workqueue.c 141 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104
  1. /*
  2. * kernel/workqueue.c - generic async execution with shared worker pool
  3. *
  4. * Copyright (C) 2002 Ingo Molnar
  5. *
  6. * Derived from the taskqueue/keventd code by:
  7. * David Woodhouse <dwmw2@infradead.org>
  8. * Andrew Morton
  9. * Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10. * Theodore Ts'o <tytso@mit.edu>
  11. *
  12. * Made to use alloc_percpu by Christoph Lameter.
  13. *
  14. * Copyright (C) 2010 SUSE Linux Products GmbH
  15. * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
  16. *
  17. * This is the generic async execution mechanism. Work items as are
  18. * executed in process context. The worker pool is shared and
  19. * automatically managed. There are two worker pools for each CPU (one for
  20. * normal work items and the other for high priority ones) and some extra
  21. * pools for workqueues which are not bound to any specific CPU - the
  22. * number of these backing pools is dynamic.
  23. *
  24. * Please read Documentation/workqueue.txt for details.
  25. */
  26. #include <linux/export.h>
  27. #include <linux/kernel.h>
  28. #include <linux/sched.h>
  29. #include <linux/init.h>
  30. #include <linux/signal.h>
  31. #include <linux/completion.h>
  32. #include <linux/workqueue.h>
  33. #include <linux/slab.h>
  34. #include <linux/cpu.h>
  35. #include <linux/notifier.h>
  36. #include <linux/kthread.h>
  37. #include <linux/hardirq.h>
  38. #include <linux/mempolicy.h>
  39. #include <linux/freezer.h>
  40. #include <linux/kallsyms.h>
  41. #include <linux/debug_locks.h>
  42. #include <linux/lockdep.h>
  43. #include <linux/idr.h>
  44. #include <linux/jhash.h>
  45. #include <linux/hashtable.h>
  46. #include <linux/rculist.h>
  47. #include <linux/nodemask.h>
  48. #include <linux/moduleparam.h>
  49. #include <linux/uaccess.h>
  50. #include "workqueue_internal.h"
  51. enum {
  52. /*
  53. * worker_pool flags
  54. *
  55. * A bound pool is either associated or disassociated with its CPU.
  56. * While associated (!DISASSOCIATED), all workers are bound to the
  57. * CPU and none has %WORKER_UNBOUND set and concurrency management
  58. * is in effect.
  59. *
  60. * While DISASSOCIATED, the cpu may be offline and all workers have
  61. * %WORKER_UNBOUND set and concurrency management disabled, and may
  62. * be executing on any CPU. The pool behaves as an unbound one.
  63. *
  64. * Note that DISASSOCIATED should be flipped only while holding
  65. * manager_mutex to avoid changing binding state while
  66. * create_worker() is in progress.
  67. */
  68. POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
  69. POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
  70. POOL_FREEZING = 1 << 3, /* freeze in progress */
  71. /* worker flags */
  72. WORKER_DIE = 1 << 1, /* die die die */
  73. WORKER_IDLE = 1 << 2, /* is idle */
  74. WORKER_PREP = 1 << 3, /* preparing to run works */
  75. WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
  76. WORKER_UNBOUND = 1 << 7, /* worker is unbound */
  77. WORKER_REBOUND = 1 << 8, /* worker was rebound */
  78. WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
  79. WORKER_UNBOUND | WORKER_REBOUND,
  80. NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
  81. UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
  82. BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
  83. MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
  84. IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
  85. MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
  86. /* call for help after 10ms
  87. (min two ticks) */
  88. MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
  89. CREATE_COOLDOWN = HZ, /* time to breath after fail */
  90. /*
  91. * Rescue workers are used only on emergencies and shared by
  92. * all cpus. Give -20.
  93. */
  94. RESCUER_NICE_LEVEL = -20,
  95. HIGHPRI_NICE_LEVEL = -20,
  96. WQ_NAME_LEN = 24,
  97. };
  98. /*
  99. * Structure fields follow one of the following exclusion rules.
  100. *
  101. * I: Modifiable by initialization/destruction paths and read-only for
  102. * everyone else.
  103. *
  104. * P: Preemption protected. Disabling preemption is enough and should
  105. * only be modified and accessed from the local cpu.
  106. *
  107. * L: pool->lock protected. Access with pool->lock held.
  108. *
  109. * X: During normal operation, modification requires pool->lock and should
  110. * be done only from local cpu. Either disabling preemption on local
  111. * cpu or grabbing pool->lock is enough for read access. If
  112. * POOL_DISASSOCIATED is set, it's identical to L.
  113. *
  114. * M: pool->manager_mutex protected.
  115. *
  116. * PL: wq_pool_mutex protected.
  117. *
  118. * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
  119. *
  120. * WQ: wq->mutex protected.
  121. *
  122. * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
  123. *
  124. * MD: wq_mayday_lock protected.
  125. */
  126. /* struct worker is defined in workqueue_internal.h */
  127. struct worker_pool {
  128. spinlock_t lock; /* the pool lock */
  129. int cpu; /* I: the associated cpu */
  130. int node; /* I: the associated node ID */
  131. int id; /* I: pool ID */
  132. unsigned int flags; /* X: flags */
  133. struct list_head worklist; /* L: list of pending works */
  134. int nr_workers; /* L: total number of workers */
  135. /* nr_idle includes the ones off idle_list for rebinding */
  136. int nr_idle; /* L: currently idle ones */
  137. struct list_head idle_list; /* X: list of idle workers */
  138. struct timer_list idle_timer; /* L: worker idle timeout */
  139. struct timer_list mayday_timer; /* L: SOS timer for workers */
  140. /* a workers is either on busy_hash or idle_list, or the manager */
  141. DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
  142. /* L: hash of busy workers */
  143. /* see manage_workers() for details on the two manager mutexes */
  144. struct mutex manager_arb; /* manager arbitration */
  145. struct mutex manager_mutex; /* manager exclusion */
  146. struct idr worker_idr; /* M: worker IDs and iteration */
  147. struct workqueue_attrs *attrs; /* I: worker attributes */
  148. struct hlist_node hash_node; /* PL: unbound_pool_hash node */
  149. int refcnt; /* PL: refcnt for unbound pools */
  150. /*
  151. * The current concurrency level. As it's likely to be accessed
  152. * from other CPUs during try_to_wake_up(), put it in a separate
  153. * cacheline.
  154. */
  155. atomic_t nr_running ____cacheline_aligned_in_smp;
  156. /*
  157. * Destruction of pool is sched-RCU protected to allow dereferences
  158. * from get_work_pool().
  159. */
  160. struct rcu_head rcu;
  161. } ____cacheline_aligned_in_smp;
  162. /*
  163. * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
  164. * of work_struct->data are used for flags and the remaining high bits
  165. * point to the pwq; thus, pwqs need to be aligned at two's power of the
  166. * number of flag bits.
  167. */
  168. struct pool_workqueue {
  169. struct worker_pool *pool; /* I: the associated pool */
  170. struct workqueue_struct *wq; /* I: the owning workqueue */
  171. int work_color; /* L: current color */
  172. int flush_color; /* L: flushing color */
  173. int refcnt; /* L: reference count */
  174. int nr_in_flight[WORK_NR_COLORS];
  175. /* L: nr of in_flight works */
  176. int nr_active; /* L: nr of active works */
  177. int max_active; /* L: max active works */
  178. struct list_head delayed_works; /* L: delayed works */
  179. struct list_head pwqs_node; /* WR: node on wq->pwqs */
  180. struct list_head mayday_node; /* MD: node on wq->maydays */
  181. /*
  182. * Release of unbound pwq is punted to system_wq. See put_pwq()
  183. * and pwq_unbound_release_workfn() for details. pool_workqueue
  184. * itself is also sched-RCU protected so that the first pwq can be
  185. * determined without grabbing wq->mutex.
  186. */
  187. struct work_struct unbound_release_work;
  188. struct rcu_head rcu;
  189. } __aligned(1 << WORK_STRUCT_FLAG_BITS);
  190. /*
  191. * Structure used to wait for workqueue flush.
  192. */
  193. struct wq_flusher {
  194. struct list_head list; /* WQ: list of flushers */
  195. int flush_color; /* WQ: flush color waiting for */
  196. struct completion done; /* flush completion */
  197. };
  198. struct wq_device;
  199. /*
  200. * The externally visible workqueue. It relays the issued work items to
  201. * the appropriate worker_pool through its pool_workqueues.
  202. */
  203. struct workqueue_struct {
  204. struct list_head pwqs; /* WR: all pwqs of this wq */
  205. struct list_head list; /* PL: list of all workqueues */
  206. struct mutex mutex; /* protects this wq */
  207. int work_color; /* WQ: current work color */
  208. int flush_color; /* WQ: current flush color */
  209. atomic_t nr_pwqs_to_flush; /* flush in progress */
  210. struct wq_flusher *first_flusher; /* WQ: first flusher */
  211. struct list_head flusher_queue; /* WQ: flush waiters */
  212. struct list_head flusher_overflow; /* WQ: flush overflow list */
  213. struct list_head maydays; /* MD: pwqs requesting rescue */
  214. struct worker *rescuer; /* I: rescue worker */
  215. int nr_drainers; /* WQ: drain in progress */
  216. int saved_max_active; /* WQ: saved pwq max_active */
  217. struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
  218. struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
  219. #ifdef CONFIG_SYSFS
  220. struct wq_device *wq_dev; /* I: for sysfs interface */
  221. #endif
  222. #ifdef CONFIG_LOCKDEP
  223. struct lockdep_map lockdep_map;
  224. #endif
  225. char name[WQ_NAME_LEN]; /* I: workqueue name */
  226. /* hot fields used during command issue, aligned to cacheline */
  227. unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
  228. struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
  229. struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
  230. };
  231. static struct kmem_cache *pwq_cache;
  232. static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
  233. static cpumask_var_t *wq_numa_possible_cpumask;
  234. /* possible CPUs of each node */
  235. static bool wq_disable_numa;
  236. module_param_named(disable_numa, wq_disable_numa, bool, 0444);
  237. /* see the comment above the definition of WQ_POWER_EFFICIENT */
  238. #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
  239. static bool wq_power_efficient = true;
  240. #else
  241. static bool wq_power_efficient;
  242. #endif
  243. module_param_named(power_efficient, wq_power_efficient, bool, 0444);
  244. static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
  245. /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
  246. static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
  247. static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
  248. static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
  249. static LIST_HEAD(workqueues); /* PL: list of all workqueues */
  250. static bool workqueue_freezing; /* PL: have wqs started freezing? */
  251. /* the per-cpu worker pools */
  252. static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
  253. cpu_worker_pools);
  254. static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
  255. /* PL: hash of all unbound pools keyed by pool->attrs */
  256. static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
  257. /* I: attributes used when instantiating standard unbound pools on demand */
  258. static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
  259. /* I: attributes used when instantiating ordered pools on demand */
  260. static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
  261. struct workqueue_struct *system_wq __read_mostly;
  262. EXPORT_SYMBOL(system_wq);
  263. struct workqueue_struct *system_highpri_wq __read_mostly;
  264. EXPORT_SYMBOL_GPL(system_highpri_wq);
  265. struct workqueue_struct *system_long_wq __read_mostly;
  266. EXPORT_SYMBOL_GPL(system_long_wq);
  267. struct workqueue_struct *system_unbound_wq __read_mostly;
  268. EXPORT_SYMBOL_GPL(system_unbound_wq);
  269. struct workqueue_struct *system_freezable_wq __read_mostly;
  270. EXPORT_SYMBOL_GPL(system_freezable_wq);
  271. struct workqueue_struct *system_power_efficient_wq __read_mostly;
  272. EXPORT_SYMBOL_GPL(system_power_efficient_wq);
  273. struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
  274. EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
  275. static int worker_thread(void *__worker);
  276. static void copy_workqueue_attrs(struct workqueue_attrs *to,
  277. const struct workqueue_attrs *from);
  278. #define CREATE_TRACE_POINTS
  279. #include <trace/events/workqueue.h>
  280. #define assert_rcu_or_pool_mutex() \
  281. rcu_lockdep_assert(rcu_read_lock_sched_held() || \
  282. lockdep_is_held(&wq_pool_mutex), \
  283. "sched RCU or wq_pool_mutex should be held")
  284. #define assert_rcu_or_wq_mutex(wq) \
  285. rcu_lockdep_assert(rcu_read_lock_sched_held() || \
  286. lockdep_is_held(&wq->mutex), \
  287. "sched RCU or wq->mutex should be held")
  288. #define for_each_cpu_worker_pool(pool, cpu) \
  289. for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
  290. (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
  291. (pool)++)
  292. /**
  293. * for_each_pool - iterate through all worker_pools in the system
  294. * @pool: iteration cursor
  295. * @pi: integer used for iteration
  296. *
  297. * This must be called either with wq_pool_mutex held or sched RCU read
  298. * locked. If the pool needs to be used beyond the locking in effect, the
  299. * caller is responsible for guaranteeing that the pool stays online.
  300. *
  301. * The if/else clause exists only for the lockdep assertion and can be
  302. * ignored.
  303. */
  304. #define for_each_pool(pool, pi) \
  305. idr_for_each_entry(&worker_pool_idr, pool, pi) \
  306. if (({ assert_rcu_or_pool_mutex(); false; })) { } \
  307. else
  308. /**
  309. * for_each_pool_worker - iterate through all workers of a worker_pool
  310. * @worker: iteration cursor
  311. * @wi: integer used for iteration
  312. * @pool: worker_pool to iterate workers of
  313. *
  314. * This must be called with @pool->manager_mutex.
  315. *
  316. * The if/else clause exists only for the lockdep assertion and can be
  317. * ignored.
  318. */
  319. #define for_each_pool_worker(worker, wi, pool) \
  320. idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
  321. if (({ lockdep_assert_held(&pool->manager_mutex); false; })) { } \
  322. else
  323. /**
  324. * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
  325. * @pwq: iteration cursor
  326. * @wq: the target workqueue
  327. *
  328. * This must be called either with wq->mutex held or sched RCU read locked.
  329. * If the pwq needs to be used beyond the locking in effect, the caller is
  330. * responsible for guaranteeing that the pwq stays online.
  331. *
  332. * The if/else clause exists only for the lockdep assertion and can be
  333. * ignored.
  334. */
  335. #define for_each_pwq(pwq, wq) \
  336. list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
  337. if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
  338. else
  339. #ifdef CONFIG_DEBUG_OBJECTS_WORK
  340. static struct debug_obj_descr work_debug_descr;
  341. static void *work_debug_hint(void *addr)
  342. {
  343. return ((struct work_struct *) addr)->func;
  344. }
  345. /*
  346. * fixup_init is called when:
  347. * - an active object is initialized
  348. */
  349. static int work_fixup_init(void *addr, enum debug_obj_state state)
  350. {
  351. struct work_struct *work = addr;
  352. switch (state) {
  353. case ODEBUG_STATE_ACTIVE:
  354. cancel_work_sync(work);
  355. debug_object_init(work, &work_debug_descr);
  356. return 1;
  357. default:
  358. return 0;
  359. }
  360. }
  361. /*
  362. * fixup_activate is called when:
  363. * - an active object is activated
  364. * - an unknown object is activated (might be a statically initialized object)
  365. */
  366. static int work_fixup_activate(void *addr, enum debug_obj_state state)
  367. {
  368. struct work_struct *work = addr;
  369. switch (state) {
  370. case ODEBUG_STATE_NOTAVAILABLE:
  371. /*
  372. * This is not really a fixup. The work struct was
  373. * statically initialized. We just make sure that it
  374. * is tracked in the object tracker.
  375. */
  376. if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
  377. debug_object_init(work, &work_debug_descr);
  378. debug_object_activate(work, &work_debug_descr);
  379. return 0;
  380. }
  381. WARN_ON_ONCE(1);
  382. return 0;
  383. case ODEBUG_STATE_ACTIVE:
  384. WARN_ON(1);
  385. default:
  386. return 0;
  387. }
  388. }
  389. /*
  390. * fixup_free is called when:
  391. * - an active object is freed
  392. */
  393. static int work_fixup_free(void *addr, enum debug_obj_state state)
  394. {
  395. struct work_struct *work = addr;
  396. switch (state) {
  397. case ODEBUG_STATE_ACTIVE:
  398. cancel_work_sync(work);
  399. debug_object_free(work, &work_debug_descr);
  400. return 1;
  401. default:
  402. return 0;
  403. }
  404. }
  405. static struct debug_obj_descr work_debug_descr = {
  406. .name = "work_struct",
  407. .debug_hint = work_debug_hint,
  408. .fixup_init = work_fixup_init,
  409. .fixup_activate = work_fixup_activate,
  410. .fixup_free = work_fixup_free,
  411. };
  412. static inline void debug_work_activate(struct work_struct *work)
  413. {
  414. debug_object_activate(work, &work_debug_descr);
  415. }
  416. static inline void debug_work_deactivate(struct work_struct *work)
  417. {
  418. debug_object_deactivate(work, &work_debug_descr);
  419. }
  420. void __init_work(struct work_struct *work, int onstack)
  421. {
  422. if (onstack)
  423. debug_object_init_on_stack(work, &work_debug_descr);
  424. else
  425. debug_object_init(work, &work_debug_descr);
  426. }
  427. EXPORT_SYMBOL_GPL(__init_work);
  428. void destroy_work_on_stack(struct work_struct *work)
  429. {
  430. debug_object_free(work, &work_debug_descr);
  431. }
  432. EXPORT_SYMBOL_GPL(destroy_work_on_stack);
  433. void destroy_delayed_work_on_stack(struct delayed_work *work)
  434. {
  435. destroy_timer_on_stack(&work->timer);
  436. debug_object_free(&work->work, &work_debug_descr);
  437. }
  438. EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
  439. #else
  440. static inline void debug_work_activate(struct work_struct *work) { }
  441. static inline void debug_work_deactivate(struct work_struct *work) { }
  442. #endif
  443. /**
  444. * worker_pool_assign_id - allocate ID and assing it to @pool
  445. * @pool: the pool pointer of interest
  446. *
  447. * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
  448. * successfully, -errno on failure.
  449. */
  450. static int worker_pool_assign_id(struct worker_pool *pool)
  451. {
  452. int ret;
  453. lockdep_assert_held(&wq_pool_mutex);
  454. ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
  455. GFP_KERNEL);
  456. if (ret >= 0) {
  457. pool->id = ret;
  458. return 0;
  459. }
  460. return ret;
  461. }
  462. /**
  463. * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
  464. * @wq: the target workqueue
  465. * @node: the node ID
  466. *
  467. * This must be called either with pwq_lock held or sched RCU read locked.
  468. * If the pwq needs to be used beyond the locking in effect, the caller is
  469. * responsible for guaranteeing that the pwq stays online.
  470. *
  471. * Return: The unbound pool_workqueue for @node.
  472. */
  473. static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
  474. int node)
  475. {
  476. assert_rcu_or_wq_mutex(wq);
  477. return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
  478. }
  479. static unsigned int work_color_to_flags(int color)
  480. {
  481. return color << WORK_STRUCT_COLOR_SHIFT;
  482. }
  483. static int get_work_color(struct work_struct *work)
  484. {
  485. return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
  486. ((1 << WORK_STRUCT_COLOR_BITS) - 1);
  487. }
  488. static int work_next_color(int color)
  489. {
  490. return (color + 1) % WORK_NR_COLORS;
  491. }
  492. /*
  493. * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
  494. * contain the pointer to the queued pwq. Once execution starts, the flag
  495. * is cleared and the high bits contain OFFQ flags and pool ID.
