page_alloc.c 192 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/kasan.h>
  28. #include <linux/module.h>
  29. #include <linux/suspend.h>
  30. #include <linux/pagevec.h>
  31. #include <linux/blkdev.h>
  32. #include <linux/slab.h>
  33. #include <linux/ratelimit.h>
  34. #include <linux/oom.h>
  35. #include <linux/notifier.h>
  36. #include <linux/topology.h>
  37. #include <linux/sysctl.h>
  38. #include <linux/cpu.h>
  39. #include <linux/cpuset.h>
  40. #include <linux/memory_hotplug.h>
  41. #include <linux/nodemask.h>
  42. #include <linux/vmalloc.h>
  43. #include <linux/vmstat.h>
  44. #include <linux/mempolicy.h>
  45. #include <linux/stop_machine.h>
  46. #include <linux/sort.h>
  47. #include <linux/pfn.h>
  48. #include <linux/backing-dev.h>
  49. #include <linux/fault-inject.h>
  50. #include <linux/page-isolation.h>
  51. #include <linux/page_ext.h>
  52. #include <linux/debugobjects.h>
  53. #include <linux/kmemleak.h>
  54. #include <linux/compaction.h>
  55. #include <trace/events/kmem.h>
  56. #include <linux/prefetch.h>
  57. #include <linux/mm_inline.h>
  58. #include <linux/migrate.h>
  59. #include <linux/page_ext.h>
  60. #include <linux/hugetlb.h>
  61. #include <linux/sched/rt.h>
  62. #include <linux/page_owner.h>
  63. #include <asm/sections.h>
  64. #include <asm/tlbflush.h>
  65. #include <asm/div64.h>
  66. #include "internal.h"
  67. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  68. static DEFINE_MUTEX(pcp_batch_high_lock);
  69. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  70. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  71. DEFINE_PER_CPU(int, numa_node);
  72. EXPORT_PER_CPU_SYMBOL(numa_node);
  73. #endif
  74. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  75. /*
  76. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  77. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  78. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  79. * defined in <linux/topology.h>.
  80. */
  81. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  82. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  83. int _node_numa_mem_[MAX_NUMNODES];
  84. #endif
  85. /*
  86. * Array of node states.
  87. */
  88. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  89. [N_POSSIBLE] = NODE_MASK_ALL,
  90. [N_ONLINE] = { { [0] = 1UL } },
  91. #ifndef CONFIG_NUMA
  92. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  93. #ifdef CONFIG_HIGHMEM
  94. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  95. #endif
  96. #ifdef CONFIG_MOVABLE_NODE
  97. [N_MEMORY] = { { [0] = 1UL } },
  98. #endif
  99. [N_CPU] = { { [0] = 1UL } },
  100. #endif /* NUMA */
  101. };
  102. EXPORT_SYMBOL(node_states);
  103. /* Protect totalram_pages and zone->managed_pages */
  104. static DEFINE_SPINLOCK(managed_page_count_lock);
  105. unsigned long totalram_pages __read_mostly;
  106. unsigned long totalreserve_pages __read_mostly;
  107. unsigned long totalcma_pages __read_mostly;
  108. /*
  109. * When calculating the number of globally allowed dirty pages, there
  110. * is a certain number of per-zone reserves that should not be
  111. * considered dirtyable memory. This is the sum of those reserves
  112. * over all existing zones that contribute dirtyable memory.
  113. */
  114. unsigned long dirty_balance_reserve __read_mostly;
  115. int percpu_pagelist_fraction;
  116. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  117. #ifdef CONFIG_PM_SLEEP
  118. /*
  119. * The following functions are used by the suspend/hibernate code to temporarily
  120. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  121. * while devices are suspended. To avoid races with the suspend/hibernate code,
  122. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  123. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  124. * guaranteed not to run in parallel with that modification).
  125. */
  126. static gfp_t saved_gfp_mask;
  127. void pm_restore_gfp_mask(void)
  128. {
  129. WARN_ON(!mutex_is_locked(&pm_mutex));
  130. if (saved_gfp_mask) {
  131. gfp_allowed_mask = saved_gfp_mask;
  132. saved_gfp_mask = 0;
  133. }
  134. }
  135. void pm_restrict_gfp_mask(void)
  136. {
  137. WARN_ON(!mutex_is_locked(&pm_mutex));
  138. WARN_ON(saved_gfp_mask);
  139. saved_gfp_mask = gfp_allowed_mask;
  140. gfp_allowed_mask &= ~GFP_IOFS;
  141. }
  142. bool pm_suspended_storage(void)
  143. {
  144. if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
  145. return false;
  146. return true;
  147. }
  148. #endif /* CONFIG_PM_SLEEP */
  149. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  150. int pageblock_order __read_mostly;
  151. #endif
  152. static void __free_pages_ok(struct page *page, unsigned int order);
  153. /*
  154. * results with 256, 32 in the lowmem_reserve sysctl:
  155. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  156. * 1G machine -> (16M dma, 784M normal, 224M high)
  157. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  158. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  159. * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
  160. *
  161. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  162. * don't need any ZONE_NORMAL reservation
  163. */
  164. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  165. #ifdef CONFIG_ZONE_DMA
  166. 256,
  167. #endif
  168. #ifdef CONFIG_ZONE_DMA32
  169. 256,
  170. #endif
  171. #ifdef CONFIG_HIGHMEM
  172. 32,
  173. #endif
  174. 32,
  175. };
  176. EXPORT_SYMBOL(totalram_pages);
  177. static char * const zone_names[MAX_NR_ZONES] = {
  178. #ifdef CONFIG_ZONE_DMA
  179. "DMA",
  180. #endif
  181. #ifdef CONFIG_ZONE_DMA32
  182. "DMA32",
  183. #endif
  184. "Normal",
  185. #ifdef CONFIG_HIGHMEM
  186. "HighMem",
  187. #endif
  188. "Movable",
  189. };
  190. int min_free_kbytes = 1024;
  191. int user_min_free_kbytes = -1;
  192. static unsigned long __meminitdata nr_kernel_pages;
  193. static unsigned long __meminitdata nr_all_pages;
  194. static unsigned long __meminitdata dma_reserve;
  195. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  196. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  197. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  198. static unsigned long __initdata required_kernelcore;
  199. static unsigned long __initdata required_movablecore;
  200. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  201. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  202. int movable_zone;
  203. EXPORT_SYMBOL(movable_zone);
  204. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  205. #if MAX_NUMNODES > 1
  206. int nr_node_ids __read_mostly = MAX_NUMNODES;
  207. int nr_online_nodes __read_mostly = 1;
  208. EXPORT_SYMBOL(nr_node_ids);
  209. EXPORT_SYMBOL(nr_online_nodes);
  210. #endif
  211. int page_group_by_mobility_disabled __read_mostly;
  212. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  213. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  214. {
  215. pgdat->first_deferred_pfn = ULONG_MAX;
  216. }
  217. /* Returns true if the struct page for the pfn is uninitialised */
  218. static inline bool __defermem_init early_page_uninitialised(unsigned long pfn)
  219. {
  220. int nid = early_pfn_to_nid(pfn);
  221. if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
  222. return true;
  223. return false;
  224. }
  225. static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
  226. {
  227. if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
  228. return true;
  229. return false;
  230. }
  231. /*
  232. * Returns false when the remaining initialisation should be deferred until
  233. * later in the boot cycle when it can be parallelised.
  234. */
  235. static inline bool update_defer_init(pg_data_t *pgdat,
  236. unsigned long pfn, unsigned long zone_end,
  237. unsigned long *nr_initialised)
  238. {
  239. /* Always populate low zones for address-contrained allocations */
  240. if (zone_end < pgdat_end_pfn(pgdat))
  241. return true;
  242. /* Initialise at least 2G of the highest zone */
  243. (*nr_initialised)++;
  244. if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
  245. (pfn & (PAGES_PER_SECTION - 1)) == 0) {
  246. pgdat->first_deferred_pfn = pfn;
  247. return false;
  248. }
  249. return true;
  250. }
  251. #else
  252. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  253. {
  254. }
  255. static inline bool early_page_uninitialised(unsigned long pfn)
  256. {
  257. return false;
  258. }
  259. static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
  260. {
  261. return false;
  262. }
  263. static inline bool update_defer_init(pg_data_t *pgdat,
  264. unsigned long pfn, unsigned long zone_end,
  265. unsigned long *nr_initialised)
  266. {
  267. return true;
  268. }
  269. #endif
  270. void set_pageblock_migratetype(struct page *page, int migratetype)
  271. {
  272. if (unlikely(page_group_by_mobility_disabled &&
  273. migratetype < MIGRATE_PCPTYPES))
  274. migratetype = MIGRATE_UNMOVABLE;
  275. set_pageblock_flags_group(page, (unsigned long)migratetype,
  276. PB_migrate, PB_migrate_end);
  277. }
  278. #ifdef CONFIG_DEBUG_VM
  279. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  280. {
  281. int ret = 0;
  282. unsigned seq;
  283. unsigned long pfn = page_to_pfn(page);
  284. unsigned long sp, start_pfn;
  285. do {
  286. seq = zone_span_seqbegin(zone);
  287. start_pfn = zone->zone_start_pfn;
  288. sp = zone->spanned_pages;
  289. if (!zone_spans_pfn(zone, pfn))
  290. ret = 1;
  291. } while (zone_span_seqretry(zone, seq));
  292. if (ret)
  293. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  294. pfn, zone_to_nid(zone), zone->name,
  295. start_pfn, start_pfn + sp);
  296. return ret;
  297. }
  298. static int page_is_consistent(struct zone *zone, struct page *page)
  299. {
  300. if (!pfn_valid_within(page_to_pfn(page)))
  301. return 0;
  302. if (zone != page_zone(page))
  303. return 0;
  304. return 1;
  305. }
  306. /*
  307. * Temporary debugging check for pages not lying within a given zone.
  308. */
  309. static int bad_range(struct zone *zone, struct page *page)
  310. {
  311. if (page_outside_zone_boundaries(zone, page))
  312. return 1;
  313. if (!page_is_consistent(zone, page))
  314. return 1;
  315. return 0;
  316. }
  317. #else
  318. static inline int bad_range(struct zone *zone, struct page *page)
  319. {
  320. return 0;
  321. }
  322. #endif
  323. static void bad_page(struct page *page, const char *reason,
  324. unsigned long bad_flags)
  325. {
  326. static unsigned long resume;
  327. static unsigned long nr_shown;
  328. static unsigned long nr_unshown;
  329. /* Don't complain about poisoned pages */
  330. if (PageHWPoison(page)) {
  331. page_mapcount_reset(page); /* remove PageBuddy */
  332. return;
  333. }
  334. /*
  335. * Allow a burst of 60 reports, then keep quiet for that minute;
  336. * or allow a steady drip of one report per second.
  337. */
  338. if (nr_shown == 60) {
  339. if (time_before(jiffies, resume)) {
  340. nr_unshown++;
  341. goto out;
  342. }
  343. if (nr_unshown) {
  344. printk(KERN_ALERT
  345. "BUG: Bad page state: %lu messages suppressed\n",
  346. nr_unshown);
  347. nr_unshown = 0;
  348. }
  349. nr_shown = 0;
  350. }
  351. if (nr_shown++ == 0)
  352. resume = jiffies + 60 * HZ;
  353. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  354. current->comm, page_to_pfn(page));
  355. dump_page_badflags(page, reason, bad_flags);
  356. print_modules();
  357. dump_stack();
  358. out:
  359. /* Leave bad fields for debug, except PageBuddy could make trouble */
  360. page_mapcount_reset(page); /* remove PageBuddy */
  361. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  362. }
  363. /*
  364. * Higher-order pages are called "compound pages". They are structured thusly:
  365. *
  366. * The first PAGE_SIZE page is called the "head page".
  367. *
  368. * The remaining PAGE_SIZE pages are called "tail pages".
  369. *
  370. * All pages have PG_compound set. All tail pages have their ->first_page
  371. * pointing at the head page.
  372. *
  373. * The first tail page's ->lru.next holds the address of the compound page's
  374. * put_page() function. Its ->lru.prev holds the order of allocation.
  375. * This usage means that zero-order pages may not be compound.
  376. */
  377. static void free_compound_page(struct page *page)
  378. {
  379. __free_pages_ok(page, compound_order(page));
  380. }
  381. void prep_compound_page(struct page *page, unsigned long order)
  382. {
  383. int i;
  384. int nr_pages = 1 << order;
  385. set_compound_page_dtor(page, free_compound_page);
  386. set_compound_order(page, order);
  387. __SetPageHead(page);
  388. for (i = 1; i < nr_pages; i++) {
  389. struct page *p = page + i;
  390. set_page_count(p, 0);
  391. p->first_page = page;
  392. /* Make sure p->first_page is always valid for PageTail() */
  393. smp_wmb();
  394. __SetPageTail(p);
  395. }
  396. }
  397. #ifdef CONFIG_DEBUG_PAGEALLOC
  398. unsigned int _debug_guardpage_minorder;
  399. bool _debug_pagealloc_enabled __read_mostly;
  400. bool _debug_guardpage_enabled __read_mostly;
  401. static int __init early_debug_pagealloc(char *buf)
  402. {
  403. if (!buf)
  404. return -EINVAL;
  405. if (strcmp(buf, "on") == 0)
  406. _debug_pagealloc_enabled = true;
  407. return 0;
  408. }
  409. early_param("debug_pagealloc", early_debug_pagealloc);
  410. static bool need_debug_guardpage(void)
  411. {
  412. /* If we don't use debug_pagealloc, we don't need guard page */
  413. if (!debug_pagealloc_enabled())
  414. return false;
  415. return true;
  416. }
  417. static void init_debug_guardpage(void)
  418. {
  419. if (!debug_pagealloc_enabled())
  420. return;
  421. _debug_guardpage_enabled = true;
  422. }
  423. struct page_ext_operations debug_guardpage_ops = {
  424. .need = need_debug_guardpage,
  425. .init = init_debug_guardpage,
  426. };
  427. static int __init debug_guardpage_minorder_setup(char *buf)
  428. {
  429. unsigned long res;
  430. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  431. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  432. return 0;
  433. }
  434. _debug_guardpage_minorder = res;
  435. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  436. return 0;
  437. }
  438. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  439. static inline void set_page_guard(struct zone *zone, struct page *page,
  440. unsigned int order, int migratetype)
  441. {
  442. struct page_ext *page_ext;
  443. if (!debug_guardpage_enabled())
  444. return;
  445. page_ext = lookup_page_ext(page);
  446. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  447. INIT_LIST_HEAD(&page->lru);
  448. set_page_private(page, order);
  449. /* Guard pages are not available for any usage */
  450. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  451. }
  452. static inline void clear_page_guard(struct zone *zone, struct page *page,
  453. unsigned int order, int migratetype)
  454. {
  455. struct page_ext *page_ext;
  456. if (!debug_guardpage_enabled())
  457. return;
  458. page_ext = lookup_page_ext(page);
  459. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  460. set_page_private(page, 0);
  461. if (!is_migrate_isolate(migratetype))
  462. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  463. }
  464. #else
  465. struct page_ext_operations debug_guardpage_ops = { NULL, };
  466. static inline void set_page_guard(struct zone *zone, struct page *page,
  467. unsigned int order, int migratetype) {}
  468. static inline void clear_page_guard(struct zone *zone, struct page *page,
  469. unsigned int order, int migratetype) {}
  470. #endif
  471. static inline void set_page_order(struct page *page, unsigned int order)
  472. {
  473. set_page_private(page, order);
  474. __SetPageBuddy(page);
  475. }
  476. static inline void rmv_page_order(struct page *page)
  477. {
  478. __ClearPageBuddy(page);
  479. set_page_private(page, 0);
  480. }
  481. /*
  482. * This function checks whether a page is free && is the buddy
  483. * we can do coalesce a page and its buddy if
  484. * (a) the buddy is not in a hole &&
  485. * (b) the buddy is in the buddy system &&
  486. * (c) a page and its buddy have the same order &&
  487. * (d) a page and its buddy are in the same zone.
  488. *
  489. * For recording whether a page is in the buddy system, we set ->_mapcount
  490. * PAGE_BUDDY_MAPCOUNT_VALUE.
  491. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  492. * serialized by zone->lock.
  493. *
  494. * For recording page's order, we use page_private(page).
  495. */
  496. static inline int page_is_buddy(struct page *page, struct page *buddy,
  497. unsigned int order)
  498. {
  499. if (!pfn_valid_within(page_to_pfn(buddy)))
  500. return 0;
  501. if (page_is_guard(buddy) && page_order(buddy) == order) {
  502. if (page_zone_id(page) != page_zone_id(buddy))
  503. return 0;
  504. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  505. return 1;
  506. }
  507. if (PageBuddy(buddy) && page_order(buddy) == order) {
  508. /*
  509. * zone check is done late to avoid uselessly
  510. * calculating zone/node ids for pages that could
  511. * never merge.
  512. */
  513. if (page_zone_id(page) != page_zone_id(buddy))
  514. return 0;
  515. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  516. return 1;
  517. }
  518. return 0;
  519. }
  520. /*
  521. * Freeing function for a buddy system allocator.
  522. *
  523. * The concept of a buddy system is to maintain direct-mapped table
  524. * (containing bit values) for memory blocks of various "orders".
  525. * The bottom level table contains the map for the smallest allocatable
  526. * units of memory (here, pages), and each level above it describes
  527. * pairs of units from the levels below, hence, "buddies".
  528. * At a high level, all that happens here is marking the table entry
  529. * at the bottom level available, and propagating the changes upward
  530. * as necessary, plus some accounting needed to play nicely with other
  531. * parts of the VM system.
  532. * At each level, we keep a list of pages, which are heads of continuous
  533. * free pages of length of (1 << order) and marked with _mapcount
  534. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  535. * field.
  536. * So when we are allocating or freeing one, we can derive the state of the
  537. * other. That is, if we allocate a small block, and both were
  538. * free, the remainder of the region must be split into blocks.
  539. * If a block is freed, and its buddy is also free, then this
  540. * triggers coalescing into a block of larger size.
  541. *
  542. * -- nyc
  543. */
  544. static inline void __free_one_page(struct page *page,
  545. unsigned long pfn,
  546. struct zone *zone, unsigned int order,
  547. int migratetype)
  548. {
  549. unsigned long page_idx;
  550. unsigned long combined_idx;
  551. unsigned long uninitialized_var(buddy_idx);
  552. struct page *buddy;
  553. int max_order = MAX_ORDER;
  554. VM_BUG_ON(!zone_is_initialized(zone));
  555. VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
  556. VM_BUG_ON(migratetype == -1);
  557. if (is_migrate_isolate(migratetype)) {
  558. /*
  559. * We restrict max order of merging to prevent merge
  560. * between freepages on isolate pageblock and normal
  561. * pageblock. Without this, pageblock isolation
  562. * could cause incorrect freepage accounting.
  563. */
  564. max_order = min(MAX_ORDER, pageblock_order + 1);
  565. } else {
  566. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  567. }
  568. page_idx = pfn & ((1 << max_order) - 1);
  569. VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
  570. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  571. while (order < max_order - 1) {
  572. buddy_idx = __find_buddy_index(page_idx, order);
  573. buddy = page + (buddy_idx - page_idx);
  574. if (!page_is_buddy(page, buddy, order))
  575. break;
  576. /*
  577. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  578. * merge with it and move up one order.
  579. */
  580. if (page_is_guard(buddy)) {
  581. clear_page_guard(zone, buddy, order, migratetype);
  582. } else {
  583. list_del(&buddy->lru);
  584. zone->free_area[order].nr_free--;
  585. rmv_page_order(buddy);
  586. }
  587. combined_idx = buddy_idx & page_idx;
  588. page = page + (combined_idx - page_idx);
  589. page_idx = combined_idx;
  590. order++;
  591. }
  592. set_page_order(page, order);
  593. /*
  594. * If this is not the largest possible page, check if the buddy
  595. * of the next-highest order is free. If it is, it's possible
  596. * that pages are being freed that will coalesce soon. In case,
  597. * that is happening, add the free page to the tail of the list
  598. * so it's less likely to be used soon and more likely to be merged
  599. * as a higher order page
  600. */
  601. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  602. struct page *higher_page, *higher_buddy;
  603. combined_idx = buddy_idx & page_idx;
  604. higher_page = page + (combined_idx - page_idx);
  605. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  606. higher_buddy = higher_page + (buddy_idx - combined_idx);
  607. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  608. list_add_tail(&page->lru,
  609. &zone->free_area[order].free_list[migratetype]);
  610. goto out;
  611. }
  612. }
  613. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  614. out:
  615. zone->free_area[order].nr_free++;
  616. }
  617. static inline int free_pages_check(struct page *page)
  618. {
  619. const char *bad_reason = NULL;
  620. unsigned long bad_flags = 0;
  621. if (unlikely(page_mapcount(page)))
  622. bad_reason = "nonzero mapcount";
  623. if (unlikely(page->mapping != NULL))
  624. bad_reason = "non-NULL mapping";
  625. if (unlikely(atomic_read(&page->_count) != 0))
  626. bad_reason = "nonzero _count";
  627. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  628. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  629. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  630. }
  631. #ifdef CONFIG_MEMCG
  632. if (unlikely(page->mem_cgroup))
  633. bad_reason = "page still charged to cgroup";
  634. #endif
  635. if (unlikely(bad_reason)) {
  636. bad_page(page, bad_reason, bad_flags);
  637. return 1;
  638. }
  639. page_cpupid_reset_last(page);
  640. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  641. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  642. return 0;
  643. }
  644. /*
  645. * Frees a number of pages from the PCP lists
  646. * Assumes all pages on list are in same zone, and of same order.
  647. * count is the number of pages to free.
  648. *
  649. * If the zone was previously in an "all pages pinned" state then look to
  650. * see if this freeing clears that state.
  651. *
  652. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  653. * pinned" detection logic.
  654. */
  655. static void free_pcppages_bulk(struct zone *zone, int count,
  656. struct per_cpu_pages *pcp)
  657. {
  658. int migratetype = 0;
  659. int batch_free = 0;
  660. int to_free = count;
  661. unsigned long nr_scanned;
  662. spin_lock(&zone->lock);
  663. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  664. if (nr_scanned)
  665. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  666. while (to_free) {
  667. struct page *page;
  668. struct list_head *list;
  669. /*
  670. * Remove pages from lists in a round-robin fashion. A
  671. * batch_free count is maintained that is incremented when an
  672. * empty list is encountered. This is so more pages are freed
  673. * off fuller lists instead of spinning excessively around empty
  674. * lists
  675. */
  676. do {
  677. batch_free++;
  678. if (++migratetype == MIGRATE_PCPTYPES)
  679. migratetype = 0;
  680. list = &pcp->lists[migratetype];
  681. } while (list_empty(list));
  682. /* This is the only non-empty list. Free them all. */
  683. if (batch_free == MIGRATE_PCPTYPES)
  684. batch_free = to_free;
  685. do {
  686. int mt; /* migratetype of the to-be-freed page */
  687. page = list_entry(list->prev, struct page, lru);
  688. /* must delete as __free_one_page list manipulates */
  689. list_del(&page->lru);
  690. mt = get_freepage_migratetype(page);
  691. if (unlikely(has_isolate_pageblock(zone)))
  692. mt = get_pageblock_migratetype(page);
  693. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  694. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  695. trace_mm_page_pcpu_drain(page, 0, mt);
  696. } while (--to_free && --batch_free && !list_empty(list));
  697. }
  698. spin_unlock(&zone->lock);
  699. }
  700. static void free_one_page(struct zone *zone,
  701. struct page *page, unsigned long pfn,
  702. unsigned int order,
  703. int migratetype)
  704. {
  705. unsigned long nr_scanned;
  706. spin_lock(&zone->lock);
  707. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  708. if (nr_scanned)
  709. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  710. if (unlikely(has_isolate_pageblock(zone) ||
  711. is_migrate_isolate(migratetype))) {
  712. migratetype = get_pfnblock_migratetype(page, pfn);
  713. }
  714. __free_one_page(page, pfn, zone, order, migratetype);
  715. spin_unlock(&zone->lock);
  716. }
  717. static int free_tail_pages_check(struct page *head_page, struct page *page)
  718. {
  719. if (!IS_ENABLED(CONFIG_DEBUG_VM))
  720. return 0;
  721. if (unlikely(!PageTail(page))) {
  722. bad_page(page, "PageTail not set", 0);
  723. return 1;
  724. }
  725. if (unlikely(page->first_page != head_page)) {
  726. bad_page(page, "first_page not consistent", 0);
  727. return 1;
  728. }
  729. return 0;
  730. }
  731. static void __meminit __init_single_page(struct page *page, unsigned long pfn,
  732. unsigned long zone, int nid)
  733. {
  734. set_page_links(page, zone, nid, pfn);
  735. init_page_count(page);
  736. page_mapcount_reset(page);
  737. page_cpupid_reset_last(page);
  738. INIT_LIST_HEAD(&page->lru);
  739. #ifdef WANT_PAGE_VIRTUAL
  740. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  741. if (!is_highmem_idx(zone))
  742. set_page_address(page, __va(pfn << PAGE_SHIFT));
  743. #endif
  744. }
  745. static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
  746. int nid)
  747. {
  748. return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
  749. }
  750. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  751. static void init_reserved_page(unsigned long pfn)
  752. {
  753. pg_data_t *pgdat;
  754. int nid, zid;
  755. if (!early_page_uninitialised(pfn))
  756. return;
  757. nid = early_pfn_to_nid(pfn);
  758. pgdat = NODE_DATA(nid);
  759. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  760. struct zone *zone = &pgdat->node_zones[zid];
  761. if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
  762. break;
  763. }
  764. __init_single_pfn(pfn, zid, nid);
  765. }
  766. #else
  767. static inline void init_reserved_page(unsigned long pfn)
  768. {
  769. }
  770. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  771. /*
  772. * Initialised pages do not have PageReserved set. This function is
  773. * called for each range allocated by the bootmem allocator and
  774. * marks the pages PageReserved. The remaining valid pages are later
  775. * sent to the buddy page allocator.
