min_pfn_for_node(nid), NULL);
  4729. /* Any memory on that node */
  4730. if (pgdat->node_present_pages)
  4731. node_set_state(nid, N_MEMORY);
  4732. check_for_memory(pgdat, nid);
  4733. }
  4734. }
  4735. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4736. {
  4737. unsigned long long coremem;
  4738. if (!p)
  4739. return -EINVAL;
  4740. coremem = memparse(p, &p);
  4741. *core = coremem >> PAGE_SHIFT;
  4742. /* Paranoid check that UL is enough for the coremem value */
  4743. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4744. return 0;
  4745. }
  4746. /*
  4747. * kernelcore=size sets the amount of memory for use for allocations that
  4748. * cannot be reclaimed or migrated.
  4749. */
  4750. static int __init cmdline_parse_kernelcore(char *p)
  4751. {
  4752. return cmdline_parse_core(p, &required_kernelcore);
  4753. }
  4754. /*
  4755. * movablecore=size sets the amount of memory for use for allocations that
  4756. * can be reclaimed or migrated.
  4757. */
  4758. static int __init cmdline_parse_movablecore(char *p)
  4759. {
  4760. return cmdline_parse_core(p, &required_movablecore);
  4761. }
  4762. early_param("kernelcore", cmdline_parse_kernelcore);
  4763. early_param("movablecore", cmdline_parse_movablecore);
  4764. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4765. void adjust_managed_page_count(struct page *page, long count)
  4766. {
  4767. spin_lock(&managed_page_count_lock);
  4768. page_zone(page)->managed_pages += count;
  4769. totalram_pages += count;
  4770. #ifdef CONFIG_HIGHMEM
  4771. if (PageHighMem(page))
  4772. totalhigh_pages += count;
  4773. #endif
  4774. spin_unlock(&managed_page_count_lock);
  4775. }
  4776. EXPORT_SYMBOL(adjust_managed_page_count);
  4777. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  4778. {
  4779. void *pos;
  4780. unsigned long pages = 0;
  4781. start = (void *)PAGE_ALIGN((unsigned long)start);
  4782. end = (void *)((unsigned long)end & PAGE_MASK);
  4783. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  4784. if ((unsigned int)poison <= 0xFF)
  4785. memset(pos, poison, PAGE_SIZE);
  4786. free_reserved_page(virt_to_page(pos));
  4787. }
  4788. if (pages && s)
  4789. pr_info("Freeing %s memory: %ldK (%p - %p)\n",
  4790. s, pages << (PAGE_SHIFT - 10), start, end);
  4791. return pages;
  4792. }
  4793. EXPORT_SYMBOL(free_reserved_area);
  4794. #ifdef CONFIG_HIGHMEM
  4795. void free_highmem_page(struct page *page)
  4796. {
  4797. __free_reserved_page(page);
  4798. totalram_pages++;
  4799. page_zone(page)->managed_pages++;
  4800. totalhigh_pages++;
  4801. }
  4802. #endif
  4803. void __init mem_init_print_info(const char *str)
  4804. {
  4805. unsigned long physpages, codesize, datasize, rosize, bss_size;
  4806. unsigned long init_code_size, init_data_size;
  4807. physpages = get_num_physpages();
  4808. codesize = _etext - _stext;
  4809. datasize = _edata - _sdata;
  4810. rosize = __end_rodata - __start_rodata;
  4811. bss_size = __bss_stop - __bss_start;
  4812. init_data_size = __init_end - __init_begin;
  4813. init_code_size = _einittext - _sinittext;
  4814. /*
  4815. * Detect special cases and adjust section sizes accordingly:
  4816. * 1) .init.* may be embedded into .data sections
  4817. * 2) .init.text.* may be out of [__init_begin, __init_end],
  4818. * please refer to arch/tile/kernel/vmlinux.lds.S.
  4819. * 3) .rodata.* may be embedded into .text or .data sections.
  4820. */
  4821. #define adj_init_size(start, end, size, pos, adj) \
  4822. do { \
  4823. if (start <= pos && pos < end && size > adj) \
  4824. size -= adj; \
  4825. } while (0)
  4826. adj_init_size(__init_begin, __init_end, init_data_size,
  4827. _sinittext, init_code_size);
  4828. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  4829. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  4830. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  4831. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  4832. #undef adj_init_size
  4833. pr_info("Memory: %luK/%luK available "
  4834. "(%luK kernel code, %luK rwdata, %luK rodata, "
  4835. "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
  4836. #ifdef CONFIG_HIGHMEM
  4837. ", %luK highmem"
  4838. #endif
  4839. "%s%s)\n",
  4840. nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
  4841. codesize >> 10, datasize >> 10, rosize >> 10,
  4842. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  4843. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
  4844. totalcma_pages << (PAGE_SHIFT-10),
  4845. #ifdef CONFIG_HIGHMEM
  4846. totalhigh_pages << (PAGE_SHIFT-10),
  4847. #endif
  4848. str ? ", " : "", str ? str : "");
  4849. }
  4850. /**
  4851. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4852. * @new_dma_reserve: The number of pages to mark reserved
  4853. *
  4854. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4855. * In the DMA zone, a significant percentage may be consumed by kernel image
  4856. * and other unfreeable allocations which can skew the watermarks badly. This
  4857. * function may optionally be used to account for unfreeable pages in the
  4858. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4859. * smaller per-cpu batchsize.