  496. *
  497. * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
  498. * and clear_work_data() can be used to set the pwq, pool or clear
  499. * work->data. These functions should only be called while the work is
  500. * owned - ie. while the PENDING bit is set.
  501. *
  502. * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
  503. * corresponding to a work. Pool is available once the work has been
  504. * queued anywhere after initialization until it is sync canceled. pwq is
  505. * available only while the work item is queued.
  506. *
  507. * %WORK_OFFQ_CANCELING is used to mark a work item which is being
  508. * canceled. While being canceled, a work item may have its PENDING set
  509. * but stay off timer and worklist for arbitrarily long and nobody should
  510. * try to steal the PENDING bit.
  511. */
  512. static inline void set_work_data(struct work_struct *work, unsigned long data,
  513. unsigned long flags)
  514. {
  515. WARN_ON_ONCE(!work_pending(work));
  516. atomic_long_set(&work->data, data | flags | work_static(work));
  517. }
  518. static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
  519. unsigned long extra_flags)
  520. {
  521. set_work_data(work, (unsigned long)pwq,
  522. WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
  523. }
  524. static void set_work_pool_and_keep_pending(struct work_struct *work,
  525. int pool_id)
  526. {
  527. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
  528. WORK_STRUCT_PENDING);
  529. }
  530. static void set_work_pool_and_clear_pending(struct work_struct *work,
  531. int pool_id)
  532. {
  533. /*
  534. * The following wmb is paired with the implied mb in
  535. * test_and_set_bit(PENDING) and ensures all updates to @work made
  536. * here are visible to and precede any updates by the next PENDING
  537. * owner.
  538. */
  539. smp_wmb();
  540. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
  541. }
  542. static void clear_work_data(struct work_struct *work)
  543. {
  544. smp_wmb(); /* see set_work_pool_and_clear_pending() */
  545. set_work_data(work, WORK_STRUCT_NO_POOL, 0);
  546. }
  547. static struct pool_workqueue *get_work_pwq(struct work_struct *work)
  548. {
  549. unsigned long data = atomic_long_read(&work->data);
  550. if (data & WORK_STRUCT_PWQ)
  551. return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
  552. else
  553. return NULL;
  554. }
  555. /**
  556. * get_work_pool - return the worker_pool a given work was associated with
  557. * @work: the work item of interest
  558. *
  559. * Pools are created and destroyed under wq_pool_mutex, and allows read
  560. * access under sched-RCU read lock. As such, this function should be
  561. * called under wq_pool_mutex or with preemption disabled.
  562. *
  563. * All fields of the returned pool are accessible as long as the above
  564. * mentioned locking is in effect. If the returned pool needs to be used
  565. * beyond the critical section, the caller is responsible for ensuring the
  566. * returned pool is and stays online.
  567. *
  568. * Return: The worker_pool @work was last associated with. %NULL if none.
  569. */
  570. static struct worker_pool *get_work_pool(struct work_struct *work)
  571. {
  572. unsigned long data = atomic_long_read(&work->data);
  573. int pool_id;
  574. assert_rcu_or_pool_mutex();
  575. if (data & WORK_STRUCT_PWQ)
  576. return ((struct pool_workqueue *)
  577. (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
  578. pool_id = data >> WORK_OFFQ_POOL_SHIFT;
  579. if (pool_id == WORK_OFFQ_POOL_NONE)
  580. return NULL;
  581. return idr_find(&worker_pool_idr, pool_id);
  582. }
  583. /**
  584. * get_work_pool_id - return the worker pool ID a given work is associated with
  585. * @work: the work item of interest
  586. *
  587. * Return: The worker_pool ID @work was last associated with.
  588. * %WORK_OFFQ_POOL_NONE if none.
  589. */
  590. static int get_work_pool_id(struct work_struct *work)
  591. {
  592. unsigned long data = atomic_long_read(&work->data);
  593. if (data & WORK_STRUCT_PWQ)
  594. return ((struct pool_workqueue *)
  595. (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
  596. return data >> WORK_OFFQ_POOL_SHIFT;
  597. }
  598. static void mark_work_canceling(struct work_struct *work)
  599. {
  600. unsigned long pool_id = get_work_pool_id(work);
  601. pool_id <<= WORK_OFFQ_POOL_SHIFT;
  602. set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
  603. }
  604. static bool work_is_canceling(struct work_struct *work)
  605. {
  606. unsigned long data = atomic_long_read(&work->data);
  607. return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
  608. }
  609. /*
  610. * Policy functions. These define the policies on how the global worker
  611. * pools are managed. Unless noted otherwise, these functions assume that
  612. * they're being called with pool->lock held.
  613. */
  614. static bool __need_more_worker(struct worker_pool *pool)
  615. {
  616. return !atomic_read(&pool->nr_running);
  617. }
  618. /*
  619. * Need to wake up a worker? Called from anything but currently
  620. * running workers.
  621. *
  622. * Note that, because unbound workers never contribute to nr_running, this
  623. * function will always return %true for unbound pools as long as the
  624. * worklist isn't empty.
  625. */
  626. static bool need_more_worker(struct worker_pool *pool)
  627. {
  628. return !list_empty(&pool->worklist) && __need_more_worker(pool);
  629. }
  630. /* Can I start working? Called from busy but !running workers. */
  631. static bool may_start_working(struct worker_pool *pool)
  632. {
  633. return pool->nr_idle;
  634. }
  635. /* Do I need to keep working? Called from currently running workers. */
  636. static bool keep_working(struct worker_pool *pool)
  637. {
  638. return !list_empty(&pool->worklist) &&
  639. atomic_read(&pool->nr_running) <= 1;
  640. }
  641. /* Do we need a new worker? Called from manager. */
  642. static bool need_to_create_worker(struct worker_pool *pool)
  643. {
  644. return need_more_worker(pool) && !may_start_working(pool);
  645. }
  646. /* Do I need to be the manager? */
  647. static bool need_to_manage_workers(struct worker_pool *pool)
  648. {
  649. return need_to_create_worker(pool) ||
  650. (pool->flags & POOL_MANAGE_WORKERS);
  651. }
  652. /* Do we have too many workers and should some go away? */
  653. static bool too_many_workers(struct worker_pool *pool)
  654. {
  655. bool managing = mutex_is_locked(&pool->manager_arb);
  656. int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
  657. int nr_busy = pool->nr_workers - nr_idle;
  658. /*
  659. * nr_idle and idle_list may disagree if idle rebinding is in
  660. * progress. Never return %true if idle_list is empty.
  661. */
  662. if (list_empty(&pool->idle_list))
  663. return false;
  664. return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
  665. }
  666. /*
  667. * Wake up functions.
  668. */
  669. /* Return the first worker. Safe with preemption disabled */
  670. static struct worker *first_worker(struct worker_pool *pool)
  671. {
  672. if (unlikely(list_empty(&pool->idle_list)))
  673. return NULL;
  674. return list_first_entry(&pool->idle_list, struct worker, entry);
  675. }
  676. /**
  677. * wake_up_worker - wake up an idle worker
  678. * @pool: worker pool to wake worker from
  679. *
  680. * Wake up the first idle worker of @pool.
  681. *
  682. * CONTEXT:
  683. * spin_lock_irq(pool->lock).
  684. */
  685. static void wake_up_worker(struct worker_pool *pool)
  686. {
  687. struct worker *worker = first_worker(pool);
  688. if (likely(worker))
  689. wake_up_process(worker->task);
  690. }
  691. /**
  692. * wq_worker_waking_up - a worker is waking up
  693. * @task: task waking up
  694. * @cpu: CPU @task is waking up to
  695. *
  696. * This function is called during try_to_wake_up() when a worker is
  697. * being awoken.
  698. *
  699. * CONTEXT:
  700. * spin_lock_irq(rq->lock)
  701. */
  702. void wq_worker_waking_up(struct task_struct *task, int cpu)
  703. {
  704. struct worker *worker = kthread_data(task);
  705. if (!(worker->flags & WORKER_NOT_RUNNING)) {
  706. WARN_ON_ONCE(worker->pool->cpu != cpu);
  707. atomic_inc(&worker->pool->nr_running);
  708. }
  709. }
  710. /**
  711. * wq_worker_sleeping - a worker is going to sleep
  712. * @task: task going to sleep
  713. * @cpu: CPU in question, must be the current CPU number
  714. *
  715. * This function is called during schedule() when a busy worker is
  716. * going to sleep. Worker on the same cpu can be woken up by
  717. * returning pointer to its task.
  718. *
  719. * CONTEXT:
  720. * spin_lock_irq(rq->lock)
  721. *
  722. * Return:
  723. * Worker task on @cpu to wake up, %NULL if none.
  724. */
  725. struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
  726. {
  727. struct worker *worker = kthread_data(task), *to_wakeup = NULL;
  728. struct worker_pool *pool;
  729. /*
  730. * Rescuers, which may not have all the fields set up like normal
  731. * workers, also reach here, let's not access anything before
  732. * checking NOT_RUNNING.
  733. */
  734. if (worker->flags & WORKER_NOT_RUNNING)
  735. return NULL;
  736. pool = worker->pool;
  737. /* this can only happen on the local cpu */
  738. if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
  739. return NULL;
  740. /*
  741. * The counterpart of the following dec_and_test, implied mb,
  742. * worklist not empty test sequence is in insert_work().
  743. * Please read comment there.
  744. *
  745. * NOT_RUNNING is clear. This means that we're bound to and
  746. * running on the local cpu w/ rq lock held and preemption
  747. * disabled, which in turn means that none else could be
  748. * manipulating idle_list, so dereferencing idle_list without pool
  749. * lock is safe.
  750. */
  751. if (atomic_dec_and_test(&pool->nr_running) &&
  752. !list_empty(&pool->worklist))
  753. to_wakeup = first_worker(pool);
  754. return to_wakeup ? to_wakeup->task : NULL;
  755. }
  756. /**
  757. * worker_set_flags - set worker flags and adjust nr_running accordingly
  758. * @worker: self
  759. * @flags: flags to set
  760. * @wakeup: wakeup an idle worker if necessary
  761. *
  762. * Set @flags in @worker->flags and adjust nr_running accordingly. If
  763. * nr_running becomes zero and @wakeup is %true, an idle worker is
  764. * woken up.
  765. *
  766. * CONTEXT:
  767. * spin_lock_irq(pool->lock)
  768. */
  769. static inline void worker_set_flags(struct worker *worker, unsigned int flags,
  770. bool wakeup)
  771. {
  772. struct worker_pool *pool = worker->pool;
  773. WARN_ON_ONCE(worker->task != current);
  774. /*
  775. * If transitioning into NOT_RUNNING, adjust nr_running and
  776. * wake up an idle worker as necessary if requested by
  777. * @wakeup.
  778. */
  779. if ((flags & WORKER_NOT_RUNNING) &&
  780. !(worker->flags & WORKER_NOT_RUNNING)) {
  781. if (wakeup) {
  782. if (atomic_dec_and_test(&pool->nr_running) &&
  783. !list_empty(&pool->worklist))
  784. wake_up_worker(pool);
  785. } else
  786. atomic_dec(&pool->nr_running);
  787. }
  788. worker->flags |= flags;
  789. }
  790. /**
  791. * worker_clr_flags - clear worker flags and adjust nr_running accordingly
  792. * @worker: self
  793. * @flags: flags to clear
  794. *
  795. * Clear @flags in @worker->flags and adjust nr_running accordingly.
  796. *
  797. * CONTEXT:
  798. * spin_lock_irq(pool->lock)
  799. */
  800. static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
  801. {
  802. struct worker_pool *pool = worker->pool;
  803. unsigned int oflags = worker->flags;
  804. WARN_ON_ONCE(worker->task != current);
  805. worker->flags &= ~flags;
  806. /*
  807. * If transitioning out of NOT_RUNNING, increment nr_running. Note
  808. * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
  809. * of multiple flags, not a single flag.
  810. */
  811. if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
  812. if (!(worker->flags & WORKER_NOT_RUNNING))
  813. atomic_inc(&pool->nr_running);
  814. }
  815. /**
  816. * find_worker_executing_work - find worker which is executing a work
  817. * @pool: pool of interest
  818. * @work: work to find worker for
  819. *
  820. * Find a worker which is executing @work on @pool by searching
  821. * @pool->busy_hash which is keyed by the address of @work. For a worker
  822. * to match, its current execution should match the address of @work and
  823. * its work function. This is to avoid unwanted dependency between
  824. * unrelated work executions through a work item being recycled while still
  825. * being executed.
  826. *
  827. * This is a bit tricky. A work item may be freed once its execution
  828. * starts and nothing prevents the freed area from being recycled for
  829. * another work item. If the same work item address ends up being reused
  830. * before the original execution finishes, workqueue will identify the
  831. * recycled work item as currently executing and make it wait until the
  832. * current execution finishes, introducing an unwanted dependency.
  833. *
  834. * This function checks the work item address and work function to avoid
  835. * false positives. Note that this isn't complete as one may construct a
  836. * work function which can introduce dependency onto itself through a
  837. * recycled work item. Well, if somebody wants to shoot oneself in the
  838. * foot that badly, there's only so much we can do, and if such deadlock
  839. * actually occurs, it should be easy to locate the culprit work function.
  840. *
  841. * CONTEXT:
  842. * spin_lock_irq(pool->lock).
  843. *
  844. * Return:
  845. * Pointer to worker which is executing @work if found, %NULL
  846. * otherwise.
  847. */
  848. static struct worker *find_worker_executing_work(struct worker_pool *pool,
  849. struct work_struct *work)
  850. {
  851. struct worker *worker;
  852. hash_for_each_possible(pool->busy_hash, worker, hentry,
  853. (unsigned long)work)
  854. if (worker->current_work == work &&
  855. worker->current_func == work->func)
  856. return worker;
  857. return NULL;
  858. }
  859. /**
  860. * move_linked_works - move linked works to a list
  861. * @work: start of series of works to be scheduled
  862. * @head: target list to append @work to
  863. * @nextp: out paramter for nested worklist walking
  864. *
  865. * Schedule linked works starting from @work to @head. Work series to
  866. * be scheduled starts at @work and includes any consecutive work with
  867. * WORK_STRUCT_LINKED set in its predecessor.
  868. *
  869. * If @nextp is not NULL, it's updated to point to the next work of
  870. * the last scheduled work. This allows move_linked_works() to be
  871. * nested inside outer list_for_each_entry_safe().
  872. *
  873. * CONTEXT:
  874. * spin_lock_irq(pool->lock).
  875. */
  876. static void move_linked_works(struct work_struct *work, struct list_head *head,
  877. struct work_struct **nextp)
  878. {
  879. struct work_struct *n;
  880. /*
  881. * Linked worklist will always end before the end of the list,
  882. * use NULL for list head.
  883. */
  884. list_for_each_entry_safe_from(work, n, NULL, entry) {
  885. list_move_tail(&work->entry, head);
  886. if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
  887. break;
  888. }
  889. /*
  890. * If we're already inside safe list traversal and have moved
  891. * multiple works to the scheduled queue, the next position
  892. * needs to be updated.
  893. */
  894. if (nextp)
  895. *nextp = n;
  896. }
  897. /**
  898. * get_pwq - get an extra reference on the specified pool_workqueue
  899. * @pwq: pool_workqueue to get
  900. *
  901. * Obtain an extra reference on @pwq. The caller should guarantee that
  902. * @pwq has positive refcnt and be holding the matching pool->lock.
  903. */
  904. static void get_pwq(struct pool_workqueue *pwq)
  905. {
  906. lockdep_assert_held(&pwq->pool->lock);
  907. WARN_ON_ONCE(pwq->refcnt <= 0);
  908. pwq->refcnt++;
  909. }
  910. /**
  911. * put_pwq - put a pool_workqueue reference
  912. * @pwq: pool_workqueue to put
  913. *
  914. * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
  915. * destruction. The caller should be holding the matching pool->lock.
  916. */
  917. static void put_pwq(struct pool_workqueue *pwq)
  918. {
  919. lockdep_assert_held(&pwq->pool->lock);
  920. if (likely(--pwq->refcnt))
  921. return;
  922. if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
  923. return;
  924. /*
  925. * @pwq can't be released under pool->lock, bounce to
  926. * pwq_unbound_release_workfn(). This never recurses on the same
  927. * pool->lock as this path is taken only for unbound workqueues and
  928. * the release work item is scheduled on a per-cpu workqueue. To
  929. * avoid lockdep warning, unbound pool->locks are given lockdep
  930. * subclass of 1 in get_unbound_pool().
  931. */
  932. schedule_work(&pwq->unbound_release_work);
  933. }
  934. /**
  935. * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
  936. * @pwq: pool_workqueue to put (can be %NULL)
  937. *
  938. * put_pwq() with locking. This function also allows %NULL @pwq.
  939. */
  940. static void put_pwq_unlocked(struct pool_workqueue *pwq)
  941. {
  942. if (pwq) {
  943. /*
  944. * As both pwqs and pools are sched-RCU protected, the
  945. * following lock operations are safe.
  946. */
  947. spin_lock_irq(&pwq->pool->lock);
  948. put_pwq(pwq);
  949. spin_unlock_irq(&pwq->pool->lock);
  950. }
  951. }
  952. static void pwq_activate_delayed_work(struct work_struct *work)
  953. {
  954. struct pool_workqueue *pwq = get_work_pwq(work);
  955. trace_workqueue_activate_work(work);
  956. move_linked_works(work, &pwq->pool->worklist, NULL);
  957. __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
  958. pwq->nr_active++;
  959. }
  960. static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
  961. {
  962. struct work_struct *work = list_first_entry(&pwq->delayed_works,
  963. struct work_struct, entry);
  964. pwq_activate_delayed_work(work);
  965. }
  966. /**
  967. * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
  968. * @pwq: pwq of interest
  969. * @color: color of work which left the queue
  970. *
  971. * A work either has completed or is removed from pending queue,
  972. * decrement nr_in_flight of its pwq and handle workqueue flushing.
  973. *
  974. * CONTEXT:
  975. * spin_lock_irq(pool->lock).
  976. */
  977. static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
  978. {
  979. /* uncolored work items don't participate in flushing or nr_active */
  980. if (color == WORK_NO_COLOR)
  981. goto out_put;
  982. pwq->nr_in_flight[color]--;
  983. pwq->nr_active--;
  984. if (!list_empty(&pwq->delayed_works)) {
  985. /* one down, submit a delayed one */
  986. if (pwq->nr_active < pwq->max_active)
  987. pwq_activate_first_delayed(pwq);
  988. }
  989. /* is flush in progress and are we at the flushing tip? */
  990. if (likely(pwq->flush_color != color))
  991. goto out_put;
  992. /* are there still in-flight works? */
  993. if (pwq->nr_in_flight[color])
  994. goto out_put;
  995. /* this pwq is done, clear flush_color */
  996. pwq->flush_color = -1;
  997. /*
  998. * If this was the last pwq, wake up the first flusher. It
  999. * will handle the rest.
  1000. */
  1001. if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
  1002. complete(&pwq->wq->first_flusher->done);
  1003. out_put:
  1004. put_pwq(pwq);
  1005. }
  1006. /**
  1007. * try_to_grab_pending - steal work item from worklist and disable irq
  1008. * @work: work item to steal
  1009. * @is_dwork: @work is a delayed_work
  1010. * @flags: place to store irq state
  1011. *
  1012. * Try to grab PENDING bit of @work. This function can handle @work in any
  1013. * stable state - idle, on timer or on worklist.