  776. */
  777. void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
  778. {
  779. unsigned long start_pfn = PFN_DOWN(start);
  780. unsigned long end_pfn = PFN_UP(end);
  781. for (; start_pfn < end_pfn; start_pfn++) {
  782. if (pfn_valid(start_pfn)) {
  783. struct page *page = pfn_to_page(start_pfn);
  784. init_reserved_page(start_pfn);
  785. SetPageReserved(page);
  786. }
  787. }
  788. }
  789. static bool free_pages_prepare(struct page *page, unsigned int order)
  790. {
  791. bool compound = PageCompound(page);
  792. int i, bad = 0;
  793. VM_BUG_ON_PAGE(PageTail(page), page);
  794. VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
  795. trace_mm_page_free(page, order);
  796. kmemcheck_free_shadow(page, order);
  797. kasan_free_pages(page, order);
  798. if (PageAnon(page))
  799. page->mapping = NULL;
  800. bad += free_pages_check(page);
  801. for (i = 1; i < (1 << order); i++) {
  802. if (compound)
  803. bad += free_tail_pages_check(page, page + i);
  804. bad += free_pages_check(page + i);
  805. }
  806. if (bad)
  807. return false;
  808. reset_page_owner(page, order);
  809. if (!PageHighMem(page)) {
  810. debug_check_no_locks_freed(page_address(page),
  811. PAGE_SIZE << order);
  812. debug_check_no_obj_freed(page_address(page),
  813. PAGE_SIZE << order);
  814. }
  815. arch_free_page(page, order);
  816. kernel_map_pages(page, 1 << order, 0);
  817. return true;
  818. }
  819. static void __free_pages_ok(struct page *page, unsigned int order)
  820. {
  821. unsigned long flags;
  822. int migratetype;
  823. unsigned long pfn = page_to_pfn(page);
  824. if (!free_pages_prepare(page, order))
  825. return;
  826. migratetype = get_pfnblock_migratetype(page, pfn);
  827. local_irq_save(flags);
  828. __count_vm_events(PGFREE, 1 << order);
  829. set_freepage_migratetype(page, migratetype);
  830. free_one_page(page_zone(page), page, pfn, order, migratetype);
  831. local_irq_restore(flags);
  832. }
  833. static void __defer_init __free_pages_boot_core(struct page *page,
  834. unsigned long pfn, unsigned int order)
  835. {
  836. unsigned int nr_pages = 1 << order;
  837. struct page *p = page;
  838. unsigned int loop;
  839. prefetchw(p);
  840. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  841. prefetchw(p + 1);
  842. __ClearPageReserved(p);
  843. set_page_count(p, 0);
  844. }
  845. __ClearPageReserved(p);
  846. set_page_count(p, 0);
  847. page_zone(page)->managed_pages += nr_pages;
  848. set_page_refcounted(page);
  849. __free_pages(page, order);
  850. }
  851. #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
  852. defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  853. /* Only safe to use early in boot when initialisation is single-threaded */
  854. static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
  855. int __meminit early_pfn_to_nid(unsigned long pfn)
  856. {
  857. int nid;
  858. /* The system will behave unpredictably otherwise */
  859. BUG_ON(system_state != SYSTEM_BOOTING);
  860. nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
  861. if (nid >= 0)
  862. return nid;
  863. /* just returns 0 */
  864. return 0;
  865. }
  866. #endif
  867. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  868. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  869. struct mminit_pfnnid_cache *state)
  870. {
  871. int nid;
  872. nid = __early_pfn_to_nid(pfn, state);
  873. if (nid >= 0 && nid != node)
  874. return false;
  875. return true;
  876. }
  877. /* Only safe to use early in boot when initialisation is single-threaded */
  878. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  879. {
  880. return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
  881. }
  882. #else
  883. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  884. {
  885. return true;
  886. }
  887. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  888. struct mminit_pfnnid_cache *state)
  889. {
  890. return true;
  891. }
  892. #endif
  893. void __defer_init __free_pages_bootmem(struct page *page, unsigned long pfn,
  894. unsigned int order)
  895. {
  896. if (early_page_uninitialised(pfn))
  897. return;
  898. return __free_pages_boot_core(page, pfn, order);
  899. }
  900. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  901. static void __defermem_init deferred_free_range(struct page *page,
  902. unsigned long pfn, int nr_pages)
  903. {
  904. int i;
  905. if (!page)
  906. return;
  907. /* Free a large naturally-aligned chunk if possible */
  908. if (nr_pages == MAX_ORDER_NR_PAGES &&
  909. (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
  910. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  911. __free_pages_boot_core(page, pfn, MAX_ORDER-1);
  912. return;
  913. }
  914. for (i = 0; i < nr_pages; i++, page++, pfn++)
  915. __free_pages_boot_core(page, pfn, 0);
  916. }
  917. /* Initialise remaining memory on a node */
  918. void __defermem_init deferred_init_memmap(int nid)
  919. {
  920. struct mminit_pfnnid_cache nid_init_state = { };
  921. unsigned long start = jiffies;
  922. unsigned long nr_pages = 0;
  923. unsigned long walk_start, walk_end;
  924. int i, zid;
  925. struct zone *zone;
  926. pg_data_t *pgdat = NODE_DATA(nid);
  927. unsigned long first_init_pfn = pgdat->first_deferred_pfn;
  928. if (first_init_pfn == ULONG_MAX)
  929. return;
  930. /* Sanity check boundaries */
  931. BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
  932. BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
  933. pgdat->first_deferred_pfn = ULONG_MAX;
  934. /* Only the highest zone is deferred so find it */
  935. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  936. zone = pgdat->node_zones + zid;
  937. if (first_init_pfn < zone_end_pfn(zone))
  938. break;
  939. }
  940. for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
  941. unsigned long pfn, end_pfn;
  942. struct page *page = NULL;
  943. struct page *free_base_page = NULL;
  944. unsigned long free_base_pfn = 0;
  945. int nr_to_free = 0;
  946. end_pfn = min(walk_end, zone_end_pfn(zone));
  947. pfn = first_init_pfn;
  948. if (pfn < walk_start)
  949. pfn = walk_start;
  950. if (pfn < zone->zone_start_pfn)
  951. pfn = zone->zone_start_pfn;
  952. for (; pfn < end_pfn; pfn++) {
  953. if (!pfn_valid_within(pfn))
  954. goto free_range;
  955. /*
  956. * Ensure pfn_valid is checked every
  957. * MAX_ORDER_NR_PAGES for memory holes
  958. */
  959. if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
  960. if (!pfn_valid(pfn)) {
  961. page = NULL;
  962. goto free_range;
  963. }
  964. }
  965. if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
  966. page = NULL;
  967. goto free_range;
  968. }
  969. /* Minimise pfn page lookups and scheduler checks */
  970. if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
  971. page++;
  972. } else {
  973. nr_pages += nr_to_free;
  974. deferred_free_range(free_base_page,
  975. free_base_pfn, nr_to_free);
  976. free_base_page = NULL;
  977. free_base_pfn = nr_to_free = 0;
  978. page = pfn_to_page(pfn);
  979. cond_resched();
  980. }
  981. if (page->flags) {
  982. VM_BUG_ON(page_zone(page) != zone);
  983. goto free_range;
  984. }
  985. __init_single_page(page, pfn, zid, nid);
  986. if (!free_base_page) {
  987. free_base_page = page;
  988. free_base_pfn = pfn;
  989. nr_to_free = 0;
  990. }
  991. nr_to_free++;
  992. /* Where possible, batch up pages for a single free */
  993. continue;
  994. free_range:
  995. /* Free the current block of pages to allocator */
  996. nr_pages += nr_to_free;
  997. deferred_free_range(free_base_page, free_base_pfn,
  998. nr_to_free);
  999. free_base_page = NULL;
  1000. free_base_pfn = nr_to_free = 0;
  1001. }
  1002. first_init_pfn = max(end_pfn, first_init_pfn);
  1003. }
  1004. /* Sanity check that the next zone really is unpopulated */
  1005. WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
  1006. pr_info("kswapd %d initialised %lu pages in %ums\n", nid, nr_pages,
  1007. jiffies_to_msecs(jiffies - start));
  1008. }
  1009. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1010. #ifdef CONFIG_CMA
  1011. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  1012. void __init init_cma_reserved_pageblock(struct page *page)
  1013. {
  1014. unsigned i = pageblock_nr_pages;
  1015. struct page *p = page;
  1016. do {
  1017. __ClearPageReserved(p);
  1018. set_page_count(p, 0);
  1019. } while (++p, --i);
  1020. set_pageblock_migratetype(page, MIGRATE_CMA);
  1021. if (pageblock_order >= MAX_ORDER) {
  1022. i = pageblock_nr_pages;
  1023. p = page;
  1024. do {
  1025. set_page_refcounted(p);
  1026. __free_pages(p, MAX_ORDER - 1);
  1027. p += MAX_ORDER_NR_PAGES;
  1028. } while (i -= MAX_ORDER_NR_PAGES);
  1029. } else {
  1030. set_page_refcounted(page);
  1031. __free_pages(page, pageblock_order);
  1032. }
  1033. adjust_managed_page_count(page, pageblock_nr_pages);
  1034. }
  1035. #endif
  1036. /*
  1037. * The order of subdivision here is critical for the IO subsystem.
  1038. * Please do not alter this order without good reasons and regression
  1039. * testing. Specifically, as large blocks of memory are subdivided,
  1040. * the order in which smaller blocks are delivered depends on the order
  1041. * they're subdivided in this function. This is the primary factor
  1042. * influencing the order in which pages are delivered to the IO
  1043. * subsystem according to empirical testing, and this is also justified
  1044. * by considering the behavior of a buddy system containing a single
  1045. * large block of memory acted on by a series of small allocations.
  1046. * This behavior is a critical factor in sglist merging's success.
  1047. *
  1048. * -- nyc
  1049. */
  1050. static inline void expand(struct zone *zone, struct page *page,
  1051. int low, int high, struct free_area *area,
  1052. int migratetype)
  1053. {
  1054. unsigned long size = 1 << high;
  1055. while (high > low) {
  1056. area--;
  1057. high--;
  1058. size >>= 1;
  1059. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  1060. if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
  1061. debug_guardpage_enabled() &&
  1062. high < debug_guardpage_minorder()) {
  1063. /*
  1064. * Mark as guard pages (or page), that will allow to
  1065. * merge back to allocator when buddy will be freed.
  1066. * Corresponding page table entries will not be touched,
  1067. * pages will stay not present in virtual address space
  1068. */
  1069. set_page_guard(zone, &page[size], high, migratetype);
  1070. continue;
  1071. }
  1072. list_add(&page[size].lru, &area->free_list[migratetype]);
  1073. area->nr_free++;
  1074. set_page_order(&page[size], high);
  1075. }
  1076. }
  1077. /*
  1078. * This page is about to be returned from the page allocator
  1079. */
  1080. static inline int check_new_page(struct page *page)
  1081. {
  1082. const char *bad_reason = NULL;
  1083. unsigned long bad_flags = 0;
  1084. if (unlikely(page_mapcount(page)))
  1085. bad_reason = "nonzero mapcount";
  1086. if (unlikely(page->mapping != NULL))
  1087. bad_reason = "non-NULL mapping";
  1088. if (unlikely(atomic_read(&page->_count) != 0))
  1089. bad_reason = "nonzero _count";
  1090. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  1091. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  1092. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  1093. }
  1094. #ifdef CONFIG_MEMCG
  1095. if (unlikely(page->mem_cgroup))
  1096. bad_reason = "page still charged to cgroup";
  1097. #endif
  1098. if (unlikely(bad_reason)) {
  1099. bad_page(page, bad_reason, bad_flags);
  1100. return 1;
  1101. }
  1102. return 0;
  1103. }
  1104. static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  1105. int alloc_flags)
  1106. {
  1107. int i;
  1108. for (i = 0; i < (1 << order); i++) {
  1109. struct page *p = page + i;
  1110. if (unlikely(check_new_page(p)))
  1111. return 1;
  1112. }
  1113. set_page_private(page, 0);
  1114. set_page_refcounted(page);
  1115. arch_alloc_page(page, order);
  1116. kernel_map_pages(page, 1 << order, 1);
  1117. kasan_alloc_pages(page, order);
  1118. if (gfp_flags & __GFP_ZERO)
  1119. for (i = 0; i < (1 << order); i++)
  1120. clear_highpage(page + i);
  1121. if (order && (gfp_flags & __GFP_COMP))
  1122. prep_compound_page(page, order);
  1123. set_page_owner(page, order, gfp_flags);
  1124. /*
  1125. * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
  1126. * allocate the page. The expectation is that the caller is taking
  1127. * steps that will free more memory. The caller should avoid the page
  1128. * being used for !PFMEMALLOC purposes.
  1129. */
  1130. page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
  1131. return 0;
  1132. }
  1133. /*
  1134. * Go through the free lists for the given migratetype and remove
  1135. * the smallest available page from the freelists
  1136. */
  1137. static inline
  1138. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  1139. int migratetype)
  1140. {
  1141. unsigned int current_order;
  1142. struct free_area *area;
  1143. struct page *page;
  1144. /* Find a page of the appropriate size in the preferred list */
  1145. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  1146. area = &(zone->free_area[current_order]);
  1147. if (list_empty(&area->free_list[migratetype]))
  1148. continue;
  1149. page = list_entry(area->free_list[migratetype].next,
  1150. struct page, lru);
  1151. list_del(&page->lru);
  1152. rmv_page_order(page);
  1153. area->nr_free--;
  1154. expand(zone, page, order, current_order, area, migratetype);
  1155. set_freepage_migratetype(page, migratetype);
  1156. return page;
  1157. }
  1158. return NULL;
  1159. }
  1160. /*
  1161. * This array describes the order lists are fallen back to when
  1162. * the free lists for the desirable migrate type are depleted
  1163. */
  1164. static int fallbacks[MIGRATE_TYPES][4] = {
  1165. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  1166. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  1167. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  1168. #ifdef CONFIG_CMA
  1169. [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
  1170. #endif
  1171. [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
  1172. #ifdef CONFIG_MEMORY_ISOLATION
  1173. [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
  1174. #endif
  1175. };
  1176. #ifdef CONFIG_CMA
  1177. static struct page *__rmqueue_cma_fallback(struct zone *zone,
  1178. unsigned int order)
  1179. {
  1180. return __rmqueue_smallest(zone, order, MIGRATE_CMA);
  1181. }
  1182. #else
  1183. static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1184. unsigned int order) { return NULL; }
  1185. #endif
  1186. /*
  1187. * Move the free pages in a range to the free lists of the requested type.
  1188. * Note that start_page and end_pages are not aligned on a pageblock
  1189. * boundary. If alignment is required, use move_freepages_block()
  1190. */
  1191. int move_freepages(struct zone *zone,
  1192. struct page *start_page, struct page *end_page,
  1193. int migratetype)
  1194. {
  1195. struct page *page;
  1196. unsigned long order;
  1197. int pages_moved = 0;
  1198. #ifndef CONFIG_HOLES_IN_ZONE
  1199. /*
  1200. * page_zone is not safe to call in this context when
  1201. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  1202. * anyway as we check zone boundaries in move_freepages_block().
  1203. * Remove at a later date when no bug reports exist related to
  1204. * grouping pages by mobility
  1205. */
  1206. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  1207. #endif
  1208. for (page = start_page; page <= end_page;) {
  1209. /* Make sure we are not inadvertently changing nodes */
  1210. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  1211. if (!pfn_valid_within(page_to_pfn(page))) {
  1212. page++;
  1213. continue;
  1214. }
  1215. if (!PageBuddy(page)) {
  1216. page++;
  1217. continue;
  1218. }
  1219. order = page_order(page);
  1220. list_move(&page->lru,
  1221. &zone->free_area[order].free_list[migratetype]);
  1222. set_freepage_migratetype(page, migratetype);
  1223. page += 1 << order;
  1224. pages_moved += 1 << order;
  1225. }
  1226. return pages_moved;
  1227. }
  1228. int move_freepages_block(struct zone *zone, struct page *page,
  1229. int migratetype)
  1230. {
  1231. unsigned long start_pfn, end_pfn;
  1232. struct page *start_page, *end_page;
  1233. start_pfn = page_to_pfn(page);
  1234. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  1235. start_page = pfn_to_page(start_pfn);
  1236. end_page = start_page + pageblock_nr_pages - 1;
  1237. end_pfn = start_pfn + pageblock_nr_pages - 1;
  1238. /* Do not cross zone boundaries */
  1239. if (!zone_spans_pfn(zone, start_pfn))
  1240. start_page = page;
  1241. if (!zone_spans_pfn(zone, end_pfn))
  1242. return 0;
  1243. return move_freepages(zone, start_page, end_page, migratetype);
  1244. }
  1245. static void change_pageblock_range(struct page *pageblock_page,
  1246. int start_order, int migratetype)
  1247. {
  1248. int nr_pageblocks = 1 << (start_order - pageblock_order);
  1249. while (nr_pageblocks--) {
  1250. set_pageblock_migratetype(pageblock_page, migratetype);
  1251. pageblock_page += pageblock_nr_pages;
  1252. }
  1253. }
  1254. /*
  1255. * When we are falling back to another migratetype during allocation, try to
  1256. * steal extra free pages from the same pageblocks to satisfy further
  1257. * allocations, instead of polluting multiple pageblocks.
  1258. *
  1259. * If we are stealing a relatively large buddy page, it is likely there will
  1260. * be more free pages in the pageblock, so try to steal them all. For
  1261. * reclaimable and unmovable allocations, we steal regardless of page size,
  1262. * as fragmentation caused by those allocations polluting movable pageblocks
  1263. * is worse than movable allocations stealing from unmovable and reclaimable
  1264. * pageblocks.
  1265. */
  1266. static bool can_steal_fallback(unsigned int order, int start_mt)
  1267. {
  1268. /*
  1269. * Leaving this order check is intended, although there is
  1270. * relaxed order check in next check. The reason is that
  1271. * we can actually steal whole pageblock if this condition met,
  1272. * but, below check doesn't guarantee it and that is just heuristic
  1273. * so could be changed anytime.
  1274. */
  1275. if (order >= pageblock_order)
  1276. return true;
  1277. if (order >= pageblock_order / 2 ||
  1278. start_mt == MIGRATE_RECLAIMABLE ||
  1279. start_mt == MIGRATE_UNMOVABLE ||
  1280. page_group_by_mobility_disabled)
  1281. return true;
  1282. return false;
  1283. }
  1284. /*
  1285. * This function implements actual steal behaviour. If order is large enough,
  1286. * we can steal whole pageblock. If not, we first move freepages in this
  1287. * pageblock and check whether half of pages are moved or not. If half of
  1288. * pages are moved, we can change migratetype of pageblock and permanently
  1289. * use it's pages as requested migratetype in the future.
  1290. */
  1291. static void steal_suitable_fallback(struct zone *zone, struct page *page,
  1292. int start_type)
  1293. {
  1294. int current_order = page_order(page);
  1295. int pages;
  1296. /* Take ownership for orders >= pageblock_order */
  1297. if (current_order >= pageblock_order) {
  1298. change_pageblock_range(page, current_order, start_type);
  1299. return;
  1300. }
  1301. pages = move_freepages_block(zone, page, start_type);
  1302. /* Claim the whole block if over half of it is free */
  1303. if (pages >= (1 << (pageblock_order-1)) ||
  1304. page_group_by_mobility_disabled)
  1305. set_pageblock_migratetype(page, start_type);
  1306. }
  1307. /*
  1308. * Check whether there is a suitable fallback freepage with requested order.
  1309. * If only_stealable is true, this function returns fallback_mt only if
  1310. * we can steal other freepages all together. This would help to reduce
  1311. * fragmentation due to mixed migratetype pages in one pageblock.
  1312. */
  1313. int find_suitable_fallback(struct free_area *area, unsigned int order,
  1314. int migratetype, bool only_stealable, bool *can_steal)
  1315. {
  1316. int i;
  1317. int fallback_mt;
  1318. if (area->nr_free == 0)
  1319. return -1;
  1320. *can_steal = false;
  1321. for (i = 0;; i++) {
  1322. fallback_mt = fallbacks[migratetype][i];
  1323. if (fallback_mt == MIGRATE_RESERVE)
  1324. break;
  1325. if (list_empty(&area->free_list[fallback_mt]))
  1326. continue;
  1327. if (can_steal_fallback(order, migratetype))
  1328. *can_steal = true;
  1329. if (!only_stealable)
  1330. return fallback_mt;
  1331. if (*can_steal)
  1332. return fallback_mt;
  1333. }
  1334. return -1;
  1335. }
  1336. /* Remove an element from the buddy allocator from the fallback list */
  1337. static inline struct page *
  1338. __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
  1339. {
  1340. struct free_area *area;
  1341. unsigned int current_order;
  1342. struct page *page;
  1343. int fallback_mt;
  1344. bool can_steal;
  1345. /* Find the largest possible block of pages in the other list */
  1346. for (current_order = MAX_ORDER-1;
  1347. current_order >= order && current_order <= MAX_ORDER-1;
  1348. --current_order) {
  1349. area = &(zone->free_area[current_order]);
  1350. fallback_mt = find_suitable_fallback(area, current_order,
  1351. start_migratetype, false, &can_steal);
  1352. if (fallback_mt == -1)
  1353. continue;
  1354. page = list_entry(area->free_list[fallback_mt].next,
  1355. struct page, lru);
  1356. if (can_steal)
  1357. steal_suitable_fallback(zone, page, start_migratetype);
  1358. /* Remove the page from the freelists */
  1359. area->nr_free--;
  1360. list_del(&page->lru);
  1361. rmv_page_order(page);
  1362. expand(zone, page, order, current_order, area,
  1363. start_migratetype);
  1364. /*
  1365. * The freepage_migratetype may differ from pageblock's
  1366. * migratetype depending on the decisions in
  1367. * try_to_steal_freepages(). This is OK as long as it
  1368. * does not differ for MIGRATE_CMA pageblocks. For CMA
  1369. * we need to make sure unallocated pages flushed from
  1370. * pcp lists are returned to the correct freelist.
  1371. */
  1372. set_freepage_migratetype(page, start_migratetype);
  1373. trace_mm_page_alloc_extfrag(page, order, current_order,
  1374. start_migratetype, fallback_mt);
  1375. return page;
  1376. }
  1377. return NULL;
  1378. }
  1379. /*
  1380. * Do the hard work of removing an element from the buddy allocator.
  1381. * Call me with the zone->lock already held.
  1382. */
  1383. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  1384. int migratetype)
  1385. {
  1386. struct page *page;
  1387. retry_reserve:
  1388. page = __rmqueue_smallest(zone, order, migratetype);
  1389. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  1390. if (migratetype == MIGRATE_MOVABLE)
  1391. page = __rmqueue_cma_fallback(zone, order);
  1392. if (!page)
  1393. page = __rmqueue_fallback(zone, order, migratetype);
  1394. /*
  1395. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  1396. * is used because __rmqueue_smallest is an inline function
  1397. * and we want just one call site
  1398. */
  1399. if (!page) {
  1400. migratetype = MIGRATE_RESERVE;
  1401. goto retry_reserve;
  1402. }
  1403. }
  1404. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1405. return page;
  1406. }
  1407. /*
  1408. * Obtain a specified number of elements from the buddy allocator, all under
  1409. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1410. * Returns the number of new pages which were placed at *list.
  1411. */
  1412. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1413. unsigned long count, struct list_head *list,
  1414. int migratetype, bool cold)
  1415. {
  1416. int i;
  1417. spin_lock(&zone->lock);
  1418. for (i = 0; i < count; ++i) {
  1419. struct page *page = __rmqueue(zone, order, migratetype);
  1420. if (unlikely(page == NULL))
  1421. break;
  1422. /*
  1423. * Split buddy pages returned by expand() are received here
  1424. * in physical page order. The page is added to the callers and
  1425. * list and the list head then moves forward. From the callers
  1426. * perspective, the linked list is ordered by page number in
  1427. * some conditions. This is useful for IO devices that can
  1428. * merge IO requests if the physical pages are ordered
  1429. * properly.
  1430. */
  1431. if (likely(!cold))
  1432. list_add(&page->lru, list);
  1433. else
  1434. list_add_tail(&page->lru, list);
  1435. list = &page->lru;
  1436. if (is_migrate_cma(get_freepage_migratetype(page)))
  1437. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1438. -(1 << order));
  1439. }
  1440. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1441. spin_unlock(&zone->lock);
  1442. return i;
  1443. }
  1444. #ifdef CONFIG_NUMA
  1445. /*
  1446. * Called from the vmstat counter updater to drain pagesets of this
  1447. * currently executing processor on remote nodes after they have
  1448. * expired.
  1449. *
  1450. * Note that this function must be called with the thread pinned to
  1451. * a single processor.
  1452. */
  1453. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1454. {
  1455. unsigned long flags;
  1456. int to_drain, batch;
  1457. local_irq_save(flags);
  1458. batch = READ_ONCE(pcp->batch);
  1459. to_drain = min(pcp->count, batch);
  1460. if (to_drain > 0) {
  1461. free_pcppages_bulk(zone, to_drain, pcp);
  1462. pcp->count -= to_drain;
  1463. }
  1464. local_irq_restore(flags);
  1465. }
  1466. #endif
  1467. /*
  1468. * Drain pcplists of the indicated processor and zone.
  1469. *
  1470. * The processor must either be the current processor and the
  1471. * thread pinned to the current processor or a processor that
  1472. * is not online.
  1473. */
  1474. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  1475. {
  1476. unsigned long flags;
  1477. struct per_cpu_pageset *pset;
  1478. struct per_cpu_pages *pcp;
  1479. local_irq_save(flags);
  1480. pset = per_cpu_ptr(zone->pageset, cpu);
  1481. pcp = &pset->pcp;
  1482. if (pcp->count) {
  1483. free_pcppages_bulk(zone, pcp->count, pcp);
  1484. pcp->count = 0;
  1485. }
  1486. local_irq_restore(flags);
  1487. }
  1488. /*
  1489. * Drain pcplists of all zones on the indicated processor.
  1490. *
  1491. * The processor must either be the current processor and the
  1492. * thread pinned to the current processor or a processor that
  1493. * is not online.
  1494. */
  1495. static void drain_pages(unsigned int cpu)
  1496. {
  1497. struct zone *zone;
  1498. for_each_populated_zone(zone) {
  1499. drain_pages_zone(cpu, zone);
  1500. }
  1501. }
  1502. /*
  1503. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1504. *
  1505. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  1506. * the single zone's pages.
  1507. */
  1508. void drain_local_pages(struct zone *zone)
  1509. {
  1510. int cpu = smp_processor_id();
  1511. if (zone)
  1512. drain_pages_zone(cpu, zone);
  1513. else
  1514. drain_pages(cpu);
  1515. }
  1516. /*
  1517. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1518. *
  1519. * When zone parameter is non-NULL, spill just the single zone's pages.
  1520. *
  1521. * Note that this code is protected against sending an IPI to an offline
  1522. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1523. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1524. * nothing keeps CPUs from showing up after we populated the cpumask and
  1525. * before the call to on_each_cpu_mask().