  4860. */
  4861. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4862. {
  4863. dma_reserve = new_dma_reserve;
  4864. }
  4865. void __init free_area_init(unsigned long *zones_size)
  4866. {
  4867. free_area_init_node(0, zones_size,
  4868. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4869. }
  4870. static int page_alloc_cpu_notify(struct notifier_block *self,
  4871. unsigned long action, void *hcpu)
  4872. {
  4873. int cpu = (unsigned long)hcpu;
  4874. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4875. lru_add_drain_cpu(cpu);
  4876. drain_pages(cpu);
  4877. /*
  4878. * Spill the event counters of the dead processor
  4879. * into the current processors event counters.
  4880. * This artificially elevates the count of the current
  4881. * processor.
  4882. */
  4883. vm_events_fold_cpu(cpu);
  4884. /*
  4885. * Zero the differential counters of the dead processor
  4886. * so that the vm statistics are consistent.
  4887. *
  4888. * This is only okay since the processor is dead and cannot
  4889. * race with what we are doing.
  4890. */
  4891. cpu_vm_stats_fold(cpu);
  4892. }
  4893. return NOTIFY_OK;
  4894. }
  4895. void __init page_alloc_init(void)
  4896. {
  4897. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4898. }
  4899. /*
  4900. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4901. * or min_free_kbytes changes.
  4902. */
  4903. static void calculate_totalreserve_pages(void)
  4904. {
  4905. struct pglist_data *pgdat;
  4906. unsigned long reserve_pages = 0;
  4907. enum zone_type i, j;
  4908. for_each_online_pgdat(pgdat) {
  4909. for (i = 0; i < MAX_NR_ZONES; i++) {
  4910. struct zone *zone = pgdat->node_zones + i;
  4911. long max = 0;
  4912. /* Find valid and maximum lowmem_reserve in the zone */
  4913. for (j = i; j < MAX_NR_ZONES; j++) {
  4914. if (zone->lowmem_reserve[j] > max)
  4915. max = zone->lowmem_reserve[j];
  4916. }
  4917. /* we treat the high watermark as reserved pages. */
  4918. max += high_wmark_pages(zone);
  4919. if (max > zone->managed_pages)
  4920. max = zone->managed_pages;
  4921. reserve_pages += max;
  4922. /*
  4923. * Lowmem reserves are not available to
  4924. * GFP_HIGHUSER page cache allocations and
  4925. * kswapd tries to balance zones to their high
  4926. * watermark. As a result, neither should be
  4927. * regarded as dirtyable memory, to prevent a
  4928. * situation where reclaim has to clean pages
  4929. * in order to balance the zones.
  4930. */
  4931. zone->dirty_balance_reserve = max;
  4932. }
  4933. }
  4934. dirty_balance_reserve = reserve_pages;
  4935. totalreserve_pages = reserve_pages;
  4936. }
  4937. /*
  4938. * setup_per_zone_lowmem_reserve - called whenever
  4939. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4940. * has a correct pages reserved value, so an adequate number of
  4941. * pages are left in the zone after a successful __alloc_pages().
  4942. */
  4943. static void setup_per_zone_lowmem_reserve(void)
  4944. {
  4945. struct pglist_data *pgdat;
  4946. enum zone_type j, idx;
  4947. for_each_online_pgdat(pgdat) {
  4948. for (j = 0; j < MAX_NR_ZONES; j++) {
  4949. struct zone *zone = pgdat->node_zones + j;
  4950. unsigned long managed_pages = zone->managed_pages;
  4951. zone->lowmem_reserve[j] = 0;
  4952. idx = j;
  4953. while (idx) {
  4954. struct zone *lower_zone;
  4955. idx--;
  4956. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4957. sysctl_lowmem_reserve_ratio[idx] = 1;
  4958. lower_zone = pgdat->node_zones + idx;
  4959. lower_zone->lowmem_reserve[j] = managed_pages /
  4960. sysctl_lowmem_reserve_ratio[idx];
  4961. managed_pages += lower_zone->managed_pages;
  4962. }
  4963. }
  4964. }
  4965. /* update totalreserve_pages */
  4966. calculate_totalreserve_pages();
  4967. }
  4968. static void __setup_per_zone_wmarks(void)
  4969. {
  4970. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4971. unsigned long lowmem_pages = 0;
  4972. struct zone *zone;
  4973. unsigned long flags;
  4974. /* Calculate total number of !ZONE_HIGHMEM pages */
  4975. for_each_zone(zone) {
  4976. if (!is_highmem(zone))
  4977. lowmem_pages += zone->managed_pages;
  4978. }
  4979. for_each_zone(zone) {
  4980. u64 tmp;
  4981. spin_lock_irqsave(&zone->lock, flags);
  4982. tmp = (u64)pages_min * zone->managed_pages;
  4983. do_div(tmp, lowmem_pages);
  4984. if (is_highmem(zone)) {
  4985. /*
  4986. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4987. * need highmem pages, so cap pages_min to a small
  4988. * value here.