  1014. *
  1015. * Return:
  1016. * 1 if @work was pending and we successfully stole PENDING
  1017. * 0 if @work was idle and we claimed PENDING
  1018. * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
  1019. * -ENOENT if someone else is canceling @work, this state may persist
  1020. * for arbitrarily long
  1021. *
  1022. * Note:
  1023. * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
  1024. * interrupted while holding PENDING and @work off queue, irq must be
  1025. * disabled on entry. This, combined with delayed_work->timer being
  1026. * irqsafe, ensures that we return -EAGAIN for finite short period of time.
  1027. *
  1028. * On successful return, >= 0, irq is disabled and the caller is
  1029. * responsible for releasing it using local_irq_restore(*@flags).
  1030. *
  1031. * This function is safe to call from any context including IRQ handler.
  1032. */
  1033. static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
  1034. unsigned long *flags)
  1035. {
  1036. struct worker_pool *pool;
  1037. struct pool_workqueue *pwq;
  1038. local_irq_save(*flags);
  1039. /* try to steal the timer if it exists */
  1040. if (is_dwork) {
  1041. struct delayed_work *dwork = to_delayed_work(work);
  1042. /*
  1043. * dwork->timer is irqsafe. If del_timer() fails, it's
  1044. * guaranteed that the timer is not queued anywhere and not
  1045. * running on the local CPU.
  1046. */
  1047. if (likely(del_timer(&dwork->timer)))
  1048. return 1;
  1049. }
  1050. /* try to claim PENDING the normal way */
  1051. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
  1052. return 0;
  1053. /*
  1054. * The queueing is in progress, or it is already queued. Try to
  1055. * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
  1056. */
  1057. pool = get_work_pool(work);
  1058. if (!pool)
  1059. goto fail;
  1060. spin_lock(&pool->lock);
  1061. /*
  1062. * work->data is guaranteed to point to pwq only while the work
  1063. * item is queued on pwq->wq, and both updating work->data to point
  1064. * to pwq on queueing and to pool on dequeueing are done under
  1065. * pwq->pool->lock. This in turn guarantees that, if work->data
  1066. * points to pwq which is associated with a locked pool, the work
  1067. * item is currently queued on that pool.
  1068. */
  1069. pwq = get_work_pwq(work);
  1070. if (pwq && pwq->pool == pool) {
  1071. debug_work_deactivate(work);
  1072. /*
  1073. * A delayed work item cannot be grabbed directly because
  1074. * it might have linked NO_COLOR work items which, if left
  1075. * on the delayed_list, will confuse pwq->nr_active
  1076. * management later on and cause stall. Make sure the work
  1077. * item is activated before grabbing.
  1078. */
  1079. if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
  1080. pwq_activate_delayed_work(work);
  1081. list_del_init(&work->entry);
  1082. pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
  1083. /* work->data points to pwq iff queued, point to pool */
  1084. set_work_pool_and_keep_pending(work, pool->id);
  1085. spin_unlock(&pool->lock);
  1086. return 1;
  1087. }
  1088. spin_unlock(&pool->lock);
  1089. fail:
  1090. local_irq_restore(*flags);
  1091. if (work_is_canceling(work))
  1092. return -ENOENT;
  1093. cpu_relax();
  1094. return -EAGAIN;
  1095. }
  1096. /**
  1097. * insert_work - insert a work into a pool
  1098. * @pwq: pwq @work belongs to
  1099. * @work: work to insert
  1100. * @head: insertion point
  1101. * @extra_flags: extra WORK_STRUCT_* flags to set
  1102. *
  1103. * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
  1104. * work_struct flags.
  1105. *
  1106. * CONTEXT:
  1107. * spin_lock_irq(pool->lock).
  1108. */
  1109. static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
  1110. struct list_head *head, unsigned int extra_flags)
  1111. {
  1112. struct worker_pool *pool = pwq->pool;
  1113. /* we own @work, set data and link */
  1114. set_work_pwq(work, pwq, extra_flags);
  1115. list_add_tail(&work->entry, head);
  1116. get_pwq(pwq);
  1117. /*
  1118. * Ensure either wq_worker_sleeping() sees the above
  1119. * list_add_tail() or we see zero nr_running to avoid workers lying
  1120. * around lazily while there are works to be processed.
  1121. */
  1122. smp_mb();
  1123. if (__need_more_worker(pool))
  1124. wake_up_worker(pool);
  1125. }
  1126. /*
  1127. * Test whether @work is being queued from another work executing on the
  1128. * same workqueue.
  1129. */
  1130. static bool is_chained_work(struct workqueue_struct *wq)
  1131. {
  1132. struct worker *worker;
  1133. worker = current_wq_worker();
  1134. /*
  1135. * Return %true iff I'm a worker execuing a work item on @wq. If
  1136. * I'm @worker, it's safe to dereference it without locking.
  1137. */
  1138. return worker && worker->current_pwq->wq == wq;
  1139. }
  1140. static void __queue_work(int cpu, struct workqueue_struct *wq,
  1141. struct work_struct *work)
  1142. {
  1143. struct pool_workqueue *pwq;
  1144. struct worker_pool *last_pool;
  1145. struct list_head *worklist;
  1146. unsigned int work_flags;
  1147. unsigned int req_cpu = cpu;
  1148. /*
  1149. * While a work item is PENDING && off queue, a task trying to
  1150. * steal the PENDING will busy-loop waiting for it to either get
  1151. * queued or lose PENDING. Grabbing PENDING and queueing should
  1152. * happen with IRQ disabled.
  1153. */
  1154. WARN_ON_ONCE(!irqs_disabled());
  1155. debug_work_activate(work);
  1156. /* if draining, only works from the same workqueue are allowed */
  1157. if (unlikely(wq->flags & __WQ_DRAINING) &&
  1158. WARN_ON_ONCE(!is_chained_work(wq)))
  1159. return;
  1160. retry:
  1161. if (req_cpu == WORK_CPU_UNBOUND)
  1162. cpu = raw_smp_processor_id();
  1163. /* pwq which will be used unless @work is executing elsewhere */
  1164. if (!(wq->flags & WQ_UNBOUND))
  1165. pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
  1166. else
  1167. pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
  1168. /*
  1169. * If @work was previously on a different pool, it might still be
  1170. * running there, in which case the work needs to be queued on that
  1171. * pool to guarantee non-reentrancy.
  1172. */
  1173. last_pool = get_work_pool(work);
  1174. if (last_pool && last_pool != pwq->pool) {
  1175. struct worker *worker;
  1176. spin_lock(&last_pool->lock);
  1177. worker = find_worker_executing_work(last_pool, work);
  1178. if (worker && worker->current_pwq->wq == wq) {
  1179. pwq = worker->current_pwq;
  1180. } else {
  1181. /* meh... not running there, queue here */
  1182. spin_unlock(&last_pool->lock);
  1183. spin_lock(&pwq->pool->lock);
  1184. }
  1185. } else {
  1186. spin_lock(&pwq->pool->lock);
  1187. }
  1188. /*
  1189. * pwq is determined and locked. For unbound pools, we could have
  1190. * raced with pwq release and it could already be dead. If its
  1191. * refcnt is zero, repeat pwq selection. Note that pwqs never die
  1192. * without another pwq replacing it in the numa_pwq_tbl or while
  1193. * work items are executing on it, so the retrying is guaranteed to
  1194. * make forward-progress.
  1195. */
  1196. if (unlikely(!pwq->refcnt)) {
  1197. if (wq->flags & WQ_UNBOUND) {
  1198. spin_unlock(&pwq->pool->lock);
  1199. cpu_relax();
  1200. goto retry;
  1201. }
  1202. /* oops */
  1203. WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
  1204. wq->name, cpu);
  1205. }
  1206. /* pwq determined, queue */
  1207. trace_workqueue_queue_work(req_cpu, pwq, work);
  1208. if (WARN_ON(!list_empty(&work->entry))) {
  1209. spin_unlock(&pwq->pool->lock);
  1210. return;
  1211. }
  1212. pwq->nr_in_flight[pwq->work_color]++;
  1213. work_flags = work_color_to_flags(pwq->work_color);
  1214. if (likely(pwq->nr_active < pwq->max_active)) {
  1215. trace_workqueue_activate_work(work);
  1216. pwq->nr_active++;
  1217. worklist = &pwq->pool->worklist;
  1218. } else {
  1219. work_flags |= WORK_STRUCT_DELAYED;
  1220. worklist = &pwq->delayed_works;
  1221. }
  1222. insert_work(pwq, work, worklist, work_flags);
  1223. spin_unlock(&pwq->pool->lock);
  1224. }
  1225. /**
  1226. * queue_work_on - queue work on specific cpu
  1227. * @cpu: CPU number to execute work on
  1228. * @wq: workqueue to use
  1229. * @work: work to queue
  1230. *
  1231. * We queue the work to a specific CPU, the caller must ensure it
  1232. * can't go away.
  1233. *
  1234. * Return: %false if @work was already on a queue, %true otherwise.
  1235. */
  1236. bool queue_work_on(int cpu, struct workqueue_struct *wq,
  1237. struct work_struct *work)
  1238. {
  1239. bool ret = false;
  1240. unsigned long flags;
  1241. local_irq_save(flags);
  1242. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1243. __queue_work(cpu, wq, work);
  1244. ret = true;
  1245. }
  1246. local_irq_restore(flags);
  1247. return ret;
  1248. }
  1249. EXPORT_SYMBOL(queue_work_on);
  1250. void delayed_work_timer_fn(unsigned long __data)
  1251. {
  1252. struct delayed_work *dwork = (struct delayed_work *)__data;
  1253. /* should have been called from irqsafe timer with irq already off */
  1254. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  1255. }
  1256. EXPORT_SYMBOL(delayed_work_timer_fn);
  1257. static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
  1258. struct delayed_work *dwork, unsigned long delay)
  1259. {
  1260. struct timer_list *timer = &dwork->timer;
  1261. struct work_struct *work = &dwork->work;
  1262. WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
  1263. timer->data != (unsigned long)dwork);
  1264. WARN_ON_ONCE(timer_pending(timer));
  1265. WARN_ON_ONCE(!list_empty(&work->entry));
  1266. /*
  1267. * If @delay is 0, queue @dwork->work immediately. This is for
  1268. * both optimization and correctness. The earliest @timer can
  1269. * expire is on the closest next tick and delayed_work users depend
  1270. * on that there's no such delay when @delay is 0.
  1271. */
  1272. if (!delay) {
  1273. __queue_work(cpu, wq, &dwork->work);
  1274. return;
  1275. }
  1276. timer_stats_timer_set_start_info(&dwork->timer);
  1277. dwork->wq = wq;
  1278. dwork->cpu = cpu;
  1279. timer->expires = jiffies + delay;
  1280. if (unlikely(cpu != WORK_CPU_UNBOUND))
  1281. add_timer_on(timer, cpu);
  1282. else
  1283. add_timer(timer);
  1284. }
  1285. /**
  1286. * queue_delayed_work_on - queue work on specific CPU after delay
  1287. * @cpu: CPU number to execute work on
  1288. * @wq: workqueue to use
  1289. * @dwork: work to queue
  1290. * @delay: number of jiffies to wait before queueing
  1291. *
  1292. * Return: %false if @work was already on a queue, %true otherwise. If
  1293. * @delay is zero and @dwork is idle, it will be scheduled for immediate
  1294. * execution.
  1295. */
  1296. bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1297. struct delayed_work *dwork, unsigned long delay)
  1298. {
  1299. struct work_struct *work = &dwork->work;
  1300. bool ret = false;
  1301. unsigned long flags;
  1302. /* read the comment in __queue_work() */
  1303. local_irq_save(flags);
  1304. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1305. __queue_delayed_work(cpu, wq, dwork, delay);
  1306. ret = true;
  1307. }
  1308. local_irq_restore(flags);
  1309. return ret;
  1310. }
  1311. EXPORT_SYMBOL(queue_delayed_work_on);
  1312. /**
  1313. * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
  1314. * @cpu: CPU number to execute work on
  1315. * @wq: workqueue to use
  1316. * @dwork: work to queue
  1317. * @delay: number of jiffies to wait before queueing
  1318. *
  1319. * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
  1320. * modify @dwork's timer so that it expires after @delay. If @delay is
  1321. * zero, @work is guaranteed to be scheduled immediately regardless of its
  1322. * current state.
  1323. *
  1324. * Return: %false if @dwork was idle and queued, %true if @dwork was
  1325. * pending and its timer was modified.
  1326. *
  1327. * This function is safe to call from any context including IRQ handler.
  1328. * See try_to_grab_pending() for details.
  1329. */
  1330. bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1331. struct delayed_work *dwork, unsigned long delay)
  1332. {
  1333. unsigned long flags;
  1334. int ret;
  1335. do {
  1336. ret = try_to_grab_pending(&dwork->work, true, &flags);
  1337. } while (unlikely(ret == -EAGAIN));
  1338. if (likely(ret >= 0)) {
  1339. __queue_delayed_work(cpu, wq, dwork, delay);
  1340. local_irq_restore(flags);
  1341. }
  1342. /* -ENOENT from try_to_grab_pending() becomes %true */
  1343. return ret;
  1344. }
  1345. EXPORT_SYMBOL_GPL(mod_delayed_work_on);
  1346. /**
  1347. * worker_enter_idle - enter idle state
  1348. * @worker: worker which is entering idle state
  1349. *
  1350. * @worker is entering idle state. Update stats and idle timer if
  1351. * necessary.
  1352. *
  1353. * LOCKING:
  1354. * spin_lock_irq(pool->lock).
  1355. */
  1356. static void worker_enter_idle(struct worker *worker)
  1357. {
  1358. struct worker_pool *pool = worker->pool;
  1359. if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
  1360. WARN_ON_ONCE(!list_empty(&worker->entry) &&
  1361. (worker->hentry.next || worker->hentry.pprev)))
  1362. return;
  1363. /* can't use worker_set_flags(), also called from start_worker() */
  1364. worker->flags |= WORKER_IDLE;
  1365. pool->nr_idle++;
  1366. worker->last_active = jiffies;
  1367. /* idle_list is LIFO */
  1368. list_add(&worker->entry, &pool->idle_list);
  1369. if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
  1370. mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
  1371. /*
  1372. * Sanity check nr_running. Because wq_unbind_fn() releases
  1373. * pool->lock between setting %WORKER_UNBOUND and zapping
  1374. * nr_running, the warning may trigger spuriously. Check iff
  1375. * unbind is not in progress.
  1376. */
  1377. WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
  1378. pool->nr_workers == pool->nr_idle &&
  1379. atomic_read(&pool->nr_running));
  1380. }
  1381. /**
  1382. * worker_leave_idle - leave idle state
  1383. * @worker: worker which is leaving idle state
  1384. *
  1385. * @worker is leaving idle state. Update stats.
  1386. *
  1387. * LOCKING:
  1388. * spin_lock_irq(pool->lock).
  1389. */
  1390. static void worker_leave_idle(struct worker *worker)
  1391. {
  1392. struct worker_pool *pool = worker->pool;
  1393. if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
  1394. return;
  1395. worker_clr_flags(worker, WORKER_IDLE);
  1396. pool->nr_idle--;
  1397. list_del_init(&worker->entry);
  1398. }
  1399. /**
  1400. * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
  1401. * @pool: target worker_pool
  1402. *
  1403. * Bind %current to the cpu of @pool if it is associated and lock @pool.
  1404. *
  1405. * Works which are scheduled while the cpu is online must at least be
  1406. * scheduled to a worker which is bound to the cpu so that if they are
  1407. * flushed from cpu callbacks while cpu is going down, they are
  1408. * guaranteed to execute on the cpu.
  1409. *
  1410. * This function is to be used by unbound workers and rescuers to bind
  1411. * themselves to the target cpu and may race with cpu going down or
  1412. * coming online. kthread_bind() can't be used because it may put the
  1413. * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
  1414. * verbatim as it's best effort and blocking and pool may be
  1415. * [dis]associated in the meantime.
  1416. *
  1417. * This function tries set_cpus_allowed() and locks pool and verifies the
  1418. * binding against %POOL_DISASSOCIATED which is set during
  1419. * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
  1420. * enters idle state or fetches works without dropping lock, it can
  1421. * guarantee the scheduling requirement described in the first paragraph.
  1422. *
  1423. * CONTEXT:
  1424. * Might sleep. Called without any lock but returns with pool->lock
  1425. * held.
  1426. *
  1427. * Return:
  1428. * %true if the associated pool is online (@worker is successfully
  1429. * bound), %false if offline.
  1430. */
  1431. static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
  1432. __acquires(&pool->lock)
  1433. {
  1434. while (true) {
  1435. /*
  1436. * The following call may fail, succeed or succeed
  1437. * without actually migrating the task to the cpu if
  1438. * it races with cpu hotunplug operation. Verify
  1439. * against POOL_DISASSOCIATED.
  1440. */
  1441. if (!(pool->flags & POOL_DISASSOCIATED))
  1442. set_cpus_allowed_ptr(current, pool->attrs->cpumask);
  1443. spin_lock_irq(&pool->lock);
  1444. if (pool->flags & POOL_DISASSOCIATED)
  1445. return false;
  1446. if (task_cpu(current) == pool->cpu &&
  1447. cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
  1448. return true;
  1449. spin_unlock_irq(&pool->lock);
  1450. /*
  1451. * We've raced with CPU hot[un]plug. Give it a breather
  1452. * and retry migration. cond_resched() is required here;
  1453. * otherwise, we might deadlock against cpu_stop trying to
  1454. * bring down the CPU on non-preemptive kernel.
  1455. */
  1456. cpu_relax();
  1457. cond_resched();
  1458. }
  1459. }
  1460. static struct worker *alloc_worker(void)
  1461. {
  1462. struct worker *worker;
  1463. worker = kzalloc(sizeof(*worker), GFP_KERNEL);
  1464. if (worker) {
  1465. INIT_LIST_HEAD(&worker->entry);
  1466. INIT_LIST_HEAD(&worker->scheduled);
  1467. /* on creation a worker is in !idle && prep state */
  1468. worker->flags = WORKER_PREP;
  1469. }
  1470. return worker;
  1471. }
  1472. /**
  1473. * create_worker - create a new workqueue worker
  1474. * @pool: pool the new worker will belong to
  1475. *
  1476. * Create a new worker which is attached to @pool. The new worker must be
  1477. * started by start_worker().
  1478. *
  1479. * CONTEXT:
  1480. * Might sleep. Does GFP_KERNEL allocations.
  1481. *
  1482. * Return:
  1483. * Pointer to the newly created worker.
  1484. */
  1485. static struct worker *create_worker(struct worker_pool *pool)
  1486. {
  1487. struct worker *worker = NULL;
  1488. int id = -1;
  1489. char id_buf[16];
  1490. lockdep_assert_held(&pool->manager_mutex);
  1491. /*
  1492. * ID is needed to determine kthread name. Allocate ID first
  1493. * without installing the pointer.
  1494. */
  1495. id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_KERNEL);
  1496. if (id < 0)
  1497. goto fail;
  1498. worker = alloc_worker();
  1499. if (!worker)
  1500. goto fail;
  1501. worker->pool = pool;
  1502. worker->id = id;
  1503. if (pool->cpu >= 0)
  1504. snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
  1505. pool->attrs->nice < 0 ? "H" : "");
  1506. else
  1507. snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
  1508. worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
  1509. "kworker/%s", id_buf);
  1510. if (IS_ERR(worker->task))
  1511. goto fail;
  1512. set_user_nice(worker->task, pool->attrs->nice);
  1513. /* prevent userland from meddling with cpumask of workqueue workers */
  1514. worker->task->flags |= PF_NO_SETAFFINITY;
  1515. /*
  1516. * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
  1517. * online CPUs. It'll be re-applied when any of the CPUs come up.