  1526. */
  1527. void drain_all_pages(struct zone *zone)
  1528. {
  1529. int cpu;
  1530. /*
  1531. * Allocate in the BSS so we wont require allocation in
  1532. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1533. */
  1534. static cpumask_t cpus_with_pcps;
  1535. /*
  1536. * We don't care about racing with CPU hotplug event
  1537. * as offline notification will cause the notified
  1538. * cpu to drain that CPU pcps and on_each_cpu_mask
  1539. * disables preemption as part of its processing
  1540. */
  1541. for_each_online_cpu(cpu) {
  1542. struct per_cpu_pageset *pcp;
  1543. struct zone *z;
  1544. bool has_pcps = false;
  1545. if (zone) {
  1546. pcp = per_cpu_ptr(zone->pageset, cpu);
  1547. if (pcp->pcp.count)
  1548. has_pcps = true;
  1549. } else {
  1550. for_each_populated_zone(z) {
  1551. pcp = per_cpu_ptr(z->pageset, cpu);
  1552. if (pcp->pcp.count) {
  1553. has_pcps = true;
  1554. break;
  1555. }
  1556. }
  1557. }
  1558. if (has_pcps)
  1559. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1560. else
  1561. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1562. }
  1563. on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
  1564. zone, 1);
  1565. }
  1566. #ifdef CONFIG_HIBERNATION
  1567. void mark_free_pages(struct zone *zone)
  1568. {
  1569. unsigned long pfn, max_zone_pfn;
  1570. unsigned long flags;
  1571. unsigned int order, t;
  1572. struct list_head *curr;
  1573. if (zone_is_empty(zone))
  1574. return;
  1575. spin_lock_irqsave(&zone->lock, flags);
  1576. max_zone_pfn = zone_end_pfn(zone);
  1577. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1578. if (pfn_valid(pfn)) {
  1579. struct page *page = pfn_to_page(pfn);
  1580. if (!swsusp_page_is_forbidden(page))
  1581. swsusp_unset_page_free(page);
  1582. }
  1583. for_each_migratetype_order(order, t) {
  1584. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1585. unsigned long i;
  1586. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1587. for (i = 0; i < (1UL << order); i++)
  1588. swsusp_set_page_free(pfn_to_page(pfn + i));
  1589. }
  1590. }
  1591. spin_unlock_irqrestore(&zone->lock, flags);
  1592. }
  1593. #endif /* CONFIG_PM */
  1594. /*
  1595. * Free a 0-order page
  1596. * cold == true ? free a cold page : free a hot page
  1597. */
  1598. void free_hot_cold_page(struct page *page, bool cold)
  1599. {
  1600. struct zone *zone = page_zone(page);
  1601. struct per_cpu_pages *pcp;
  1602. unsigned long flags;
  1603. unsigned long pfn = page_to_pfn(page);
  1604. int migratetype;
  1605. if (!free_pages_prepare(page, 0))
  1606. return;
  1607. migratetype = get_pfnblock_migratetype(page, pfn);
  1608. set_freepage_migratetype(page, migratetype);
  1609. local_irq_save(flags);
  1610. __count_vm_event(PGFREE);
  1611. /*
  1612. * We only track unmovable, reclaimable and movable on pcp lists.
  1613. * Free ISOLATE pages back to the allocator because they are being
  1614. * offlined but treat RESERVE as movable pages so we can get those
  1615. * areas back if necessary. Otherwise, we may have to free
  1616. * excessively into the page allocator
  1617. */
  1618. if (migratetype >= MIGRATE_PCPTYPES) {
  1619. if (unlikely(is_migrate_isolate(migratetype))) {
  1620. free_one_page(zone, page, pfn, 0, migratetype);
  1621. goto out;
  1622. }
  1623. migratetype = MIGRATE_MOVABLE;
  1624. }
  1625. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1626. if (!cold)
  1627. list_add(&page->lru, &pcp->lists[migratetype]);
  1628. else
  1629. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1630. pcp->count++;
  1631. if (pcp->count >= pcp->high) {
  1632. unsigned long batch = READ_ONCE(pcp->batch);
  1633. free_pcppages_bulk(zone, batch, pcp);
  1634. pcp->count -= batch;
  1635. }
  1636. out:
  1637. local_irq_restore(flags);
  1638. }
  1639. /*
  1640. * Free a list of 0-order pages
  1641. */
  1642. void free_hot_cold_page_list(struct list_head *list, bool cold)
  1643. {
  1644. struct page *page, *next;
  1645. list_for_each_entry_safe(page, next, list, lru) {
  1646. trace_mm_page_free_batched(page, cold);
  1647. free_hot_cold_page(page, cold);
  1648. }
  1649. }
  1650. /*
  1651. * split_page takes a non-compound higher-order page, and splits it into
  1652. * n (1<<order) sub-pages: page[0..n]
  1653. * Each sub-page must be freed individually.
  1654. *
  1655. * Note: this is probably too low level an operation for use in drivers.
  1656. * Please consult with lkml before using this in your driver.
  1657. */
  1658. void split_page(struct page *page, unsigned int order)
  1659. {
  1660. int i;
  1661. VM_BUG_ON_PAGE(PageCompound(page), page);
  1662. VM_BUG_ON_PAGE(!page_count(page), page);
  1663. #ifdef CONFIG_KMEMCHECK
  1664. /*
  1665. * Split shadow pages too, because free(page[0]) would
  1666. * otherwise free the whole shadow.
  1667. */
  1668. if (kmemcheck_page_is_tracked(page))
  1669. split_page(virt_to_page(page[0].shadow), order);
  1670. #endif
  1671. set_page_owner(page, 0, 0);
  1672. for (i = 1; i < (1 << order); i++) {
  1673. set_page_refcounted(page + i);
  1674. set_page_owner(page + i, 0, 0);
  1675. }
  1676. }
  1677. EXPORT_SYMBOL_GPL(split_page);
  1678. int __isolate_free_page(struct page *page, unsigned int order)
  1679. {
  1680. unsigned long watermark;
  1681. struct zone *zone;
  1682. int mt;
  1683. BUG_ON(!PageBuddy(page));
  1684. zone = page_zone(page);
  1685. mt = get_pageblock_migratetype(page);
  1686. if (!is_migrate_isolate(mt)) {
  1687. /* Obey watermarks as if the page was being allocated */
  1688. watermark = low_wmark_pages(zone) + (1 << order);
  1689. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1690. return 0;
  1691. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  1692. }
  1693. /* Remove page from free list */
  1694. list_del(&page->lru);
  1695. zone->free_area[order].nr_free--;
  1696. rmv_page_order(page);
  1697. /* Set the pageblock if the isolated page is at least a pageblock */
  1698. if (order >= pageblock_order - 1) {
  1699. struct page *endpage = page + (1 << order) - 1;
  1700. for (; page < endpage; page += pageblock_nr_pages) {
  1701. int mt = get_pageblock_migratetype(page);
  1702. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  1703. set_pageblock_migratetype(page,
  1704. MIGRATE_MOVABLE);
  1705. }
  1706. }
  1707. set_page_owner(page, order, 0);
  1708. return 1UL << order;
  1709. }
  1710. /*
  1711. * Similar to split_page except the page is already free. As this is only
  1712. * being used for migration, the migratetype of the block also changes.
  1713. * As this is called with interrupts disabled, the caller is responsible
  1714. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1715. * are enabled.
  1716. *
  1717. * Note: this is probably too low level an operation for use in drivers.
  1718. * Please consult with lkml before using this in your driver.
  1719. */
  1720. int split_free_page(struct page *page)
  1721. {
  1722. unsigned int order;
  1723. int nr_pages;
  1724. order = page_order(page);
  1725. nr_pages = __isolate_free_page(page, order);
  1726. if (!nr_pages)
  1727. return 0;
  1728. /* Split into individual pages */
  1729. set_page_refcounted(page);
  1730. split_page(page, order);
  1731. return nr_pages;
  1732. }
  1733. /*
  1734. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  1735. */
  1736. static inline
  1737. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1738. struct zone *zone, unsigned int order,
  1739. gfp_t gfp_flags, int migratetype)
  1740. {
  1741. unsigned long flags;
  1742. struct page *page;
  1743. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  1744. if (likely(order == 0)) {
  1745. struct per_cpu_pages *pcp;
  1746. struct list_head *list;
  1747. local_irq_save(flags);
  1748. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1749. list = &pcp->lists[migratetype];
  1750. if (list_empty(list)) {
  1751. pcp->count += rmqueue_bulk(zone, 0,
  1752. pcp->batch, list,
  1753. migratetype, cold);
  1754. if (unlikely(list_empty(list)))
  1755. goto failed;
  1756. }
  1757. if (cold)
  1758. page = list_entry(list->prev, struct page, lru);
  1759. else
  1760. page = list_entry(list->next, struct page, lru);
  1761. list_del(&page->lru);
  1762. pcp->count--;
  1763. } else {
  1764. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1765. /*
  1766. * __GFP_NOFAIL is not to be used in new code.
  1767. *
  1768. * All __GFP_NOFAIL callers should be fixed so that they
  1769. * properly detect and handle allocation failures.
  1770. *
  1771. * We most definitely don't want callers attempting to
  1772. * allocate greater than order-1 page units with
  1773. * __GFP_NOFAIL.
  1774. */
  1775. WARN_ON_ONCE(order > 1);
  1776. }
  1777. spin_lock_irqsave(&zone->lock, flags);
  1778. page = __rmqueue(zone, order, migratetype);
  1779. spin_unlock(&zone->lock);
  1780. if (!page)
  1781. goto failed;
  1782. __mod_zone_freepage_state(zone, -(1 << order),
  1783. get_freepage_migratetype(page));
  1784. }
  1785. __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
  1786. if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
  1787. !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
  1788. set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  1789. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1790. zone_statistics(preferred_zone, zone, gfp_flags);
  1791. local_irq_restore(flags);
  1792. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  1793. return page;
  1794. failed:
  1795. local_irq_restore(flags);
  1796. return NULL;
  1797. }
  1798. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1799. static struct {
  1800. struct fault_attr attr;
  1801. u32 ignore_gfp_highmem;
  1802. u32 ignore_gfp_wait;
  1803. u32 min_order;
  1804. } fail_page_alloc = {
  1805. .attr = FAULT_ATTR_INITIALIZER,
  1806. .ignore_gfp_wait = 1,
  1807. .ignore_gfp_highmem = 1,
  1808. .min_order = 1,
  1809. };
  1810. static int __init setup_fail_page_alloc(char *str)
  1811. {
  1812. return setup_fault_attr(&fail_page_alloc.attr, str);
  1813. }
  1814. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1815. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1816. {
  1817. if (order < fail_page_alloc.min_order)
  1818. return false;
  1819. if (gfp_mask & __GFP_NOFAIL)
  1820. return false;
  1821. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1822. return false;
  1823. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1824. return false;
  1825. return should_fail(&fail_page_alloc.attr, 1 << order);
  1826. }
  1827. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1828. static int __init fail_page_alloc_debugfs(void)
  1829. {
  1830. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1831. struct dentry *dir;
  1832. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1833. &fail_page_alloc.attr);
  1834. if (IS_ERR(dir))
  1835. return PTR_ERR(dir);
  1836. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1837. &fail_page_alloc.ignore_gfp_wait))
  1838. goto fail;
  1839. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1840. &fail_page_alloc.ignore_gfp_highmem))
  1841. goto fail;
  1842. if (!debugfs_create_u32("min-order", mode, dir,
  1843. &fail_page_alloc.min_order))
  1844. goto fail;
  1845. return 0;
  1846. fail:
  1847. debugfs_remove_recursive(dir);
  1848. return -ENOMEM;
  1849. }
  1850. late_initcall(fail_page_alloc_debugfs);
  1851. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1852. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1853. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1854. {
  1855. return false;
  1856. }
  1857. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1858. /*
  1859. * Return true if free pages are above 'mark'. This takes into account the order
  1860. * of the allocation.
  1861. */
  1862. static bool __zone_watermark_ok(struct zone *z, unsigned int order,
  1863. unsigned long mark, int classzone_idx, int alloc_flags,
  1864. long free_pages)
  1865. {
  1866. /* free_pages may go negative - that's OK */
  1867. long min = mark;
  1868. int o;
  1869. long free_cma = 0;
  1870. free_pages -= (1 << order) - 1;
  1871. if (alloc_flags & ALLOC_HIGH)
  1872. min -= min / 2;
  1873. if (alloc_flags & ALLOC_HARDER)
  1874. min -= min / 4;
  1875. #ifdef CONFIG_CMA
  1876. /* If allocation can't use CMA areas don't use free CMA pages */
  1877. if (!(alloc_flags & ALLOC_CMA))
  1878. free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
  1879. #endif
  1880. if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
  1881. return false;
  1882. for (o = 0; o < order; o++) {
  1883. /* At the next order, this order's pages become unavailable */
  1884. free_pages -= z->free_area[o].nr_free << o;
  1885. /* Require fewer higher order pages to be free */
  1886. min >>= 1;
  1887. if (free_pages <= min)
  1888. return false;
  1889. }
  1890. return true;
  1891. }
  1892. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  1893. int classzone_idx, int alloc_flags)
  1894. {
  1895. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1896. zone_page_state(z, NR_FREE_PAGES));
  1897. }
  1898. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  1899. unsigned long mark, int classzone_idx, int alloc_flags)
  1900. {
  1901. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1902. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1903. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1904. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1905. free_pages);
  1906. }
  1907. #ifdef CONFIG_NUMA
  1908. /*
  1909. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1910. * skip over zones that are not allowed by the cpuset, or that have
  1911. * been recently (in last second) found to be nearly full. See further
  1912. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1913. * that have to skip over a lot of full or unallowed zones.
  1914. *
  1915. * If the zonelist cache is present in the passed zonelist, then
  1916. * returns a pointer to the allowed node mask (either the current
  1917. * tasks mems_allowed, or node_states[N_MEMORY].)
  1918. *
  1919. * If the zonelist cache is not available for this zonelist, does
  1920. * nothing and returns NULL.
  1921. *
  1922. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1923. * a second since last zap'd) then we zap it out (clear its bits.)
  1924. *
  1925. * We hold off even calling zlc_setup, until after we've checked the
  1926. * first zone in the zonelist, on the theory that most allocations will
  1927. * be satisfied from that first zone, so best to examine that zone as
  1928. * quickly as we can.
  1929. */
  1930. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1931. {
  1932. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1933. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1934. zlc = zonelist->zlcache_ptr;
  1935. if (!zlc)
  1936. return NULL;
  1937. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1938. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1939. zlc->last_full_zap = jiffies;
  1940. }
  1941. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1942. &cpuset_current_mems_allowed :
  1943. &node_states[N_MEMORY];
  1944. return allowednodes;
  1945. }
  1946. /*
  1947. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1948. * if it is worth looking at further for free memory:
  1949. * 1) Check that the zone isn't thought to be full (doesn't have its
  1950. * bit set in the zonelist_cache fullzones BITMAP).
  1951. * 2) Check that the zones node (obtained from the zonelist_cache
  1952. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1953. * Return true (non-zero) if zone is worth looking at further, or
  1954. * else return false (zero) if it is not.
  1955. *
  1956. * This check -ignores- the distinction between various watermarks,
  1957. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1958. * found to be full for any variation of these watermarks, it will
  1959. * be considered full for up to one second by all requests, unless
  1960. * we are so low on memory on all allowed nodes that we are forced
  1961. * into the second scan of the zonelist.
  1962. *
  1963. * In the second scan we ignore this zonelist cache and exactly
  1964. * apply the watermarks to all zones, even it is slower to do so.
  1965. * We are low on memory in the second scan, and should leave no stone
  1966. * unturned looking for a free page.
  1967. */
  1968. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1969. nodemask_t *allowednodes)
  1970. {
  1971. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1972. int i; /* index of *z in zonelist zones */
  1973. int n; /* node that zone *z is on */
  1974. zlc = zonelist->zlcache_ptr;
  1975. if (!zlc)
  1976. return 1;
  1977. i = z - zonelist->_zonerefs;
  1978. n = zlc->z_to_n[i];
  1979. /* This zone is worth trying if it is allowed but not full */
  1980. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1981. }
  1982. /*
  1983. * Given 'z' scanning a zonelist, set the corresponding bit in
  1984. * zlc->fullzones, so that subsequent attempts to allocate a page
  1985. * from that zone don't waste time re-examining it.
  1986. */
  1987. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1988. {
  1989. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1990. int i; /* index of *z in zonelist zones */
  1991. zlc = zonelist->zlcache_ptr;
  1992. if (!zlc)
  1993. return;
  1994. i = z - zonelist->_zonerefs;
  1995. set_bit(i, zlc->fullzones);
  1996. }
  1997. /*
  1998. * clear all zones full, called after direct reclaim makes progress so that
  1999. * a zone that was recently full is not skipped over for up to a second
  2000. */
  2001. static void zlc_clear_zones_full(struct zonelist *zonelist)
  2002. {
  2003. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  2004. zlc = zonelist->zlcache_ptr;
  2005. if (!zlc)
  2006. return;
  2007. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2008. }
  2009. static bool zone_local(struct zone *local_zone, struct zone *zone)
  2010. {
  2011. return local_zone->node == zone->node;
  2012. }
  2013. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2014. {
  2015. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
  2016. RECLAIM_DISTANCE;
  2017. }
  2018. #else /* CONFIG_NUMA */
  2019. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  2020. {
  2021. return NULL;
  2022. }
  2023. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  2024. nodemask_t *allowednodes)
  2025. {
  2026. return 1;
  2027. }
  2028. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  2029. {
  2030. }
  2031. static void zlc_clear_zones_full(struct zonelist *zonelist)
  2032. {
  2033. }
  2034. static bool zone_local(struct zone *local_zone, struct zone *zone)
  2035. {
  2036. return true;
  2037. }
  2038. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2039. {
  2040. return true;
  2041. }
  2042. #endif /* CONFIG_NUMA */
  2043. static void reset_alloc_batches(struct zone *preferred_zone)
  2044. {
  2045. struct zone *zone = preferred_zone->zone_pgdat->node_zones;
  2046. do {
  2047. mod_zone_page_state(zone, NR_ALLOC_BATCH,
  2048. high_wmark_pages(zone) - low_wmark_pages(zone) -
  2049. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  2050. clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  2051. } while (zone++ != preferred_zone);
  2052. }
  2053. /*
  2054. * get_page_from_freelist goes through the zonelist trying to allocate
  2055. * a page.
  2056. */
  2057. static struct page *
  2058. get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
  2059. const struct alloc_context *ac)
  2060. {
  2061. struct zonelist *zonelist = ac->zonelist;
  2062. struct zoneref *z;
  2063. struct page *page = NULL;
  2064. struct zone *zone;
  2065. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  2066. int zlc_active = 0; /* set if using zonelist_cache */
  2067. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  2068. bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
  2069. (gfp_mask & __GFP_WRITE);
  2070. int nr_fair_skipped = 0;
  2071. bool zonelist_rescan;
  2072. zonelist_scan:
  2073. zonelist_rescan = false;
  2074. /*
  2075. * Scan zonelist, looking for a zone with enough free.
  2076. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  2077. */
  2078. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  2079. ac->nodemask) {
  2080. unsigned long mark;
  2081. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  2082. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  2083. continue;
  2084. if (cpusets_enabled() &&
  2085. (alloc_flags & ALLOC_CPUSET) &&
  2086. !cpuset_zone_allowed(zone, gfp_mask))
  2087. continue;
  2088. /*
  2089. * Distribute pages in proportion to the individual
  2090. * zone size to ensure fair page aging. The zone a
  2091. * page was allocated in should have no effect on the
  2092. * time the page has in memory before being reclaimed.
  2093. */
  2094. if (alloc_flags & ALLOC_FAIR) {
  2095. if (!zone_local(ac->preferred_zone, zone))
  2096. break;
  2097. if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
  2098. nr_fair_skipped++;
  2099. continue;
  2100. }
  2101. }
  2102. /*
  2103. * When allocating a page cache page for writing, we
  2104. * want to get it from a zone that is within its dirty
  2105. * limit, such that no single zone holds more than its
  2106. * proportional share of globally allowed dirty pages.
  2107. * The dirty limits take into account the zone's
  2108. * lowmem reserves and high watermark so that kswapd
  2109. * should be able to balance it without having to
  2110. * write pages from its LRU list.
  2111. *
  2112. * This may look like it could increase pressure on
  2113. * lower zones by failing allocations in higher zones
  2114. * before they are full. But the pages that do spill
  2115. * over are limited as the lower zones are protected
  2116. * by this very same mechanism. It should not become
  2117. * a practical burden to them.
  2118. *
  2119. * XXX: For now, allow allocations to potentially
  2120. * exceed the per-zone dirty limit in the slowpath
  2121. * (ALLOC_WMARK_LOW unset) before going into reclaim,
  2122. * which is important when on a NUMA setup the allowed
  2123. * zones are together not big enough to reach the
  2124. * global limit. The proper fix for these situations
  2125. * will require awareness of zones in the
  2126. * dirty-throttling and the flusher threads.
  2127. */
  2128. if (consider_zone_dirty && !zone_dirty_ok(zone))
  2129. continue;
  2130. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  2131. if (!zone_watermark_ok(zone, order, mark,
  2132. ac->classzone_idx, alloc_flags)) {
  2133. int ret;
  2134. /* Checked here to keep the fast path fast */
  2135. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  2136. if (alloc_flags & ALLOC_NO_WATERMARKS)
  2137. goto try_this_zone;
  2138. if (IS_ENABLED(CONFIG_NUMA) &&
  2139. !did_zlc_setup && nr_online_nodes > 1) {
  2140. /*
  2141. * we do zlc_setup if there are multiple nodes
  2142. * and before considering the first zone allowed
  2143. * by the cpuset.
  2144. */
  2145. allowednodes = zlc_setup(zonelist, alloc_flags);
  2146. zlc_active = 1;
  2147. did_zlc_setup = 1;
  2148. }
  2149. if (zone_reclaim_mode == 0 ||
  2150. !zone_allows_reclaim(ac->preferred_zone, zone))
  2151. goto this_zone_full;
  2152. /*
  2153. * As we may have just activated ZLC, check if the first
  2154. * eligible zone has failed zone_reclaim recently.
  2155. */
  2156. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  2157. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  2158. continue;
  2159. ret = zone_reclaim(zone, gfp_mask, order);
  2160. switch (ret) {
  2161. case ZONE_RECLAIM_NOSCAN:
  2162. /* did not scan */
  2163. continue;
  2164. case ZONE_RECLAIM_FULL:
  2165. /* scanned but unreclaimable */
  2166. continue;
  2167. default:
  2168. /* did we reclaim enough */
  2169. if (zone_watermark_ok(zone, order, mark,
  2170. ac->classzone_idx, alloc_flags))
  2171. goto try_this_zone;
  2172. /*
  2173. * Failed to reclaim enough to meet watermark.
  2174. * Only mark the zone full if checking the min
  2175. * watermark or if we failed to reclaim just
  2176. * 1<<order pages or else the page allocator
  2177. * fastpath will prematurely mark zones full
  2178. * when the watermark is between the low and
  2179. * min watermarks.
  2180. */
  2181. if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
  2182. ret == ZONE_RECLAIM_SOME)
  2183. goto this_zone_full;
  2184. continue;
  2185. }
  2186. }
  2187. try_this_zone:
  2188. page = buffered_rmqueue(ac->preferred_zone, zone, order,
  2189. gfp_mask, ac->migratetype);
  2190. if (page) {
  2191. if (prep_new_page(page, order, gfp_mask, alloc_flags))
  2192. goto try_this_zone;
  2193. return page;
  2194. }
  2195. this_zone_full:
  2196. if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
  2197. zlc_mark_zone_full(zonelist, z);
  2198. }
  2199. /*
  2200. * The first pass makes sure allocations are spread fairly within the
  2201. * local node. However, the local node might have free pages left
  2202. * after the fairness batches are exhausted, and remote zones haven't
  2203. * even been considered yet. Try once more without fairness, and
  2204. * include remote zones now, before entering the slowpath and waking
  2205. * kswapd: prefer spilling to a remote zone over swapping locally.
  2206. */
  2207. if (alloc_flags & ALLOC_FAIR) {
  2208. alloc_flags &= ~ALLOC_FAIR;
  2209. if (nr_fair_skipped) {
  2210. zonelist_rescan = true;
  2211. reset_alloc_batches(ac->preferred_zone);
  2212. }
  2213. if (nr_online_nodes > 1)
  2214. zonelist_rescan = true;
  2215. }
  2216. if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
  2217. /* Disable zlc cache for second zonelist scan */
  2218. zlc_active = 0;
  2219. zonelist_rescan = true;
  2220. }
  2221. if (zonelist_rescan)
  2222. goto zonelist_scan;
  2223. return NULL;
  2224. }
  2225. /*
  2226. * Large machines with many possible nodes should not always dump per-node
  2227. * meminfo in irq context.
  2228. */
  2229. static inline bool should_suppress_show_mem(void)
  2230. {
  2231. bool ret = false;
  2232. #if NODES_SHIFT > 8
  2233. ret = in_interrupt();
  2234. #endif
  2235. return ret;
  2236. }
  2237. static DEFINE_RATELIMIT_STATE(nopage_rs,
  2238. DEFAULT_RATELIMIT_INTERVAL,
  2239. DEFAULT_RATELIMIT_BURST);
  2240. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  2241. {
  2242. unsigned int filter = SHOW_MEM_FILTER_NODES;
  2243. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  2244. debug_guardpage_minorder() > 0)
  2245. return;
  2246. /*
  2247. * This documents exceptions given to allocations in certain
  2248. * contexts that are allowed to allocate outside current's set
  2249. * of allowed nodes.
  2250. */
  2251. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2252. if (test_thread_flag(TIF_MEMDIE) ||
  2253. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  2254. filter &= ~SHOW_MEM_FILTER_NODES;
  2255. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  2256. filter &= ~SHOW_MEM_FILTER_NODES;
  2257. if (fmt) {
  2258. struct va_format vaf;
  2259. va_list args;
  2260. va_start(args, fmt);
  2261. vaf.fmt = fmt;
  2262. vaf.va = &args;
  2263. pr_warn("%pV", &vaf);
  2264. va_end(args);
  2265. }
  2266. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  2267. current->comm, order, gfp_mask);
  2268. dump_stack();
  2269. if (!should_suppress_show_mem())
  2270. show_mem(filter);
  2271. }
  2272. static inline struct page *
  2273. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  2274. const struct alloc_context *ac, unsigned long *did_some_progress)
  2275. {
  2276. struct page *page;
  2277. *did_some_progress = 0;
  2278. /*
  2279. * Acquire the oom lock. If that fails, somebody else is
  2280. * making progress for us.
  2281. */
  2282. if (!mutex_trylock(&oom_lock)) {
  2283. *did_some_progress = 1;
  2284. schedule_timeout_uninterruptible(1);
  2285. return NULL;
  2286. }
  2287. /*
  2288. * Go through the zonelist yet one more time, keep very high watermark
  2289. * here, this is only to catch a parallel oom killing, we must fail if
  2290. * we're still under heavy pressure.
  2291. */
  2292. page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
  2293. ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
  2294. if (page)
  2295. goto out;
  2296. if (!(gfp_mask & __GFP_NOFAIL)) {
  2297. /* Coredumps can quickly deplete all memory reserves */
  2298. if (current->flags & PF_DUMPCORE)
  2299. goto out;
  2300. /* The OOM killer will not help higher order allocs */
  2301. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2302. goto out;
  2303. /* The OOM killer does not needlessly kill tasks for lowmem */
  2304. if (ac->high_zoneidx < ZONE_NORMAL)
  2305. goto out;
  2306. /* The OOM killer does not compensate for IO-less reclaim */
  2307. if (!(gfp_mask & __GFP_FS)) {
  2308. /*
  2309. * XXX: Page reclaim didn't yield anything,
  2310. * and the OOM killer can't be invoked, but
  2311. * keep looping as per tradition.