  4989. *
  4990. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4991. * deltas controls asynch page reclaim, and so should
  4992. * not be capped for highmem.
  4993. */
  4994. unsigned long min_pages;
  4995. min_pages = zone->managed_pages / 1024;
  4996. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  4997. zone->watermark[WMARK_MIN] = min_pages;
  4998. } else {
  4999. /*
  5000. * If it's a lowmem zone, reserve a number of pages
  5001. * proportionate to the zone's size.
  5002. */
  5003. zone->watermark[WMARK_MIN] = tmp;
  5004. }
  5005. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  5006. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  5007. __mod_zone_page_state(zone, NR_ALLOC_BATCH,
  5008. high_wmark_pages(zone) - low_wmark_pages(zone) -
  5009. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  5010. setup_zone_migrate_reserve(zone);
  5011. spin_unlock_irqrestore(&zone->lock, flags);
  5012. }
  5013. /* update totalreserve_pages */
  5014. calculate_totalreserve_pages();
  5015. }
  5016. /**
  5017. * setup_per_zone_wmarks - called when min_free_kbytes changes
  5018. * or when memory is hot-{added|removed}
  5019. *
  5020. * Ensures that the watermark[min,low,high] values for each zone are set
  5021. * correctly with respect to min_free_kbytes.
  5022. */
  5023. void setup_per_zone_wmarks(void)
  5024. {
  5025. mutex_lock(&zonelists_mutex);
  5026. __setup_per_zone_wmarks();
  5027. mutex_unlock(&zonelists_mutex);
  5028. }
  5029. /*
  5030. * The inactive anon list should be small enough that the VM never has to
  5031. * do too much work, but large enough that each inactive page has a chance
  5032. * to be referenced again before it is swapped out.
  5033. *
  5034. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  5035. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  5036. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  5037. * the anonymous pages are kept on the inactive list.
  5038. *
  5039. * total target max
  5040. * memory ratio inactive anon
  5041. * -------------------------------------
  5042. * 10MB 1 5MB
  5043. * 100MB 1 50MB
  5044. * 1GB 3 250MB
  5045. * 10GB 10 0.9GB
  5046. * 100GB 31 3GB
  5047. * 1TB 101 10GB
  5048. * 10TB 320 32GB
  5049. */
  5050. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  5051. {
  5052. unsigned int gb, ratio;
  5053. /* Zone size in gigabytes */
  5054. gb = zone->managed_pages >> (30 - PAGE_SHIFT);
  5055. if (gb)
  5056. ratio = int_sqrt(10 * gb);
  5057. else
  5058. ratio = 1;
  5059. zone->inactive_ratio = ratio;
  5060. }
  5061. static void __meminit setup_per_zone_inactive_ratio(void)
  5062. {
  5063. struct zone *zone;
  5064. for_each_zone(zone)
  5065. calculate_zone_inactive_ratio(zone);
  5066. }
  5067. /*
  5068. * Initialise min_free_kbytes.
  5069. *
  5070. * For small machines we want it small (128k min). For large machines
  5071. * we want it large (64MB max). But it is not linear, because network
  5072. * bandwidth does not increase linearly with machine size. We use
  5073. *
  5074. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  5075. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  5076. *
  5077. * which yields
  5078. *
  5079. * 16MB: 512k
  5080. * 32MB: 724k
  5081. * 64MB: 1024k
  5082. * 128MB: 1448k
  5083. * 256MB: 2048k
  5084. * 512MB: 2896k
  5085. * 1024MB: 4096k
  5086. * 2048MB: 5792k
  5087. * 4096MB: 8192k
  5088. * 8192MB: 11584k
  5089. * 16384MB: 16384k
  5090. */
  5091. int __meminit init_per_zone_wmark_min(void)
  5092. {
  5093. unsigned long lowmem_kbytes;
  5094. int new_min_free_kbytes;
  5095. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  5096. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  5097. if (new_min_free_kbytes > user_min_free_kbytes) {
  5098. min_free_kbytes = new_min_free_kbytes;
  5099. if (min_free_kbytes < 128)
  5100. min_free_kbytes = 128;
  5101. if (min_free_kbytes > 65536)
  5102. min_free_kbytes = 65536;
  5103. } else {
  5104. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  5105. new_min_free_kbytes, user_min_free_kbytes);
  5106. }
  5107. setup_per_zone_wmarks();
  5108. refresh_zone_stat_thresholds();
  5109. setup_per_zone_lowmem_reserve();
  5110. setup_per_zone_inactive_ratio();
  5111. return 0;
  5112. }
  5113. module_init(init_per_zone_wmark_min)
  5114. /*
  5115. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  5116. * that we can call two helper functions whenever min_free_kbytes
  5117. * changes.