  1518. */
  1519. set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
  1520. /*
  1521. * The caller is responsible for ensuring %POOL_DISASSOCIATED
  1522. * remains stable across this function. See the comments above the
  1523. * flag definition for details.
  1524. */
  1525. if (pool->flags & POOL_DISASSOCIATED)
  1526. worker->flags |= WORKER_UNBOUND;
  1527. /* successful, commit the pointer to idr */
  1528. idr_replace(&pool->worker_idr, worker, worker->id);
  1529. return worker;
  1530. fail:
  1531. if (id >= 0)
  1532. idr_remove(&pool->worker_idr, id);
  1533. kfree(worker);
  1534. return NULL;
  1535. }
  1536. /**
  1537. * start_worker - start a newly created worker
  1538. * @worker: worker to start
  1539. *
  1540. * Make the pool aware of @worker and start it.
  1541. *
  1542. * CONTEXT:
  1543. * spin_lock_irq(pool->lock).
  1544. */
  1545. static void start_worker(struct worker *worker)
  1546. {
  1547. worker->pool->nr_workers++;
  1548. worker_enter_idle(worker);
  1549. wake_up_process(worker->task);
  1550. }
  1551. /**
  1552. * create_and_start_worker - create and start a worker for a pool
  1553. * @pool: the target pool
  1554. *
  1555. * Grab the managership of @pool and create and start a new worker for it.
  1556. *
  1557. * Return: 0 on success. A negative error code otherwise.
  1558. */
  1559. static int create_and_start_worker(struct worker_pool *pool)
  1560. {
  1561. struct worker *worker;
  1562. mutex_lock(&pool->manager_mutex);
  1563. worker = create_worker(pool);
  1564. if (worker) {
  1565. spin_lock_irq(&pool->lock);
  1566. start_worker(worker);
  1567. spin_unlock_irq(&pool->lock);
  1568. }
  1569. mutex_unlock(&pool->manager_mutex);
  1570. return worker ? 0 : -ENOMEM;
  1571. }
  1572. /**
  1573. * destroy_worker - destroy a workqueue worker
  1574. * @worker: worker to be destroyed
  1575. *
  1576. * Destroy @worker and adjust @pool stats accordingly. The worker should
  1577. * be idle.
  1578. *
  1579. * CONTEXT:
  1580. * spin_lock_irq(pool->lock) which is released and regrabbed.
  1581. */
  1582. static void destroy_worker(struct worker *worker)
  1583. {
  1584. struct worker_pool *pool = worker->pool;
  1585. lockdep_assert_held(&pool->manager_mutex);
  1586. lockdep_assert_held(&pool->lock);
  1587. /* sanity check frenzy */
  1588. if (WARN_ON(worker->current_work) ||
  1589. WARN_ON(!list_empty(&worker->scheduled)) ||
  1590. WARN_ON(!(worker->flags & WORKER_IDLE)))
  1591. return;
  1592. pool->nr_workers--;
  1593. pool->nr_idle--;
  1594. /*
  1595. * Once WORKER_DIE is set, the kworker may destroy itself at any
  1596. * point. Pin to ensure the task stays until we're done with it.
  1597. */
  1598. get_task_struct(worker->task);
  1599. list_del_init(&worker->entry);
  1600. worker->flags |= WORKER_DIE;
  1601. idr_remove(&pool->worker_idr, worker->id);
  1602. spin_unlock_irq(&pool->lock);
  1603. kthread_stop(worker->task);
  1604. put_task_struct(worker->task);
  1605. kfree(worker);
  1606. spin_lock_irq(&pool->lock);
  1607. }
  1608. static void idle_worker_timeout(unsigned long __pool)
  1609. {
  1610. struct worker_pool *pool = (void *)__pool;
  1611. spin_lock_irq(&pool->lock);
  1612. if (too_many_workers(pool)) {
  1613. struct worker *worker;
  1614. unsigned long expires;
  1615. /* idle_list is kept in LIFO order, check the last one */
  1616. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1617. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1618. if (time_before(jiffies, expires))
  1619. mod_timer(&pool->idle_timer, expires);
  1620. else {
  1621. /* it's been idle for too long, wake up manager */
  1622. pool->flags |= POOL_MANAGE_WORKERS;
  1623. wake_up_worker(pool);
  1624. }
  1625. }
  1626. spin_unlock_irq(&pool->lock);
  1627. }
  1628. static void send_mayday(struct work_struct *work)
  1629. {
  1630. struct pool_workqueue *pwq = get_work_pwq(work);
  1631. struct workqueue_struct *wq = pwq->wq;
  1632. lockdep_assert_held(&wq_mayday_lock);
  1633. if (!wq->rescuer)
  1634. return;
  1635. /* mayday mayday mayday */
  1636. if (list_empty(&pwq->mayday_node)) {
  1637. /*
  1638. * If @pwq is for an unbound wq, its base ref may be put at
  1639. * any time due to an attribute change. Pin @pwq until the
  1640. * rescuer is done with it.
  1641. */
  1642. get_pwq(pwq);
  1643. list_add_tail(&pwq->mayday_node, &wq->maydays);
  1644. wake_up_process(wq->rescuer->task);
  1645. }
  1646. }
  1647. static void pool_mayday_timeout(unsigned long __pool)
  1648. {
  1649. struct worker_pool *pool = (void *)__pool;
  1650. struct work_struct *work;
  1651. spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
  1652. spin_lock(&pool->lock);
  1653. if (need_to_create_worker(pool)) {
  1654. /*
  1655. * We've been trying to create a new worker but
  1656. * haven't been successful. We might be hitting an
  1657. * allocation deadlock. Send distress signals to
  1658. * rescuers.
  1659. */
  1660. list_for_each_entry(work, &pool->worklist, entry)
  1661. send_mayday(work);
  1662. }
  1663. spin_unlock(&pool->lock);
  1664. spin_unlock_irq(&wq_mayday_lock);
  1665. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
  1666. }
  1667. /**
  1668. * maybe_create_worker - create a new worker if necessary
  1669. * @pool: pool to create a new worker for
  1670. *
  1671. * Create a new worker for @pool if necessary. @pool is guaranteed to
  1672. * have at least one idle worker on return from this function. If
  1673. * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
  1674. * sent to all rescuers with works scheduled on @pool to resolve
  1675. * possible allocation deadlock.
  1676. *
  1677. * On return, need_to_create_worker() is guaranteed to be %false and
  1678. * may_start_working() %true.
  1679. *
  1680. * LOCKING:
  1681. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1682. * multiple times. Does GFP_KERNEL allocations. Called only from
  1683. * manager.
  1684. *
  1685. * Return:
  1686. * %false if no action was taken and pool->lock stayed locked, %true
  1687. * otherwise.
  1688. */
  1689. static bool maybe_create_worker(struct worker_pool *pool)
  1690. __releases(&pool->lock)
  1691. __acquires(&pool->lock)
  1692. {
  1693. if (!need_to_create_worker(pool))
  1694. return false;
  1695. restart:
  1696. spin_unlock_irq(&pool->lock);
  1697. /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
  1698. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
  1699. while (true) {
  1700. struct worker *worker;
  1701. worker = create_worker(pool);
  1702. if (worker) {
  1703. del_timer_sync(&pool->mayday_timer);
  1704. spin_lock_irq(&pool->lock);
  1705. start_worker(worker);
  1706. if (WARN_ON_ONCE(need_to_create_worker(pool)))
  1707. goto restart;
  1708. return true;
  1709. }
  1710. if (!need_to_create_worker(pool))
  1711. break;
  1712. __set_current_state(TASK_INTERRUPTIBLE);
  1713. schedule_timeout(CREATE_COOLDOWN);
  1714. if (!need_to_create_worker(pool))
  1715. break;
  1716. }
  1717. del_timer_sync(&pool->mayday_timer);
  1718. spin_lock_irq(&pool->lock);
  1719. if (need_to_create_worker(pool))
  1720. goto restart;
  1721. return true;
  1722. }
  1723. /**
  1724. * maybe_destroy_worker - destroy workers which have been idle for a while
  1725. * @pool: pool to destroy workers for
  1726. *
  1727. * Destroy @pool workers which have been idle for longer than
  1728. * IDLE_WORKER_TIMEOUT.
  1729. *
  1730. * LOCKING:
  1731. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1732. * multiple times. Called only from manager.
  1733. *
  1734. * Return:
  1735. * %false if no action was taken and pool->lock stayed locked, %true
  1736. * otherwise.
  1737. */
  1738. static bool maybe_destroy_workers(struct worker_pool *pool)
  1739. {
  1740. bool ret = false;
  1741. while (too_many_workers(pool)) {
  1742. struct worker *worker;
  1743. unsigned long expires;
  1744. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1745. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1746. if (time_before(jiffies, expires)) {
  1747. mod_timer(&pool->idle_timer, expires);
  1748. break;
  1749. }
  1750. destroy_worker(worker);
  1751. ret = true;
  1752. }
  1753. return ret;
  1754. }
  1755. /**
  1756. * manage_workers - manage worker pool
  1757. * @worker: self
  1758. *
  1759. * Assume the manager role and manage the worker pool @worker belongs
  1760. * to. At any given time, there can be only zero or one manager per
  1761. * pool. The exclusion is handled automatically by this function.
  1762. *
  1763. * The caller can safely start processing works on false return. On
  1764. * true return, it's guaranteed that need_to_create_worker() is false
  1765. * and may_start_working() is true.
  1766. *
  1767. * CONTEXT:
  1768. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1769. * multiple times. Does GFP_KERNEL allocations.
  1770. *
  1771. * Return:
  1772. * %false if the pool don't need management and the caller can safely start
  1773. * processing works, %true indicates that the function released pool->lock
  1774. * and reacquired it to perform some management function and that the
  1775. * conditions that the caller verified while holding the lock before
  1776. * calling the function might no longer be true.
  1777. */
  1778. static bool manage_workers(struct worker *worker)
  1779. {
  1780. struct worker_pool *pool = worker->pool;
  1781. bool ret = false;
  1782. /*
  1783. * Managership is governed by two mutexes - manager_arb and
  1784. * manager_mutex. manager_arb handles arbitration of manager role.
  1785. * Anyone who successfully grabs manager_arb wins the arbitration
  1786. * and becomes the manager. mutex_trylock() on pool->manager_arb
  1787. * failure while holding pool->lock reliably indicates that someone
  1788. * else is managing the pool and the worker which failed trylock
  1789. * can proceed to executing work items. This means that anyone
  1790. * grabbing manager_arb is responsible for actually performing
  1791. * manager duties. If manager_arb is grabbed and released without
  1792. * actual management, the pool may stall indefinitely.
  1793. *
  1794. * manager_mutex is used for exclusion of actual management
  1795. * operations. The holder of manager_mutex can be sure that none
  1796. * of management operations, including creation and destruction of
  1797. * workers, won't take place until the mutex is released. Because
  1798. * manager_mutex doesn't interfere with manager role arbitration,
  1799. * it is guaranteed that the pool's management, while may be
  1800. * delayed, won't be disturbed by someone else grabbing
  1801. * manager_mutex.
  1802. */
  1803. if (!mutex_trylock(&pool->manager_arb))
  1804. return ret;
  1805. /*
  1806. * With manager arbitration won, manager_mutex would be free in
  1807. * most cases. trylock first without dropping @pool->lock.
  1808. */
  1809. if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
  1810. spin_unlock_irq(&pool->lock);
  1811. mutex_lock(&pool->manager_mutex);
  1812. spin_lock_irq(&pool->lock);
  1813. ret = true;
  1814. }
  1815. pool->flags &= ~POOL_MANAGE_WORKERS;
  1816. /*
  1817. * Destroy and then create so that may_start_working() is true
  1818. * on return.
  1819. */
  1820. ret |= maybe_destroy_workers(pool);
  1821. ret |= maybe_create_worker(pool);
  1822. mutex_unlock(&pool->manager_mutex);
  1823. mutex_unlock(&pool->manager_arb);
  1824. return ret;
  1825. }
  1826. /**
  1827. * process_one_work - process single work
  1828. * @worker: self
  1829. * @work: work to process
  1830. *
  1831. * Process @work. This function contains all the logics necessary to
  1832. * process a single work including synchronization against and
  1833. * interaction with other workers on the same cpu, queueing and
  1834. * flushing. As long as context requirement is met, any worker can
  1835. * call this function to process a work.
  1836. *
  1837. * CONTEXT:
  1838. * spin_lock_irq(pool->lock) which is released and regrabbed.
  1839. */
  1840. static void process_one_work(struct worker *worker, struct work_struct *work)
  1841. __releases(&pool->lock)
  1842. __acquires(&pool->lock)
  1843. {
  1844. struct pool_workqueue *pwq = get_work_pwq(work);
  1845. struct worker_pool *pool = worker->pool;
  1846. bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
  1847. int work_color;
  1848. struct worker *collision;
  1849. #ifdef CONFIG_LOCKDEP
  1850. /*
  1851. * It is permissible to free the struct work_struct from
  1852. * inside the function that is called from it, this we need to
  1853. * take into account for lockdep too. To avoid bogus "held
  1854. * lock freed" warnings as well as problems when looking into
  1855. * work->lockdep_map, make a copy and use that here.
  1856. */
  1857. struct lockdep_map lockdep_map;
  1858. lockdep_copy_map(&lockdep_map, &work->lockdep_map);
  1859. #endif
  1860. /*
  1861. * Ensure we're on the correct CPU. DISASSOCIATED test is
  1862. * necessary to avoid spurious warnings from rescuers servicing the
  1863. * unbound or a disassociated pool.
  1864. */
  1865. WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
  1866. !(pool->flags & POOL_DISASSOCIATED) &&
  1867. raw_smp_processor_id() != pool->cpu);
  1868. /*
  1869. * A single work shouldn't be executed concurrently by
  1870. * multiple workers on a single cpu. Check whether anyone is
  1871. * already processing the work. If so, defer the work to the
  1872. * currently executing one.
  1873. */
  1874. collision = find_worker_executing_work(pool, work);
  1875. if (unlikely(collision)) {
  1876. move_linked_works(work, &collision->scheduled, NULL);
  1877. return;
  1878. }
  1879. /* claim and dequeue */
  1880. debug_work_deactivate(work);
  1881. hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
  1882. worker->current_work = work;
  1883. worker->current_func = work->func;
  1884. worker->current_pwq = pwq;
  1885. work_color = get_work_color(work);
  1886. list_del_init(&work->entry);
  1887. /*
  1888. * CPU intensive works don't participate in concurrency
  1889. * management. They're the scheduler's responsibility.
  1890. */
  1891. if (unlikely(cpu_intensive))
  1892. worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
  1893. /*
  1894. * Unbound pool isn't concurrency managed and work items should be
  1895. * executed ASAP. Wake up another worker if necessary.
  1896. */
  1897. if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
  1898. wake_up_worker(pool);
  1899. /*
  1900. * Record the last pool and clear PENDING which should be the last
  1901. * update to @work. Also, do this inside @pool->lock so that
  1902. * PENDING and queued state changes happen together while IRQ is
  1903. * disabled.
  1904. */
  1905. set_work_pool_and_clear_pending(work, pool->id);
  1906. spin_unlock_irq(&pool->lock);
  1907. lock_map_acquire_read(&pwq->wq->lockdep_map);
  1908. lock_map_acquire(&lockdep_map);
  1909. trace_workqueue_execute_start(work);
  1910. worker->current_func(work);
  1911. /*
  1912. * While we must be careful to not use "work" after this, the trace
  1913. * point will only record its address.
  1914. */
  1915. trace_workqueue_execute_end(work);
  1916. lock_map_release(&lockdep_map);
  1917. lock_map_release(&pwq->wq->lockdep_map);
  1918. if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
  1919. pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
  1920. " last function: %pf\n",
  1921. current->comm, preempt_count(), task_pid_nr(current),
  1922. worker->current_func);
  1923. debug_show_held_locks(current);
  1924. dump_stack();
  1925. }
  1926. /*
  1927. * The following prevents a kworker from hogging CPU on !PREEMPT
  1928. * kernels, where a requeueing work item waiting for something to
  1929. * happen could deadlock with stop_machine as such work item could
  1930. * indefinitely requeue itself while all other CPUs are trapped in
  1931. * stop_machine.
  1932. */
  1933. cond_resched();
  1934. spin_lock_irq(&pool->lock);
  1935. /* clear cpu intensive status */
  1936. if (unlikely(cpu_intensive))
  1937. worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
  1938. /* we're done with it, release */
  1939. hash_del(&worker->hentry);
  1940. worker->current_work = NULL;
  1941. worker->current_func = NULL;
  1942. worker->current_pwq = NULL;
  1943. worker->desc_valid = false;
  1944. pwq_dec_nr_in_flight(pwq, work_color);
  1945. }
  1946. /**
  1947. * process_scheduled_works - process scheduled works
  1948. * @worker: self
  1949. *
  1950. * Process all scheduled works. Please note that the scheduled list
  1951. * may change while processing a work, so this function repeatedly
  1952. * fetches a work from the top and executes it.
  1953. *
  1954. * CONTEXT:
  1955. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1956. * multiple times.
  1957. */
  1958. static void process_scheduled_works(struct worker *worker)
  1959. {
  1960. while (!list_empty(&worker->scheduled)) {
  1961. struct work_struct *work = list_first_entry(&worker->scheduled,
  1962. struct work_struct, entry);
  1963. process_one_work(worker, work);
  1964. }
  1965. }
  1966. /**
  1967. * worker_thread - the worker thread function
  1968. * @__worker: self
  1969. *
  1970. * The worker thread function. All workers belong to a worker_pool -
  1971. * either a per-cpu one or dynamic unbound one. These workers process all
  1972. * work items regardless of their specific target workqueue. The only
  1973. * exception is work items which belong to workqueues with a rescuer which
  1974. * will be explained in rescuer_thread().
  1975. *
  1976. * Return: 0
  1977. */
  1978. static int worker_thread(void *__worker)
  1979. {
  1980. struct worker *worker = __worker;
  1981. struct worker_pool *pool = worker->pool;
  1982. /* tell the scheduler that this is a workqueue worker */
  1983. worker->task->flags |= PF_WQ_WORKER;
  1984. woke_up:
  1985. spin_lock_irq(&pool->lock);
  1986. /* am I supposed to die? */
  1987. if (unlikely(worker->flags & WORKER_DIE)) {
  1988. spin_unlock_irq(&pool->lock);
  1989. WARN_ON_ONCE(!list_empty(&worker->entry));
  1990. worker->task->flags &= ~PF_WQ_WORKER;
  1991. return 0;
  1992. }
  1993. worker_leave_idle(worker);
  1994. recheck:
  1995. /* no more worker necessary? */
  1996. if (!need_more_worker(pool))
  1997. goto sleep;
  1998. /* do we need to manage? */
  1999. if (unlikely(!may_start_working(pool)) && manage_workers(worker))
  2000. goto recheck;
  2001. /*
  2002. * ->scheduled list can only be filled while a worker is
  2003. * preparing to process a work or actually processing it.
  2004. * Make sure nobody diddled with it while I was sleeping.
  2005. */
  2006. WARN_ON_ONCE(!list_empty(&worker->scheduled));
  2007. /*
  2008. * Finish PREP stage. We're guaranteed to have at least one idle
  2009. * worker or that someone else has already assumed the manager
  2010. * role. This is where @worker starts participating in concurrency
  2011. * management if applicable and concurrency management is restored
  2012. * after being rebound. See rebind_workers() for details.