  2312. */
  2313. *did_some_progress = 1;
  2314. goto out;
  2315. }
  2316. if (pm_suspended_storage())
  2317. goto out;
  2318. /* The OOM killer may not free memory on a specific node */
  2319. if (gfp_mask & __GFP_THISNODE)
  2320. goto out;
  2321. }
  2322. /* Exhausted what can be done so it's blamo time */
  2323. if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
  2324. || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
  2325. *did_some_progress = 1;
  2326. out:
  2327. mutex_unlock(&oom_lock);
  2328. return page;
  2329. }
  2330. #ifdef CONFIG_COMPACTION
  2331. /* Try memory compaction for high-order allocations before reclaim */
  2332. static struct page *
  2333. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2334. int alloc_flags, const struct alloc_context *ac,
  2335. enum migrate_mode mode, int *contended_compaction,
  2336. bool *deferred_compaction)
  2337. {
  2338. unsigned long compact_result;
  2339. struct page *page;
  2340. if (!order)
  2341. return NULL;
  2342. current->flags |= PF_MEMALLOC;
  2343. compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
  2344. mode, contended_compaction);
  2345. current->flags &= ~PF_MEMALLOC;
  2346. switch (compact_result) {
  2347. case COMPACT_DEFERRED:
  2348. *deferred_compaction = true;
  2349. /* fall-through */
  2350. case COMPACT_SKIPPED:
  2351. return NULL;
  2352. default:
  2353. break;
  2354. }
  2355. /*
  2356. * At least in one zone compaction wasn't deferred or skipped, so let's
  2357. * count a compaction stall
  2358. */
  2359. count_vm_event(COMPACTSTALL);
  2360. page = get_page_from_freelist(gfp_mask, order,
  2361. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2362. if (page) {
  2363. struct zone *zone = page_zone(page);
  2364. zone->compact_blockskip_flush = false;
  2365. compaction_defer_reset(zone, order, true);
  2366. count_vm_event(COMPACTSUCCESS);
  2367. return page;
  2368. }
  2369. /*
  2370. * It's bad if compaction run occurs and fails. The most likely reason
  2371. * is that pages exist, but not enough to satisfy watermarks.
  2372. */
  2373. count_vm_event(COMPACTFAIL);
  2374. cond_resched();
  2375. return NULL;
  2376. }
  2377. #else
  2378. static inline struct page *
  2379. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2380. int alloc_flags, const struct alloc_context *ac,
  2381. enum migrate_mode mode, int *contended_compaction,
  2382. bool *deferred_compaction)
  2383. {
  2384. return NULL;
  2385. }
  2386. #endif /* CONFIG_COMPACTION */
  2387. /* Perform direct synchronous page reclaim */
  2388. static int
  2389. __perform_reclaim(gfp_t gfp_mask, unsigned int order,
  2390. const struct alloc_context *ac)
  2391. {
  2392. struct reclaim_state reclaim_state;
  2393. int progress;
  2394. cond_resched();
  2395. /* We now go into synchronous reclaim */
  2396. cpuset_memory_pressure_bump();
  2397. current->flags |= PF_MEMALLOC;
  2398. lockdep_set_current_reclaim_state(gfp_mask);
  2399. reclaim_state.reclaimed_slab = 0;
  2400. current->reclaim_state = &reclaim_state;
  2401. progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
  2402. ac->nodemask);
  2403. current->reclaim_state = NULL;
  2404. lockdep_clear_current_reclaim_state();
  2405. current->flags &= ~PF_MEMALLOC;
  2406. cond_resched();
  2407. return progress;
  2408. }
  2409. /* The really slow allocator path where we enter direct reclaim */
  2410. static inline struct page *
  2411. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2412. int alloc_flags, const struct alloc_context *ac,
  2413. unsigned long *did_some_progress)
  2414. {
  2415. struct page *page = NULL;
  2416. bool drained = false;
  2417. *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
  2418. if (unlikely(!(*did_some_progress)))
  2419. return NULL;
  2420. /* After successful reclaim, reconsider all zones for allocation */
  2421. if (IS_ENABLED(CONFIG_NUMA))
  2422. zlc_clear_zones_full(ac->zonelist);
  2423. retry:
  2424. page = get_page_from_freelist(gfp_mask, order,
  2425. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2426. /*
  2427. * If an allocation failed after direct reclaim, it could be because
  2428. * pages are pinned on the per-cpu lists. Drain them and try again
  2429. */
  2430. if (!page && !drained) {
  2431. drain_all_pages(NULL);
  2432. drained = true;
  2433. goto retry;
  2434. }
  2435. return page;
  2436. }
  2437. /*
  2438. * This is called in the allocator slow-path if the allocation request is of
  2439. * sufficient urgency to ignore watermarks and take other desperate measures
  2440. */
  2441. static inline struct page *
  2442. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  2443. const struct alloc_context *ac)
  2444. {
  2445. struct page *page;
  2446. do {
  2447. page = get_page_from_freelist(gfp_mask, order,
  2448. ALLOC_NO_WATERMARKS, ac);
  2449. if (!page && gfp_mask & __GFP_NOFAIL)
  2450. wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
  2451. HZ/50);
  2452. } while (!page && (gfp_mask & __GFP_NOFAIL));
  2453. return page;
  2454. }
  2455. static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
  2456. {
  2457. struct zoneref *z;
  2458. struct zone *zone;
  2459. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
  2460. ac->high_zoneidx, ac->nodemask)
  2461. wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
  2462. }
  2463. static inline int
  2464. gfp_to_alloc_flags(gfp_t gfp_mask)
  2465. {
  2466. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2467. const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
  2468. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2469. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2470. /*
  2471. * The caller may dip into page reserves a bit more if the caller
  2472. * cannot run direct reclaim, or if the caller has realtime scheduling
  2473. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2474. * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
  2475. */
  2476. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2477. if (atomic) {
  2478. /*
  2479. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2480. * if it can't schedule.
  2481. */
  2482. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2483. alloc_flags |= ALLOC_HARDER;
  2484. /*
  2485. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2486. * comment for __cpuset_node_allowed().
  2487. */
  2488. alloc_flags &= ~ALLOC_CPUSET;
  2489. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2490. alloc_flags |= ALLOC_HARDER;
  2491. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2492. if (gfp_mask & __GFP_MEMALLOC)
  2493. alloc_flags |= ALLOC_NO_WATERMARKS;
  2494. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2495. alloc_flags |= ALLOC_NO_WATERMARKS;
  2496. else if (!in_interrupt() &&
  2497. ((current->flags & PF_MEMALLOC) ||
  2498. unlikely(test_thread_flag(TIF_MEMDIE))))
  2499. alloc_flags |= ALLOC_NO_WATERMARKS;
  2500. }
  2501. #ifdef CONFIG_CMA
  2502. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2503. alloc_flags |= ALLOC_CMA;
  2504. #endif
  2505. return alloc_flags;
  2506. }
  2507. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2508. {
  2509. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2510. }
  2511. static inline struct page *
  2512. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2513. struct alloc_context *ac)
  2514. {
  2515. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2516. struct page *page = NULL;
  2517. int alloc_flags;
  2518. unsigned long pages_reclaimed = 0;
  2519. unsigned long did_some_progress;
  2520. enum migrate_mode migration_mode = MIGRATE_ASYNC;
  2521. bool deferred_compaction = false;
  2522. int contended_compaction = COMPACT_CONTENDED_NONE;
  2523. /*
  2524. * In the slowpath, we sanity check order to avoid ever trying to
  2525. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2526. * be using allocators in order of preference for an area that is
  2527. * too large.
  2528. */
  2529. if (order >= MAX_ORDER) {
  2530. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2531. return NULL;
  2532. }
  2533. /*
  2534. * If this allocation cannot block and it is for a specific node, then
  2535. * fail early. There's no need to wakeup kswapd or retry for a
  2536. * speculative node-specific allocation.
  2537. */
  2538. if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
  2539. goto nopage;
  2540. retry:
  2541. if (!(gfp_mask & __GFP_NO_KSWAPD))
  2542. wake_all_kswapds(order, ac);
  2543. /*
  2544. * OK, we're below the kswapd watermark and have kicked background
  2545. * reclaim. Now things get more complex, so set up alloc_flags according
  2546. * to how we want to proceed.
  2547. */
  2548. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2549. /*
  2550. * Find the true preferred zone if the allocation is unconstrained by
  2551. * cpusets.
  2552. */
  2553. if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
  2554. struct zoneref *preferred_zoneref;
  2555. preferred_zoneref = first_zones_zonelist(ac->zonelist,
  2556. ac->high_zoneidx, NULL, &ac->preferred_zone);
  2557. ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2558. }
  2559. /* This is the last chance, in general, before the goto nopage. */
  2560. page = get_page_from_freelist(gfp_mask, order,
  2561. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2562. if (page)
  2563. goto got_pg;
  2564. /* Allocate without watermarks if the context allows */
  2565. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2566. /*
  2567. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  2568. * the allocation is high priority and these type of
  2569. * allocations are system rather than user orientated
  2570. */
  2571. ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
  2572. page = __alloc_pages_high_priority(gfp_mask, order, ac);
  2573. if (page) {
  2574. goto got_pg;
  2575. }
  2576. }
  2577. /* Atomic allocations - we can't balance anything */
  2578. if (!wait) {
  2579. /*
  2580. * All existing users of the deprecated __GFP_NOFAIL are
  2581. * blockable, so warn of any new users that actually allow this
  2582. * type of allocation to fail.
  2583. */
  2584. WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
  2585. goto nopage;
  2586. }
  2587. /* Avoid recursion of direct reclaim */
  2588. if (current->flags & PF_MEMALLOC)
  2589. goto nopage;
  2590. /* Avoid allocations with no watermarks from looping endlessly */
  2591. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2592. goto nopage;
  2593. /*
  2594. * Try direct compaction. The first pass is asynchronous. Subsequent
  2595. * attempts after direct reclaim are synchronous
  2596. */
  2597. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
  2598. migration_mode,
  2599. &contended_compaction,
  2600. &deferred_compaction);
  2601. if (page)
  2602. goto got_pg;
  2603. /* Checks for THP-specific high-order allocations */
  2604. if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
  2605. /*
  2606. * If compaction is deferred for high-order allocations, it is
  2607. * because sync compaction recently failed. If this is the case
  2608. * and the caller requested a THP allocation, we do not want
  2609. * to heavily disrupt the system, so we fail the allocation
  2610. * instead of entering direct reclaim.
  2611. */
  2612. if (deferred_compaction)
  2613. goto nopage;
  2614. /*
  2615. * In all zones where compaction was attempted (and not
  2616. * deferred or skipped), lock contention has been detected.
  2617. * For THP allocation we do not want to disrupt the others
  2618. * so we fallback to base pages instead.
  2619. */
  2620. if (contended_compaction == COMPACT_CONTENDED_LOCK)
  2621. goto nopage;
  2622. /*
  2623. * If compaction was aborted due to need_resched(), we do not
  2624. * want to further increase allocation latency, unless it is
  2625. * khugepaged trying to collapse.
  2626. */
  2627. if (contended_compaction == COMPACT_CONTENDED_SCHED
  2628. && !(current->flags & PF_KTHREAD))
  2629. goto nopage;
  2630. }
  2631. /*
  2632. * It can become very expensive to allocate transparent hugepages at
  2633. * fault, so use asynchronous memory compaction for THP unless it is
  2634. * khugepaged trying to collapse.
  2635. */
  2636. if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
  2637. (current->flags & PF_KTHREAD))
  2638. migration_mode = MIGRATE_SYNC_LIGHT;
  2639. /* Try direct reclaim and then allocating */
  2640. page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
  2641. &did_some_progress);
  2642. if (page)
  2643. goto got_pg;
  2644. /* Do not loop if specifically requested */
  2645. if (gfp_mask & __GFP_NORETRY)
  2646. goto noretry;
  2647. /* Keep reclaiming pages as long as there is reasonable progress */
  2648. pages_reclaimed += did_some_progress;
  2649. if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
  2650. ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
  2651. /* Wait for some write requests to complete then retry */
  2652. wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
  2653. goto retry;
  2654. }
  2655. /* Reclaim has failed us, start killing things */
  2656. page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
  2657. if (page)
  2658. goto got_pg;
  2659. /* Retry as long as the OOM killer is making progress */
  2660. if (did_some_progress)
  2661. goto retry;
  2662. noretry:
  2663. /*
  2664. * High-order allocations do not necessarily loop after
  2665. * direct reclaim and reclaim/compaction depends on compaction
  2666. * being called after reclaim so call directly if necessary
  2667. */
  2668. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
  2669. ac, migration_mode,
  2670. &contended_compaction,
  2671. &deferred_compaction);
  2672. if (page)
  2673. goto got_pg;
  2674. nopage:
  2675. warn_alloc_failed(gfp_mask, order, NULL);
  2676. got_pg:
  2677. return page;
  2678. }
  2679. /*
  2680. * This is the 'heart' of the zoned buddy allocator.
  2681. */
  2682. struct page *
  2683. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2684. struct zonelist *zonelist, nodemask_t *nodemask)
  2685. {
  2686. struct zoneref *preferred_zoneref;
  2687. struct page *page = NULL;
  2688. unsigned int cpuset_mems_cookie;
  2689. int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
  2690. gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
  2691. struct alloc_context ac = {
  2692. .high_zoneidx = gfp_zone(gfp_mask),
  2693. .nodemask = nodemask,
  2694. .migratetype = gfpflags_to_migratetype(gfp_mask),
  2695. };
  2696. gfp_mask &= gfp_allowed_mask;
  2697. lockdep_trace_alloc(gfp_mask);
  2698. might_sleep_if(gfp_mask & __GFP_WAIT);
  2699. if (should_fail_alloc_page(gfp_mask, order))
  2700. return NULL;
  2701. /*
  2702. * Check the zones suitable for the gfp_mask contain at least one
  2703. * valid zone. It's possible to have an empty zonelist as a result
  2704. * of __GFP_THISNODE and a memoryless node
  2705. */
  2706. if (unlikely(!zonelist->_zonerefs->zone))
  2707. return NULL;
  2708. if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
  2709. alloc_flags |= ALLOC_CMA;
  2710. retry_cpuset:
  2711. cpuset_mems_cookie = read_mems_allowed_begin();
  2712. /* We set it here, as __alloc_pages_slowpath might have changed it */
  2713. ac.zonelist = zonelist;
  2714. /* The preferred zone is used for statistics later */
  2715. preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
  2716. ac.nodemask ? : &cpuset_current_mems_allowed,
  2717. &ac.preferred_zone);
  2718. if (!ac.preferred_zone)
  2719. goto out;
  2720. ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2721. /* First allocation attempt */
  2722. alloc_mask = gfp_mask|__GFP_HARDWALL;
  2723. page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
  2724. if (unlikely(!page)) {
  2725. /*
  2726. * Runtime PM, block IO and its error handling path
  2727. * can deadlock because I/O on the device might not
  2728. * complete.
  2729. */
  2730. alloc_mask = memalloc_noio_flags(gfp_mask);
  2731. page = __alloc_pages_slowpath(alloc_mask, order, &ac);
  2732. }
  2733. if (kmemcheck_enabled && page)
  2734. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2735. trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
  2736. out:
  2737. /*
  2738. * When updating a task's mems_allowed, it is possible to race with
  2739. * parallel threads in such a way that an allocation can fail while
  2740. * the mask is being updated. If a page allocation is about to fail,
  2741. * check if the cpuset changed during allocation and if so, retry.
  2742. */
  2743. if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
  2744. goto retry_cpuset;
  2745. return page;
  2746. }
  2747. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2748. /*
  2749. * Common helper functions.
  2750. */
  2751. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2752. {
  2753. struct page *page;
  2754. /*
  2755. * __get_free_pages() returns a 32-bit address, which cannot represent
  2756. * a highmem page
  2757. */
  2758. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2759. page = alloc_pages(gfp_mask, order);
  2760. if (!page)
  2761. return 0;
  2762. return (unsigned long) page_address(page);
  2763. }
  2764. EXPORT_SYMBOL(__get_free_pages);
  2765. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2766. {
  2767. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2768. }
  2769. EXPORT_SYMBOL(get_zeroed_page);
  2770. void __free_pages(struct page *page, unsigned int order)
  2771. {
  2772. if (put_page_testzero(page)) {
  2773. if (order == 0)
  2774. free_hot_cold_page(page, false);
  2775. else
  2776. __free_pages_ok(page, order);
  2777. }
  2778. }
  2779. EXPORT_SYMBOL(__free_pages);
  2780. void free_pages(unsigned long addr, unsigned int order)
  2781. {
  2782. if (addr != 0) {
  2783. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2784. __free_pages(virt_to_page((void *)addr), order);
  2785. }
  2786. }
  2787. EXPORT_SYMBOL(free_pages);
  2788. /*
  2789. * Page Fragment:
  2790. * An arbitrary-length arbitrary-offset area of memory which resides
  2791. * within a 0 or higher order page. Multiple fragments within that page
  2792. * are individually refcounted, in the page's reference counter.
  2793. *
  2794. * The page_frag functions below provide a simple allocation framework for
  2795. * page fragments. This is used by the network stack and network device
  2796. * drivers to provide a backing region of memory for use as either an
  2797. * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
  2798. */
  2799. static struct page *__page_frag_refill(struct page_frag_cache *nc,
  2800. gfp_t gfp_mask)
  2801. {
  2802. struct page *page = NULL;
  2803. gfp_t gfp = gfp_mask;
  2804. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  2805. gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
  2806. __GFP_NOMEMALLOC;
  2807. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
  2808. PAGE_FRAG_CACHE_MAX_ORDER);
  2809. nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
  2810. #endif
  2811. if (unlikely(!page))
  2812. page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
  2813. nc->va = page ? page_address(page) : NULL;
  2814. return page;
  2815. }
  2816. void *__alloc_page_frag(struct page_frag_cache *nc,
  2817. unsigned int fragsz, gfp_t gfp_mask)
  2818. {
  2819. unsigned int size = PAGE_SIZE;
  2820. struct page *page;
  2821. int offset;
  2822. if (unlikely(!nc->va)) {
  2823. refill:
  2824. page = __page_frag_refill(nc, gfp_mask);
  2825. if (!page)
  2826. return NULL;
  2827. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  2828. /* if size can vary use size else just use PAGE_SIZE */
  2829. size = nc->size;
  2830. #endif
  2831. /* Even if we own the page, we do not use atomic_set().
  2832. * This would break get_page_unless_zero() users.
  2833. */
  2834. atomic_add(size - 1, &page->_count);
  2835. /* reset page count bias and offset to start of new frag */
  2836. nc->pfmemalloc = page->pfmemalloc;
  2837. nc->pagecnt_bias = size;
  2838. nc->offset = size;
  2839. }
  2840. offset = nc->offset - fragsz;
  2841. if (unlikely(offset < 0)) {
  2842. page = virt_to_page(nc->va);
  2843. if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
  2844. goto refill;
  2845. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  2846. /* if size can vary use size else just use PAGE_SIZE */
  2847. size = nc->size;
  2848. #endif
  2849. /* OK, page count is 0, we can safely set it */
  2850. atomic_set(&page->_count, size);
  2851. /* reset page count bias and offset to start of new frag */
  2852. nc->pagecnt_bias = size;
  2853. offset = size - fragsz;
  2854. }
  2855. nc->pagecnt_bias--;
  2856. nc->offset = offset;
  2857. return nc->va + offset;
  2858. }
  2859. EXPORT_SYMBOL(__alloc_page_frag);
  2860. /*
  2861. * Frees a page fragment allocated out of either a compound or order 0 page.
  2862. */
  2863. void __free_page_frag(void *addr)
  2864. {
  2865. struct page *page = virt_to_head_page(addr);
  2866. if (unlikely(put_page_testzero(page)))
  2867. __free_pages_ok(page, compound_order(page));
  2868. }
  2869. EXPORT_SYMBOL(__free_page_frag);
  2870. /*
  2871. * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
  2872. * of the current memory cgroup.
  2873. *
  2874. * It should be used when the caller would like to use kmalloc, but since the
  2875. * allocation is large, it has to fall back to the page allocator.
  2876. */
  2877. struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
  2878. {
  2879. struct page *page;
  2880. struct mem_cgroup *memcg = NULL;
  2881. if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
  2882. return NULL;
  2883. page = alloc_pages(gfp_mask, order);
  2884. memcg_kmem_commit_charge(page, memcg, order);
  2885. return page;
  2886. }
  2887. struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
  2888. {
  2889. struct page *page;
  2890. struct mem_cgroup *memcg = NULL;
  2891. if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
  2892. return NULL;
  2893. page = alloc_pages_node(nid, gfp_mask, order);
  2894. memcg_kmem_commit_charge(page, memcg, order);
  2895. return page;
  2896. }
  2897. /*
  2898. * __free_kmem_pages and free_kmem_pages will free pages allocated with
  2899. * alloc_kmem_pages.
  2900. */
  2901. void __free_kmem_pages(struct page *page, unsigned int order)
  2902. {
  2903. memcg_kmem_uncharge_pages(page, order);
  2904. __free_pages(page, order);
  2905. }
  2906. void free_kmem_pages(unsigned long addr, unsigned int order)
  2907. {
  2908. if (addr != 0) {
  2909. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2910. __free_kmem_pages(virt_to_page((void *)addr), order);
  2911. }
  2912. }
  2913. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2914. {
  2915. if (addr) {
  2916. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2917. unsigned long used = addr + PAGE_ALIGN(size);
  2918. split_page(virt_to_page((void *)addr), order);
  2919. while (used < alloc_end) {
  2920. free_page(used);
  2921. used += PAGE_SIZE;
  2922. }
  2923. }
  2924. return (void *)addr;
  2925. }
  2926. /**
  2927. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2928. * @size: the number of bytes to allocate
  2929. * @gfp_mask: GFP flags for the allocation
  2930. *
  2931. * This function is similar to alloc_pages(), except that it allocates the
  2932. * minimum number of pages to satisfy the request. alloc_pages() can only
  2933. * allocate memory in power-of-two pages.
  2934. *
  2935. * This function is also limited by MAX_ORDER.
  2936. *
  2937. * Memory allocated by this function must be released by free_pages_exact().
  2938. */
  2939. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2940. {
  2941. unsigned int order = get_order(size);
  2942. unsigned long addr;
  2943. addr = __get_free_pages(gfp_mask, order);
  2944. return make_alloc_exact(addr, order, size);
  2945. }
  2946. EXPORT_SYMBOL(alloc_pages_exact);
  2947. /**
  2948. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2949. * pages on a node.
  2950. * @nid: the preferred node ID where memory should be allocated
  2951. * @size: the number of bytes to allocate
  2952. * @gfp_mask: GFP flags for the allocation
  2953. *
  2954. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2955. * back.
  2956. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2957. * but is not exact.
  2958. */
  2959. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2960. {
  2961. unsigned order = get_order(size);
  2962. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2963. if (!p)
  2964. return NULL;
  2965. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2966. }
  2967. /**
  2968. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2969. * @virt: the value returned by alloc_pages_exact.
  2970. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2971. *
  2972. * Release the memory allocated by a previous call to alloc_pages_exact.
  2973. */
  2974. void free_pages_exact(void *virt, size_t size)
  2975. {
  2976. unsigned long addr = (unsigned long)virt;
  2977. unsigned long end = addr + PAGE_ALIGN(size);
  2978. while (addr < end) {
  2979. free_page(addr);
  2980. addr += PAGE_SIZE;
  2981. }
  2982. }
  2983. EXPORT_SYMBOL(free_pages_exact);
  2984. /**
  2985. * nr_free_zone_pages - count number of pages beyond high watermark
  2986. * @offset: The zone index of the highest zone
  2987. *
  2988. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  2989. * high watermark within all zones at or below a given zone index. For each
  2990. * zone, the number of pages is calculated as:
  2991. * managed_pages - high_pages
  2992. */
  2993. static unsigned long nr_free_zone_pages(int offset)
  2994. {
  2995. struct zoneref *z;
  2996. struct zone *zone;
  2997. /* Just pick one node, since fallback list is circular */
  2998. unsigned long sum = 0;
  2999. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  3000. for_each_zone_zonelist(zone, z, zonelist, offset) {
  3001. unsigned long size = zone->managed_pages;
  3002. unsigned long high = high_wmark_pages(zone);
  3003. if (size > high)
  3004. sum += size - high;
  3005. }
  3006. return sum;
  3007. }
  3008. /**
  3009. * nr_free_buffer_pages - count number of pages beyond high watermark
  3010. *
  3011. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  3012. * watermark within ZONE_DMA and ZONE_NORMAL.
  3013. */
  3014. unsigned long nr_free_buffer_pages(void)
  3015. {
  3016. return nr_free_zone_pages(gfp_zone(GFP_USER));
  3017. }
  3018. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  3019. /**
  3020. * nr_free_pagecache_pages - count number of pages beyond high watermark
  3021. *
  3022. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  3023. * high watermark within all zones.
  3024. */
  3025. unsigned long nr_free_pagecache_pages(void)
  3026. {
  3027. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  3028. }
  3029. static inline void show_node(struct zone *zone)
  3030. {
  3031. if (IS_ENABLED(CONFIG_NUMA))
  3032. printk("Node %d ", zone_to_nid(zone));
  3033. }
  3034. void si_meminfo(struct sysinfo *val)
  3035. {
  3036. val->totalram = totalram_pages;
  3037. val->sharedram = global_page_state(NR_SHMEM);
  3038. val->freeram = global_page_state(NR_FREE_PAGES);
  3039. val->bufferram = nr_blockdev_pages();
  3040. val->totalhigh = totalhigh_pages;
  3041. val->freehigh = nr_free_highpages();
  3042. val->mem_unit = PAGE_SIZE;
  3043. }
  3044. EXPORT_SYMBOL(si_meminfo);
  3045. #ifdef CONFIG_NUMA
  3046. void si_meminfo_node(struct sysinfo *val, int nid)
  3047. {
  3048. int zone_type; /* needs to be signed */
  3049. unsigned long managed_pages = 0;
  3050. pg_data_t *pgdat = NODE_DATA(nid);
  3051. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  3052. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  3053. val->totalram = managed_pages;
  3054. val->sharedram = node_page_state(nid, NR_SHMEM);
  3055. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  3056. #ifdef CONFIG_HIGHMEM
  3057. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
  3058. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  3059. NR_FREE_PAGES);
  3060. #else
  3061. val->totalhigh = 0;
  3062. val->freehigh = 0;
  3063. #endif
  3064. val->mem_unit = PAGE_SIZE;
  3065. }
  3066. #endif
  3067. /*
  3068. * Determine whether the node should be displayed or not, depending on whether
  3069. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  3070. */
  3071. bool skip_free_areas_node(unsigned int flags, int nid)
  3072. {
  3073. bool ret = false;
  3074. unsigned int cpuset_mems_cookie;
  3075. if (!(flags & SHOW_MEM_FILTER_NODES))
  3076. goto out;
  3077. do {
  3078. cpuset_mems_cookie = read_mems_allowed_begin();
  3079. ret = !node_isset(nid, cpuset_current_mems_allowed);
  3080. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  3081. out:
  3082. return ret;
  3083. }
  3084. #define K(x) ((x) << (PAGE_SHIFT-10))
  3085. static void show_migration_types(unsigned char type)
  3086. {
  3087. static const char types[MIGRATE_TYPES] = {
  3088. [MIGRATE_UNMOVABLE] = 'U',
  3089. [MIGRATE_RECLAIMABLE] = 'E',
  3090. [MIGRATE_MOVABLE] = 'M',
  3091. [MIGRATE_RESERVE] = 'R',
  3092. #ifdef CONFIG_CMA
  3093. [MIGRATE_CMA] = 'C',
  3094. #endif
  3095. #ifdef CONFIG_MEMORY_ISOLATION
  3096. [MIGRATE_ISOLATE] = 'I',
  3097. #endif
  3098. };
  3099. char tmp[MIGRATE_TYPES + 1];
  3100. char *p = tmp;
  3101. int i;
  3102. for (i = 0; i < MIGRATE_TYPES; i++) {
  3103. if (type & (1 << i))
  3104. *p++ = types[i];
  3105. }
  3106. *p = '\0';
  3107. printk("(%s) ", tmp);
  3108. }
  3109. /*
  3110. * Show free area list (used inside shift_scroll-lock stuff)
  3111. * We also calculate the percentage fragmentation. We do this by counting the
  3112. * memory on each free list with the exception of the first item on the list.