  5118. */
  5119. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  5120. void __user *buffer, size_t *length, loff_t *ppos)
  5121. {
  5122. int rc;
  5123. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5124. if (rc)
  5125. return rc;
  5126. if (write) {
  5127. user_min_free_kbytes = min_free_kbytes;
  5128. setup_per_zone_wmarks();
  5129. }
  5130. return 0;
  5131. }
  5132. #ifdef CONFIG_NUMA
  5133. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  5134. void __user *buffer, size_t *length, loff_t *ppos)
  5135. {
  5136. struct zone *zone;
  5137. int rc;
  5138. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5139. if (rc)
  5140. return rc;
  5141. for_each_zone(zone)
  5142. zone->min_unmapped_pages = (zone->managed_pages *
  5143. sysctl_min_unmapped_ratio) / 100;
  5144. return 0;
  5145. }
  5146. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  5147. void __user *buffer, size_t *length, loff_t *ppos)
  5148. {
  5149. struct zone *zone;
  5150. int rc;
  5151. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5152. if (rc)
  5153. return rc;
  5154. for_each_zone(zone)
  5155. zone->min_slab_pages = (zone->managed_pages *
  5156. sysctl_min_slab_ratio) / 100;
  5157. return 0;
  5158. }
  5159. #endif
  5160. /*
  5161. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  5162. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  5163. * whenever sysctl_lowmem_reserve_ratio changes.
  5164. *
  5165. * The reserve ratio obviously has absolutely no relation with the
  5166. * minimum watermarks. The lowmem reserve ratio can only make sense
  5167. * if in function of the boot time zone sizes.
  5168. */
  5169. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  5170. void __user *buffer, size_t *length, loff_t *ppos)
  5171. {
  5172. proc_dointvec_minmax(table, write, buffer, length, ppos);
  5173. setup_per_zone_lowmem_reserve();
  5174. return 0;
  5175. }
  5176. /*
  5177. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  5178. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  5179. * pagelist can have before it gets flushed back to buddy allocator.
  5180. */
  5181. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  5182. void __user *buffer, size_t *length, loff_t *ppos)
  5183. {
  5184. struct zone *zone;
  5185. int old_percpu_pagelist_fraction;
  5186. int ret;
  5187. mutex_lock(&pcp_batch_high_lock);
  5188. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  5189. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5190. if (!write || ret < 0)
  5191. goto out;
  5192. /* Sanity checking to avoid pcp imbalance */
  5193. if (percpu_pagelist_fraction &&
  5194. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  5195. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  5196. ret = -EINVAL;
  5197. goto out;
  5198. }
  5199. /* No change? */
  5200. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  5201. goto out;
  5202. for_each_populated_zone(zone) {
  5203. unsigned int cpu;
  5204. for_each_possible_cpu(cpu)
  5205. pageset_set_high_and_batch(zone,
  5206. per_cpu_ptr(zone->pageset, cpu));
  5207. }
  5208. out:
  5209. mutex_unlock(&pcp_batch_high_lock);
  5210. return ret;
  5211. }
  5212. int hashdist = HASHDIST_DEFAULT;
  5213. #ifdef CONFIG_NUMA
  5214. static int __init set_hashdist(char *str)
  5215. {
  5216. if (!str)
  5217. return 0;
  5218. hashdist = simple_strtoul(str, &str, 0);
  5219. return 1;
  5220. }
  5221. __setup("hashdist=", set_hashdist);
  5222. #endif
  5223. /*
  5224. * allocate a large system hash table from bootmem
  5225. * - it is assumed that the hash table must contain an exact power-of-2
  5226. * quantity of entries
  5227. * - limit is the number of hash buckets, not the total allocation size
  5228. */
  5229. void *__init alloc_large_system_hash(const char *tablename,
  5230. unsigned long bucketsize,
  5231. unsigned long numentries,
  5232. int scale,
  5233. int flags,
  5234. unsigned int *_hash_shift,
  5235. unsigned int *_hash_mask,
  5236. unsigned long low_limit,
  5237. unsigned long high_limit)
  5238. {
  5239. unsigned long long max = high_limit;
  5240. unsigned long log2qty, size;
  5241. void *table = NULL;
  5242. /* allow the kernel cmdline to have a say */
  5243. if (!numentries) {
  5244. /* round applicable memory size up to nearest megabyte */
  5245. numentries = nr_kernel_pages;
  5246. /* It isn't necessary when PAGE_SIZE >= 1MB */
  5247. if (PAGE_SHIFT < 20)
  5248. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  5249. /* limit to 1 bucket per 2^scale bytes of low memory */
  5250. if (scale > PAGE_SHIFT)
  5251. numentries >>= (scale - PAGE_SHIFT);
  5252. else
  5253. numentries <<= (PAGE_SHIFT - scale);
  5254. /* Make sure we've got at least a 0-order allocation.. */
  5255. if (unlikely(flags & HASH_SMALL)) {