  2013. */
  2014. worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
  2015. do {
  2016. struct work_struct *work =
  2017. list_first_entry(&pool->worklist,
  2018. struct work_struct, entry);
  2019. if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
  2020. /* optimization path, not strictly necessary */
  2021. process_one_work(worker, work);
  2022. if (unlikely(!list_empty(&worker->scheduled)))
  2023. process_scheduled_works(worker);
  2024. } else {
  2025. move_linked_works(work, &worker->scheduled, NULL);
  2026. process_scheduled_works(worker);
  2027. }
  2028. } while (keep_working(pool));
  2029. worker_set_flags(worker, WORKER_PREP, false);
  2030. sleep:
  2031. if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
  2032. goto recheck;
  2033. /*
  2034. * pool->lock is held and there's no work to process and no need to
  2035. * manage, sleep. Workers are woken up only while holding
  2036. * pool->lock or from local cpu, so setting the current state
  2037. * before releasing pool->lock is enough to prevent losing any
  2038. * event.
  2039. */
  2040. worker_enter_idle(worker);
  2041. __set_current_state(TASK_INTERRUPTIBLE);
  2042. spin_unlock_irq(&pool->lock);
  2043. schedule();
  2044. goto woke_up;
  2045. }
  2046. /**
  2047. * rescuer_thread - the rescuer thread function
  2048. * @__rescuer: self
  2049. *
  2050. * Workqueue rescuer thread function. There's one rescuer for each
  2051. * workqueue which has WQ_MEM_RECLAIM set.
  2052. *
  2053. * Regular work processing on a pool may block trying to create a new
  2054. * worker which uses GFP_KERNEL allocation which has slight chance of
  2055. * developing into deadlock if some works currently on the same queue
  2056. * need to be processed to satisfy the GFP_KERNEL allocation. This is
  2057. * the problem rescuer solves.
  2058. *
  2059. * When such condition is possible, the pool summons rescuers of all
  2060. * workqueues which have works queued on the pool and let them process
  2061. * those works so that forward progress can be guaranteed.
  2062. *
  2063. * This should happen rarely.
  2064. *
  2065. * Return: 0
  2066. */
  2067. static int rescuer_thread(void *__rescuer)
  2068. {
  2069. struct worker *rescuer = __rescuer;
  2070. struct workqueue_struct *wq = rescuer->rescue_wq;
  2071. struct list_head *scheduled = &rescuer->scheduled;
  2072. bool should_stop;
  2073. set_user_nice(current, RESCUER_NICE_LEVEL);
  2074. /*
  2075. * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
  2076. * doesn't participate in concurrency management.
  2077. */
  2078. rescuer->task->flags |= PF_WQ_WORKER;
  2079. repeat:
  2080. set_current_state(TASK_INTERRUPTIBLE);
  2081. /*
  2082. * By the time the rescuer is requested to stop, the workqueue
  2083. * shouldn't have any work pending, but @wq->maydays may still have
  2084. * pwq(s) queued. This can happen by non-rescuer workers consuming
  2085. * all the work items before the rescuer got to them. Go through
  2086. * @wq->maydays processing before acting on should_stop so that the
  2087. * list is always empty on exit.
  2088. */
  2089. should_stop = kthread_should_stop();
  2090. /* see whether any pwq is asking for help */
  2091. spin_lock_irq(&wq_mayday_lock);
  2092. while (!list_empty(&wq->maydays)) {
  2093. struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
  2094. struct pool_workqueue, mayday_node);
  2095. struct worker_pool *pool = pwq->pool;
  2096. struct work_struct *work, *n;
  2097. __set_current_state(TASK_RUNNING);
  2098. list_del_init(&pwq->mayday_node);
  2099. spin_unlock_irq(&wq_mayday_lock);
  2100. /* migrate to the target cpu if possible */
  2101. worker_maybe_bind_and_lock(pool);
  2102. rescuer->pool = pool;
  2103. /*
  2104. * Slurp in all works issued via this workqueue and
  2105. * process'em.
  2106. */
  2107. WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
  2108. list_for_each_entry_safe(work, n, &pool->worklist, entry)
  2109. if (get_work_pwq(work) == pwq)
  2110. move_linked_works(work, scheduled, &n);
  2111. process_scheduled_works(rescuer);
  2112. /*
  2113. * Put the reference grabbed by send_mayday(). @pool won't
  2114. * go away while we're holding its lock.
  2115. */
  2116. put_pwq(pwq);
  2117. /*
  2118. * Leave this pool. If keep_working() is %true, notify a
  2119. * regular worker; otherwise, we end up with 0 concurrency
  2120. * and stalling the execution.
  2121. */
  2122. if (keep_working(pool))
  2123. wake_up_worker(pool);
  2124. rescuer->pool = NULL;
  2125. spin_unlock(&pool->lock);
  2126. spin_lock(&wq_mayday_lock);
  2127. }
  2128. spin_unlock_irq(&wq_mayday_lock);
  2129. if (should_stop) {
  2130. __set_current_state(TASK_RUNNING);
  2131. rescuer->task->flags &= ~PF_WQ_WORKER;
  2132. return 0;
  2133. }
  2134. /* rescuers should never participate in concurrency management */
  2135. WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
  2136. schedule();
  2137. goto repeat;
  2138. }
  2139. struct wq_barrier {
  2140. struct work_struct work;
  2141. struct completion done;
  2142. };
  2143. static void wq_barrier_func(struct work_struct *work)
  2144. {
  2145. struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
  2146. complete(&barr->done);
  2147. }
  2148. /**
  2149. * insert_wq_barrier - insert a barrier work
  2150. * @pwq: pwq to insert barrier into
  2151. * @barr: wq_barrier to insert
  2152. * @target: target work to attach @barr to
  2153. * @worker: worker currently executing @target, NULL if @target is not executing
  2154. *
  2155. * @barr is linked to @target such that @barr is completed only after
  2156. * @target finishes execution. Please note that the ordering
  2157. * guarantee is observed only with respect to @target and on the local
  2158. * cpu.
  2159. *
  2160. * Currently, a queued barrier can't be canceled. This is because
  2161. * try_to_grab_pending() can't determine whether the work to be
  2162. * grabbed is at the head of the queue and thus can't clear LINKED
  2163. * flag of the previous work while there must be a valid next work
  2164. * after a work with LINKED flag set.
  2165. *
  2166. * Note that when @worker is non-NULL, @target may be modified
  2167. * underneath us, so we can't reliably determine pwq from @target.
  2168. *
  2169. * CONTEXT:
  2170. * spin_lock_irq(pool->lock).
  2171. */
  2172. static void insert_wq_barrier(struct pool_workqueue *pwq,
  2173. struct wq_barrier *barr,
  2174. struct work_struct *target, struct worker *worker)
  2175. {
  2176. struct list_head *head;
  2177. unsigned int linked = 0;
  2178. /*
  2179. * debugobject calls are safe here even with pool->lock locked
  2180. * as we know for sure that this will not trigger any of the
  2181. * checks and call back into the fixup functions where we
  2182. * might deadlock.
  2183. */
  2184. INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
  2185. __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
  2186. init_completion(&barr->done);
  2187. /*
  2188. * If @target is currently being executed, schedule the
  2189. * barrier to the worker; otherwise, put it after @target.
  2190. */
  2191. if (worker)
  2192. head = worker->scheduled.next;
  2193. else {
  2194. unsigned long *bits = work_data_bits(target);
  2195. head = target->entry.next;
  2196. /* there can already be other linked works, inherit and set */
  2197. linked = *bits & WORK_STRUCT_LINKED;
  2198. __set_bit(WORK_STRUCT_LINKED_BIT, bits);
  2199. }
  2200. debug_work_activate(&barr->work);
  2201. insert_work(pwq, &barr->work, head,
  2202. work_color_to_flags(WORK_NO_COLOR) | linked);
  2203. }
  2204. /**
  2205. * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
  2206. * @wq: workqueue being flushed
  2207. * @flush_color: new flush color, < 0 for no-op
  2208. * @work_color: new work color, < 0 for no-op
  2209. *
  2210. * Prepare pwqs for workqueue flushing.
  2211. *
  2212. * If @flush_color is non-negative, flush_color on all pwqs should be
  2213. * -1. If no pwq has in-flight commands at the specified color, all
  2214. * pwq->flush_color's stay at -1 and %false is returned. If any pwq
  2215. * has in flight commands, its pwq->flush_color is set to
  2216. * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
  2217. * wakeup logic is armed and %true is returned.
  2218. *
  2219. * The caller should have initialized @wq->first_flusher prior to
  2220. * calling this function with non-negative @flush_color. If
  2221. * @flush_color is negative, no flush color update is done and %false
  2222. * is returned.
  2223. *
  2224. * If @work_color is non-negative, all pwqs should have the same
  2225. * work_color which is previous to @work_color and all will be
  2226. * advanced to @work_color.
  2227. *
  2228. * CONTEXT:
  2229. * mutex_lock(wq->mutex).
  2230. *
  2231. * Return:
  2232. * %true if @flush_color >= 0 and there's something to flush. %false
  2233. * otherwise.
  2234. */
  2235. static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
  2236. int flush_color, int work_color)
  2237. {
  2238. bool wait = false;
  2239. struct pool_workqueue *pwq;
  2240. if (flush_color >= 0) {
  2241. WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
  2242. atomic_set(&wq->nr_pwqs_to_flush, 1);
  2243. }
  2244. for_each_pwq(pwq, wq) {
  2245. struct worker_pool *pool = pwq->pool;
  2246. spin_lock_irq(&pool->lock);
  2247. if (flush_color >= 0) {
  2248. WARN_ON_ONCE(pwq->flush_color != -1);
  2249. if (pwq->nr_in_flight[flush_color]) {
  2250. pwq->flush_color = flush_color;
  2251. atomic_inc(&wq->nr_pwqs_to_flush);
  2252. wait = true;
  2253. }
  2254. }
  2255. if (work_color >= 0) {
  2256. WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
  2257. pwq->work_color = work_color;
  2258. }
  2259. spin_unlock_irq(&pool->lock);
  2260. }
  2261. if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
  2262. complete(&wq->first_flusher->done);
  2263. return wait;
  2264. }
  2265. /**
  2266. * flush_workqueue - ensure that any scheduled work has run to completion.
  2267. * @wq: workqueue to flush
  2268. *
  2269. * This function sleeps until all work items which were queued on entry
  2270. * have finished execution, but it is not livelocked by new incoming ones.
  2271. */
  2272. void flush_workqueue(struct workqueue_struct *wq)
  2273. {
  2274. struct wq_flusher this_flusher = {
  2275. .list = LIST_HEAD_INIT(this_flusher.list),
  2276. .flush_color = -1,
  2277. .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
  2278. };
  2279. int next_color;
  2280. lock_map_acquire(&wq->lockdep_map);
  2281. lock_map_release(&wq->lockdep_map);
  2282. mutex_lock(&wq->mutex);
  2283. /*
  2284. * Start-to-wait phase
  2285. */
  2286. next_color = work_next_color(wq->work_color);
  2287. if (next_color != wq->flush_color) {
  2288. /*
  2289. * Color space is not full. The current work_color
  2290. * becomes our flush_color and work_color is advanced
  2291. * by one.
  2292. */
  2293. WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
  2294. this_flusher.flush_color = wq->work_color;
  2295. wq->work_color = next_color;
  2296. if (!wq->first_flusher) {
  2297. /* no flush in progress, become the first flusher */
  2298. WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
  2299. wq->first_flusher = &this_flusher;
  2300. if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
  2301. wq->work_color)) {
  2302. /* nothing to flush, done */
  2303. wq->flush_color = next_color;
  2304. wq->first_flusher = NULL;
  2305. goto out_unlock;
  2306. }
  2307. } else {
  2308. /* wait in queue */
  2309. WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
  2310. list_add_tail(&this_flusher.list, &wq->flusher_queue);
  2311. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2312. }
  2313. } else {
  2314. /*
  2315. * Oops, color space is full, wait on overflow queue.
  2316. * The next flush completion will assign us
  2317. * flush_color and transfer to flusher_queue.
  2318. */
  2319. list_add_tail(&this_flusher.list, &wq->flusher_overflow);
  2320. }
  2321. mutex_unlock(&wq->mutex);
  2322. wait_for_completion(&this_flusher.done);
  2323. /*
  2324. * Wake-up-and-cascade phase
  2325. *
  2326. * First flushers are responsible for cascading flushes and
  2327. * handling overflow. Non-first flushers can simply return.
  2328. */
  2329. if (wq->first_flusher != &this_flusher)
  2330. return;
  2331. mutex_lock(&wq->mutex);
  2332. /* we might have raced, check again with mutex held */
  2333. if (wq->first_flusher != &this_flusher)
  2334. goto out_unlock;
  2335. wq->first_flusher = NULL;
  2336. WARN_ON_ONCE(!list_empty(&this_flusher.list));
  2337. WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
  2338. while (true) {
  2339. struct wq_flusher *next, *tmp;
  2340. /* complete all the flushers sharing the current flush color */
  2341. list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
  2342. if (next->flush_color != wq->flush_color)
  2343. break;
  2344. list_del_init(&next->list);
  2345. complete(&next->done);
  2346. }
  2347. WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
  2348. wq->flush_color != work_next_color(wq->work_color));
  2349. /* this flush_color is finished, advance by one */
  2350. wq->flush_color = work_next_color(wq->flush_color);
  2351. /* one color has been freed, handle overflow queue */
  2352. if (!list_empty(&wq->flusher_overflow)) {
  2353. /*
  2354. * Assign the same color to all overflowed
  2355. * flushers, advance work_color and append to
  2356. * flusher_queue. This is the start-to-wait
  2357. * phase for these overflowed flushers.
  2358. */
  2359. list_for_each_entry(tmp, &wq->flusher_overflow, list)
  2360. tmp->flush_color = wq->work_color;
  2361. wq->work_color = work_next_color(wq->work_color);
  2362. list_splice_tail_init(&wq->flusher_overflow,
  2363. &wq->flusher_queue);
  2364. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2365. }
  2366. if (list_empty(&wq->flusher_queue)) {
  2367. WARN_ON_ONCE(wq->flush_color != wq->work_color);
  2368. break;
  2369. }
  2370. /*
  2371. * Need to flush more colors. Make the next flusher
  2372. * the new first flusher and arm pwqs.
  2373. */
  2374. WARN_ON_ONCE(wq->flush_color == wq->work_color);
  2375. WARN_ON_ONCE(wq->flush_color != next->flush_color);
  2376. list_del_init(&next->list);
  2377. wq->first_flusher = next;
  2378. if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
  2379. break;
  2380. /*
  2381. * Meh... this color is already done, clear first
  2382. * flusher and repeat cascading.
  2383. */
  2384. wq->first_flusher = NULL;
  2385. }
  2386. out_unlock:
  2387. mutex_unlock(&wq->mutex);
  2388. }
  2389. EXPORT_SYMBOL_GPL(flush_workqueue);
  2390. /**
  2391. * drain_workqueue - drain a workqueue
  2392. * @wq: workqueue to drain
  2393. *
  2394. * Wait until the workqueue becomes empty. While draining is in progress,
  2395. * only chain queueing is allowed. IOW, only currently pending or running
  2396. * work items on @wq can queue further work items on it. @wq is flushed
  2397. * repeatedly until it becomes empty. The number of flushing is detemined
  2398. * by the depth of chaining and should be relatively short. Whine if it
  2399. * takes too long.
  2400. */
  2401. void drain_workqueue(struct workqueue_struct *wq)
  2402. {
  2403. unsigned int flush_cnt = 0;
  2404. struct pool_workqueue *pwq;
  2405. /*
  2406. * __queue_work() needs to test whether there are drainers, is much
  2407. * hotter than drain_workqueue() and already looks at @wq->flags.
  2408. * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
  2409. */
  2410. mutex_lock(&wq->mutex);
  2411. if (!wq->nr_drainers++)
  2412. wq->flags |= __WQ_DRAINING;
  2413. mutex_unlock(&wq->mutex);
  2414. reflush:
  2415. flush_workqueue(wq);
  2416. mutex_lock(&wq->mutex);
  2417. for_each_pwq(pwq, wq) {
  2418. bool drained;
  2419. spin_lock_irq(&pwq->pool->lock);
  2420. drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
  2421. spin_unlock_irq(&pwq->pool->lock);
  2422. if (drained)
  2423. continue;
  2424. if (++flush_cnt == 10 ||
  2425. (flush_cnt % 100 == 0 && flush_cnt <= 1000))
  2426. pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
  2427. wq->name, flush_cnt);
  2428. mutex_unlock(&wq->mutex);
  2429. goto reflush;
  2430. }
  2431. if (!--wq->nr_drainers)
  2432. wq->flags &= ~__WQ_DRAINING;
  2433. mutex_unlock(&wq->mutex);
  2434. }
  2435. EXPORT_SYMBOL_GPL(drain_workqueue);
  2436. static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
  2437. {
  2438. struct worker *worker = NULL;
  2439. struct worker_pool *pool;
  2440. struct pool_workqueue *pwq;
  2441. might_sleep();
  2442. local_irq_disable();
  2443. pool = get_work_pool(work);
  2444. if (!pool) {
  2445. local_irq_enable();
  2446. return false;
  2447. }
  2448. spin_lock(&pool->lock);
  2449. /* see the comment in try_to_grab_pending() with the same code */
  2450. pwq = get_work_pwq(work);
  2451. if (pwq) {
  2452. if (unlikely(pwq->pool != pool))
  2453. goto already_gone;
  2454. } else {
  2455. worker = find_worker_executing_work(pool, work);
  2456. if (!worker)
  2457. goto already_gone;
  2458. pwq = worker->current_pwq;
  2459. }
  2460. insert_wq_barrier(pwq, barr, work, worker);
  2461. spin_unlock_irq(&pool->lock);
  2462. /*
  2463. * If @max_active is 1 or rescuer is in use, flushing another work
  2464. * item on the same workqueue may lead to deadlock. Make sure the
  2465. * flusher is not running on the same workqueue by verifying write
  2466. * access.
  2467. */
  2468. if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
  2469. lock_map_acquire(&pwq->wq->lockdep_map);
  2470. else
  2471. lock_map_acquire_read(&pwq->wq->lockdep_map);
  2472. lock_map_release(&pwq->wq->lockdep_map);
  2473. return true;
  2474. already_gone:
  2475. spin_unlock_irq(&pool->lock);
  2476. return false;
  2477. }
  2478. /**
  2479. * flush_work - wait for a work to finish executing the last queueing instance
  2480. * @work: the work to flush
  2481. *
  2482. * Wait until @work has finished execution. @work is guaranteed to be idle
  2483. * on return if it hasn't been requeued since flush started.
  2484. *
  2485. * Return:
  2486. * %true if flush_work() waited for the work to finish execution,
  2487. * %false if it was already idle.
  2488. */
  2489. bool flush_work(struct work_struct *work)
  2490. {
  2491. struct wq_barrier barr;
  2492. lock_map_acquire(&work->lockdep_map);
  2493. lock_map_release(&work->lockdep_map);
  2494. if (start_flush_work(work, &barr)) {
  2495. wait_for_completion(&barr.done);
  2496. destroy_work_on_stack(&barr.work);
  2497. return true;
  2498. } else {
  2499. return false;
  2500. }
  2501. }
  2502. EXPORT_SYMBOL_GPL(flush_work);
  2503. static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
  2504. {
  2505. unsigned long flags;
  2506. int ret;
  2507. do {
  2508. ret = try_to_grab_pending(work, is_dwork, &flags);
  2509. /*
  2510. * If someone else is canceling, wait for the same event it
  2511. * would be waiting for before retrying.