  3113. *
  3114. * Bits in @filter:
  3115. * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
  3116. * cpuset.
  3117. */
  3118. void show_free_areas(unsigned int filter)
  3119. {
  3120. unsigned long free_pcp = 0;
  3121. int cpu;
  3122. struct zone *zone;
  3123. for_each_populated_zone(zone) {
  3124. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3125. continue;
  3126. for_each_online_cpu(cpu)
  3127. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3128. }
  3129. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  3130. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  3131. " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  3132. " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  3133. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  3134. " free:%lu free_pcp:%lu free_cma:%lu\n",
  3135. global_page_state(NR_ACTIVE_ANON),
  3136. global_page_state(NR_INACTIVE_ANON),
  3137. global_page_state(NR_ISOLATED_ANON),
  3138. global_page_state(NR_ACTIVE_FILE),
  3139. global_page_state(NR_INACTIVE_FILE),
  3140. global_page_state(NR_ISOLATED_FILE),
  3141. global_page_state(NR_UNEVICTABLE),
  3142. global_page_state(NR_FILE_DIRTY),
  3143. global_page_state(NR_WRITEBACK),
  3144. global_page_state(NR_UNSTABLE_NFS),
  3145. global_page_state(NR_SLAB_RECLAIMABLE),
  3146. global_page_state(NR_SLAB_UNRECLAIMABLE),
  3147. global_page_state(NR_FILE_MAPPED),
  3148. global_page_state(NR_SHMEM),
  3149. global_page_state(NR_PAGETABLE),
  3150. global_page_state(NR_BOUNCE),
  3151. global_page_state(NR_FREE_PAGES),
  3152. free_pcp,
  3153. global_page_state(NR_FREE_CMA_PAGES));
  3154. for_each_populated_zone(zone) {
  3155. int i;
  3156. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3157. continue;
  3158. free_pcp = 0;
  3159. for_each_online_cpu(cpu)
  3160. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3161. show_node(zone);
  3162. printk("%s"
  3163. " free:%lukB"
  3164. " min:%lukB"
  3165. " low:%lukB"
  3166. " high:%lukB"
  3167. " active_anon:%lukB"
  3168. " inactive_anon:%lukB"
  3169. " active_file:%lukB"
  3170. " inactive_file:%lukB"
  3171. " unevictable:%lukB"
  3172. " isolated(anon):%lukB"
  3173. " isolated(file):%lukB"
  3174. " present:%lukB"
  3175. " managed:%lukB"
  3176. " mlocked:%lukB"
  3177. " dirty:%lukB"
  3178. " writeback:%lukB"
  3179. " mapped:%lukB"
  3180. " shmem:%lukB"
  3181. " slab_reclaimable:%lukB"
  3182. " slab_unreclaimable:%lukB"
  3183. " kernel_stack:%lukB"
  3184. " pagetables:%lukB"
  3185. " unstable:%lukB"
  3186. " bounce:%lukB"
  3187. " free_pcp:%lukB"
  3188. " local_pcp:%ukB"
  3189. " free_cma:%lukB"
  3190. " writeback_tmp:%lukB"
  3191. " pages_scanned:%lu"
  3192. " all_unreclaimable? %s"
  3193. "\n",
  3194. zone->name,
  3195. K(zone_page_state(zone, NR_FREE_PAGES)),
  3196. K(min_wmark_pages(zone)),
  3197. K(low_wmark_pages(zone)),
  3198. K(high_wmark_pages(zone)),
  3199. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  3200. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  3201. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  3202. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  3203. K(zone_page_state(zone, NR_UNEVICTABLE)),
  3204. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  3205. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  3206. K(zone->present_pages),
  3207. K(zone->managed_pages),
  3208. K(zone_page_state(zone, NR_MLOCK)),
  3209. K(zone_page_state(zone, NR_FILE_DIRTY)),
  3210. K(zone_page_state(zone, NR_WRITEBACK)),
  3211. K(zone_page_state(zone, NR_FILE_MAPPED)),
  3212. K(zone_page_state(zone, NR_SHMEM)),
  3213. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  3214. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  3215. zone_page_state(zone, NR_KERNEL_STACK) *
  3216. THREAD_SIZE / 1024,
  3217. K(zone_page_state(zone, NR_PAGETABLE)),
  3218. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  3219. K(zone_page_state(zone, NR_BOUNCE)),
  3220. K(free_pcp),
  3221. K(this_cpu_read(zone->pageset->pcp.count)),
  3222. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  3223. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  3224. K(zone_page_state(zone, NR_PAGES_SCANNED)),
  3225. (!zone_reclaimable(zone) ? "yes" : "no")
  3226. );
  3227. printk("lowmem_reserve[]:");
  3228. for (i = 0; i < MAX_NR_ZONES; i++)
  3229. printk(" %ld", zone->lowmem_reserve[i]);
  3230. printk("\n");
  3231. }
  3232. for_each_populated_zone(zone) {
  3233. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  3234. unsigned char types[MAX_ORDER];
  3235. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3236. continue;
  3237. show_node(zone);
  3238. printk("%s: ", zone->name);
  3239. spin_lock_irqsave(&zone->lock, flags);
  3240. for (order = 0; order < MAX_ORDER; order++) {
  3241. struct free_area *area = &zone->free_area[order];
  3242. int type;
  3243. nr[order] = area->nr_free;
  3244. total += nr[order] << order;
  3245. types[order] = 0;
  3246. for (type = 0; type < MIGRATE_TYPES; type++) {
  3247. if (!list_empty(&area->free_list[type]))
  3248. types[order] |= 1 << type;
  3249. }
  3250. }
  3251. spin_unlock_irqrestore(&zone->lock, flags);
  3252. for (order = 0; order < MAX_ORDER; order++) {
  3253. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  3254. if (nr[order])
  3255. show_migration_types(types[order]);
  3256. }
  3257. printk("= %lukB\n", K(total));
  3258. }
  3259. hugetlb_show_meminfo();
  3260. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  3261. show_swap_cache_info();
  3262. }
  3263. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  3264. {
  3265. zoneref->zone = zone;
  3266. zoneref->zone_idx = zone_idx(zone);
  3267. }
  3268. /*
  3269. * Builds allocation fallback zone lists.
  3270. *
  3271. * Add all populated zones of a node to the zonelist.
  3272. */
  3273. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  3274. int nr_zones)
  3275. {
  3276. struct zone *zone;
  3277. enum zone_type zone_type = MAX_NR_ZONES;
  3278. do {
  3279. zone_type--;
  3280. zone = pgdat->node_zones + zone_type;
  3281. if (populated_zone(zone)) {
  3282. zoneref_set_zone(zone,
  3283. &zonelist->_zonerefs[nr_zones++]);
  3284. check_highest_zone(zone_type);
  3285. }
  3286. } while (zone_type);
  3287. return nr_zones;
  3288. }
  3289. /*
  3290. * zonelist_order:
  3291. * 0 = automatic detection of better ordering.
  3292. * 1 = order by ([node] distance, -zonetype)
  3293. * 2 = order by (-zonetype, [node] distance)
  3294. *
  3295. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  3296. * the same zonelist. So only NUMA can configure this param.
  3297. */
  3298. #define ZONELIST_ORDER_DEFAULT 0
  3299. #define ZONELIST_ORDER_NODE 1
  3300. #define ZONELIST_ORDER_ZONE 2
  3301. /* zonelist order in the kernel.
  3302. * set_zonelist_order() will set this to NODE or ZONE.
  3303. */
  3304. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3305. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  3306. #ifdef CONFIG_NUMA
  3307. /* The value user specified ....changed by config */
  3308. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3309. /* string for sysctl */
  3310. #define NUMA_ZONELIST_ORDER_LEN 16
  3311. char numa_zonelist_order[16] = "default";
  3312. /*
  3313. * interface for configure zonelist ordering.
  3314. * command line option "numa_zonelist_order"
  3315. * = "[dD]efault - default, automatic configuration.
  3316. * = "[nN]ode - order by node locality, then by zone within node
  3317. * = "[zZ]one - order by zone, then by locality within zone
  3318. */
  3319. static int __parse_numa_zonelist_order(char *s)
  3320. {
  3321. if (*s == 'd' || *s == 'D') {
  3322. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3323. } else if (*s == 'n' || *s == 'N') {
  3324. user_zonelist_order = ZONELIST_ORDER_NODE;
  3325. } else if (*s == 'z' || *s == 'Z') {
  3326. user_zonelist_order = ZONELIST_ORDER_ZONE;
  3327. } else {
  3328. printk(KERN_WARNING
  3329. "Ignoring invalid numa_zonelist_order value: "
  3330. "%s\n", s);
  3331. return -EINVAL;
  3332. }
  3333. return 0;
  3334. }
  3335. static __init int setup_numa_zonelist_order(char *s)
  3336. {
  3337. int ret;
  3338. if (!s)
  3339. return 0;
  3340. ret = __parse_numa_zonelist_order(s);
  3341. if (ret == 0)
  3342. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  3343. return ret;
  3344. }
  3345. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  3346. /*
  3347. * sysctl handler for numa_zonelist_order
  3348. */
  3349. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  3350. void __user *buffer, size_t *length,
  3351. loff_t *ppos)
  3352. {
  3353. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  3354. int ret;
  3355. static DEFINE_MUTEX(zl_order_mutex);
  3356. mutex_lock(&zl_order_mutex);
  3357. if (write) {
  3358. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  3359. ret = -EINVAL;
  3360. goto out;
  3361. }
  3362. strcpy(saved_string, (char *)table->data);
  3363. }
  3364. ret = proc_dostring(table, write, buffer, length, ppos);
  3365. if (ret)
  3366. goto out;
  3367. if (write) {
  3368. int oldval = user_zonelist_order;
  3369. ret = __parse_numa_zonelist_order((char *)table->data);
  3370. if (ret) {
  3371. /*
  3372. * bogus value. restore saved string
  3373. */
  3374. strncpy((char *)table->data, saved_string,
  3375. NUMA_ZONELIST_ORDER_LEN);
  3376. user_zonelist_order = oldval;
  3377. } else if (oldval != user_zonelist_order) {
  3378. mutex_lock(&zonelists_mutex);
  3379. build_all_zonelists(NULL, NULL);
  3380. mutex_unlock(&zonelists_mutex);
  3381. }
  3382. }
  3383. out:
  3384. mutex_unlock(&zl_order_mutex);
  3385. return ret;
  3386. }
  3387. #define MAX_NODE_LOAD (nr_online_nodes)
  3388. static int node_load[MAX_NUMNODES];
  3389. /**
  3390. * find_next_best_node - find the next node that should appear in a given node's fallback list
  3391. * @node: node whose fallback list we're appending
  3392. * @used_node_mask: nodemask_t of already used nodes
  3393. *
  3394. * We use a number of factors to determine which is the next node that should
  3395. * appear on a given node's fallback list. The node should not have appeared
  3396. * already in @node's fallback list, and it should be the next closest node
  3397. * according to the distance array (which contains arbitrary distance values
  3398. * from each node to each node in the system), and should also prefer nodes
  3399. * with no CPUs, since presumably they'll have very little allocation pressure
  3400. * on them otherwise.
  3401. * It returns -1 if no node is found.
  3402. */
  3403. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  3404. {
  3405. int n, val;
  3406. int min_val = INT_MAX;
  3407. int best_node = NUMA_NO_NODE;
  3408. const struct cpumask *tmp = cpumask_of_node(0);
  3409. /* Use the local node if we haven't already */
  3410. if (!node_isset(node, *used_node_mask)) {
  3411. node_set(node, *used_node_mask);
  3412. return node;
  3413. }
  3414. for_each_node_state(n, N_MEMORY) {
  3415. /* Don't want a node to appear more than once */
  3416. if (node_isset(n, *used_node_mask))
  3417. continue;
  3418. /* Use the distance array to find the distance */
  3419. val = node_distance(node, n);
  3420. /* Penalize nodes under us ("prefer the next node") */
  3421. val += (n < node);
  3422. /* Give preference to headless and unused nodes */
  3423. tmp = cpumask_of_node(n);
  3424. if (!cpumask_empty(tmp))
  3425. val += PENALTY_FOR_NODE_WITH_CPUS;
  3426. /* Slight preference for less loaded node */
  3427. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  3428. val += node_load[n];
  3429. if (val < min_val) {
  3430. min_val = val;
  3431. best_node = n;
  3432. }
  3433. }
  3434. if (best_node >= 0)
  3435. node_set(best_node, *used_node_mask);
  3436. return best_node;
  3437. }
  3438. /*
  3439. * Build zonelists ordered by node and zones within node.
  3440. * This results in maximum locality--normal zone overflows into local
  3441. * DMA zone, if any--but risks exhausting DMA zone.
  3442. */
  3443. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  3444. {
  3445. int j;
  3446. struct zonelist *zonelist;
  3447. zonelist = &pgdat->node_zonelists[0];
  3448. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  3449. ;
  3450. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3451. zonelist->_zonerefs[j].zone = NULL;
  3452. zonelist->_zonerefs[j].zone_idx = 0;
  3453. }
  3454. /*
  3455. * Build gfp_thisnode zonelists
  3456. */
  3457. static void build_thisnode_zonelists(pg_data_t *pgdat)
  3458. {
  3459. int j;
  3460. struct zonelist *zonelist;
  3461. zonelist = &pgdat->node_zonelists[1];
  3462. j = build_zonelists_node(pgdat, zonelist, 0);
  3463. zonelist->_zonerefs[j].zone = NULL;
  3464. zonelist->_zonerefs[j].zone_idx = 0;
  3465. }
  3466. /*
  3467. * Build zonelists ordered by zone and nodes within zones.
  3468. * This results in conserving DMA zone[s] until all Normal memory is
  3469. * exhausted, but results in overflowing to remote node while memory
  3470. * may still exist in local DMA zone.
  3471. */
  3472. static int node_order[MAX_NUMNODES];
  3473. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  3474. {
  3475. int pos, j, node;
  3476. int zone_type; /* needs to be signed */
  3477. struct zone *z;
  3478. struct zonelist *zonelist;
  3479. zonelist = &pgdat->node_zonelists[0];
  3480. pos = 0;
  3481. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  3482. for (j = 0; j < nr_nodes; j++) {
  3483. node = node_order[j];
  3484. z = &NODE_DATA(node)->node_zones[zone_type];
  3485. if (populated_zone(z)) {
  3486. zoneref_set_zone(z,
  3487. &zonelist->_zonerefs[pos++]);
  3488. check_highest_zone(zone_type);
  3489. }
  3490. }
  3491. }
  3492. zonelist->_zonerefs[pos].zone = NULL;
  3493. zonelist->_zonerefs[pos].zone_idx = 0;
  3494. }
  3495. #if defined(CONFIG_64BIT)
  3496. /*
  3497. * Devices that require DMA32/DMA are relatively rare and do not justify a
  3498. * penalty to every machine in case the specialised case applies. Default
  3499. * to Node-ordering on 64-bit NUMA machines
  3500. */
  3501. static int default_zonelist_order(void)
  3502. {
  3503. return ZONELIST_ORDER_NODE;
  3504. }
  3505. #else
  3506. /*
  3507. * On 32-bit, the Normal zone needs to be preserved for allocations accessible
  3508. * by the kernel. If processes running on node 0 deplete the low memory zone
  3509. * then reclaim will occur more frequency increasing stalls and potentially
  3510. * be easier to OOM if a large percentage of the zone is under writeback or
  3511. * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
  3512. * Hence, default to zone ordering on 32-bit.
  3513. */
  3514. static int default_zonelist_order(void)
  3515. {
  3516. return ZONELIST_ORDER_ZONE;
  3517. }
  3518. #endif /* CONFIG_64BIT */
  3519. static void set_zonelist_order(void)
  3520. {
  3521. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  3522. current_zonelist_order = default_zonelist_order();
  3523. else
  3524. current_zonelist_order = user_zonelist_order;
  3525. }
  3526. static void build_zonelists(pg_data_t *pgdat)
  3527. {
  3528. int j, node, load;
  3529. enum zone_type i;
  3530. nodemask_t used_mask;
  3531. int local_node, prev_node;
  3532. struct zonelist *zonelist;
  3533. int order = current_zonelist_order;
  3534. /* initialize zonelists */
  3535. for (i = 0; i < MAX_ZONELISTS; i++) {
  3536. zonelist = pgdat->node_zonelists + i;
  3537. zonelist->_zonerefs[0].zone = NULL;
  3538. zonelist->_zonerefs[0].zone_idx = 0;
  3539. }
  3540. /* NUMA-aware ordering of nodes */
  3541. local_node = pgdat->node_id;
  3542. load = nr_online_nodes;
  3543. prev_node = local_node;
  3544. nodes_clear(used_mask);
  3545. memset(node_order, 0, sizeof(node_order));
  3546. j = 0;
  3547. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  3548. /*
  3549. * We don't want to pressure a particular node.
  3550. * So adding penalty to the first node in same
  3551. * distance group to make it round-robin.
  3552. */
  3553. if (node_distance(local_node, node) !=
  3554. node_distance(local_node, prev_node))
  3555. node_load[node] = load;
  3556. prev_node = node;
  3557. load--;
  3558. if (order == ZONELIST_ORDER_NODE)
  3559. build_zonelists_in_node_order(pgdat, node);
  3560. else
  3561. node_order[j++] = node; /* remember order */
  3562. }
  3563. if (order == ZONELIST_ORDER_ZONE) {
  3564. /* calculate node order -- i.e., DMA last! */
  3565. build_zonelists_in_zone_order(pgdat, j);
  3566. }
  3567. build_thisnode_zonelists(pgdat);
  3568. }
  3569. /* Construct the zonelist performance cache - see further mmzone.h */
  3570. static void build_zonelist_cache(pg_data_t *pgdat)
  3571. {
  3572. struct zonelist *zonelist;
  3573. struct zonelist_cache *zlc;
  3574. struct zoneref *z;
  3575. zonelist = &pgdat->node_zonelists[0];
  3576. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  3577. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  3578. for (z = zonelist->_zonerefs; z->zone; z++)
  3579. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  3580. }
  3581. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3582. /*
  3583. * Return node id of node used for "local" allocations.
  3584. * I.e., first node id of first zone in arg node's generic zonelist.
  3585. * Used for initializing percpu 'numa_mem', which is used primarily
  3586. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  3587. */
  3588. int local_memory_node(int node)
  3589. {
  3590. struct zone *zone;
  3591. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  3592. gfp_zone(GFP_KERNEL),
  3593. NULL,
  3594. &zone);
  3595. return zone->node;
  3596. }
  3597. #endif
  3598. #else /* CONFIG_NUMA */
  3599. static void set_zonelist_order(void)
  3600. {
  3601. current_zonelist_order = ZONELIST_ORDER_ZONE;
  3602. }
  3603. static void build_zonelists(pg_data_t *pgdat)
  3604. {
  3605. int node, local_node;
  3606. enum zone_type j;
  3607. struct zonelist *zonelist;
  3608. local_node = pgdat->node_id;
  3609. zonelist = &pgdat->node_zonelists[0];
  3610. j = build_zonelists_node(pgdat, zonelist, 0);
  3611. /*
  3612. * Now we build the zonelist so that it contains the zones
  3613. * of all the other nodes.
  3614. * We don't want to pressure a particular node, so when
  3615. * building the zones for node N, we make sure that the
  3616. * zones coming right after the local ones are those from
  3617. * node N+1 (modulo N)
  3618. */
  3619. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  3620. if (!node_online(node))
  3621. continue;
  3622. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3623. }
  3624. for (node = 0; node < local_node; node++) {
  3625. if (!node_online(node))
  3626. continue;
  3627. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3628. }
  3629. zonelist->_zonerefs[j].zone = NULL;
  3630. zonelist->_zonerefs[j].zone_idx = 0;
  3631. }
  3632. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  3633. static void build_zonelist_cache(pg_data_t *pgdat)
  3634. {
  3635. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  3636. }
  3637. #endif /* CONFIG_NUMA */
  3638. /*
  3639. * Boot pageset table. One per cpu which is going to be used for all
  3640. * zones and all nodes. The parameters will be set in such a way
  3641. * that an item put on a list will immediately be handed over to
  3642. * the buddy list. This is safe since pageset manipulation is done
  3643. * with interrupts disabled.
  3644. *
  3645. * The boot_pagesets must be kept even after bootup is complete for
  3646. * unused processors and/or zones. They do play a role for bootstrapping
  3647. * hotplugged processors.
  3648. *
  3649. * zoneinfo_show() and maybe other functions do
  3650. * not check if the processor is online before following the pageset pointer.
  3651. * Other parts of the kernel may not check if the zone is available.
  3652. */
  3653. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3654. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3655. static void setup_zone_pageset(struct zone *zone);
  3656. /*
  3657. * Global mutex to protect against size modification of zonelists
  3658. * as well as to serialize pageset setup for the new populated zone.
  3659. */
  3660. DEFINE_MUTEX(zonelists_mutex);
  3661. /* return values int ....just for stop_machine() */
  3662. static int __build_all_zonelists(void *data)
  3663. {
  3664. int nid;
  3665. int cpu;
  3666. pg_data_t *self = data;
  3667. #ifdef CONFIG_NUMA
  3668. memset(node_load, 0, sizeof(node_load));
  3669. #endif
  3670. if (self && !node_online(self->node_id)) {
  3671. build_zonelists(self);
  3672. build_zonelist_cache(self);
  3673. }
  3674. for_each_online_node(nid) {
  3675. pg_data_t *pgdat = NODE_DATA(nid);
  3676. build_zonelists(pgdat);
  3677. build_zonelist_cache(pgdat);
  3678. }
  3679. /*
  3680. * Initialize the boot_pagesets that are going to be used
  3681. * for bootstrapping processors. The real pagesets for
  3682. * each zone will be allocated later when the per cpu
  3683. * allocator is available.
  3684. *
  3685. * boot_pagesets are used also for bootstrapping offline
  3686. * cpus if the system is already booted because the pagesets
  3687. * are needed to initialize allocators on a specific cpu too.
  3688. * F.e. the percpu allocator needs the page allocator which
  3689. * needs the percpu allocator in order to allocate its pagesets
  3690. * (a chicken-egg dilemma).
  3691. */
  3692. for_each_possible_cpu(cpu) {
  3693. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3694. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3695. /*
  3696. * We now know the "local memory node" for each node--
  3697. * i.e., the node of the first zone in the generic zonelist.
  3698. * Set up numa_mem percpu variable for on-line cpus. During
  3699. * boot, only the boot cpu should be on-line; we'll init the
  3700. * secondary cpus' numa_mem as they come on-line. During
  3701. * node/memory hotplug, we'll fixup all on-line cpus.
  3702. */
  3703. if (cpu_online(cpu))
  3704. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3705. #endif
  3706. }
  3707. return 0;
  3708. }
  3709. static noinline void __init
  3710. build_all_zonelists_init(void)
  3711. {
  3712. __build_all_zonelists(NULL);
  3713. mminit_verify_zonelist();
  3714. cpuset_init_current_mems_allowed();
  3715. }
  3716. /*
  3717. * Called with zonelists_mutex held always
  3718. * unless system_state == SYSTEM_BOOTING.
  3719. *
  3720. * __ref due to (1) call of __meminit annotated setup_zone_pageset
  3721. * [we're only called with non-NULL zone through __meminit paths] and
  3722. * (2) call of __init annotated helper build_all_zonelists_init
  3723. * [protected by SYSTEM_BOOTING].
  3724. */
  3725. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  3726. {
  3727. set_zonelist_order();
  3728. if (system_state == SYSTEM_BOOTING) {
  3729. build_all_zonelists_init();
  3730. } else {
  3731. #ifdef CONFIG_MEMORY_HOTPLUG
  3732. if (zone)
  3733. setup_zone_pageset(zone);
  3734. #endif
  3735. /* we have to stop all cpus to guarantee there is no user
  3736. of zonelist */
  3737. stop_machine(__build_all_zonelists, pgdat, NULL);
  3738. /* cpuset refresh routine should be here */
  3739. }
  3740. vm_total_pages = nr_free_pagecache_pages();
  3741. /*
  3742. * Disable grouping by mobility if the number of pages in the
  3743. * system is too low to allow the mechanism to work. It would be
  3744. * more accurate, but expensive to check per-zone. This check is
  3745. * made on memory-hotadd so a system can start with mobility
  3746. * disabled and enable it later
  3747. */
  3748. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3749. page_group_by_mobility_disabled = 1;
  3750. else
  3751. page_group_by_mobility_disabled = 0;
  3752. pr_info("Built %i zonelists in %s order, mobility grouping %s. "
  3753. "Total pages: %ld\n",
  3754. nr_online_nodes,
  3755. zonelist_order_name[current_zonelist_order],
  3756. page_group_by_mobility_disabled ? "off" : "on",
  3757. vm_total_pages);
  3758. #ifdef CONFIG_NUMA
  3759. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  3760. #endif
  3761. }
  3762. /*
  3763. * Helper functions to size the waitqueue hash table.
  3764. * Essentially these want to choose hash table sizes sufficiently
  3765. * large so that collisions trying to wait on pages are rare.
  3766. * But in fact, the number of active page waitqueues on typical
  3767. * systems is ridiculously low, less than 200. So this is even
  3768. * conservative, even though it seems large.
  3769. *
  3770. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3771. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3772. */
  3773. #define PAGES_PER_WAITQUEUE 256
  3774. #ifndef CONFIG_MEMORY_HOTPLUG
  3775. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3776. {
  3777. unsigned long size = 1;
  3778. pages /= PAGES_PER_WAITQUEUE;
  3779. while (size < pages)
  3780. size <<= 1;
  3781. /*
  3782. * Once we have dozens or even hundreds of threads sleeping
  3783. * on IO we've got bigger problems than wait queue collision.
  3784. * Limit the size of the wait table to a reasonable size.
  3785. */
  3786. size = min(size, 4096UL);
  3787. return max(size, 4UL);
  3788. }
  3789. #else
  3790. /*
  3791. * A zone's size might be changed by hot-add, so it is not possible to determine
  3792. * a suitable size for its wait_table. So we use the maximum size now.
  3793. *
  3794. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3795. *
  3796. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3797. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3798. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3799. *
  3800. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3801. * or more by the traditional way. (See above). It equals:
  3802. *
  3803. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3804. * ia64(16K page size) : = ( 8G + 4M)byte.
  3805. * powerpc (64K page size) : = (32G +16M)byte.
  3806. */
  3807. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3808. {
  3809. return 4096UL;
  3810. }
  3811. #endif
  3812. /*
  3813. * This is an integer logarithm so that shifts can be used later
  3814. * to extract the more random high bits from the multiplicative
  3815. * hash function before the remainder is taken.