  5256. /* Makes no sense without HASH_EARLY */
  5257. WARN_ON(!(flags & HASH_EARLY));
  5258. if (!(numentries >> *_hash_shift)) {
  5259. numentries = 1UL << *_hash_shift;
  5260. BUG_ON(!numentries);
  5261. }
  5262. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  5263. numentries = PAGE_SIZE / bucketsize;
  5264. }
  5265. numentries = roundup_pow_of_two(numentries);
  5266. /* limit allocation size to 1/16 total memory by default */
  5267. if (max == 0) {
  5268. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  5269. do_div(max, bucketsize);
  5270. }
  5271. max = min(max, 0x80000000ULL);
  5272. if (numentries < low_limit)
  5273. numentries = low_limit;
  5274. if (numentries > max)
  5275. numentries = max;
  5276. log2qty = ilog2(numentries);
  5277. do {
  5278. size = bucketsize << log2qty;
  5279. if (flags & HASH_EARLY)
  5280. table = memblock_virt_alloc_nopanic(size, 0);
  5281. else if (hashdist)
  5282. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  5283. else {
  5284. /*
  5285. * If bucketsize is not a power-of-two, we may free
  5286. * some pages at the end of hash table which
  5287. * alloc_pages_exact() automatically does
  5288. */
  5289. if (get_order(size) < MAX_ORDER) {
  5290. table = alloc_pages_exact(size, GFP_ATOMIC);
  5291. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  5292. }
  5293. }
  5294. } while (!table && size > PAGE_SIZE && --log2qty);
  5295. if (!table)
  5296. panic("Failed to allocate %s hash table\n", tablename);
  5297. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  5298. tablename,
  5299. (1UL << log2qty),
  5300. ilog2(size) - PAGE_SHIFT,
  5301. size);
  5302. if (_hash_shift)
  5303. *_hash_shift = log2qty;
  5304. if (_hash_mask)
  5305. *_hash_mask = (1 << log2qty) - 1;
  5306. return table;
  5307. }
  5308. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  5309. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  5310. unsigned long pfn)
  5311. {
  5312. #ifdef CONFIG_SPARSEMEM
  5313. return __pfn_to_section(pfn)->pageblock_flags;
  5314. #else
  5315. return zone->pageblock_flags;
  5316. #endif /* CONFIG_SPARSEMEM */
  5317. }
  5318. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  5319. {
  5320. #ifdef CONFIG_SPARSEMEM
  5321. pfn &= (PAGES_PER_SECTION-1);
  5322. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5323. #else
  5324. pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
  5325. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5326. #endif /* CONFIG_SPARSEMEM */
  5327. }
  5328. /**
  5329. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  5330. * @page: The page within the block of interest
  5331. * @pfn: The target page frame number
  5332. * @end_bitidx: The last bit of interest to retrieve
  5333. * @mask: mask of bits that the caller is interested in
  5334. *
  5335. * Return: pageblock_bits flags
  5336. */
  5337. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  5338. unsigned long end_bitidx,
  5339. unsigned long mask)
  5340. {
  5341. struct zone *zone;
  5342. unsigned long *bitmap;
  5343. unsigned long bitidx, word_bitidx;
  5344. unsigned long word;
  5345. zone = page_zone(page);
  5346. bitmap = get_pageblock_bitmap(zone, pfn);
  5347. bitidx = pfn_to_bitidx(zone, pfn);
  5348. word_bitidx = bitidx / BITS_PER_LONG;
  5349. bitidx &= (BITS_PER_LONG-1);
  5350. word = bitmap[word_bitidx];
  5351. bitidx += end_bitidx;
  5352. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  5353. }
  5354. /**
  5355. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  5356. * @page: The page within the block of interest
  5357. * @flags: The flags to set
  5358. * @pfn: The target page frame number
  5359. * @end_bitidx: The last bit of interest
  5360. * @mask: mask of bits that the caller is interested in
  5361. */
  5362. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  5363. unsigned long pfn,
  5364. unsigned long end_bitidx,
  5365. unsigned long mask)
  5366. {
  5367. struct zone *zone;
  5368. unsigned long *bitmap;
  5369. unsigned long bitidx, word_bitidx;
  5370. unsigned long old_word, word;
  5371. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  5372. zone = page_zone(page);
  5373. bitmap = get_pageblock_bitmap(zone, pfn);
  5374. bitidx = pfn_to_bitidx(zone, pfn);
  5375. word_bitidx = bitidx / BITS_PER_LONG;
  5376. bitidx &= (BITS_PER_LONG-1);
  5377. VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
  5378. bitidx += end_bitidx;
  5379. mask <<= (BITS_PER_LONG - bitidx - 1);
  5380. flags <<= (BITS_PER_LONG - bitidx - 1);
  5381. word = ACCESS_ONCE(bitmap[word_bitidx]);
  5382. for (;;) {
  5383. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  5384. if (word == old_word)
  5385. break;
  5386. word = old_word;
  5387. }
  5388. }
  5389. /*
  5390. * This function checks whether pageblock includes unmovable pages or not.