  2512. */
  2513. if (unlikely(ret == -ENOENT))
  2514. flush_work(work);
  2515. } while (unlikely(ret < 0));
  2516. /* tell other tasks trying to grab @work to back off */
  2517. mark_work_canceling(work);
  2518. local_irq_restore(flags);
  2519. flush_work(work);
  2520. clear_work_data(work);
  2521. return ret;
  2522. }
  2523. /**
  2524. * cancel_work_sync - cancel a work and wait for it to finish
  2525. * @work: the work to cancel
  2526. *
  2527. * Cancel @work and wait for its execution to finish. This function
  2528. * can be used even if the work re-queues itself or migrates to
  2529. * another workqueue. On return from this function, @work is
  2530. * guaranteed to be not pending or executing on any CPU.
  2531. *
  2532. * cancel_work_sync(&delayed_work->work) must not be used for
  2533. * delayed_work's. Use cancel_delayed_work_sync() instead.
  2534. *
  2535. * The caller must ensure that the workqueue on which @work was last
  2536. * queued can't be destroyed before this function returns.
  2537. *
  2538. * Return:
  2539. * %true if @work was pending, %false otherwise.
  2540. */
  2541. bool cancel_work_sync(struct work_struct *work)
  2542. {
  2543. return __cancel_work_timer(work, false);
  2544. }
  2545. EXPORT_SYMBOL_GPL(cancel_work_sync);
  2546. /**
  2547. * flush_delayed_work - wait for a dwork to finish executing the last queueing
  2548. * @dwork: the delayed work to flush
  2549. *
  2550. * Delayed timer is cancelled and the pending work is queued for
  2551. * immediate execution. Like flush_work(), this function only
  2552. * considers the last queueing instance of @dwork.
  2553. *
  2554. * Return:
  2555. * %true if flush_work() waited for the work to finish execution,
  2556. * %false if it was already idle.
  2557. */
  2558. bool flush_delayed_work(struct delayed_work *dwork)
  2559. {
  2560. local_irq_disable();
  2561. if (del_timer_sync(&dwork->timer))
  2562. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  2563. local_irq_enable();
  2564. return flush_work(&dwork->work);
  2565. }
  2566. EXPORT_SYMBOL(flush_delayed_work);
  2567. /**
  2568. * cancel_delayed_work - cancel a delayed work
  2569. * @dwork: delayed_work to cancel
  2570. *
  2571. * Kill off a pending delayed_work.
  2572. *
  2573. * Return: %true if @dwork was pending and canceled; %false if it wasn't
  2574. * pending.
  2575. *
  2576. * Note:
  2577. * The work callback function may still be running on return, unless
  2578. * it returns %true and the work doesn't re-arm itself. Explicitly flush or
  2579. * use cancel_delayed_work_sync() to wait on it.
  2580. *
  2581. * This function is safe to call from any context including IRQ handler.
  2582. */
  2583. bool cancel_delayed_work(struct delayed_work *dwork)
  2584. {
  2585. unsigned long flags;
  2586. int ret;
  2587. do {
  2588. ret = try_to_grab_pending(&dwork->work, true, &flags);
  2589. } while (unlikely(ret == -EAGAIN));
  2590. if (unlikely(ret < 0))
  2591. return false;
  2592. set_work_pool_and_clear_pending(&dwork->work,
  2593. get_work_pool_id(&dwork->work));
  2594. local_irq_restore(flags);
  2595. return ret;
  2596. }
  2597. EXPORT_SYMBOL(cancel_delayed_work);
  2598. /**
  2599. * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
  2600. * @dwork: the delayed work cancel
  2601. *
  2602. * This is cancel_work_sync() for delayed works.
  2603. *
  2604. * Return:
  2605. * %true if @dwork was pending, %false otherwise.
  2606. */
  2607. bool cancel_delayed_work_sync(struct delayed_work *dwork)
  2608. {
  2609. return __cancel_work_timer(&dwork->work, true);
  2610. }
  2611. EXPORT_SYMBOL(cancel_delayed_work_sync);
  2612. /**
  2613. * schedule_on_each_cpu - execute a function synchronously on each online CPU
  2614. * @func: the function to call
  2615. *
  2616. * schedule_on_each_cpu() executes @func on each online CPU using the
  2617. * system workqueue and blocks until all CPUs have completed.
  2618. * schedule_on_each_cpu() is very slow.
  2619. *
  2620. * Return:
  2621. * 0 on success, -errno on failure.
  2622. */
  2623. int schedule_on_each_cpu(work_func_t func)
  2624. {
  2625. int cpu;
  2626. struct work_struct __percpu *works;
  2627. works = alloc_percpu(struct work_struct);
  2628. if (!works)
  2629. return -ENOMEM;
  2630. get_online_cpus();
  2631. for_each_online_cpu(cpu) {
  2632. struct work_struct *work = per_cpu_ptr(works, cpu);
  2633. INIT_WORK(work, func);
  2634. schedule_work_on(cpu, work);
  2635. }
  2636. for_each_online_cpu(cpu)
  2637. flush_work(per_cpu_ptr(works, cpu));
  2638. put_online_cpus();
  2639. free_percpu(works);
  2640. return 0;
  2641. }
  2642. /**
  2643. * flush_scheduled_work - ensure that any scheduled work has run to completion.
  2644. *
  2645. * Forces execution of the kernel-global workqueue and blocks until its
  2646. * completion.
  2647. *
  2648. * Think twice before calling this function! It's very easy to get into
  2649. * trouble if you don't take great care. Either of the following situations
  2650. * will lead to deadlock:
  2651. *
  2652. * One of the work items currently on the workqueue needs to acquire
  2653. * a lock held by your code or its caller.
  2654. *
  2655. * Your code is running in the context of a work routine.
  2656. *
  2657. * They will be detected by lockdep when they occur, but the first might not
  2658. * occur very often. It depends on what work items are on the workqueue and
  2659. * what locks they need, which you have no control over.
  2660. *
  2661. * In most situations flushing the entire workqueue is overkill; you merely
  2662. * need to know that a particular work item isn't queued and isn't running.
  2663. * In such cases you should use cancel_delayed_work_sync() or
  2664. * cancel_work_sync() instead.
  2665. */
  2666. void flush_scheduled_work(void)
  2667. {
  2668. flush_workqueue(system_wq);
  2669. }
  2670. EXPORT_SYMBOL(flush_scheduled_work);
  2671. /**
  2672. * execute_in_process_context - reliably execute the routine with user context
  2673. * @fn: the function to execute
  2674. * @ew: guaranteed storage for the execute work structure (must
  2675. * be available when the work executes)
  2676. *
  2677. * Executes the function immediately if process context is available,
  2678. * otherwise schedules the function for delayed execution.
  2679. *
  2680. * Return: 0 - function was executed
  2681. * 1 - function was scheduled for execution
  2682. */
  2683. int execute_in_process_context(work_func_t fn, struct execute_work *ew)
  2684. {
  2685. if (!in_interrupt()) {
  2686. fn(&ew->work);
  2687. return 0;
  2688. }
  2689. INIT_WORK(&ew->work, fn);
  2690. schedule_work(&ew->work);
  2691. return 1;
  2692. }
  2693. EXPORT_SYMBOL_GPL(execute_in_process_context);
  2694. #ifdef CONFIG_SYSFS
  2695. /*
  2696. * Workqueues with WQ_SYSFS flag set is visible to userland via
  2697. * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
  2698. * following attributes.
  2699. *
  2700. * per_cpu RO bool : whether the workqueue is per-cpu or unbound
  2701. * max_active RW int : maximum number of in-flight work items
  2702. *
  2703. * Unbound workqueues have the following extra attributes.
  2704. *
  2705. * id RO int : the associated pool ID
  2706. * nice RW int : nice value of the workers
  2707. * cpumask RW mask : bitmask of allowed CPUs for the workers
  2708. */
  2709. struct wq_device {
  2710. struct workqueue_struct *wq;
  2711. struct device dev;
  2712. };
  2713. static struct workqueue_struct *dev_to_wq(struct device *dev)
  2714. {
  2715. struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
  2716. return wq_dev->wq;
  2717. }
  2718. static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
  2719. char *buf)
  2720. {
  2721. struct workqueue_struct *wq = dev_to_wq(dev);
  2722. return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
  2723. }
  2724. static DEVICE_ATTR_RO(per_cpu);
  2725. static ssize_t max_active_show(struct device *dev,
  2726. struct device_attribute *attr, char *buf)
  2727. {
  2728. struct workqueue_struct *wq = dev_to_wq(dev);
  2729. return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
  2730. }
  2731. static ssize_t max_active_store(struct device *dev,
  2732. struct device_attribute *attr, const char *buf,
  2733. size_t count)
  2734. {
  2735. struct workqueue_struct *wq = dev_to_wq(dev);
  2736. int val;
  2737. if (sscanf(buf, "%d", &val) != 1 || val <= 0)
  2738. return -EINVAL;
  2739. workqueue_set_max_active(wq, val);
  2740. return count;
  2741. }
  2742. static DEVICE_ATTR_RW(max_active);
  2743. static struct attribute *wq_sysfs_attrs[] = {
  2744. &dev_attr_per_cpu.attr,
  2745. &dev_attr_max_active.attr,
  2746. NULL,
  2747. };
  2748. ATTRIBUTE_GROUPS(wq_sysfs);
  2749. static ssize_t wq_pool_ids_show(struct device *dev,
  2750. struct device_attribute *attr, char *buf)
  2751. {
  2752. struct workqueue_struct *wq = dev_to_wq(dev);
  2753. const char *delim = "";
  2754. int node, written = 0;
  2755. rcu_read_lock_sched();
  2756. for_each_node(node) {
  2757. written += scnprintf(buf + written, PAGE_SIZE - written,
  2758. "%s%d:%d", delim, node,
  2759. unbound_pwq_by_node(wq, node)->pool->id);
  2760. delim = " ";
  2761. }
  2762. written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
  2763. rcu_read_unlock_sched();
  2764. return written;
  2765. }
  2766. static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
  2767. char *buf)
  2768. {
  2769. struct workqueue_struct *wq = dev_to_wq(dev);
  2770. int written;
  2771. mutex_lock(&wq->mutex);
  2772. written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
  2773. mutex_unlock(&wq->mutex);
  2774. return written;
  2775. }
  2776. /* prepare workqueue_attrs for sysfs store operations */
  2777. static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
  2778. {
  2779. struct workqueue_attrs *attrs;
  2780. attrs = alloc_workqueue_attrs(GFP_KERNEL);
  2781. if (!attrs)
  2782. return NULL;
  2783. mutex_lock(&wq->mutex);
  2784. copy_workqueue_attrs(attrs, wq->unbound_attrs);
  2785. mutex_unlock(&wq->mutex);
  2786. return attrs;
  2787. }
  2788. static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
  2789. const char *buf, size_t count)
  2790. {
  2791. struct workqueue_struct *wq = dev_to_wq(dev);
  2792. struct workqueue_attrs *attrs;
  2793. int ret;
  2794. attrs = wq_sysfs_prep_attrs(wq);
  2795. if (!attrs)
  2796. return -ENOMEM;
  2797. if (sscanf(buf, "%d", &attrs->nice) == 1 &&
  2798. attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
  2799. ret = apply_workqueue_attrs(wq, attrs);
  2800. else
  2801. ret = -EINVAL;
  2802. free_workqueue_attrs(attrs);
  2803. return ret ?: count;
  2804. }
  2805. static ssize_t wq_cpumask_show(struct device *dev,
  2806. struct device_attribute *attr, char *buf)
  2807. {
  2808. struct workqueue_struct *wq = dev_to_wq(dev);
  2809. int written;
  2810. mutex_lock(&wq->mutex);
  2811. written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
  2812. mutex_unlock(&wq->mutex);
  2813. written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
  2814. return written;
  2815. }
  2816. static ssize_t wq_cpumask_store(struct device *dev,
  2817. struct device_attribute *attr,
  2818. const char *buf, size_t count)
  2819. {
  2820. struct workqueue_struct *wq = dev_to_wq(dev);
  2821. struct workqueue_attrs *attrs;
  2822. int ret;
  2823. attrs = wq_sysfs_prep_attrs(wq);
  2824. if (!attrs)
  2825. return -ENOMEM;
  2826. ret = cpumask_parse(buf, attrs->cpumask);
  2827. if (!ret)
  2828. ret = apply_workqueue_attrs(wq, attrs);
  2829. free_workqueue_attrs(attrs);
  2830. return ret ?: count;
  2831. }
  2832. static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
  2833. char *buf)
  2834. {
  2835. struct workqueue_struct *wq = dev_to_wq(dev);
  2836. int written;
  2837. mutex_lock(&wq->mutex);
  2838. written = scnprintf(buf, PAGE_SIZE, "%d\n",
  2839. !wq->unbound_attrs->no_numa);
  2840. mutex_unlock(&wq->mutex);
  2841. return written;
  2842. }
  2843. static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
  2844. const char *buf, size_t count)
  2845. {
  2846. struct workqueue_struct *wq = dev_to_wq(dev);
  2847. struct workqueue_attrs *attrs;
  2848. int v, ret;
  2849. attrs = wq_sysfs_prep_attrs(wq);
  2850. if (!attrs)
  2851. return -ENOMEM;
  2852. ret = -EINVAL;
  2853. if (sscanf(buf, "%d", &v) == 1) {
  2854. attrs->no_numa = !v;
  2855. ret = apply_workqueue_attrs(wq, attrs);
  2856. }
  2857. free_workqueue_attrs(attrs);
  2858. return ret ?: count;
  2859. }
  2860. static struct device_attribute wq_sysfs_unbound_attrs[] = {
  2861. __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
  2862. __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
  2863. __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
  2864. __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
  2865. __ATTR_NULL,
  2866. };
  2867. static struct bus_type wq_subsys = {
  2868. .name = "workqueue",
  2869. .dev_groups = wq_sysfs_groups,
  2870. };
  2871. static int __init wq_sysfs_init(void)
  2872. {
  2873. return subsys_virtual_register(&wq_subsys, NULL);
  2874. }
  2875. core_initcall(wq_sysfs_init);
  2876. static void wq_device_release(struct device *dev)
  2877. {
  2878. struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
  2879. kfree(wq_dev);
  2880. }
  2881. /**
  2882. * workqueue_sysfs_register - make a workqueue visible in sysfs
  2883. * @wq: the workqueue to register
  2884. *
  2885. * Expose @wq in sysfs under /sys/bus/workqueue/devices.
  2886. * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
  2887. * which is the preferred method.
  2888. *
  2889. * Workqueue user should use this function directly iff it wants to apply
  2890. * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
  2891. * apply_workqueue_attrs() may race against userland updating the
  2892. * attributes.
  2893. *
  2894. * Return: 0 on success, -errno on failure.
  2895. */
  2896. int workqueue_sysfs_register(struct workqueue_struct *wq)
  2897. {
  2898. struct wq_device *wq_dev;
  2899. int ret;
  2900. /*
  2901. * Adjusting max_active or creating new pwqs by applyting
  2902. * attributes breaks ordering guarantee. Disallow exposing ordered
  2903. * workqueues.
  2904. */
  2905. if (WARN_ON(wq->flags & __WQ_ORDERED))
  2906. return -EINVAL;
  2907. wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
  2908. if (!wq_dev)
  2909. return -ENOMEM;
  2910. wq_dev->wq = wq;
  2911. wq_dev->dev.bus = &wq_subsys;
  2912. wq_dev->dev.init_name = wq->name;
  2913. wq_dev->dev.release = wq_device_release;
  2914. /*
  2915. * unbound_attrs are created separately. Suppress uevent until
  2916. * everything is ready.
  2917. */
  2918. dev_set_uevent_suppress(&wq_dev->dev, true);
  2919. ret = device_register(&wq_dev->dev);
  2920. if (ret) {
  2921. kfree(wq_dev);
  2922. wq->wq_dev = NULL;
  2923. return ret;
  2924. }
  2925. if (wq->flags & WQ_UNBOUND) {
  2926. struct device_attribute *attr;
  2927. for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
  2928. ret = device_create_file(&wq_dev->dev, attr);
  2929. if (ret) {
  2930. device_unregister(&wq_dev->dev);
  2931. wq->wq_dev = NULL;
  2932. return ret;
  2933. }
  2934. }
  2935. }
  2936. kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
  2937. return 0;
  2938. }
  2939. /**
  2940. * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
  2941. * @wq: the workqueue to unregister
  2942. *
  2943. * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
  2944. */
  2945. static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
  2946. {
  2947. struct wq_device *wq_dev = wq->wq_dev;
  2948. if (!wq->wq_dev)
  2949. return;
  2950. wq->wq_dev = NULL;
  2951. device_unregister(&wq_dev->dev);
  2952. }
  2953. #else /* CONFIG_SYSFS */
  2954. static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
  2955. #endif /* CONFIG_SYSFS */
  2956. /**
  2957. * free_workqueue_attrs - free a workqueue_attrs
  2958. * @attrs: workqueue_attrs to free
  2959. *
  2960. * Undo alloc_workqueue_attrs().
  2961. */
  2962. void free_workqueue_attrs(struct workqueue_attrs *attrs)
  2963. {
  2964. if (attrs) {
  2965. free_cpumask_var(attrs->cpumask);
  2966. kfree(attrs);
  2967. }
  2968. }
  2969. /**
  2970. * alloc_workqueue_attrs - allocate a workqueue_attrs
  2971. * @gfp_mask: allocation mask to use
  2972. *
  2973. * Allocate a new workqueue_attrs, initialize with default settings and
  2974. * return it.
  2975. *
  2976. * Return: The allocated new workqueue_attr on success. %NULL on failure.
  2977. */
  2978. struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
  2979. {
  2980. struct workqueue_attrs *attrs;
  2981. attrs = kzalloc(sizeof(*attrs), gfp_mask);
  2982. if (!attrs)
  2983. goto fail;
  2984. if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
  2985. goto fail;
  2986. cpumask_copy(attrs->cpumask, cpu_possible_mask);
  2987. return attrs;
  2988. fail:
  2989. free_workqueue_attrs(attrs);
  2990. return NULL;
  2991. }
  2992. static void copy_workqueue_attrs(struct workqueue_attrs *to,
  2993. const struct workqueue_attrs *from)
  2994. {
  2995. to->nice = from->nice;
  2996. cpumask_copy(to->cpumask, from->cpumask);
  2997. /*
  2998. * Unlike hash and equality test, this function doesn't ignore
  2999. * ->no_numa as it is used for both pool and wq attrs. Instead,
  3000. * get_unbound_pool() explicitly clears ->no_numa after copying.
  3001. */
  3002. to->no_numa = from->no_numa;
  3003. }
  3004. /* hash value of the content of @attr */
  3005. static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
  3006. {
  3007. u32 hash = 0;
  3008. hash = jhash_1word(attrs->nice, hash);
  3009. hash = jhash(cpumask_bits(attrs->cpumask),
  3010. BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
  3011. return hash;
  3012. }
  3013. /* content equality test */
  3014. static bool wqattrs_equal(const struct workqueue_attrs *a,
  3015. const struct workqueue_attrs *b)
  3016. {
  3017. if (a->nice != b->nice)
  3018. return false;
  3019. if (!cpumask_equal(a->cpumask, b->cpumask))
  3020. return false;
  3021. return true;
  3022. }
  3023. /**
  3024. * init_worker_pool - initialize a newly zalloc'd worker_pool
  3025. * @pool: worker_pool to initialize
  3026. *
  3027. * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
  3028. *
  3029. * Return: 0 on success, -errno on failure. Even on failure, all fields
  3030. * inside @pool proper are initialized and put_unbound_pool() can be called
  3031. * on @pool safely to release it.