  3816. */
  3817. static inline unsigned long wait_table_bits(unsigned long size)
  3818. {
  3819. return ffz(~size);
  3820. }
  3821. /*
  3822. * Check if a pageblock contains reserved pages
  3823. */
  3824. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  3825. {
  3826. unsigned long pfn;
  3827. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3828. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  3829. return 1;
  3830. }
  3831. return 0;
  3832. }
  3833. /*
  3834. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  3835. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  3836. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  3837. * higher will lead to a bigger reserve which will get freed as contiguous
  3838. * blocks as reclaim kicks in
  3839. */
  3840. static void setup_zone_migrate_reserve(struct zone *zone)
  3841. {
  3842. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  3843. struct page *page;
  3844. unsigned long block_migratetype;
  3845. int reserve;
  3846. int old_reserve;
  3847. /*
  3848. * Get the start pfn, end pfn and the number of blocks to reserve
  3849. * We have to be careful to be aligned to pageblock_nr_pages to
  3850. * make sure that we always check pfn_valid for the first page in
  3851. * the block.
  3852. */
  3853. start_pfn = zone->zone_start_pfn;
  3854. end_pfn = zone_end_pfn(zone);
  3855. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  3856. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  3857. pageblock_order;
  3858. /*
  3859. * Reserve blocks are generally in place to help high-order atomic
  3860. * allocations that are short-lived. A min_free_kbytes value that
  3861. * would result in more than 2 reserve blocks for atomic allocations
  3862. * is assumed to be in place to help anti-fragmentation for the
  3863. * future allocation of hugepages at runtime.
  3864. */
  3865. reserve = min(2, reserve);
  3866. old_reserve = zone->nr_migrate_reserve_block;
  3867. /* When memory hot-add, we almost always need to do nothing */
  3868. if (reserve == old_reserve)
  3869. return;
  3870. zone->nr_migrate_reserve_block = reserve;
  3871. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  3872. if (!early_page_nid_uninitialised(pfn, zone_to_nid(zone)))
  3873. return;
  3874. if (!pfn_valid(pfn))
  3875. continue;
  3876. page = pfn_to_page(pfn);
  3877. /* Watch out for overlapping nodes */
  3878. if (page_to_nid(page) != zone_to_nid(zone))
  3879. continue;
  3880. block_migratetype = get_pageblock_migratetype(page);
  3881. /* Only test what is necessary when the reserves are not met */
  3882. if (reserve > 0) {
  3883. /*
  3884. * Blocks with reserved pages will never free, skip
  3885. * them.
  3886. */
  3887. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  3888. if (pageblock_is_reserved(pfn, block_end_pfn))
  3889. continue;
  3890. /* If this block is reserved, account for it */
  3891. if (block_migratetype == MIGRATE_RESERVE) {
  3892. reserve--;
  3893. continue;
  3894. }
  3895. /* Suitable for reserving if this block is movable */
  3896. if (block_migratetype == MIGRATE_MOVABLE) {
  3897. set_pageblock_migratetype(page,
  3898. MIGRATE_RESERVE);
  3899. move_freepages_block(zone, page,
  3900. MIGRATE_RESERVE);
  3901. reserve--;
  3902. continue;
  3903. }
  3904. } else if (!old_reserve) {
  3905. /*
  3906. * At boot time we don't need to scan the whole zone
  3907. * for turning off MIGRATE_RESERVE.
  3908. */
  3909. break;
  3910. }
  3911. /*
  3912. * If the reserve is met and this is a previous reserved block,
  3913. * take it back
  3914. */
  3915. if (block_migratetype == MIGRATE_RESERVE) {
  3916. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3917. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3918. }
  3919. }
  3920. }
  3921. /*
  3922. * Initially all pages are reserved - free ones are freed
  3923. * up by free_all_bootmem() once the early boot process is
  3924. * done. Non-atomic initialization, single-pass.
  3925. */
  3926. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3927. unsigned long start_pfn, enum memmap_context context)
  3928. {
  3929. pg_data_t *pgdat = NODE_DATA(nid);
  3930. unsigned long end_pfn = start_pfn + size;
  3931. unsigned long pfn;
  3932. struct zone *z;
  3933. unsigned long nr_initialised = 0;
  3934. if (highest_memmap_pfn < end_pfn - 1)
  3935. highest_memmap_pfn = end_pfn - 1;
  3936. z = &pgdat->node_zones[zone];
  3937. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3938. /*
  3939. * There can be holes in boot-time mem_map[]s
  3940. * handed to this function. They do not
  3941. * exist on hotplugged memory.
  3942. */
  3943. if (context == MEMMAP_EARLY) {
  3944. if (!early_pfn_valid(pfn))
  3945. continue;
  3946. if (!early_pfn_in_nid(pfn, nid))
  3947. continue;
  3948. if (!update_defer_init(pgdat, pfn, end_pfn,
  3949. &nr_initialised))
  3950. break;
  3951. }
  3952. /*
  3953. * Mark the block movable so that blocks are reserved for
  3954. * movable at startup. This will force kernel allocations
  3955. * to reserve their blocks rather than leaking throughout
  3956. * the address space during boot when many long-lived
  3957. * kernel allocations are made. Later some blocks near
  3958. * the start are marked MIGRATE_RESERVE by
  3959. * setup_zone_migrate_reserve()
  3960. *
  3961. * bitmap is created for zone's valid pfn range. but memmap
  3962. * can be created for invalid pages (for alignment)
  3963. * check here not to call set_pageblock_migratetype() against
  3964. * pfn out of zone.
  3965. */
  3966. if (!(pfn & (pageblock_nr_pages - 1))) {
  3967. struct page *page = pfn_to_page(pfn);
  3968. __init_single_page(page, pfn, zone, nid);
  3969. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3970. } else {
  3971. __init_single_pfn(pfn, zone, nid);
  3972. }
  3973. }
  3974. }
  3975. static void __meminit zone_init_free_lists(struct zone *zone)
  3976. {
  3977. unsigned int order, t;
  3978. for_each_migratetype_order(order, t) {
  3979. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3980. zone->free_area[order].nr_free = 0;
  3981. }
  3982. }
  3983. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3984. #define memmap_init(size, nid, zone, start_pfn) \
  3985. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3986. #endif
  3987. static int zone_batchsize(struct zone *zone)
  3988. {
  3989. #ifdef CONFIG_MMU
  3990. int batch;
  3991. /*
  3992. * The per-cpu-pages pools are set to around 1000th of the
  3993. * size of the zone. But no more than 1/2 of a meg.
  3994. *
  3995. * OK, so we don't know how big the cache is. So guess.
  3996. */
  3997. batch = zone->managed_pages / 1024;
  3998. if (batch * PAGE_SIZE > 512 * 1024)
  3999. batch = (512 * 1024) / PAGE_SIZE;
  4000. batch /= 4; /* We effectively *= 4 below */
  4001. if (batch < 1)
  4002. batch = 1;
  4003. /*
  4004. * Clamp the batch to a 2^n - 1 value. Having a power
  4005. * of 2 value was found to be more likely to have
  4006. * suboptimal cache aliasing properties in some cases.
  4007. *
  4008. * For example if 2 tasks are alternately allocating
  4009. * batches of pages, one task can end up with a lot
  4010. * of pages of one half of the possible page colors
  4011. * and the other with pages of the other colors.
  4012. */
  4013. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  4014. return batch;
  4015. #else
  4016. /* The deferral and batching of frees should be suppressed under NOMMU
  4017. * conditions.
  4018. *
  4019. * The problem is that NOMMU needs to be able to allocate large chunks
  4020. * of contiguous memory as there's no hardware page translation to
  4021. * assemble apparent contiguous memory from discontiguous pages.
  4022. *
  4023. * Queueing large contiguous runs of pages for batching, however,
  4024. * causes the pages to actually be freed in smaller chunks. As there
  4025. * can be a significant delay between the individual batches being
  4026. * recycled, this leads to the once large chunks of space being
  4027. * fragmented and becoming unavailable for high-order allocations.
  4028. */
  4029. return 0;
  4030. #endif
  4031. }
  4032. /*
  4033. * pcp->high and pcp->batch values are related and dependent on one another:
  4034. * ->batch must never be higher then ->high.
  4035. * The following function updates them in a safe manner without read side
  4036. * locking.
  4037. *
  4038. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  4039. * those fields changing asynchronously (acording the the above rule).
  4040. *
  4041. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  4042. * outside of boot time (or some other assurance that no concurrent updaters
  4043. * exist).
  4044. */
  4045. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  4046. unsigned long batch)
  4047. {
  4048. /* start with a fail safe value for batch */
  4049. pcp->batch = 1;
  4050. smp_wmb();
  4051. /* Update high, then batch, in order */
  4052. pcp->high = high;
  4053. smp_wmb();
  4054. pcp->batch = batch;
  4055. }
  4056. /* a companion to pageset_set_high() */
  4057. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  4058. {
  4059. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  4060. }
  4061. static void pageset_init(struct per_cpu_pageset *p)
  4062. {
  4063. struct per_cpu_pages *pcp;
  4064. int migratetype;
  4065. memset(p, 0, sizeof(*p));
  4066. pcp = &p->pcp;
  4067. pcp->count = 0;
  4068. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  4069. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  4070. }
  4071. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  4072. {
  4073. pageset_init(p);
  4074. pageset_set_batch(p, batch);
  4075. }
  4076. /*
  4077. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  4078. * to the value high for the pageset p.
  4079. */
  4080. static void pageset_set_high(struct per_cpu_pageset *p,
  4081. unsigned long high)
  4082. {
  4083. unsigned long batch = max(1UL, high / 4);
  4084. if ((high / 4) > (PAGE_SHIFT * 8))
  4085. batch = PAGE_SHIFT * 8;
  4086. pageset_update(&p->pcp, high, batch);
  4087. }
  4088. static void pageset_set_high_and_batch(struct zone *zone,
  4089. struct per_cpu_pageset *pcp)
  4090. {
  4091. if (percpu_pagelist_fraction)
  4092. pageset_set_high(pcp,
  4093. (zone->managed_pages /
  4094. percpu_pagelist_fraction));
  4095. else
  4096. pageset_set_batch(pcp, zone_batchsize(zone));
  4097. }
  4098. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  4099. {
  4100. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  4101. pageset_init(pcp);
  4102. pageset_set_high_and_batch(zone, pcp);
  4103. }
  4104. static void __meminit setup_zone_pageset(struct zone *zone)
  4105. {
  4106. int cpu;
  4107. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  4108. for_each_possible_cpu(cpu)
  4109. zone_pageset_init(zone, cpu);
  4110. }
  4111. /*
  4112. * Allocate per cpu pagesets and initialize them.
  4113. * Before this call only boot pagesets were available.
  4114. */
  4115. void __init setup_per_cpu_pageset(void)
  4116. {
  4117. struct zone *zone;
  4118. for_each_populated_zone(zone)
  4119. setup_zone_pageset(zone);
  4120. }
  4121. static noinline __init_refok
  4122. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  4123. {
  4124. int i;
  4125. size_t alloc_size;
  4126. /*
  4127. * The per-page waitqueue mechanism uses hashed waitqueues
  4128. * per zone.
  4129. */
  4130. zone->wait_table_hash_nr_entries =
  4131. wait_table_hash_nr_entries(zone_size_pages);
  4132. zone->wait_table_bits =
  4133. wait_table_bits(zone->wait_table_hash_nr_entries);
  4134. alloc_size = zone->wait_table_hash_nr_entries
  4135. * sizeof(wait_queue_head_t);
  4136. if (!slab_is_available()) {
  4137. zone->wait_table = (wait_queue_head_t *)
  4138. memblock_virt_alloc_node_nopanic(
  4139. alloc_size, zone->zone_pgdat->node_id);
  4140. } else {
  4141. /*
  4142. * This case means that a zone whose size was 0 gets new memory
  4143. * via memory hot-add.
  4144. * But it may be the case that a new node was hot-added. In
  4145. * this case vmalloc() will not be able to use this new node's
  4146. * memory - this wait_table must be initialized to use this new
  4147. * node itself as well.
  4148. * To use this new node's memory, further consideration will be
  4149. * necessary.
  4150. */
  4151. zone->wait_table = vmalloc(alloc_size);
  4152. }
  4153. if (!zone->wait_table)
  4154. return -ENOMEM;
  4155. for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  4156. init_waitqueue_head(zone->wait_table + i);
  4157. return 0;
  4158. }
  4159. static __meminit void zone_pcp_init(struct zone *zone)
  4160. {
  4161. /*
  4162. * per cpu subsystem is not up at this point. The following code
  4163. * relies on the ability of the linker to provide the
  4164. * offset of a (static) per cpu variable into the per cpu area.
  4165. */
  4166. zone->pageset = &boot_pageset;
  4167. if (populated_zone(zone))
  4168. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  4169. zone->name, zone->present_pages,
  4170. zone_batchsize(zone));
  4171. }
  4172. int __meminit init_currently_empty_zone(struct zone *zone,
  4173. unsigned long zone_start_pfn,
  4174. unsigned long size,
  4175. enum memmap_context context)
  4176. {
  4177. struct pglist_data *pgdat = zone->zone_pgdat;
  4178. int ret;
  4179. ret = zone_wait_table_init(zone, size);
  4180. if (ret)
  4181. return ret;
  4182. pgdat->nr_zones = zone_idx(zone) + 1;
  4183. zone->zone_start_pfn = zone_start_pfn;
  4184. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  4185. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  4186. pgdat->node_id,
  4187. (unsigned long)zone_idx(zone),
  4188. zone_start_pfn, (zone_start_pfn + size));
  4189. zone_init_free_lists(zone);
  4190. return 0;
  4191. }
  4192. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4193. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  4194. /*
  4195. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  4196. */
  4197. int __meminit __early_pfn_to_nid(unsigned long pfn,
  4198. struct mminit_pfnnid_cache *state)
  4199. {
  4200. unsigned long start_pfn, end_pfn;
  4201. int nid;
  4202. if (state->last_start <= pfn && pfn < state->last_end)
  4203. return state->last_nid;
  4204. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  4205. if (nid != -1) {
  4206. state->last_start = start_pfn;
  4207. state->last_end = end_pfn;
  4208. state->last_nid = nid;
  4209. }
  4210. return nid;
  4211. }
  4212. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  4213. /**
  4214. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  4215. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  4216. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  4217. *
  4218. * If an architecture guarantees that all ranges registered contain no holes
  4219. * and may be freed, this this function may be used instead of calling
  4220. * memblock_free_early_nid() manually.
  4221. */
  4222. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  4223. {
  4224. unsigned long start_pfn, end_pfn;
  4225. int i, this_nid;
  4226. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  4227. start_pfn = min(start_pfn, max_low_pfn);
  4228. end_pfn = min(end_pfn, max_low_pfn);
  4229. if (start_pfn < end_pfn)
  4230. memblock_free_early_nid(PFN_PHYS(start_pfn),
  4231. (end_pfn - start_pfn) << PAGE_SHIFT,
  4232. this_nid);
  4233. }
  4234. }
  4235. /**
  4236. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  4237. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  4238. *
  4239. * If an architecture guarantees that all ranges registered contain no holes and may
  4240. * be freed, this function may be used instead of calling memory_present() manually.
  4241. */
  4242. void __init sparse_memory_present_with_active_regions(int nid)
  4243. {
  4244. unsigned long start_pfn, end_pfn;
  4245. int i, this_nid;
  4246. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  4247. memory_present(this_nid, start_pfn, end_pfn);
  4248. }
  4249. /**
  4250. * get_pfn_range_for_nid - Return the start and end page frames for a node
  4251. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  4252. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  4253. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  4254. *
  4255. * It returns the start and end page frame of a node based on information
  4256. * provided by memblock_set_node(). If called for a node
  4257. * with no available memory, a warning is printed and the start and end
  4258. * PFNs will be 0.
  4259. */
  4260. void __meminit get_pfn_range_for_nid(unsigned int nid,
  4261. unsigned long *start_pfn, unsigned long *end_pfn)
  4262. {
  4263. unsigned long this_start_pfn, this_end_pfn;
  4264. int i;
  4265. *start_pfn = -1UL;
  4266. *end_pfn = 0;
  4267. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  4268. *start_pfn = min(*start_pfn, this_start_pfn);
  4269. *end_pfn = max(*end_pfn, this_end_pfn);
  4270. }
  4271. if (*start_pfn == -1UL)
  4272. *start_pfn = 0;
  4273. }
  4274. /*
  4275. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  4276. * assumption is made that zones within a node are ordered in monotonic
  4277. * increasing memory addresses so that the "highest" populated zone is used
  4278. */
  4279. static void __init find_usable_zone_for_movable(void)
  4280. {
  4281. int zone_index;
  4282. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  4283. if (zone_index == ZONE_MOVABLE)
  4284. continue;
  4285. if (arch_zone_highest_possible_pfn[zone_index] >
  4286. arch_zone_lowest_possible_pfn[zone_index])
  4287. break;
  4288. }
  4289. VM_BUG_ON(zone_index == -1);
  4290. movable_zone = zone_index;
  4291. }
  4292. /*
  4293. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  4294. * because it is sized independent of architecture. Unlike the other zones,
  4295. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  4296. * in each node depending on the size of each node and how evenly kernelcore
  4297. * is distributed. This helper function adjusts the zone ranges
  4298. * provided by the architecture for a given node by using the end of the
  4299. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  4300. * zones within a node are in order of monotonic increases memory addresses
  4301. */
  4302. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  4303. unsigned long zone_type,
  4304. unsigned long node_start_pfn,
  4305. unsigned long node_end_pfn,
  4306. unsigned long *zone_start_pfn,
  4307. unsigned long *zone_end_pfn)
  4308. {
  4309. /* Only adjust if ZONE_MOVABLE is on this node */
  4310. if (zone_movable_pfn[nid]) {
  4311. /* Size ZONE_MOVABLE */
  4312. if (zone_type == ZONE_MOVABLE) {
  4313. *zone_start_pfn = zone_movable_pfn[nid];
  4314. *zone_end_pfn = min(node_end_pfn,
  4315. arch_zone_highest_possible_pfn[movable_zone]);
  4316. /* Adjust for ZONE_MOVABLE starting within this range */
  4317. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  4318. *zone_end_pfn > zone_movable_pfn[nid]) {
  4319. *zone_end_pfn = zone_movable_pfn[nid];
  4320. /* Check if this whole range is within ZONE_MOVABLE */
  4321. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  4322. *zone_start_pfn = *zone_end_pfn;
  4323. }
  4324. }
  4325. /*
  4326. * Return the number of pages a zone spans in a node, including holes
  4327. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  4328. */
  4329. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4330. unsigned long zone_type,
  4331. unsigned long node_start_pfn,
  4332. unsigned long node_end_pfn,
  4333. unsigned long *ignored)
  4334. {
  4335. unsigned long zone_start_pfn, zone_end_pfn;
  4336. /* Get the start and end of the zone */
  4337. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  4338. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  4339. adjust_zone_range_for_zone_movable(nid, zone_type,
  4340. node_start_pfn, node_end_pfn,
  4341. &zone_start_pfn, &zone_end_pfn);
  4342. /* Check that this node has pages within the zone's required range */
  4343. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  4344. return 0;
  4345. /* Move the zone boundaries inside the node if necessary */
  4346. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  4347. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  4348. /* Return the spanned pages */
  4349. return zone_end_pfn - zone_start_pfn;
  4350. }
  4351. /*
  4352. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  4353. * then all holes in the requested range will be accounted for.
  4354. */
  4355. unsigned long __meminit __absent_pages_in_range(int nid,
  4356. unsigned long range_start_pfn,
  4357. unsigned long range_end_pfn)
  4358. {
  4359. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  4360. unsigned long start_pfn, end_pfn;
  4361. int i;
  4362. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4363. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  4364. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  4365. nr_absent -= end_pfn - start_pfn;
  4366. }
  4367. return nr_absent;
  4368. }
  4369. /**
  4370. * absent_pages_in_range - Return number of page frames in holes within a range
  4371. * @start_pfn: The start PFN to start searching for holes
  4372. * @end_pfn: The end PFN to stop searching for holes
  4373. *
  4374. * It returns the number of pages frames in memory holes within a range.
  4375. */
  4376. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  4377. unsigned long end_pfn)
  4378. {
  4379. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  4380. }
  4381. /* Return the number of page frames in holes in a zone on a node */
  4382. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  4383. unsigned long zone_type,
  4384. unsigned long node_start_pfn,
  4385. unsigned long node_end_pfn,
  4386. unsigned long *ignored)
  4387. {
  4388. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4389. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4390. unsigned long zone_start_pfn, zone_end_pfn;
  4391. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4392. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4393. adjust_zone_range_for_zone_movable(nid, zone_type,
  4394. node_start_pfn, node_end_pfn,
  4395. &zone_start_pfn, &zone_end_pfn);
  4396. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  4397. }
  4398. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4399. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4400. unsigned long zone_type,
  4401. unsigned long node_start_pfn,
  4402. unsigned long node_end_pfn,
  4403. unsigned long *zones_size)
  4404. {
  4405. return zones_size[zone_type];
  4406. }
  4407. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  4408. unsigned long zone_type,
  4409. unsigned long node_start_pfn,
  4410. unsigned long node_end_pfn,
  4411. unsigned long *zholes_size)
  4412. {
  4413. if (!zholes_size)
  4414. return 0;
  4415. return zholes_size[zone_type];
  4416. }
  4417. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4418. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  4419. unsigned long node_start_pfn,
  4420. unsigned long node_end_pfn,
  4421. unsigned long *zones_size,
  4422. unsigned long *zholes_size)
  4423. {
  4424. unsigned long realtotalpages = 0, totalpages = 0;
  4425. enum zone_type i;
  4426. for (i = 0; i < MAX_NR_ZONES; i++) {
  4427. struct zone *zone = pgdat->node_zones + i;
  4428. unsigned long size, real_size;
  4429. size = zone_spanned_pages_in_node(pgdat->node_id, i,
  4430. node_start_pfn,
  4431. node_end_pfn,
  4432. zones_size);
  4433. real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
  4434. node_start_pfn, node_end_pfn,
  4435. zholes_size);
  4436. zone->spanned_pages = size;
  4437. zone->present_pages = real_size;
  4438. totalpages += size;
  4439. realtotalpages += real_size;
  4440. }
  4441. pgdat->node_spanned_pages = totalpages;
  4442. pgdat->node_present_pages = realtotalpages;
  4443. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  4444. realtotalpages);
  4445. }
  4446. #ifndef CONFIG_SPARSEMEM
  4447. /*
  4448. * Calculate the size of the zone->blockflags rounded to an unsigned long
  4449. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  4450. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  4451. * round what is now in bits to nearest long in bits, then return it in
  4452. * bytes.
  4453. */
  4454. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  4455. {
  4456. unsigned long usemapsize;
  4457. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  4458. usemapsize = roundup(zonesize, pageblock_nr_pages);
  4459. usemapsize = usemapsize >> pageblock_order;
  4460. usemapsize *= NR_PAGEBLOCK_BITS;
  4461. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  4462. return usemapsize / 8;
  4463. }
  4464. static void __init setup_usemap(struct pglist_data *pgdat,
  4465. struct zone *zone,
  4466. unsigned long zone_start_pfn,
  4467. unsigned long zonesize)
  4468. {
  4469. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  4470. zone->pageblock_flags = NULL;
  4471. if (usemapsize)
  4472. zone->pageblock_flags =
  4473. memblock_virt_alloc_node_nopanic(usemapsize,
  4474. pgdat->node_id);
  4475. }
  4476. #else
  4477. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  4478. unsigned long zone_start_pfn, unsigned long zonesize) {}
  4479. #endif /* CONFIG_SPARSEMEM */
  4480. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  4481. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  4482. void __paginginit set_pageblock_order(void)
  4483. {
  4484. unsigned int order;
  4485. /* Check that pageblock_nr_pages has not already been setup */
  4486. if (pageblock_order)
  4487. return;
  4488. if (HPAGE_SHIFT > PAGE_SHIFT)
  4489. order = HUGETLB_PAGE_ORDER;
  4490. else
  4491. order = MAX_ORDER - 1;
  4492. /*
  4493. * Assume the largest contiguous order of interest is a huge page.
  4494. * This value may be variable depending on boot parameters on IA64 and
  4495. * powerpc.
  4496. */
  4497. pageblock_order = order;
  4498. }
  4499. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4500. /*
  4501. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  4502. * is unused as pageblock_order is set at compile-time. See
  4503. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  4504. * the kernel config
  4505. */
  4506. void __paginginit set_pageblock_order(void)
  4507. {
  4508. }
  4509. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4510. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  4511. unsigned long present_pages)
  4512. {
  4513. unsigned long pages = spanned_pages;
  4514. /*
  4515. * Provide a more accurate estimation if there are holes within
  4516. * the zone and SPARSEMEM is in use. If there are holes within the
  4517. * zone, each populated memory region may cost us one or two extra
  4518. * memmap pages due to alignment because memmap pages for each
  4519. * populated regions may not naturally algined on page boundary.
  4520. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  4521. */
  4522. if (spanned_pages > present_pages + (present_pages >> 4) &&
  4523. IS_ENABLED(CONFIG_SPARSEMEM))
  4524. pages = present_pages;
  4525. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  4526. }
  4527. /*
  4528. * Set up the zone data structures:
  4529. * - mark all pages reserved
  4530. * - mark all memory queues empty
  4531. * - clear the memory bitmaps
  4532. *
  4533. * NOTE: pgdat should get zeroed by caller.
  4534. */
  4535. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  4536. unsigned long node_start_pfn, unsigned long node_end_pfn)
  4537. {
  4538. enum zone_type j;
  4539. int nid = pgdat->node_id;
  4540. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  4541. int ret;
  4542. pgdat_resize_init(pgdat);
  4543. #ifdef CONFIG_NUMA_BALANCING
  4544. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  4545. pgdat->numabalancing_migrate_nr_pages = 0;
  4546. pgdat->numabalancing_migrate_next_window = jiffies;
  4547. #endif
  4548. init_waitqueue_head(&pgdat->kswapd_wait);
  4549. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  4550. pgdat_page_ext_init(pgdat);
  4551. for (j = 0; j < MAX_NR_ZONES; j++) {
  4552. struct zone *zone = pgdat->node_zones + j;
  4553. unsigned long size, realsize, freesize, memmap_pages;
  4554. size = zone->spanned_pages;
  4555. realsize = freesize = zone->present_pages;
  4556. /*
  4557. * Adjust freesize so that it accounts for how much memory
  4558. * is used by this zone for memmap. This affects the watermark
  4559. * and per-cpu initialisations
  4560. */
  4561. memmap_pages = calc_memmap_size(size, realsize);
  4562. if (!is_highmem_idx(j)) {
  4563. if (freesize >= memmap_pages) {
  4564. freesize -= memmap_pages;
  4565. if (memmap_pages)
  4566. printk(KERN_DEBUG
  4567. " %s zone: %lu pages used for memmap\n",
  4568. zone_names[j], memmap_pages);
  4569. } else
  4570. printk(KERN_WARNING
  4571. " %s zone: %lu pages exceeds freesize %lu\n",
  4572. zone_names[j], memmap_pages, freesize);
  4573. }
  4574. /* Account for reserved pages */
  4575. if (j == 0 && freesize > dma_reserve) {
  4576. freesize -= dma_reserve;
  4577. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  4578. zone_names[0], dma_reserve);
  4579. }
  4580. if (!is_highmem_idx(j))
  4581. nr_kernel_pages += freesize;
  4582. /* Charge for highmem memmap if there are enough kernel pages */
  4583. else if (nr_kernel_pages > memmap_pages * 2)
  4584. nr_kernel_pages -= memmap_pages;
  4585. nr_all_pages += freesize;
  4586. /*
  4587. * Set an approximate value for lowmem here, it will be adjusted
  4588. * when the bootmem allocator frees pages into the buddy system.