  5391. * If @count is not zero, it is okay to include less @count unmovable pages
  5392. *
  5393. * PageLRU check without isolation or lru_lock could race so that
  5394. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  5395. * expect this function should be exact.
  5396. */
  5397. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  5398. bool skip_hwpoisoned_pages)
  5399. {
  5400. unsigned long pfn, iter, found;
  5401. int mt;
  5402. /*
  5403. * For avoiding noise data, lru_add_drain_all() should be called
  5404. * If ZONE_MOVABLE, the zone never contains unmovable pages
  5405. */
  5406. if (zone_idx(zone) == ZONE_MOVABLE)
  5407. return false;
  5408. mt = get_pageblock_migratetype(page);
  5409. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  5410. return false;
  5411. pfn = page_to_pfn(page);
  5412. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  5413. unsigned long check = pfn + iter;
  5414. if (!pfn_valid_within(check))
  5415. continue;
  5416. page = pfn_to_page(check);
  5417. /*
  5418. * Hugepages are not in LRU lists, but they're movable.
  5419. * We need not scan over tail pages bacause we don't
  5420. * handle each tail page individually in migration.
  5421. */
  5422. if (PageHuge(page)) {
  5423. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  5424. continue;
  5425. }
  5426. /*
  5427. * We can't use page_count without pin a page
  5428. * because another CPU can free compound page.
  5429. * This check already skips compound tails of THP
  5430. * because their page->_count is zero at all time.
  5431. */
  5432. if (!atomic_read(&page->_count)) {
  5433. if (PageBuddy(page))
  5434. iter += (1 << page_order(page)) - 1;
  5435. continue;
  5436. }
  5437. /*
  5438. * The HWPoisoned page may be not in buddy system, and
  5439. * page_count() is not 0.
  5440. */
  5441. if (skip_hwpoisoned_pages && PageHWPoison(page))
  5442. continue;
  5443. if (!PageLRU(page))
  5444. found++;
  5445. /*
  5446. * If there are RECLAIMABLE pages, we need to check
  5447. * it. But now, memory offline itself doesn't call
  5448. * shrink_node_slabs() and it still to be fixed.
  5449. */
  5450. /*
  5451. * If the page is not RAM, page_count()should be 0.
  5452. * we don't need more check. This is an _used_ not-movable page.
  5453. *
  5454. * The problematic thing here is PG_reserved pages. PG_reserved
  5455. * is set to both of a memory hole page and a _used_ kernel
  5456. * page at boot.
  5457. */
  5458. if (found > count)
  5459. return true;
  5460. }
  5461. return false;
  5462. }
  5463. bool is_pageblock_removable_nolock(struct page *page)
  5464. {
  5465. struct zone *zone;
  5466. unsigned long pfn;
  5467. /*
  5468. * We have to be careful here because we are iterating over memory
  5469. * sections which are not zone aware so we might end up outside of
  5470. * the zone but still within the section.
  5471. * We have to take care about the node as well. If the node is offline
  5472. * its NODE_DATA will be NULL - see page_zone.
  5473. */
  5474. if (!node_online(page_to_nid(page)))
  5475. return false;
  5476. zone = page_zone(page);
  5477. pfn = page_to_pfn(page);
  5478. if (!zone_spans_pfn(zone, pfn))
  5479. return false;
  5480. return !has_unmovable_pages(zone, page, 0, true);
  5481. }
  5482. #ifdef CONFIG_CMA
  5483. static unsigned long pfn_max_align_down(unsigned long pfn)
  5484. {
  5485. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5486. pageblock_nr_pages) - 1);
  5487. }
  5488. static unsigned long pfn_max_align_up(unsigned long pfn)
  5489. {
  5490. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5491. pageblock_nr_pages));
  5492. }
  5493. /* [start, end) must belong to a single zone. */
  5494. static int __alloc_contig_migrate_range(struct compact_control *cc,
  5495. unsigned long start, unsigned long end)
  5496. {
  5497. /* This function is based on compact_zone() from compaction.c. */
  5498. unsigned long nr_reclaimed;
  5499. unsigned long pfn = start;
  5500. unsigned int tries = 0;
  5501. int ret = 0;
  5502. migrate_prep();
  5503. while (pfn < end || !list_empty(&cc->migratepages)) {
  5504. if (fatal_signal_pending(current)) {
  5505. ret = -EINTR;
  5506. break;
  5507. }
  5508. if (list_empty(&cc->migratepages)) {
  5509. cc->nr_migratepages = 0;
  5510. pfn = isolate_migratepages_range(cc, pfn, end);
  5511. if (!pfn) {
  5512. ret = -EINTR;
  5513. break;
  5514. }
  5515. tries = 0;
  5516. } else if (++tries == 5) {
  5517. ret = ret < 0 ? ret : -EBUSY;
  5518. break;
  5519. }
  5520. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  5521. &cc->migratepages);
  5522. cc->nr_migratepages -= nr_reclaimed;
  5523. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  5524. NULL, 0, cc->mode, MR_CMA);
  5525. }
  5526. if (ret < 0) {
  5527. putback_movable_pages(&cc->migratepages);
  5528. return ret;
  5529. }
  5530. return 0;
  5531. }
  5532. /**
  5533. * alloc_contig_range() -- tries to allocate given range of pages
  5534. * @start: start PFN to allocate
  5535. * @end: one-past-the-last PFN to allocate
  5536. * @migratetype: migratetype of the underlaying pageblocks (either
  5537. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  5538. * in range must have the same migratetype and it must
  5539. * be either of the two.