  3032. */
  3033. static int init_worker_pool(struct worker_pool *pool)
  3034. {
  3035. spin_lock_init(&pool->lock);
  3036. pool->id = -1;
  3037. pool->cpu = -1;
  3038. pool->node = NUMA_NO_NODE;
  3039. pool->flags |= POOL_DISASSOCIATED;
  3040. INIT_LIST_HEAD(&pool->worklist);
  3041. INIT_LIST_HEAD(&pool->idle_list);
  3042. hash_init(pool->busy_hash);
  3043. init_timer_deferrable(&pool->idle_timer);
  3044. pool->idle_timer.function = idle_worker_timeout;
  3045. pool->idle_timer.data = (unsigned long)pool;
  3046. setup_timer(&pool->mayday_timer, pool_mayday_timeout,
  3047. (unsigned long)pool);
  3048. mutex_init(&pool->manager_arb);
  3049. mutex_init(&pool->manager_mutex);
  3050. idr_init(&pool->worker_idr);
  3051. INIT_HLIST_NODE(&pool->hash_node);
  3052. pool->refcnt = 1;
  3053. /* shouldn't fail above this point */
  3054. pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3055. if (!pool->attrs)
  3056. return -ENOMEM;
  3057. return 0;
  3058. }
  3059. static void rcu_free_pool(struct rcu_head *rcu)
  3060. {
  3061. struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
  3062. idr_destroy(&pool->worker_idr);
  3063. free_workqueue_attrs(pool->attrs);
  3064. kfree(pool);
  3065. }
  3066. /**
  3067. * put_unbound_pool - put a worker_pool
  3068. * @pool: worker_pool to put
  3069. *
  3070. * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
  3071. * safe manner. get_unbound_pool() calls this function on its failure path
  3072. * and this function should be able to release pools which went through,
  3073. * successfully or not, init_worker_pool().
  3074. *
  3075. * Should be called with wq_pool_mutex held.
  3076. */
  3077. static void put_unbound_pool(struct worker_pool *pool)
  3078. {
  3079. struct worker *worker;
  3080. lockdep_assert_held(&wq_pool_mutex);
  3081. if (--pool->refcnt)
  3082. return;
  3083. /* sanity checks */
  3084. if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
  3085. WARN_ON(!list_empty(&pool->worklist)))
  3086. return;
  3087. /* release id and unhash */
  3088. if (pool->id >= 0)
  3089. idr_remove(&worker_pool_idr, pool->id);
  3090. hash_del(&pool->hash_node);
  3091. /*
  3092. * Become the manager and destroy all workers. Grabbing
  3093. * manager_arb prevents @pool's workers from blocking on
  3094. * manager_mutex.
  3095. */
  3096. mutex_lock(&pool->manager_arb);
  3097. mutex_lock(&pool->manager_mutex);
  3098. spin_lock_irq(&pool->lock);
  3099. while ((worker = first_worker(pool)))
  3100. destroy_worker(worker);
  3101. WARN_ON(pool->nr_workers || pool->nr_idle);
  3102. spin_unlock_irq(&pool->lock);
  3103. mutex_unlock(&pool->manager_mutex);
  3104. mutex_unlock(&pool->manager_arb);
  3105. /* shut down the timers */
  3106. del_timer_sync(&pool->idle_timer);
  3107. del_timer_sync(&pool->mayday_timer);
  3108. /* sched-RCU protected to allow dereferences from get_work_pool() */
  3109. call_rcu_sched(&pool->rcu, rcu_free_pool);
  3110. }
  3111. /**
  3112. * get_unbound_pool - get a worker_pool with the specified attributes
  3113. * @attrs: the attributes of the worker_pool to get
  3114. *
  3115. * Obtain a worker_pool which has the same attributes as @attrs, bump the
  3116. * reference count and return it. If there already is a matching
  3117. * worker_pool, it will be used; otherwise, this function attempts to
  3118. * create a new one.
  3119. *
  3120. * Should be called with wq_pool_mutex held.
  3121. *
  3122. * Return: On success, a worker_pool with the same attributes as @attrs.
  3123. * On failure, %NULL.
  3124. */
  3125. static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
  3126. {
  3127. u32 hash = wqattrs_hash(attrs);
  3128. struct worker_pool *pool;
  3129. int node;
  3130. lockdep_assert_held(&wq_pool_mutex);
  3131. /* do we already have a matching pool? */
  3132. hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
  3133. if (wqattrs_equal(pool->attrs, attrs)) {
  3134. pool->refcnt++;
  3135. goto out_unlock;
  3136. }
  3137. }
  3138. /* nope, create a new one */
  3139. pool = kzalloc(sizeof(*pool), GFP_KERNEL);
  3140. if (!pool || init_worker_pool(pool) < 0)
  3141. goto fail;
  3142. if (workqueue_freezing)
  3143. pool->flags |= POOL_FREEZING;
  3144. lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
  3145. copy_workqueue_attrs(pool->attrs, attrs);
  3146. /*
  3147. * no_numa isn't a worker_pool attribute, always clear it. See
  3148. * 'struct workqueue_attrs' comments for detail.
  3149. */
  3150. pool->attrs->no_numa = false;
  3151. /* if cpumask is contained inside a NUMA node, we belong to that node */
  3152. if (wq_numa_enabled) {
  3153. for_each_node(node) {
  3154. if (cpumask_subset(pool->attrs->cpumask,
  3155. wq_numa_possible_cpumask[node])) {
  3156. pool->node = node;
  3157. break;
  3158. }
  3159. }
  3160. }
  3161. if (worker_pool_assign_id(pool) < 0)
  3162. goto fail;
  3163. /* create and start the initial worker */
  3164. if (create_and_start_worker(pool) < 0)
  3165. goto fail;
  3166. /* install */
  3167. hash_add(unbound_pool_hash, &pool->hash_node, hash);
  3168. out_unlock:
  3169. return pool;
  3170. fail:
  3171. if (pool)
  3172. put_unbound_pool(pool);
  3173. return NULL;
  3174. }
  3175. static void rcu_free_pwq(struct rcu_head *rcu)
  3176. {
  3177. kmem_cache_free(pwq_cache,
  3178. container_of(rcu, struct pool_workqueue, rcu));
  3179. }
  3180. /*
  3181. * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
  3182. * and needs to be destroyed.
  3183. */
  3184. static void pwq_unbound_release_workfn(struct work_struct *work)
  3185. {
  3186. struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
  3187. unbound_release_work);
  3188. struct workqueue_struct *wq = pwq->wq;
  3189. struct worker_pool *pool = pwq->pool;
  3190. bool is_last;
  3191. if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
  3192. return;
  3193. /*
  3194. * Unlink @pwq. Synchronization against wq->mutex isn't strictly
  3195. * necessary on release but do it anyway. It's easier to verify
  3196. * and consistent with the linking path.
  3197. */
  3198. mutex_lock(&wq->mutex);
  3199. list_del_rcu(&pwq->pwqs_node);
  3200. is_last = list_empty(&wq->pwqs);
  3201. mutex_unlock(&wq->mutex);
  3202. mutex_lock(&wq_pool_mutex);
  3203. put_unbound_pool(pool);
  3204. mutex_unlock(&wq_pool_mutex);
  3205. call_rcu_sched(&pwq->rcu, rcu_free_pwq);
  3206. /*
  3207. * If we're the last pwq going away, @wq is already dead and no one
  3208. * is gonna access it anymore. Free it.
  3209. */
  3210. if (is_last) {
  3211. free_workqueue_attrs(wq->unbound_attrs);
  3212. kfree(wq);
  3213. }
  3214. }
  3215. /**
  3216. * pwq_adjust_max_active - update a pwq's max_active to the current setting
  3217. * @pwq: target pool_workqueue
  3218. *
  3219. * If @pwq isn't freezing, set @pwq->max_active to the associated
  3220. * workqueue's saved_max_active and activate delayed work items
  3221. * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
  3222. */
  3223. static void pwq_adjust_max_active(struct pool_workqueue *pwq)
  3224. {
  3225. struct workqueue_struct *wq = pwq->wq;
  3226. bool freezable = wq->flags & WQ_FREEZABLE;
  3227. /* for @wq->saved_max_active */
  3228. lockdep_assert_held(&wq->mutex);
  3229. /* fast exit for non-freezable wqs */
  3230. if (!freezable && pwq->max_active == wq->saved_max_active)
  3231. return;
  3232. spin_lock_irq(&pwq->pool->lock);
  3233. if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
  3234. pwq->max_active = wq->saved_max_active;
  3235. while (!list_empty(&pwq->delayed_works) &&
  3236. pwq->nr_active < pwq->max_active)
  3237. pwq_activate_first_delayed(pwq);
  3238. /*
  3239. * Need to kick a worker after thawed or an unbound wq's
  3240. * max_active is bumped. It's a slow path. Do it always.
  3241. */
  3242. wake_up_worker(pwq->pool);
  3243. } else {
  3244. pwq->max_active = 0;
  3245. }
  3246. spin_unlock_irq(&pwq->pool->lock);
  3247. }
  3248. /* initialize newly alloced @pwq which is associated with @wq and @pool */
  3249. static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
  3250. struct worker_pool *pool)
  3251. {
  3252. BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
  3253. memset(pwq, 0, sizeof(*pwq));
  3254. pwq->pool = pool;
  3255. pwq->wq = wq;
  3256. pwq->flush_color = -1;
  3257. pwq->refcnt = 1;
  3258. INIT_LIST_HEAD(&pwq->delayed_works);
  3259. INIT_LIST_HEAD(&pwq->pwqs_node);
  3260. INIT_LIST_HEAD(&pwq->mayday_node);
  3261. INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
  3262. }
  3263. /* sync @pwq with the current state of its associated wq and link it */
  3264. static void link_pwq(struct pool_workqueue *pwq)
  3265. {
  3266. struct workqueue_struct *wq = pwq->wq;
  3267. lockdep_assert_held(&wq->mutex);
  3268. /* may be called multiple times, ignore if already linked */
  3269. if (!list_empty(&pwq->pwqs_node))
  3270. return;
  3271. /*
  3272. * Set the matching work_color. This is synchronized with
  3273. * wq->mutex to avoid confusing flush_workqueue().
  3274. */
  3275. pwq->work_color = wq->work_color;
  3276. /* sync max_active to the current setting */
  3277. pwq_adjust_max_active(pwq);
  3278. /* link in @pwq */
  3279. list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
  3280. }
  3281. /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
  3282. static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
  3283. const struct workqueue_attrs *attrs)
  3284. {
  3285. struct worker_pool *pool;
  3286. struct pool_workqueue *pwq;
  3287. lockdep_assert_held(&wq_pool_mutex);
  3288. pool = get_unbound_pool(attrs);
  3289. if (!pool)
  3290. return NULL;
  3291. pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
  3292. if (!pwq) {
  3293. put_unbound_pool(pool);
  3294. return NULL;
  3295. }
  3296. init_pwq(pwq, wq, pool);
  3297. return pwq;
  3298. }
  3299. /* undo alloc_unbound_pwq(), used only in the error path */
  3300. static void free_unbound_pwq(struct pool_workqueue *pwq)
  3301. {
  3302. lockdep_assert_held(&wq_pool_mutex);
  3303. if (pwq) {
  3304. put_unbound_pool(pwq->pool);
  3305. kmem_cache_free(pwq_cache, pwq);
  3306. }
  3307. }
  3308. /**
  3309. * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
  3310. * @attrs: the wq_attrs of interest
  3311. * @node: the target NUMA node
  3312. * @cpu_going_down: if >= 0, the CPU to consider as offline
  3313. * @cpumask: outarg, the resulting cpumask
  3314. *
  3315. * Calculate the cpumask a workqueue with @attrs should use on @node. If
  3316. * @cpu_going_down is >= 0, that cpu is considered offline during
  3317. * calculation. The result is stored in @cpumask.
  3318. *
  3319. * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
  3320. * enabled and @node has online CPUs requested by @attrs, the returned
  3321. * cpumask is the intersection of the possible CPUs of @node and
  3322. * @attrs->cpumask.
  3323. *
  3324. * The caller is responsible for ensuring that the cpumask of @node stays
  3325. * stable.
  3326. *
  3327. * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
  3328. * %false if equal.
  3329. */
  3330. static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
  3331. int cpu_going_down, cpumask_t *cpumask)
  3332. {
  3333. if (!wq_numa_enabled || attrs->no_numa)
  3334. goto use_dfl;
  3335. /* does @node have any online CPUs @attrs wants? */
  3336. cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
  3337. if (cpu_going_down >= 0)
  3338. cpumask_clear_cpu(cpu_going_down, cpumask);
  3339. if (cpumask_empty(cpumask))
  3340. goto use_dfl;
  3341. /* yeap, return possible CPUs in @node that @attrs wants */
  3342. cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
  3343. return !cpumask_equal(cpumask, attrs->cpumask);
  3344. use_dfl:
  3345. cpumask_copy(cpumask, attrs->cpumask);
  3346. return false;
  3347. }
  3348. /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
  3349. static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
  3350. int node,
  3351. struct pool_workqueue *pwq)
  3352. {
  3353. struct pool_workqueue *old_pwq;
  3354. lockdep_assert_held(&wq->mutex);
  3355. /* link_pwq() can handle duplicate calls */
  3356. link_pwq(pwq);
  3357. old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
  3358. rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
  3359. return old_pwq;
  3360. }
  3361. /**
  3362. * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
  3363. * @wq: the target workqueue
  3364. * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
  3365. *
  3366. * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
  3367. * machines, this function maps a separate pwq to each NUMA node with
  3368. * possibles CPUs in @attrs->cpumask so that work items are affine to the
  3369. * NUMA node it was issued on. Older pwqs are released as in-flight work
  3370. * items finish. Note that a work item which repeatedly requeues itself
  3371. * back-to-back will stay on its current pwq.
  3372. *
  3373. * Performs GFP_KERNEL allocations.
  3374. *
  3375. * Return: 0 on success and -errno on failure.
  3376. */
  3377. int apply_workqueue_attrs(struct workqueue_struct *wq,
  3378. const struct workqueue_attrs *attrs)
  3379. {
  3380. struct workqueue_attrs *new_attrs, *tmp_attrs;
  3381. struct pool_workqueue **pwq_tbl, *dfl_pwq;
  3382. int node, ret;
  3383. /* only unbound workqueues can change attributes */
  3384. if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
  3385. return -EINVAL;
  3386. /* creating multiple pwqs breaks ordering guarantee */
  3387. if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
  3388. return -EINVAL;
  3389. pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
  3390. new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3391. tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3392. if (!pwq_tbl || !new_attrs || !tmp_attrs)
  3393. goto enomem;
  3394. /* make a copy of @attrs and sanitize it */
  3395. copy_workqueue_attrs(new_attrs, attrs);
  3396. cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
  3397. /*
  3398. * We may create multiple pwqs with differing cpumasks. Make a
  3399. * copy of @new_attrs which will be modified and used to obtain
  3400. * pools.
  3401. */
  3402. copy_workqueue_attrs(tmp_attrs, new_attrs);
  3403. /*
  3404. * CPUs should stay stable across pwq creations and installations.
  3405. * Pin CPUs, determine the target cpumask for each node and create
  3406. * pwqs accordingly.
  3407. */
  3408. get_online_cpus();
  3409. mutex_lock(&wq_pool_mutex);
  3410. /*
  3411. * If something goes wrong during CPU up/down, we'll fall back to
  3412. * the default pwq covering whole @attrs->cpumask. Always create
  3413. * it even if we don't use it immediately.
  3414. */
  3415. dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
  3416. if (!dfl_pwq)
  3417. goto enomem_pwq;
  3418. for_each_node(node) {
  3419. if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
  3420. pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
  3421. if (!pwq_tbl[node])
  3422. goto enomem_pwq;
  3423. } else {
  3424. dfl_pwq->refcnt++;
  3425. pwq_tbl[node] = dfl_pwq;
  3426. }
  3427. }
  3428. mutex_unlock(&wq_pool_mutex);
  3429. /* all pwqs have been created successfully, let's install'em */
  3430. mutex_lock(&wq->mutex);
  3431. copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
  3432. /* save the previous pwq and install the new one */
  3433. for_each_node(node)
  3434. pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
  3435. /* @dfl_pwq might not have been used, ensure it's linked */
  3436. link_pwq(dfl_pwq);
  3437. swap(wq->dfl_pwq, dfl_pwq);
  3438. mutex_unlock(&wq->mutex);
  3439. /* put the old pwqs */
  3440. for_each_node(node)
  3441. put_pwq_unlocked(pwq_tbl[node]);
  3442. put_pwq_unlocked(dfl_pwq);
  3443. put_online_cpus();
  3444. ret = 0;
  3445. /* fall through */
  3446. out_free:
  3447. free_workqueue_attrs(tmp_attrs);
  3448. free_workqueue_attrs(new_attrs);
  3449. kfree(pwq_tbl);
  3450. return ret;
  3451. enomem_pwq:
  3452. free_unbound_pwq(dfl_pwq);
  3453. for_each_node(node)
  3454. if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
  3455. free_unbound_pwq(pwq_tbl[node]);
  3456. mutex_unlock(&wq_pool_mutex);
  3457. put_online_cpus();
  3458. enomem:
  3459. ret = -ENOMEM;
  3460. goto out_free;
  3461. }
  3462. /**
  3463. * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
  3464. * @wq: the target workqueue
  3465. * @cpu: the CPU coming up or going down
  3466. * @online: whether @cpu is coming up or going down
  3467. *
  3468. * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
  3469. * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
  3470. * @wq accordingly.
  3471. *
  3472. * If NUMA affinity can't be adjusted due to memory allocation failure, it
  3473. * falls back to @wq->dfl_pwq which may not be optimal but is always
  3474. * correct.
  3475. *
  3476. * Note that when the last allowed CPU of a NUMA node goes offline for a
  3477. * workqueue with a cpumask spanning multiple nodes, the workers which were
  3478. * already executing the work items for the workqueue will lose their CPU
  3479. * affinity and may execute on any CPU. This is similar to how per-cpu
  3480. * workqueues behave on CPU_DOWN. If a workqueue user wants strict
  3481. * affinity, it's the user's responsibility to flush the work item from
  3482. * CPU_DOWN_PREPARE.
  3483. */
  3484. static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
  3485. bool online)
  3486. {
  3487. int node = cpu_to_node(cpu);
  3488. int cpu_off = online ? -1 : cpu;
  3489. struct pool_workqueue *old_pwq = NULL, *pwq;
  3490. struct workqueue_attrs *target_attrs;
  3491. cpumask_t *cpumask;
  3492. lockdep_assert_held(&wq_pool_mutex);
  3493. if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
  3494. return;
  3495. /*
  3496. * We don't wanna alloc/free wq_attrs for each wq for each CPU.
  3497. * Let's use a preallocated one. The following buf is protected by
  3498. * CPU hotplug exclusion.
  3499. */
  3500. target_attrs = wq_update_unbound_numa_attrs_buf;
  3501. cpumask = target_attrs->cpumask;
  3502. mutex_lock(&wq->mutex);
  3503. if (wq->unbound_attrs->no_numa)
  3504. goto out_unlock;
  3505. copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
  3506. pwq = unbound_pwq_by_node(wq, node);
  3507. /*
  3508. * Let's determine what needs to be done. If the target cpumask is
  3509. * different from wq's, we need to compare it to @pwq's and create
  3510. * a new one if they don't match. If the target cpumask equals
  3511. * wq's, the default pwq should be used.