  4589. * And all highmem pages will be managed by the buddy system.
  4590. */
  4591. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  4592. #ifdef CONFIG_NUMA
  4593. zone->node = nid;
  4594. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  4595. / 100;
  4596. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  4597. #endif
  4598. zone->name = zone_names[j];
  4599. spin_lock_init(&zone->lock);
  4600. spin_lock_init(&zone->lru_lock);
  4601. zone_seqlock_init(zone);
  4602. zone->zone_pgdat = pgdat;
  4603. zone_pcp_init(zone);
  4604. /* For bootup, initialized properly in watermark setup */
  4605. mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
  4606. lruvec_init(&zone->lruvec);
  4607. if (!size)
  4608. continue;
  4609. set_pageblock_order();
  4610. setup_usemap(pgdat, zone, zone_start_pfn, size);
  4611. ret = init_currently_empty_zone(zone, zone_start_pfn,
  4612. size, MEMMAP_EARLY);
  4613. BUG_ON(ret);
  4614. memmap_init(size, nid, j, zone_start_pfn);
  4615. zone_start_pfn += size;
  4616. }
  4617. }
  4618. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  4619. {
  4620. /* Skip empty nodes */
  4621. if (!pgdat->node_spanned_pages)
  4622. return;
  4623. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4624. /* ia64 gets its own node_mem_map, before this, without bootmem */
  4625. if (!pgdat->node_mem_map) {
  4626. unsigned long size, start, end;
  4627. struct page *map;
  4628. /*
  4629. * The zone's endpoints aren't required to be MAX_ORDER
  4630. * aligned but the node_mem_map endpoints must be in order
  4631. * for the buddy allocator to function correctly.
  4632. */
  4633. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  4634. end = pgdat_end_pfn(pgdat);
  4635. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  4636. size = (end - start) * sizeof(struct page);
  4637. map = alloc_remap(pgdat->node_id, size);
  4638. if (!map)
  4639. map = memblock_virt_alloc_node_nopanic(size,
  4640. pgdat->node_id);
  4641. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  4642. }
  4643. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4644. /*
  4645. * With no DISCONTIG, the global mem_map is just set as node 0's
  4646. */
  4647. if (pgdat == NODE_DATA(0)) {
  4648. mem_map = NODE_DATA(0)->node_mem_map;
  4649. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4650. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  4651. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  4652. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4653. }
  4654. #endif
  4655. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  4656. }
  4657. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  4658. unsigned long node_start_pfn, unsigned long *zholes_size)
  4659. {
  4660. pg_data_t *pgdat = NODE_DATA(nid);
  4661. unsigned long start_pfn = 0;
  4662. unsigned long end_pfn = 0;
  4663. /* pg_data_t should be reset to zero when it's allocated */
  4664. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  4665. reset_deferred_meminit(pgdat);
  4666. pgdat->node_id = nid;
  4667. pgdat->node_start_pfn = node_start_pfn;
  4668. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4669. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  4670. pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
  4671. (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
  4672. #endif
  4673. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  4674. zones_size, zholes_size);
  4675. alloc_node_mem_map(pgdat);
  4676. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4677. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  4678. nid, (unsigned long)pgdat,
  4679. (unsigned long)pgdat->node_mem_map);
  4680. #endif
  4681. free_area_init_core(pgdat, start_pfn, end_pfn);
  4682. }
  4683. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4684. #if MAX_NUMNODES > 1
  4685. /*
  4686. * Figure out the number of possible node ids.
  4687. */
  4688. void __init setup_nr_node_ids(void)
  4689. {
  4690. unsigned int node;
  4691. unsigned int highest = 0;
  4692. for_each_node_mask(node, node_possible_map)
  4693. highest = node;
  4694. nr_node_ids = highest + 1;
  4695. }
  4696. #endif
  4697. /**
  4698. * node_map_pfn_alignment - determine the maximum internode alignment
  4699. *
  4700. * This function should be called after node map is populated and sorted.
  4701. * It calculates the maximum power of two alignment which can distinguish
  4702. * all the nodes.
  4703. *
  4704. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  4705. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  4706. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  4707. * shifted, 1GiB is enough and this function will indicate so.
  4708. *
  4709. * This is used to test whether pfn -> nid mapping of the chosen memory
  4710. * model has fine enough granularity to avoid incorrect mapping for the
  4711. * populated node map.
  4712. *
  4713. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4714. * requirement (single node).
  4715. */
  4716. unsigned long __init node_map_pfn_alignment(void)
  4717. {
  4718. unsigned long accl_mask = 0, last_end = 0;
  4719. unsigned long start, end, mask;
  4720. int last_nid = -1;
  4721. int i, nid;
  4722. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4723. if (!start || last_nid < 0 || last_nid == nid) {
  4724. last_nid = nid;
  4725. last_end = end;
  4726. continue;
  4727. }
  4728. /*
  4729. * Start with a mask granular enough to pin-point to the
  4730. * start pfn and tick off bits one-by-one until it becomes
  4731. * too coarse to separate the current node from the last.
  4732. */
  4733. mask = ~((1 << __ffs(start)) - 1);
  4734. while (mask && last_end <= (start & (mask << 1)))
  4735. mask <<= 1;
  4736. /* accumulate all internode masks */
  4737. accl_mask |= mask;
  4738. }
  4739. /* convert mask to number of pages */
  4740. return ~accl_mask + 1;
  4741. }
  4742. /* Find the lowest pfn for a node */
  4743. static unsigned long __init find_min_pfn_for_node(int nid)
  4744. {
  4745. unsigned long min_pfn = ULONG_MAX;
  4746. unsigned long start_pfn;
  4747. int i;
  4748. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4749. min_pfn = min(min_pfn, start_pfn);
  4750. if (min_pfn == ULONG_MAX) {
  4751. printk(KERN_WARNING
  4752. "Could not find start_pfn for node %d\n", nid);
  4753. return 0;
  4754. }
  4755. return min_pfn;
  4756. }
  4757. /**
  4758. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4759. *
  4760. * It returns the minimum PFN based on information provided via
  4761. * memblock_set_node().
  4762. */
  4763. unsigned long __init find_min_pfn_with_active_regions(void)
  4764. {
  4765. return find_min_pfn_for_node(MAX_NUMNODES);
  4766. }
  4767. /*
  4768. * early_calculate_totalpages()
  4769. * Sum pages in active regions for movable zone.
  4770. * Populate N_MEMORY for calculating usable_nodes.
  4771. */
  4772. static unsigned long __init early_calculate_totalpages(void)
  4773. {
  4774. unsigned long totalpages = 0;
  4775. unsigned long start_pfn, end_pfn;
  4776. int i, nid;
  4777. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4778. unsigned long pages = end_pfn - start_pfn;
  4779. totalpages += pages;
  4780. if (pages)
  4781. node_set_state(nid, N_MEMORY);
  4782. }
  4783. return totalpages;
  4784. }
  4785. /*
  4786. * Find the PFN the Movable zone begins in each node. Kernel memory
  4787. * is spread evenly between nodes as long as the nodes have enough
  4788. * memory. When they don't, some nodes will have more kernelcore than
  4789. * others
  4790. */
  4791. static void __init find_zone_movable_pfns_for_nodes(void)
  4792. {
  4793. int i, nid;
  4794. unsigned long usable_startpfn;
  4795. unsigned long kernelcore_node, kernelcore_remaining;
  4796. /* save the state before borrow the nodemask */
  4797. nodemask_t saved_node_state = node_states[N_MEMORY];
  4798. unsigned long totalpages = early_calculate_totalpages();
  4799. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  4800. struct memblock_region *r;
  4801. /* Need to find movable_zone earlier when movable_node is specified. */
  4802. find_usable_zone_for_movable();
  4803. /*
  4804. * If movable_node is specified, ignore kernelcore and movablecore
  4805. * options.
  4806. */
  4807. if (movable_node_is_enabled()) {
  4808. for_each_memblock(memory, r) {
  4809. if (!memblock_is_hotpluggable(r))
  4810. continue;
  4811. nid = r->nid;
  4812. usable_startpfn = PFN_DOWN(r->base);
  4813. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  4814. min(usable_startpfn, zone_movable_pfn[nid]) :
  4815. usable_startpfn;
  4816. }
  4817. goto out2;
  4818. }
  4819. /*
  4820. * If movablecore=nn[KMG] was specified, calculate what size of
  4821. * kernelcore that corresponds so that memory usable for
  4822. * any allocation type is evenly spread. If both kernelcore
  4823. * and movablecore are specified, then the value of kernelcore
  4824. * will be used for required_kernelcore if it's greater than
  4825. * what movablecore would have allowed.
  4826. */
  4827. if (required_movablecore) {
  4828. unsigned long corepages;
  4829. /*
  4830. * Round-up so that ZONE_MOVABLE is at least as large as what
  4831. * was requested by the user
  4832. */
  4833. required_movablecore =
  4834. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4835. corepages = totalpages - required_movablecore;
  4836. required_kernelcore = max(required_kernelcore, corepages);
  4837. }
  4838. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  4839. if (!required_kernelcore)
  4840. goto out;
  4841. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4842. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4843. restart:
  4844. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4845. kernelcore_node = required_kernelcore / usable_nodes;
  4846. for_each_node_state(nid, N_MEMORY) {
  4847. unsigned long start_pfn, end_pfn;
  4848. /*
  4849. * Recalculate kernelcore_node if the division per node
  4850. * now exceeds what is necessary to satisfy the requested
  4851. * amount of memory for the kernel
  4852. */
  4853. if (required_kernelcore < kernelcore_node)
  4854. kernelcore_node = required_kernelcore / usable_nodes;
  4855. /*
  4856. * As the map is walked, we track how much memory is usable
  4857. * by the kernel using kernelcore_remaining. When it is
  4858. * 0, the rest of the node is usable by ZONE_MOVABLE
  4859. */
  4860. kernelcore_remaining = kernelcore_node;
  4861. /* Go through each range of PFNs within this node */
  4862. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4863. unsigned long size_pages;
  4864. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4865. if (start_pfn >= end_pfn)
  4866. continue;
  4867. /* Account for what is only usable for kernelcore */
  4868. if (start_pfn < usable_startpfn) {
  4869. unsigned long kernel_pages;
  4870. kernel_pages = min(end_pfn, usable_startpfn)
  4871. - start_pfn;
  4872. kernelcore_remaining -= min(kernel_pages,
  4873. kernelcore_remaining);
  4874. required_kernelcore -= min(kernel_pages,
  4875. required_kernelcore);
  4876. /* Continue if range is now fully accounted */
  4877. if (end_pfn <= usable_startpfn) {
  4878. /*
  4879. * Push zone_movable_pfn to the end so
  4880. * that if we have to rebalance
  4881. * kernelcore across nodes, we will
  4882. * not double account here
  4883. */
  4884. zone_movable_pfn[nid] = end_pfn;
  4885. continue;
  4886. }
  4887. start_pfn = usable_startpfn;
  4888. }
  4889. /*
  4890. * The usable PFN range for ZONE_MOVABLE is from
  4891. * start_pfn->end_pfn. Calculate size_pages as the
  4892. * number of pages used as kernelcore
  4893. */
  4894. size_pages = end_pfn - start_pfn;
  4895. if (size_pages > kernelcore_remaining)
  4896. size_pages = kernelcore_remaining;
  4897. zone_movable_pfn[nid] = start_pfn + size_pages;
  4898. /*
  4899. * Some kernelcore has been met, update counts and
  4900. * break if the kernelcore for this node has been
  4901. * satisfied
  4902. */
  4903. required_kernelcore -= min(required_kernelcore,
  4904. size_pages);
  4905. kernelcore_remaining -= size_pages;
  4906. if (!kernelcore_remaining)
  4907. break;
  4908. }
  4909. }
  4910. /*
  4911. * If there is still required_kernelcore, we do another pass with one
  4912. * less node in the count. This will push zone_movable_pfn[nid] further
  4913. * along on the nodes that still have memory until kernelcore is
  4914. * satisfied
  4915. */
  4916. usable_nodes--;
  4917. if (usable_nodes && required_kernelcore > usable_nodes)
  4918. goto restart;
  4919. out2:
  4920. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4921. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4922. zone_movable_pfn[nid] =
  4923. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4924. out:
  4925. /* restore the node_state */
  4926. node_states[N_MEMORY] = saved_node_state;
  4927. }
  4928. /* Any regular or high memory on that node ? */
  4929. static void check_for_memory(pg_data_t *pgdat, int nid)
  4930. {
  4931. enum zone_type zone_type;
  4932. if (N_MEMORY == N_NORMAL_MEMORY)
  4933. return;
  4934. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  4935. struct zone *zone = &pgdat->node_zones[zone_type];
  4936. if (populated_zone(zone)) {
  4937. node_set_state(nid, N_HIGH_MEMORY);
  4938. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  4939. zone_type <= ZONE_NORMAL)
  4940. node_set_state(nid, N_NORMAL_MEMORY);
  4941. break;
  4942. }
  4943. }
  4944. }
  4945. /**
  4946. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4947. * @max_zone_pfn: an array of max PFNs for each zone
  4948. *
  4949. * This will call free_area_init_node() for each active node in the system.
  4950. * Using the page ranges provided by memblock_set_node(), the size of each
  4951. * zone in each node and their holes is calculated. If the maximum PFN
  4952. * between two adjacent zones match, it is assumed that the zone is empty.
  4953. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4954. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4955. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4956. * at arch_max_dma_pfn.
  4957. */
  4958. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4959. {
  4960. unsigned long start_pfn, end_pfn;
  4961. int i, nid;
  4962. /* Record where the zone boundaries are */
  4963. memset(arch_zone_lowest_possible_pfn, 0,
  4964. sizeof(arch_zone_lowest_possible_pfn));
  4965. memset(arch_zone_highest_possible_pfn, 0,
  4966. sizeof(arch_zone_highest_possible_pfn));
  4967. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4968. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4969. for (i = 1; i < MAX_NR_ZONES; i++) {
  4970. if (i == ZONE_MOVABLE)
  4971. continue;
  4972. arch_zone_lowest_possible_pfn[i] =
  4973. arch_zone_highest_possible_pfn[i-1];
  4974. arch_zone_highest_possible_pfn[i] =
  4975. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4976. }
  4977. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4978. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4979. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4980. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4981. find_zone_movable_pfns_for_nodes();
  4982. /* Print out the zone ranges */
  4983. pr_info("Zone ranges:\n");
  4984. for (i = 0; i < MAX_NR_ZONES; i++) {
  4985. if (i == ZONE_MOVABLE)
  4986. continue;
  4987. pr_info(" %-8s ", zone_names[i]);
  4988. if (arch_zone_lowest_possible_pfn[i] ==
  4989. arch_zone_highest_possible_pfn[i])
  4990. pr_cont("empty\n");
  4991. else
  4992. pr_cont("[mem %#018Lx-%#018Lx]\n",
  4993. (u64)arch_zone_lowest_possible_pfn[i]
  4994. << PAGE_SHIFT,
  4995. ((u64)arch_zone_highest_possible_pfn[i]
  4996. << PAGE_SHIFT) - 1);
  4997. }
  4998. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4999. pr_info("Movable zone start for each node\n");
  5000. for (i = 0; i < MAX_NUMNODES; i++) {
  5001. if (zone_movable_pfn[i])
  5002. pr_info(" Node %d: %#018Lx\n", i,
  5003. (u64)zone_movable_pfn[i] << PAGE_SHIFT);
  5004. }
  5005. /* Print out the early node map */
  5006. pr_info("Early memory node ranges\n");
  5007. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  5008. pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
  5009. (u64)start_pfn << PAGE_SHIFT,
  5010. ((u64)end_pfn << PAGE_SHIFT) - 1);
  5011. /* Initialise every node */
  5012. mminit_verify_pageflags_layout();
  5013. setup_nr_node_ids();
  5014. for_each_online_node(nid) {
  5015. pg_data_t *pgdat = NODE_DATA(nid);
  5016. free_area_init_node(nid, NULL,
  5017. find_min_pfn_for_node(nid), NULL);
  5018. /* Any memory on that node */
  5019. if (pgdat->node_present_pages)
  5020. node_set_state(nid, N_MEMORY);
  5021. check_for_memory(pgdat, nid);
  5022. }
  5023. }
  5024. static int __init cmdline_parse_core(char *p, unsigned long *core)
  5025. {
  5026. unsigned long long coremem;
  5027. if (!p)
  5028. return -EINVAL;
  5029. coremem = memparse(p, &p);
  5030. *core = coremem >> PAGE_SHIFT;
  5031. /* Paranoid check that UL is enough for the coremem value */
  5032. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  5033. return 0;
  5034. }
  5035. /*
  5036. * kernelcore=size sets the amount of memory for use for allocations that
  5037. * cannot be reclaimed or migrated.
  5038. */
  5039. static int __init cmdline_parse_kernelcore(char *p)
  5040. {
  5041. return cmdline_parse_core(p, &required_kernelcore);
  5042. }
  5043. /*
  5044. * movablecore=size sets the amount of memory for use for allocations that
  5045. * can be reclaimed or migrated.
  5046. */
  5047. static int __init cmdline_parse_movablecore(char *p)
  5048. {
  5049. return cmdline_parse_core(p, &required_movablecore);
  5050. }
  5051. early_param("kernelcore", cmdline_parse_kernelcore);
  5052. early_param("movablecore", cmdline_parse_movablecore);
  5053. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5054. void adjust_managed_page_count(struct page *page, long count)
  5055. {
  5056. spin_lock(&managed_page_count_lock);
  5057. page_zone(page)->managed_pages += count;
  5058. totalram_pages += count;
  5059. #ifdef CONFIG_HIGHMEM
  5060. if (PageHighMem(page))
  5061. totalhigh_pages += count;
  5062. #endif
  5063. spin_unlock(&managed_page_count_lock);
  5064. }
  5065. EXPORT_SYMBOL(adjust_managed_page_count);
  5066. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  5067. {
  5068. void *pos;
  5069. unsigned long pages = 0;
  5070. start = (void *)PAGE_ALIGN((unsigned long)start);
  5071. end = (void *)((unsigned long)end & PAGE_MASK);
  5072. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  5073. if ((unsigned int)poison <= 0xFF)
  5074. memset(pos, poison, PAGE_SIZE);
  5075. free_reserved_page(virt_to_page(pos));
  5076. }
  5077. if (pages && s)
  5078. pr_info("Freeing %s memory: %ldK (%p - %p)\n",
  5079. s, pages << (PAGE_SHIFT - 10), start, end);
  5080. return pages;
  5081. }
  5082. EXPORT_SYMBOL(free_reserved_area);
  5083. #ifdef CONFIG_HIGHMEM
  5084. void free_highmem_page(struct page *page)
  5085. {
  5086. __free_reserved_page(page);
  5087. totalram_pages++;
  5088. page_zone(page)->managed_pages++;
  5089. totalhigh_pages++;
  5090. }
  5091. #endif
  5092. void __init mem_init_print_info(const char *str)
  5093. {
  5094. unsigned long physpages, codesize, datasize, rosize, bss_size;
  5095. unsigned long init_code_size, init_data_size;
  5096. physpages = get_num_physpages();
  5097. codesize = _etext - _stext;
  5098. datasize = _edata - _sdata;
  5099. rosize = __end_rodata - __start_rodata;
  5100. bss_size = __bss_stop - __bss_start;
  5101. init_data_size = __init_end - __init_begin;
  5102. init_code_size = _einittext - _sinittext;
  5103. /*
  5104. * Detect special cases and adjust section sizes accordingly:
  5105. * 1) .init.* may be embedded into .data sections
  5106. * 2) .init.text.* may be out of [__init_begin, __init_end],
  5107. * please refer to arch/tile/kernel/vmlinux.lds.S.
  5108. * 3) .rodata.* may be embedded into .text or .data sections.
  5109. */
  5110. #define adj_init_size(start, end, size, pos, adj) \
  5111. do { \
  5112. if (start <= pos && pos < end && size > adj) \
  5113. size -= adj; \
  5114. } while (0)
  5115. adj_init_size(__init_begin, __init_end, init_data_size,
  5116. _sinittext, init_code_size);
  5117. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  5118. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  5119. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  5120. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  5121. #undef adj_init_size
  5122. pr_info("Memory: %luK/%luK available "
  5123. "(%luK kernel code, %luK rwdata, %luK rodata, "
  5124. "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
  5125. #ifdef CONFIG_HIGHMEM
  5126. ", %luK highmem"
  5127. #endif
  5128. "%s%s)\n",
  5129. nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
  5130. codesize >> 10, datasize >> 10, rosize >> 10,
  5131. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  5132. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
  5133. totalcma_pages << (PAGE_SHIFT-10),
  5134. #ifdef CONFIG_HIGHMEM
  5135. totalhigh_pages << (PAGE_SHIFT-10),
  5136. #endif
  5137. str ? ", " : "", str ? str : "");
  5138. }
  5139. /**
  5140. * set_dma_reserve - set the specified number of pages reserved in the first zone
  5141. * @new_dma_reserve: The number of pages to mark reserved
  5142. *
  5143. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  5144. * In the DMA zone, a significant percentage may be consumed by kernel image
  5145. * and other unfreeable allocations which can skew the watermarks badly. This
  5146. * function may optionally be used to account for unfreeable pages in the
  5147. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  5148. * smaller per-cpu batchsize.
  5149. */
  5150. void __init set_dma_reserve(unsigned long new_dma_reserve)
  5151. {
  5152. dma_reserve = new_dma_reserve;
  5153. }
  5154. void __init free_area_init(unsigned long *zones_size)
  5155. {
  5156. free_area_init_node(0, zones_size,
  5157. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  5158. }
  5159. static int page_alloc_cpu_notify(struct notifier_block *self,
  5160. unsigned long action, void *hcpu)
  5161. {
  5162. int cpu = (unsigned long)hcpu;
  5163. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  5164. lru_add_drain_cpu(cpu);
  5165. drain_pages(cpu);
  5166. /*
  5167. * Spill the event counters of the dead processor
  5168. * into the current processors event counters.
  5169. * This artificially elevates the count of the current
  5170. * processor.
  5171. */
  5172. vm_events_fold_cpu(cpu);
  5173. /*
  5174. * Zero the differential counters of the dead processor
  5175. * so that the vm statistics are consistent.
  5176. *
  5177. * This is only okay since the processor is dead and cannot
  5178. * race with what we are doing.
  5179. */
  5180. cpu_vm_stats_fold(cpu);
  5181. }
  5182. return NOTIFY_OK;
  5183. }
  5184. void __init page_alloc_init(void)
  5185. {
  5186. hotcpu_notifier(page_alloc_cpu_notify, 0);
  5187. }
  5188. /*
  5189. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  5190. * or min_free_kbytes changes.
  5191. */
  5192. static void calculate_totalreserve_pages(void)
  5193. {
  5194. struct pglist_data *pgdat;
  5195. unsigned long reserve_pages = 0;
  5196. enum zone_type i, j;
  5197. for_each_online_pgdat(pgdat) {
  5198. for (i = 0; i < MAX_NR_ZONES; i++) {
  5199. struct zone *zone = pgdat->node_zones + i;
  5200. long max = 0;
  5201. /* Find valid and maximum lowmem_reserve in the zone */
  5202. for (j = i; j < MAX_NR_ZONES; j++) {
  5203. if (zone->lowmem_reserve[j] > max)
  5204. max = zone->lowmem_reserve[j];
  5205. }
  5206. /* we treat the high watermark as reserved pages. */
  5207. max += high_wmark_pages(zone);
  5208. if (max > zone->managed_pages)
  5209. max = zone->managed_pages;
  5210. reserve_pages += max;
  5211. /*
  5212. * Lowmem reserves are not available to
  5213. * GFP_HIGHUSER page cache allocations and
  5214. * kswapd tries to balance zones to their high
  5215. * watermark. As a result, neither should be
  5216. * regarded as dirtyable memory, to prevent a
  5217. * situation where reclaim has to clean pages
  5218. * in order to balance the zones.
  5219. */
  5220. zone->dirty_balance_reserve = max;
  5221. }
  5222. }
  5223. dirty_balance_reserve = reserve_pages;
  5224. totalreserve_pages = reserve_pages;
  5225. }
  5226. /*
  5227. * setup_per_zone_lowmem_reserve - called whenever
  5228. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  5229. * has a correct pages reserved value, so an adequate number of
  5230. * pages are left in the zone after a successful __alloc_pages().
  5231. */
  5232. static void setup_per_zone_lowmem_reserve(void)
  5233. {
  5234. struct pglist_data *pgdat;
  5235. enum zone_type j, idx;
  5236. for_each_online_pgdat(pgdat) {
  5237. for (j = 0; j < MAX_NR_ZONES; j++) {
  5238. struct zone *zone = pgdat->node_zones + j;
  5239. unsigned long managed_pages = zone->managed_pages;
  5240. zone->lowmem_reserve[j] = 0;
  5241. idx = j;
  5242. while (idx) {
  5243. struct zone *lower_zone;
  5244. idx--;
  5245. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  5246. sysctl_lowmem_reserve_ratio[idx] = 1;
  5247. lower_zone = pgdat->node_zones + idx;
  5248. lower_zone->lowmem_reserve[j] = managed_pages /
  5249. sysctl_lowmem_reserve_ratio[idx];
  5250. managed_pages += lower_zone->managed_pages;
  5251. }
  5252. }
  5253. }
  5254. /* update totalreserve_pages */
  5255. calculate_totalreserve_pages();
  5256. }
  5257. static void __setup_per_zone_wmarks(void)
  5258. {
  5259. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  5260. unsigned long lowmem_pages = 0;
  5261. struct zone *zone;
  5262. unsigned long flags;
  5263. /* Calculate total number of !ZONE_HIGHMEM pages */
  5264. for_each_zone(zone) {
  5265. if (!is_highmem(zone))
  5266. lowmem_pages += zone->managed_pages;
  5267. }
  5268. for_each_zone(zone) {
  5269. u64 tmp;
  5270. spin_lock_irqsave(&zone->lock, flags);
  5271. tmp = (u64)pages_min * zone->managed_pages;
  5272. do_div(tmp, lowmem_pages);
  5273. if (is_highmem(zone)) {
  5274. /*
  5275. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  5276. * need highmem pages, so cap pages_min to a small
  5277. * value here.
  5278. *
  5279. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  5280. * deltas control asynch page reclaim, and so should
  5281. * not be capped for highmem.
  5282. */
  5283. unsigned long min_pages;
  5284. min_pages = zone->managed_pages / 1024;
  5285. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  5286. zone->watermark[WMARK_MIN] = min_pages;
  5287. } else {
  5288. /*
  5289. * If it's a lowmem zone, reserve a number of pages
  5290. * proportionate to the zone's size.