  5540. *
  5541. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  5542. * aligned, however it's the caller's responsibility to guarantee that
  5543. * we are the only thread that changes migrate type of pageblocks the
  5544. * pages fall in.
  5545. *
  5546. * The PFN range must belong to a single zone.
  5547. *
  5548. * Returns zero on success or negative error code. On success all
  5549. * pages which PFN is in [start, end) are allocated for the caller and
  5550. * need to be freed with free_contig_range().
  5551. */
  5552. int alloc_contig_range(unsigned long start, unsigned long end,
  5553. unsigned migratetype)
  5554. {
  5555. unsigned long outer_start, outer_end;
  5556. int ret = 0, order;
  5557. struct compact_control cc = {
  5558. .nr_migratepages = 0,
  5559. .order = -1,
  5560. .zone = page_zone(pfn_to_page(start)),
  5561. .mode = MIGRATE_SYNC,
  5562. .ignore_skip_hint = true,
  5563. };
  5564. INIT_LIST_HEAD(&cc.migratepages);
  5565. /*
  5566. * What we do here is we mark all pageblocks in range as
  5567. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5568. * have different sizes, and due to the way page allocator
  5569. * work, we align the range to biggest of the two pages so
  5570. * that page allocator won't try to merge buddies from
  5571. * different pageblocks and change MIGRATE_ISOLATE to some
  5572. * other migration type.
  5573. *
  5574. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5575. * migrate the pages from an unaligned range (ie. pages that
  5576. * we are interested in). This will put all the pages in
  5577. * range back to page allocator as MIGRATE_ISOLATE.
  5578. *
  5579. * When this is done, we take the pages in range from page
  5580. * allocator removing them from the buddy system. This way
  5581. * page allocator will never consider using them.
  5582. *
  5583. * This lets us mark the pageblocks back as
  5584. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5585. * aligned range but not in the unaligned, original range are
  5586. * put back to page allocator so that buddy can use them.
  5587. */
  5588. ret = start_isolate_page_range(pfn_max_align_down(start),
  5589. pfn_max_align_up(end), migratetype,
  5590. false);
  5591. if (ret)
  5592. return ret;
  5593. ret = __alloc_contig_migrate_range(&cc, start, end);
  5594. if (ret)
  5595. goto done;
  5596. /*
  5597. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5598. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5599. * more, all pages in [start, end) are free in page allocator.
  5600. * What we are going to do is to allocate all pages from
  5601. * [start, end) (that is remove them from page allocator).
  5602. *
  5603. * The only problem is that pages at the beginning and at the
  5604. * end of interesting range may be not aligned with pages that
  5605. * page allocator holds, ie. they can be part of higher order
  5606. * pages. Because of this, we reserve the bigger range and
  5607. * once this is done free the pages we are not interested in.
  5608. *
  5609. * We don't have to hold zone->lock here because the pages are
  5610. * isolated thus they won't get removed from buddy.