  5291. */
  5292. zone->watermark[WMARK_MIN] = tmp;
  5293. }
  5294. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  5295. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  5296. __mod_zone_page_state(zone, NR_ALLOC_BATCH,
  5297. high_wmark_pages(zone) - low_wmark_pages(zone) -
  5298. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  5299. setup_zone_migrate_reserve(zone);
  5300. spin_unlock_irqrestore(&zone->lock, flags);
  5301. }
  5302. /* update totalreserve_pages */
  5303. calculate_totalreserve_pages();
  5304. }
  5305. /**
  5306. * setup_per_zone_wmarks - called when min_free_kbytes changes
  5307. * or when memory is hot-{added|removed}
  5308. *
  5309. * Ensures that the watermark[min,low,high] values for each zone are set
  5310. * correctly with respect to min_free_kbytes.
  5311. */
  5312. void setup_per_zone_wmarks(void)
  5313. {
  5314. mutex_lock(&zonelists_mutex);
  5315. __setup_per_zone_wmarks();
  5316. mutex_unlock(&zonelists_mutex);
  5317. }
  5318. /*
  5319. * The inactive anon list should be small enough that the VM never has to
  5320. * do too much work, but large enough that each inactive page has a chance
  5321. * to be referenced again before it is swapped out.
  5322. *
  5323. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  5324. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  5325. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  5326. * the anonymous pages are kept on the inactive list.
  5327. *
  5328. * total target max
  5329. * memory ratio inactive anon
  5330. * -------------------------------------
  5331. * 10MB 1 5MB
  5332. * 100MB 1 50MB
  5333. * 1GB 3 250MB
  5334. * 10GB 10 0.9GB
  5335. * 100GB 31 3GB
  5336. * 1TB 101 10GB
  5337. * 10TB 320 32GB
  5338. */
  5339. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  5340. {
  5341. unsigned int gb, ratio;
  5342. /* Zone size in gigabytes */
  5343. gb = zone->managed_pages >> (30 - PAGE_SHIFT);
  5344. if (gb)
  5345. ratio = int_sqrt(10 * gb);
  5346. else
  5347. ratio = 1;
  5348. zone->inactive_ratio = ratio;
  5349. }
  5350. static void __meminit setup_per_zone_inactive_ratio(void)
  5351. {
  5352. struct zone *zone;
  5353. for_each_zone(zone)
  5354. calculate_zone_inactive_ratio(zone);
  5355. }
  5356. /*
  5357. * Initialise min_free_kbytes.
  5358. *
  5359. * For small machines we want it small (128k min). For large machines
  5360. * we want it large (64MB max). But it is not linear, because network
  5361. * bandwidth does not increase linearly with machine size. We use
  5362. *
  5363. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  5364. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  5365. *
  5366. * which yields
  5367. *
  5368. * 16MB: 512k
  5369. * 32MB: 724k
  5370. * 64MB: 1024k
  5371. * 128MB: 1448k
  5372. * 256MB: 2048k
  5373. * 512MB: 2896k
  5374. * 1024MB: 4096k
  5375. * 2048MB: 5792k
  5376. * 4096MB: 8192k
  5377. * 8192MB: 11584k
  5378. * 16384MB: 16384k
  5379. */
  5380. int __meminit init_per_zone_wmark_min(void)
  5381. {
  5382. unsigned long lowmem_kbytes;
  5383. int new_min_free_kbytes;
  5384. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  5385. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  5386. if (new_min_free_kbytes > user_min_free_kbytes) {
  5387. min_free_kbytes = new_min_free_kbytes;
  5388. if (min_free_kbytes < 128)
  5389. min_free_kbytes = 128;
  5390. if (min_free_kbytes > 65536)
  5391. min_free_kbytes = 65536;
  5392. } else {
  5393. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  5394. new_min_free_kbytes, user_min_free_kbytes);
  5395. }
  5396. setup_per_zone_wmarks();
  5397. refresh_zone_stat_thresholds();
  5398. setup_per_zone_lowmem_reserve();
  5399. setup_per_zone_inactive_ratio();
  5400. return 0;
  5401. }
  5402. module_init(init_per_zone_wmark_min)
  5403. /*
  5404. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  5405. * that we can call two helper functions whenever min_free_kbytes
  5406. * changes.
  5407. */
  5408. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  5409. void __user *buffer, size_t *length, loff_t *ppos)
  5410. {
  5411. int rc;
  5412. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5413. if (rc)
  5414. return rc;
  5415. if (write) {
  5416. user_min_free_kbytes = min_free_kbytes;
  5417. setup_per_zone_wmarks();
  5418. }
  5419. return 0;
  5420. }
  5421. #ifdef CONFIG_NUMA
  5422. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  5423. void __user *buffer, size_t *length, loff_t *ppos)
  5424. {
  5425. struct zone *zone;
  5426. int rc;
  5427. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5428. if (rc)
  5429. return rc;
  5430. for_each_zone(zone)
  5431. zone->min_unmapped_pages = (zone->managed_pages *
  5432. sysctl_min_unmapped_ratio) / 100;
  5433. return 0;
  5434. }
  5435. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  5436. void __user *buffer, size_t *length, loff_t *ppos)
  5437. {
  5438. struct zone *zone;
  5439. int rc;
  5440. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5441. if (rc)
  5442. return rc;
  5443. for_each_zone(zone)
  5444. zone->min_slab_pages = (zone->managed_pages *
  5445. sysctl_min_slab_ratio) / 100;
  5446. return 0;
  5447. }
  5448. #endif
  5449. /*
  5450. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  5451. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  5452. * whenever sysctl_lowmem_reserve_ratio changes.
  5453. *
  5454. * The reserve ratio obviously has absolutely no relation with the
  5455. * minimum watermarks. The lowmem reserve ratio can only make sense
  5456. * if in function of the boot time zone sizes.
  5457. */
  5458. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  5459. void __user *buffer, size_t *length, loff_t *ppos)
  5460. {
  5461. proc_dointvec_minmax(table, write, buffer, length, ppos);
  5462. setup_per_zone_lowmem_reserve();
  5463. return 0;
  5464. }
  5465. /*
  5466. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  5467. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  5468. * pagelist can have before it gets flushed back to buddy allocator.
  5469. */
  5470. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  5471. void __user *buffer, size_t *length, loff_t *ppos)
  5472. {
  5473. struct zone *zone;
  5474. int old_percpu_pagelist_fraction;
  5475. int ret;
  5476. mutex_lock(&pcp_batch_high_lock);
  5477. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  5478. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5479. if (!write || ret < 0)
  5480. goto out;
  5481. /* Sanity checking to avoid pcp imbalance */
  5482. if (percpu_pagelist_fraction &&
  5483. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  5484. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  5485. ret = -EINVAL;
  5486. goto out;
  5487. }
  5488. /* No change? */
  5489. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  5490. goto out;
  5491. for_each_populated_zone(zone) {
  5492. unsigned int cpu;
  5493. for_each_possible_cpu(cpu)
  5494. pageset_set_high_and_batch(zone,
  5495. per_cpu_ptr(zone->pageset, cpu));
  5496. }
  5497. out:
  5498. mutex_unlock(&pcp_batch_high_lock);
  5499. return ret;
  5500. }
  5501. #ifdef CONFIG_NUMA
  5502. int hashdist = HASHDIST_DEFAULT;
  5503. static int __init set_hashdist(char *str)
  5504. {
  5505. if (!str)
  5506. return 0;
  5507. hashdist = simple_strtoul(str, &str, 0);
  5508. return 1;
  5509. }
  5510. __setup("hashdist=", set_hashdist);
  5511. #endif
  5512. /*
  5513. * allocate a large system hash table from bootmem
  5514. * - it is assumed that the hash table must contain an exact power-of-2
  5515. * quantity of entries
  5516. * - limit is the number of hash buckets, not the total allocation size
  5517. */
  5518. void *__init alloc_large_system_hash(const char *tablename,
  5519. unsigned long bucketsize,
  5520. unsigned long numentries,
  5521. int scale,
  5522. int flags,
  5523. unsigned int *_hash_shift,
  5524. unsigned int *_hash_mask,
  5525. unsigned long low_limit,
  5526. unsigned long high_limit)
  5527. {
  5528. unsigned long long max = high_limit;
  5529. unsigned long log2qty, size;
  5530. void *table = NULL;
  5531. /* allow the kernel cmdline to have a say */
  5532. if (!numentries) {
  5533. /* round applicable memory size up to nearest megabyte */
  5534. numentries = nr_kernel_pages;
  5535. /* It isn't necessary when PAGE_SIZE >= 1MB */
  5536. if (PAGE_SHIFT < 20)
  5537. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  5538. /* limit to 1 bucket per 2^scale bytes of low memory */
  5539. if (scale > PAGE_SHIFT)
  5540. numentries >>= (scale - PAGE_SHIFT);
  5541. else
  5542. numentries <<= (PAGE_SHIFT - scale);
  5543. /* Make sure we've got at least a 0-order allocation.. */
  5544. if (unlikely(flags & HASH_SMALL)) {
  5545. /* Makes no sense without HASH_EARLY */
  5546. WARN_ON(!(flags & HASH_EARLY));
  5547. if (!(numentries >> *_hash_shift)) {
  5548. numentries = 1UL << *_hash_shift;
  5549. BUG_ON(!numentries);
  5550. }
  5551. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  5552. numentries = PAGE_SIZE / bucketsize;
  5553. }
  5554. numentries = roundup_pow_of_two(numentries);
  5555. /* limit allocation size to 1/16 total memory by default */
  5556. if (max == 0) {
  5557. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  5558. do_div(max, bucketsize);
  5559. }
  5560. max = min(max, 0x80000000ULL);
  5561. if (numentries < low_limit)
  5562. numentries = low_limit;
  5563. if (numentries > max)
  5564. numentries = max;
  5565. log2qty = ilog2(numentries);
  5566. do {
  5567. size = bucketsize << log2qty;
  5568. if (flags & HASH_EARLY)
  5569. table = memblock_virt_alloc_nopanic(size, 0);
  5570. else if (hashdist)
  5571. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  5572. else {
  5573. /*
  5574. * If bucketsize is not a power-of-two, we may free
  5575. * some pages at the end of hash table which
  5576. * alloc_pages_exact() automatically does
  5577. */
  5578. if (get_order(size) < MAX_ORDER) {
  5579. table = alloc_pages_exact(size, GFP_ATOMIC);
  5580. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  5581. }
  5582. }
  5583. } while (!table && size > PAGE_SIZE && --log2qty);
  5584. if (!table)
  5585. panic("Failed to allocate %s hash table\n", tablename);
  5586. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  5587. tablename,
  5588. (1UL << log2qty),
  5589. ilog2(size) - PAGE_SHIFT,
  5590. size);
  5591. if (_hash_shift)
  5592. *_hash_shift = log2qty;
  5593. if (_hash_mask)
  5594. *_hash_mask = (1 << log2qty) - 1;
  5595. return table;
  5596. }
  5597. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  5598. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  5599. unsigned long pfn)
  5600. {
  5601. #ifdef CONFIG_SPARSEMEM
  5602. return __pfn_to_section(pfn)->pageblock_flags;
  5603. #else
  5604. return zone->pageblock_flags;
  5605. #endif /* CONFIG_SPARSEMEM */
  5606. }
  5607. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  5608. {
  5609. #ifdef CONFIG_SPARSEMEM
  5610. pfn &= (PAGES_PER_SECTION-1);
  5611. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5612. #else
  5613. pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
  5614. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5615. #endif /* CONFIG_SPARSEMEM */
  5616. }
  5617. /**
  5618. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  5619. * @page: The page within the block of interest
  5620. * @pfn: The target page frame number
  5621. * @end_bitidx: The last bit of interest to retrieve
  5622. * @mask: mask of bits that the caller is interested in
  5623. *
  5624. * Return: pageblock_bits flags
  5625. */
  5626. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  5627. unsigned long end_bitidx,
  5628. unsigned long mask)
  5629. {
  5630. struct zone *zone;
  5631. unsigned long *bitmap;
  5632. unsigned long bitidx, word_bitidx;
  5633. unsigned long word;
  5634. zone = page_zone(page);
  5635. bitmap = get_pageblock_bitmap(zone, pfn);
  5636. bitidx = pfn_to_bitidx(zone, pfn);
  5637. word_bitidx = bitidx / BITS_PER_LONG;
  5638. bitidx &= (BITS_PER_LONG-1);
  5639. word = bitmap[word_bitidx];
  5640. bitidx += end_bitidx;
  5641. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  5642. }
  5643. /**
  5644. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  5645. * @page: The page within the block of interest
  5646. * @flags: The flags to set
  5647. * @pfn: The target page frame number
  5648. * @end_bitidx: The last bit of interest
  5649. * @mask: mask of bits that the caller is interested in
  5650. */
  5651. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  5652. unsigned long pfn,
  5653. unsigned long end_bitidx,
  5654. unsigned long mask)
  5655. {
  5656. struct zone *zone;
  5657. unsigned long *bitmap;
  5658. unsigned long bitidx, word_bitidx;
  5659. unsigned long old_word, word;
  5660. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  5661. zone = page_zone(page);
  5662. bitmap = get_pageblock_bitmap(zone, pfn);
  5663. bitidx = pfn_to_bitidx(zone, pfn);
  5664. word_bitidx = bitidx / BITS_PER_LONG;
  5665. bitidx &= (BITS_PER_LONG-1);
  5666. VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
  5667. bitidx += end_bitidx;
  5668. mask <<= (BITS_PER_LONG - bitidx - 1);
  5669. flags <<= (BITS_PER_LONG - bitidx - 1);
  5670. word = READ_ONCE(bitmap[word_bitidx]);
  5671. for (;;) {
  5672. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  5673. if (word == old_word)
  5674. break;
  5675. word = old_word;
  5676. }
  5677. }
  5678. /*
  5679. * This function checks whether pageblock includes unmovable pages or not.
  5680. * If @count is not zero, it is okay to include less @count unmovable pages
  5681. *
  5682. * PageLRU check without isolation or lru_lock could race so that
  5683. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  5684. * expect this function should be exact.
  5685. */
  5686. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  5687. bool skip_hwpoisoned_pages)
  5688. {
  5689. unsigned long pfn, iter, found;
  5690. int mt;
  5691. /*
  5692. * For avoiding noise data, lru_add_drain_all() should be called
  5693. * If ZONE_MOVABLE, the zone never contains unmovable pages
  5694. */
  5695. if (zone_idx(zone) == ZONE_MOVABLE)
  5696. return false;
  5697. mt = get_pageblock_migratetype(page);
  5698. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  5699. return false;
  5700. pfn = page_to_pfn(page);
  5701. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  5702. unsigned long check = pfn + iter;
  5703. if (!pfn_valid_within(check))
  5704. continue;
  5705. page = pfn_to_page(check);
  5706. /*
  5707. * Hugepages are not in LRU lists, but they're movable.
  5708. * We need not scan over tail pages bacause we don't
  5709. * handle each tail page individually in migration.
  5710. */
  5711. if (PageHuge(page)) {
  5712. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  5713. continue;
  5714. }
  5715. /*
  5716. * We can't use page_count without pin a page
  5717. * because another CPU can free compound page.
  5718. * This check already skips compound tails of THP
  5719. * because their page->_count is zero at all time.
  5720. */
  5721. if (!atomic_read(&page->_count)) {
  5722. if (PageBuddy(page))
  5723. iter += (1 << page_order(page)) - 1;
  5724. continue;
  5725. }
  5726. /*
  5727. * The HWPoisoned page may be not in buddy system, and
  5728. * page_count() is not 0.
  5729. */
  5730. if (skip_hwpoisoned_pages && PageHWPoison(page))
  5731. continue;
  5732. if (!PageLRU(page))
  5733. found++;
  5734. /*
  5735. * If there are RECLAIMABLE pages, we need to check
  5736. * it. But now, memory offline itself doesn't call
  5737. * shrink_node_slabs() and it still to be fixed.
  5738. */
  5739. /*
  5740. * If the page is not RAM, page_count()should be 0.
  5741. * we don't need more check. This is an _used_ not-movable page.
  5742. *
  5743. * The problematic thing here is PG_reserved pages. PG_reserved
  5744. * is set to both of a memory hole page and a _used_ kernel
  5745. * page at boot.
  5746. */
  5747. if (found > count)
  5748. return true;
  5749. }
  5750. return false;
  5751. }
  5752. bool is_pageblock_removable_nolock(struct page *page)
  5753. {
  5754. struct zone *zone;
  5755. unsigned long pfn;
  5756. /*
  5757. * We have to be careful here because we are iterating over memory
  5758. * sections which are not zone aware so we might end up outside of
  5759. * the zone but still within the section.
  5760. * We have to take care about the node as well. If the node is offline
  5761. * its NODE_DATA will be NULL - see page_zone.
  5762. */
  5763. if (!node_online(page_to_nid(page)))
  5764. return false;
  5765. zone = page_zone(page);
  5766. pfn = page_to_pfn(page);
  5767. if (!zone_spans_pfn(zone, pfn))
  5768. return false;
  5769. return !has_unmovable_pages(zone, page, 0, true);
  5770. }
  5771. #ifdef CONFIG_CMA
  5772. static unsigned long pfn_max_align_down(unsigned long pfn)
  5773. {
  5774. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5775. pageblock_nr_pages) - 1);
  5776. }
  5777. static unsigned long pfn_max_align_up(unsigned long pfn)
  5778. {
  5779. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5780. pageblock_nr_pages));
  5781. }
  5782. /* [start, end) must belong to a single zone. */
  5783. static int __alloc_contig_migrate_range(struct compact_control *cc,
  5784. unsigned long start, unsigned long end)
  5785. {
  5786. /* This function is based on compact_zone() from compaction.c. */
  5787. unsigned long nr_reclaimed;
  5788. unsigned long pfn = start;
  5789. unsigned int tries = 0;
  5790. int ret = 0;
  5791. migrate_prep();
  5792. while (pfn < end || !list_empty(&cc->migratepages)) {
  5793. if (fatal_signal_pending(current)) {
  5794. ret = -EINTR;
  5795. break;
  5796. }
  5797. if (list_empty(&cc->migratepages)) {
  5798. cc->nr_migratepages = 0;
  5799. pfn = isolate_migratepages_range(cc, pfn, end);
  5800. if (!pfn) {
  5801. ret = -EINTR;
  5802. break;
  5803. }
  5804. tries = 0;
  5805. } else if (++tries == 5) {
  5806. ret = ret < 0 ? ret : -EBUSY;
  5807. break;
  5808. }
  5809. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  5810. &cc->migratepages);
  5811. cc->nr_migratepages -= nr_reclaimed;
  5812. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  5813. NULL, 0, cc->mode, MR_CMA);
  5814. }
  5815. if (ret < 0) {
  5816. putback_movable_pages(&cc->migratepages);
  5817. return ret;
  5818. }
  5819. return 0;
  5820. }
  5821. /**
  5822. * alloc_contig_range() -- tries to allocate given range of pages
  5823. * @start: start PFN to allocate
  5824. * @end: one-past-the-last PFN to allocate
  5825. * @migratetype: migratetype of the underlaying pageblocks (either
  5826. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  5827. * in range must have the same migratetype and it must
  5828. * be either of the two.
  5829. *
  5830. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  5831. * aligned, however it's the caller's responsibility to guarantee that
  5832. * we are the only thread that changes migrate type of pageblocks the
  5833. * pages fall in.
  5834. *
  5835. * The PFN range must belong to a single zone.
  5836. *
  5837. * Returns zero on success or negative error code. On success all
  5838. * pages which PFN is in [start, end) are allocated for the caller and
  5839. * need to be freed with free_contig_range().
  5840. */
  5841. int alloc_contig_range(unsigned long start, unsigned long end,
  5842. unsigned migratetype)
  5843. {
  5844. unsigned long outer_start, outer_end;
  5845. int ret = 0, order;
  5846. struct compact_control cc = {
  5847. .nr_migratepages = 0,
  5848. .order = -1,
  5849. .zone = page_zone(pfn_to_page(start)),
  5850. .mode = MIGRATE_SYNC,
  5851. .ignore_skip_hint = true,
  5852. };
  5853. INIT_LIST_HEAD(&cc.migratepages);
  5854. /*
  5855. * What we do here is we mark all pageblocks in range as
  5856. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5857. * have different sizes, and due to the way page allocator
  5858. * work, we align the range to biggest of the two pages so
  5859. * that page allocator won't try to merge buddies from
  5860. * different pageblocks and change MIGRATE_ISOLATE to some
  5861. * other migration type.
  5862. *
  5863. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5864. * migrate the pages from an unaligned range (ie. pages that
  5865. * we are interested in). This will put all the pages in
  5866. * range back to page allocator as MIGRATE_ISOLATE.
  5867. *
  5868. * When this is done, we take the pages in range from page
  5869. * allocator removing them from the buddy system. This way
  5870. * page allocator will never consider using them.
  5871. *
  5872. * This lets us mark the pageblocks back as
  5873. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5874. * aligned range but not in the unaligned, original range are
  5875. * put back to page allocator so that buddy can use them.
  5876. */
  5877. ret = start_isolate_page_range(pfn_max_align_down(start),
  5878. pfn_max_align_up(end), migratetype,
  5879. false);
  5880. if (ret)
  5881. return ret;
  5882. ret = __alloc_contig_migrate_range(&cc, start, end);
  5883. if (ret)
  5884. goto done;
  5885. /*
  5886. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5887. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5888. * more, all pages in [start, end) are free in page allocator.
  5889. * What we are going to do is to allocate all pages from
  5890. * [start, end) (that is remove them from page allocator).
  5891. *
  5892. * The only problem is that pages at the beginning and at the
  5893. * end of interesting range may be not aligned with pages that
  5894. * page allocator holds, ie. they can be part of higher order
  5895. * pages. Because of this, we reserve the bigger range and
  5896. * once this is done free the pages we are not interested in.
  5897. *
  5898. * We don't have to hold zone->lock here because the pages are
  5899. * isolated thus they won't get removed from buddy.
  5900. */
  5901. lru_add_drain_all();
  5902. drain_all_pages(cc.zone);
  5903. order = 0;
  5904. outer_start = start;
  5905. while (!PageBuddy(pfn_to_page(outer_start))) {
  5906. if (++order >= MAX_ORDER) {
  5907. ret = -EBUSY;
  5908. goto done;
  5909. }
  5910. outer_start &= ~0UL << order;
  5911. }
  5912. /* Make sure the range is really isolated. */
  5913. if (test_pages_isolated(outer_start, end, false)) {
  5914. pr_info("%s: [%lx, %lx) PFNs busy\n",
  5915. __func__, outer_start, end);
  5916. ret = -EBUSY;
  5917. goto done;
  5918. }
  5919. /* Grab isolated pages from freelists. */
  5920. outer_end = isolate_freepages_range(&cc, outer_start, end);
  5921. if (!outer_end) {
  5922. ret = -EBUSY;
  5923. goto done;
  5924. }
  5925. /* Free head and tail (if any) */
  5926. if (start != outer_start)
  5927. free_contig_range(outer_start, start - outer_start);
  5928. if (end != outer_end)
  5929. free_contig_range(end, outer_end - end);
  5930. done:
  5931. undo_isolate_page_range(pfn_max_align_down(start),
  5932. pfn_max_align_up(end), migratetype);
  5933. return ret;
  5934. }
  5935. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  5936. {
  5937. unsigned int count = 0;
  5938. for (; nr_pages--; pfn++) {
  5939. struct page *page = pfn_to_page(pfn);
  5940. count += page_count(page) != 1;
  5941. __free_page(page);
  5942. }
  5943. WARN(count != 0, "%d pages are still in use!\n", count);
  5944. }
  5945. #endif
  5946. #ifdef CONFIG_MEMORY_HOTPLUG
  5947. /*
  5948. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  5949. * page high values need to be recalulated.
  5950. */
  5951. void __meminit zone_pcp_update(struct zone *zone)
  5952. {
  5953. unsigned cpu;
  5954. mutex_lock(&pcp_batch_high_lock);
  5955. for_each_possible_cpu(cpu)
  5956. pageset_set_high_and_batch(zone,
  5957. per_cpu_ptr(zone->pageset, cpu));
  5958. mutex_unlock(&pcp_batch_high_lock);
  5959. }
  5960. #endif
  5961. void zone_pcp_reset(struct zone *zone)
  5962. {
  5963. unsigned long flags;
  5964. int cpu;
  5965. struct per_cpu_pageset *pset;
  5966. /* avoid races with drain_pages() */
  5967. local_irq_save(flags);
  5968. if (zone->pageset != &boot_pageset) {
  5969. for_each_online_cpu(cpu) {
  5970. pset = per_cpu_ptr(zone->pageset, cpu);
  5971. drain_zonestat(zone, pset);
  5972. }
  5973. free_percpu(zone->pageset);
  5974. zone->pageset = &boot_pageset;
  5975. }
  5976. local_irq_restore(flags);
  5977. }
  5978. #ifdef CONFIG_MEMORY_HOTREMOVE
  5979. /*
  5980. * All pages in the range must be isolated before calling this.
  5981. */
  5982. void
  5983. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  5984. {
  5985. struct page *page;
  5986. struct zone *zone;
  5987. unsigned int order, i;
  5988. unsigned long pfn;
  5989. unsigned long flags;
  5990. /* find the first valid pfn */
  5991. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  5992. if (pfn_valid(pfn))
  5993. break;
  5994. if (pfn == end_pfn)
  5995. return;
  5996. zone = page_zone(pfn_to_page(pfn));
  5997. spin_lock_irqsave(&zone->lock, flags);
  5998. pfn = start_pfn;
  5999. while (pfn < end_pfn) {
  6000. if (!pfn_valid(pfn)) {
  6001. pfn++;
  6002. continue;
  6003. }
  6004. page = pfn_to_page(pfn);
  6005. /*
  6006. * The HWPoisoned page may be not in buddy system, and
  6007. * page_count() is not 0.
  6008. */
  6009. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  6010. pfn++;
  6011. SetPageReserved(page);
  6012. continue;
  6013. }
  6014. BUG_ON(page_count(page));
  6015. BUG_ON(!PageBuddy(page));
  6016. order = page_order(page);
  6017. #ifdef CONFIG_DEBUG_VM
  6018. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  6019. pfn, 1 << order, end_pfn);
  6020. #endif
  6021. list_del(&page->lru);
  6022. rmv_page_order(page);
  6023. zone->free_area[order].nr_free--;
  6024. for (i = 0; i < (1 << order); i++)
  6025. SetPageReserved((page+i));
  6026. pfn += (1 << order);
  6027. }
  6028. spin_unlock_irqrestore(&zone->lock, flags);
  6029. }
  6030. #endif
  6031. #ifdef CONFIG_MEMORY_FAILURE
  6032. bool is_free_buddy_page(struct page *page)
  6033. {
  6034. struct zone *zone = page_zone(page);
  6035. unsigned long pfn = page_to_pfn(page);
  6036. unsigned long flags;
  6037. unsigned int order;
  6038. spin_lock_irqsave(&zone->lock, flags);
  6039. for (order = 0; order < MAX_ORDER; order++) {
  6040. struct page *page_head = page - (pfn & ((1 << order) - 1));
  6041. if (PageBuddy(page_head) && page_order(page_head) >= order)
  6042. break;
  6043. }
  6044. spin_unlock_irqrestore(&zone->lock, flags);
  6045. return order < MAX_ORDER;
  6046. }
  6047. #endif