  5611. */
  5612. lru_add_drain_all();
  5613. drain_all_pages(cc.zone);
  5614. order = 0;
  5615. outer_start = start;
  5616. while (!PageBuddy(pfn_to_page(outer_start))) {
  5617. if (++order >= MAX_ORDER) {
  5618. ret = -EBUSY;
  5619. goto done;
  5620. }
  5621. outer_start &= ~0UL << order;
  5622. }
  5623. /* Make sure the range is really isolated. */
  5624. if (test_pages_isolated(outer_start, end, false)) {
  5625. pr_info("%s: [%lx, %lx) PFNs busy\n",
  5626. __func__, outer_start, end);
  5627. ret = -EBUSY;
  5628. goto done;
  5629. }
  5630. /* Grab isolated pages from freelists. */
  5631. outer_end = isolate_freepages_range(&cc, outer_start, end);
  5632. if (!outer_end) {
  5633. ret = -EBUSY;
  5634. goto done;
  5635. }
  5636. /* Free head and tail (if any) */
  5637. if (start != outer_start)
  5638. free_contig_range(outer_start, start - outer_start);
  5639. if (end != outer_end)
  5640. free_contig_range(end, outer_end - end);
  5641. done:
  5642. undo_isolate_page_range(pfn_max_align_down(start),
  5643. pfn_max_align_up(end), migratetype);
  5644. return ret;
  5645. }
  5646. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  5647. {
  5648. unsigned int count = 0;
  5649. for (; nr_pages--; pfn++) {
  5650. struct page *page = pfn_to_page(pfn);
  5651. count += page_count(page) != 1;
  5652. __free_page(page);
  5653. }
  5654. WARN(count != 0, "%d pages are still in use!\n", count);
  5655. }
  5656. #endif
  5657. #ifdef CONFIG_MEMORY_HOTPLUG
  5658. /*
  5659. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  5660. * page high values need to be recalulated.
  5661. */
  5662. void __meminit zone_pcp_update(struct zone *zone)
  5663. {
  5664. unsigned cpu;
  5665. mutex_lock(&pcp_batch_high_lock);
  5666. for_each_possible_cpu(cpu)
  5667. pageset_set_high_and_batch(zone,
  5668. per_cpu_ptr(zone->pageset, cpu));
  5669. mutex_unlock(&pcp_batch_high_lock);
  5670. }
  5671. #endif
  5672. void zone_pcp_reset(struct zone *zone)
  5673. {
  5674. unsigned long flags;
  5675. int cpu;
  5676. struct per_cpu_pageset *pset;
  5677. /* avoid races with drain_pages() */
  5678. local_irq_save(flags);
  5679. if (zone->pageset != &boot_pageset) {
  5680. for_each_online_cpu(cpu) {
  5681. pset = per_cpu_ptr(zone->pageset, cpu);
  5682. drain_zonestat(zone, pset);
  5683. }
  5684. free_percpu(zone->pageset);
  5685. zone->pageset = &boot_pageset;
  5686. }
  5687. local_irq_restore(flags);
  5688. }
  5689. #ifdef CONFIG_MEMORY_HOTREMOVE
  5690. /*
  5691. * All pages in the range must be isolated before calling this.
  5692. */
  5693. void
  5694. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  5695. {
  5696. struct page *page;
  5697. struct zone *zone;
  5698. unsigned int order, i;
  5699. unsigned long pfn;
  5700. unsigned long flags;
  5701. /* find the first valid pfn */
  5702. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  5703. if (pfn_valid(pfn))
  5704. break;
  5705. if (pfn == end_pfn)
  5706. return;
  5707. zone = page_zone(pfn_to_page(pfn));
  5708. spin_lock_irqsave(&zone->lock, flags);
  5709. pfn = start_pfn;
  5710. while (pfn < end_pfn) {
  5711. if (!pfn_valid(pfn)) {
  5712. pfn++;
  5713. continue;
  5714. }
  5715. page = pfn_to_page(pfn);
  5716. /*
  5717. * The HWPoisoned page may be not in buddy system, and
  5718. * page_count() is not 0.
  5719. */
  5720. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  5721. pfn++;
  5722. SetPageReserved(page);
  5723. continue;
  5724. }
  5725. BUG_ON(page_count(page));
  5726. BUG_ON(!PageBuddy(page));
  5727. order = page_order(page);
  5728. #ifdef CONFIG_DEBUG_VM
  5729. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  5730. pfn, 1 << order, end_pfn);
  5731. #endif
  5732. list_del(&page->lru);
  5733. rmv_page_order(page);
  5734. zone->free_area[order].nr_free--;
  5735. for (i = 0; i < (1 << order); i++)
  5736. SetPageReserved((page+i));
  5737. pfn += (1 << order);
  5738. }
  5739. spin_unlock_irqrestore(&zone->lock, flags);
  5740. }
  5741. #endif
  5742. #ifdef CONFIG_MEMORY_FAILURE
  5743. bool is_free_buddy_page(struct page *page)
  5744. {
  5745. struct zone *zone = page_zone(page);
  5746. unsigned long pfn = page_to_pfn(page);
  5747. unsigned long flags;
  5748. unsigned int order;
  5749. spin_lock_irqsave(&zone->lock, flags);
  5750. for (order = 0; order < MAX_ORDER; order++) {
  5751. struct page *page_head = page - (pfn & ((1 << order) - 1));
  5752. if (PageBuddy(page_head) && page_order(page_head) >= order)
  5753. break;
  5754. }
  5755. spin_unlock_irqrestore(&zone->lock, flags);
  5756. return order < MAX_ORDER;
  5757. }
  5758. #endif