  3512. */
  3513. if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
  3514. if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
  3515. goto out_unlock;
  3516. } else {
  3517. goto use_dfl_pwq;
  3518. }
  3519. mutex_unlock(&wq->mutex);
  3520. /* create a new pwq */
  3521. pwq = alloc_unbound_pwq(wq, target_attrs);
  3522. if (!pwq) {
  3523. pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
  3524. wq->name);
  3525. mutex_lock(&wq->mutex);
  3526. goto use_dfl_pwq;
  3527. }
  3528. /*
  3529. * Install the new pwq. As this function is called only from CPU
  3530. * hotplug callbacks and applying a new attrs is wrapped with
  3531. * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
  3532. * inbetween.
  3533. */
  3534. mutex_lock(&wq->mutex);
  3535. old_pwq = numa_pwq_tbl_install(wq, node, pwq);
  3536. goto out_unlock;
  3537. use_dfl_pwq:
  3538. spin_lock_irq(&wq->dfl_pwq->pool->lock);
  3539. get_pwq(wq->dfl_pwq);
  3540. spin_unlock_irq(&wq->dfl_pwq->pool->lock);
  3541. old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
  3542. out_unlock:
  3543. mutex_unlock(&wq->mutex);
  3544. put_pwq_unlocked(old_pwq);
  3545. }
  3546. static int alloc_and_link_pwqs(struct workqueue_struct *wq)
  3547. {
  3548. bool highpri = wq->flags & WQ_HIGHPRI;
  3549. int cpu, ret;
  3550. if (!(wq->flags & WQ_UNBOUND)) {
  3551. wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
  3552. if (!wq->cpu_pwqs)
  3553. return -ENOMEM;
  3554. for_each_possible_cpu(cpu) {
  3555. struct pool_workqueue *pwq =
  3556. per_cpu_ptr(wq->cpu_pwqs, cpu);
  3557. struct worker_pool *cpu_pools =
  3558. per_cpu(cpu_worker_pools, cpu);
  3559. init_pwq(pwq, wq, &cpu_pools[highpri]);
  3560. mutex_lock(&wq->mutex);
  3561. link_pwq(pwq);
  3562. mutex_unlock(&wq->mutex);
  3563. }
  3564. return 0;
  3565. } else if (wq->flags & __WQ_ORDERED) {
  3566. ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
  3567. /* there should only be single pwq for ordering guarantee */
  3568. WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
  3569. wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
  3570. "ordering guarantee broken for workqueue %s\n", wq->name);
  3571. return ret;
  3572. } else {
  3573. return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
  3574. }
  3575. }
  3576. static int wq_clamp_max_active(int max_active, unsigned int flags,
  3577. const char *name)
  3578. {
  3579. int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
  3580. if (max_active < 1 || max_active > lim)
  3581. pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
  3582. max_active, name, 1, lim);
  3583. return clamp_val(max_active, 1, lim);
  3584. }
  3585. struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
  3586. unsigned int flags,
  3587. int max_active,
  3588. struct lock_class_key *key,
  3589. const char *lock_name, ...)
  3590. {
  3591. size_t tbl_size = 0;
  3592. va_list args;
  3593. struct workqueue_struct *wq;
  3594. struct pool_workqueue *pwq;
  3595. /* see the comment above the definition of WQ_POWER_EFFICIENT */
  3596. if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
  3597. flags |= WQ_UNBOUND;
  3598. /* allocate wq and format name */
  3599. if (flags & WQ_UNBOUND)
  3600. tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
  3601. wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
  3602. if (!wq)
  3603. return NULL;
  3604. if (flags & WQ_UNBOUND) {
  3605. wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3606. if (!wq->unbound_attrs)
  3607. goto err_free_wq;
  3608. }
  3609. va_start(args, lock_name);
  3610. vsnprintf(wq->name, sizeof(wq->name), fmt, args);
  3611. va_end(args);
  3612. max_active = max_active ?: WQ_DFL_ACTIVE;
  3613. max_active = wq_clamp_max_active(max_active, flags, wq->name);
  3614. /* init wq */
  3615. wq->flags = flags;
  3616. wq->saved_max_active = max_active;
  3617. mutex_init(&wq->mutex);
  3618. atomic_set(&wq->nr_pwqs_to_flush, 0);
  3619. INIT_LIST_HEAD(&wq->pwqs);
  3620. INIT_LIST_HEAD(&wq->flusher_queue);
  3621. INIT_LIST_HEAD(&wq->flusher_overflow);
  3622. INIT_LIST_HEAD(&wq->maydays);
  3623. lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
  3624. INIT_LIST_HEAD(&wq->list);
  3625. if (alloc_and_link_pwqs(wq) < 0)
  3626. goto err_free_wq;
  3627. /*
  3628. * Workqueues which may be used during memory reclaim should
  3629. * have a rescuer to guarantee forward progress.
  3630. */
  3631. if (flags & WQ_MEM_RECLAIM) {
  3632. struct worker *rescuer;
  3633. rescuer = alloc_worker();
  3634. if (!rescuer)
  3635. goto err_destroy;
  3636. rescuer->rescue_wq = wq;
  3637. rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
  3638. wq->name);
  3639. if (IS_ERR(rescuer->task)) {
  3640. kfree(rescuer);
  3641. goto err_destroy;
  3642. }
  3643. wq->rescuer = rescuer;
  3644. rescuer->task->flags |= PF_NO_SETAFFINITY;
  3645. wake_up_process(rescuer->task);
  3646. }
  3647. if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
  3648. goto err_destroy;
  3649. /*
  3650. * wq_pool_mutex protects global freeze state and workqueues list.
  3651. * Grab it, adjust max_active and add the new @wq to workqueues
  3652. * list.
  3653. */
  3654. mutex_lock(&wq_pool_mutex);
  3655. mutex_lock(&wq->mutex);
  3656. for_each_pwq(pwq, wq)
  3657. pwq_adjust_max_active(pwq);
  3658. mutex_unlock(&wq->mutex);
  3659. list_add(&wq->list, &workqueues);
  3660. mutex_unlock(&wq_pool_mutex);
  3661. return wq;
  3662. err_free_wq:
  3663. free_workqueue_attrs(wq->unbound_attrs);
  3664. kfree(wq);
  3665. return NULL;
  3666. err_destroy:
  3667. destroy_workqueue(wq);
  3668. return NULL;
  3669. }
  3670. EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
  3671. /**
  3672. * destroy_workqueue - safely terminate a workqueue
  3673. * @wq: target workqueue
  3674. *
  3675. * Safely destroy a workqueue. All work currently pending will be done first.
  3676. */
  3677. void destroy_workqueue(struct workqueue_struct *wq)
  3678. {
  3679. struct pool_workqueue *pwq;
  3680. int node;
  3681. /* drain it before proceeding with destruction */
  3682. drain_workqueue(wq);
  3683. /* sanity checks */
  3684. mutex_lock(&wq->mutex);
  3685. for_each_pwq(pwq, wq) {
  3686. int i;
  3687. for (i = 0; i < WORK_NR_COLORS; i++) {
  3688. if (WARN_ON(pwq->nr_in_flight[i])) {
  3689. mutex_unlock(&wq->mutex);
  3690. return;
  3691. }
  3692. }
  3693. if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
  3694. WARN_ON(pwq->nr_active) ||
  3695. WARN_ON(!list_empty(&pwq->delayed_works))) {
  3696. mutex_unlock(&wq->mutex);
  3697. return;
  3698. }
  3699. }
  3700. mutex_unlock(&wq->mutex);
  3701. /*
  3702. * wq list is used to freeze wq, remove from list after
  3703. * flushing is complete in case freeze races us.
  3704. */
  3705. mutex_lock(&wq_pool_mutex);
  3706. list_del_init(&wq->list);
  3707. mutex_unlock(&wq_pool_mutex);
  3708. workqueue_sysfs_unregister(wq);
  3709. if (wq->rescuer) {
  3710. kthread_stop(wq->rescuer->task);
  3711. kfree(wq->rescuer);
  3712. wq->rescuer = NULL;
  3713. }
  3714. if (!(wq->flags & WQ_UNBOUND)) {
  3715. /*
  3716. * The base ref is never dropped on per-cpu pwqs. Directly
  3717. * free the pwqs and wq.
  3718. */
  3719. free_percpu(wq->cpu_pwqs);
  3720. kfree(wq);
  3721. } else {
  3722. /*
  3723. * We're the sole accessor of @wq at this point. Directly
  3724. * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
  3725. * @wq will be freed when the last pwq is released.
  3726. */
  3727. for_each_node(node) {
  3728. pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
  3729. RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
  3730. put_pwq_unlocked(pwq);
  3731. }
  3732. /*
  3733. * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
  3734. * put. Don't access it afterwards.
  3735. */
  3736. pwq = wq->dfl_pwq;
  3737. wq->dfl_pwq = NULL;
  3738. put_pwq_unlocked(pwq);
  3739. }
  3740. }
  3741. EXPORT_SYMBOL_GPL(destroy_workqueue);
  3742. /**
  3743. * workqueue_set_max_active - adjust max_active of a workqueue
  3744. * @wq: target workqueue
  3745. * @max_active: new max_active value.
  3746. *
  3747. * Set max_active of @wq to @max_active.
  3748. *
  3749. * CONTEXT:
  3750. * Don't call from IRQ context.
  3751. */
  3752. void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
  3753. {
  3754. struct pool_workqueue *pwq;
  3755. /* disallow meddling with max_active for ordered workqueues */
  3756. if (WARN_ON(wq->flags & __WQ_ORDERED))
  3757. return;
  3758. max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
  3759. mutex_lock(&wq->mutex);
  3760. wq->saved_max_active = max_active;
  3761. for_each_pwq(pwq, wq)
  3762. pwq_adjust_max_active(pwq);
  3763. mutex_unlock(&wq->mutex);
  3764. }
  3765. EXPORT_SYMBOL_GPL(workqueue_set_max_active);
  3766. /**
  3767. * current_is_workqueue_rescuer - is %current workqueue rescuer?
  3768. *
  3769. * Determine whether %current is a workqueue rescuer. Can be used from
  3770. * work functions to determine whether it's being run off the rescuer task.
  3771. *
  3772. * Return: %true if %current is a workqueue rescuer. %false otherwise.
  3773. */
  3774. bool current_is_workqueue_rescuer(void)
  3775. {
  3776. struct worker *worker = current_wq_worker();
  3777. return worker && worker->rescue_wq;
  3778. }
  3779. /**
  3780. * workqueue_congested - test whether a workqueue is congested
  3781. * @cpu: CPU in question
  3782. * @wq: target workqueue
  3783. *
  3784. * Test whether @wq's cpu workqueue for @cpu is congested. There is
  3785. * no synchronization around this function and the test result is
  3786. * unreliable and only useful as advisory hints or for debugging.
  3787. *
  3788. * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
  3789. * Note that both per-cpu and unbound workqueues may be associated with
  3790. * multiple pool_workqueues which have separate congested states. A
  3791. * workqueue being congested on one CPU doesn't mean the workqueue is also
  3792. * contested on other CPUs / NUMA nodes.
  3793. *
  3794. * Return:
  3795. * %true if congested, %false otherwise.
  3796. */
  3797. bool workqueue_congested(int cpu, struct workqueue_struct *wq)
  3798. {
  3799. struct pool_workqueue *pwq;
  3800. bool ret;
  3801. rcu_read_lock_sched();
  3802. if (cpu == WORK_CPU_UNBOUND)
  3803. cpu = smp_processor_id();
  3804. if (!(wq->flags & WQ_UNBOUND))
  3805. pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
  3806. else
  3807. pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
  3808. ret = !list_empty(&pwq->delayed_works);
  3809. rcu_read_unlock_sched();
  3810. return ret;
  3811. }
  3812. EXPORT_SYMBOL_GPL(workqueue_congested);
  3813. /**
  3814. * work_busy - test whether a work is currently pending or running
  3815. * @work: the work to be tested
  3816. *
  3817. * Test whether @work is currently pending or running. There is no
  3818. * synchronization around this function and the test result is
  3819. * unreliable and only useful as advisory hints or for debugging.
  3820. *
  3821. * Return:
  3822. * OR'd bitmask of WORK_BUSY_* bits.
  3823. */
  3824. unsigned int work_busy(struct work_struct *work)
  3825. {
  3826. struct worker_pool *pool;
  3827. unsigned long flags;
  3828. unsigned int ret = 0;
  3829. if (work_pending(work))
  3830. ret |= WORK_BUSY_PENDING;
  3831. local_irq_save(flags);
  3832. pool = get_work_pool(work);
  3833. if (pool) {
  3834. spin_lock(&pool->lock);
  3835. if (find_worker_executing_work(pool, work))
  3836. ret |= WORK_BUSY_RUNNING;
  3837. spin_unlock(&pool->lock);
  3838. }
  3839. local_irq_restore(flags);
  3840. return ret;
  3841. }
  3842. EXPORT_SYMBOL_GPL(work_busy);
  3843. /**
  3844. * set_worker_desc - set description for the current work item
  3845. * @fmt: printf-style format string
  3846. * @...: arguments for the format string
  3847. *
  3848. * This function can be called by a running work function to describe what
  3849. * the work item is about. If the worker task gets dumped, this
  3850. * information will be printed out together to help debugging. The
  3851. * description can be at most WORKER_DESC_LEN including the trailing '\0'.
  3852. */
  3853. void set_worker_desc(const char *fmt, ...)
  3854. {
  3855. struct worker *worker = current_wq_worker();
  3856. va_list args;
  3857. if (worker) {
  3858. va_start(args, fmt);
  3859. vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
  3860. va_end(args);
  3861. worker->desc_valid = true;
  3862. }
  3863. }
  3864. /**
  3865. * print_worker_info - print out worker information and description
  3866. * @log_lvl: the log level to use when printing
  3867. * @task: target task
  3868. *
  3869. * If @task is a worker and currently executing a work item, print out the
  3870. * name of the workqueue being serviced and worker description set with
  3871. * set_worker_desc() by the currently executing work item.
  3872. *
  3873. * This function can be safely called on any task as long as the
  3874. * task_struct itself is accessible. While safe, this function isn't
  3875. * synchronized and may print out mixups or garbages of limited length.
  3876. */
  3877. void print_worker_info(const char *log_lvl, struct task_struct *task)
  3878. {
  3879. work_func_t *fn = NULL;
  3880. char name[WQ_NAME_LEN] = { };
  3881. char desc[WORKER_DESC_LEN] = { };
  3882. struct pool_workqueue *pwq = NULL;
  3883. struct workqueue_struct *wq = NULL;
  3884. bool desc_valid = false;
  3885. struct worker *worker;
  3886. if (!(task->flags & PF_WQ_WORKER))
  3887. return;
  3888. /*
  3889. * This function is called without any synchronization and @task
  3890. * could be in any state. Be careful with dereferences.
  3891. */
  3892. worker = probe_kthread_data(task);
  3893. /*
  3894. * Carefully copy the associated workqueue's workfn and name. Keep
  3895. * the original last '\0' in case the original contains garbage.
  3896. */
  3897. probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
  3898. probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
  3899. probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
  3900. probe_kernel_read(name, wq->name, sizeof(name) - 1);
  3901. /* copy worker description */
  3902. probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
  3903. if (desc_valid)
  3904. probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
  3905. if (fn || name[0] || desc[0]) {
  3906. pr_info("%sWorkqueue: %s %pf", log_lvl, name, fn);
  3907. if (desc[0])
  3908. pr_cont(" (%s)", desc);
  3909. pr_cont("\n");
  3910. }
  3911. }
  3912. /*
  3913. * CPU hotplug.
  3914. *
  3915. * There are two challenges in supporting CPU hotplug. Firstly, there
  3916. * are a lot of assumptions on strong associations among work, pwq and
  3917. * pool which make migrating pending and scheduled works very
  3918. * difficult to implement without impacting hot paths. Secondly,
  3919. * worker pools serve mix of short, long and very long running works making
  3920. * blocked draining impractical.
  3921. *
  3922. * This is solved by allowing the pools to be disassociated from the CPU
  3923. * running as an unbound one and allowing it to be reattached later if the
  3924. * cpu comes back online.
  3925. */
  3926. static void wq_unbind_fn(struct work_struct *work)
  3927. {
  3928. int cpu = smp_processor_id();
  3929. struct worker_pool *pool;
  3930. struct worker *worker;
  3931. int wi;
  3932. for_each_cpu_worker_pool(pool, cpu) {
  3933. WARN_ON_ONCE(cpu != smp_processor_id());
  3934. mutex_lock(&pool->manager_mutex);
  3935. spin_lock_irq(&pool->lock);
  3936. /*
  3937. * We've blocked all manager operations. Make all workers
  3938. * unbound and set DISASSOCIATED. Before this, all workers
  3939. * except for the ones which are still executing works from
  3940. * before the last CPU down must be on the cpu. After
  3941. * this, they may become diasporas.
  3942. */
  3943. for_each_pool_worker(worker, wi, pool)
  3944. worker->flags |= WORKER_UNBOUND;
  3945. pool->flags |= POOL_DISASSOCIATED;
  3946. spin_unlock_irq(&pool->lock);
  3947. mutex_unlock(&pool->manager_mutex);
  3948. /*
  3949. * Call schedule() so that we cross rq->lock and thus can
  3950. * guarantee sched callbacks see the %WORKER_UNBOUND flag.
  3951. * This is necessary as scheduler callbacks may be invoked
  3952. * from other cpus.
  3953. */
  3954. schedule();
  3955. /*
  3956. * Sched callbacks are disabled now. Zap nr_running.
  3957. * After this, nr_running stays zero and need_more_worker()
  3958. * and keep_working() are always true as long as the
  3959. * worklist is not empty. This pool now behaves as an
  3960. * unbound (in terms of concurrency management) pool which
  3961. * are served by workers tied to the pool.
  3962. */
  3963. atomic_set(&pool->nr_running, 0);
  3964. /*
  3965. * With concurrency management just turned off, a busy
  3966. * worker blocking could lead to lengthy stalls. Kick off
  3967. * unbound chain execution of currently pending work items.
  3968. */
  3969. spin_lock_irq(&pool->lock);
  3970. wake_up_worker(pool);
  3971. spin_unlock_irq(&pool->lock);
  3972. }
  3973. }
  3974. /**
  3975. * rebind_workers - rebind all workers of a pool to the associated CPU
  3976. * @pool: pool of interest
  3977. *
  3978. * @pool->cpu is coming online. Rebind all workers to the CPU.
  3979. */
  3980. static void rebind_workers(struct worker_pool *pool)
  3981. {
  3982. struct worker *worker;
  3983. int wi;
  3984. lockdep_assert_held(&pool->manager_mutex);
  3985. /*
  3986. * Restore CPU affinity of all workers. As all idle workers should
  3987. * be on the run-queue of the associated CPU before any local
  3988. * wake-ups for concurrency management happen, restore CPU affinty
  3989. * of all workers first and then clear UNBOUND. As we're called
  3990. * from CPU_ONLINE, the following shouldn't fail.
  3991. */
  3992. for_each_pool_worker(worker, wi, pool)
  3993. WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
  3994. pool->attrs->cpumask) < 0);
  3995. spin_lock_irq(&pool->lock);
  3996. for_each_pool_worker(worker, wi, pool) {
  3997. unsigned int worker_flags = worker->flags;
  3998. /*
  3999. * A bound idle worker should actually be on the runqueue
  4000. * of the associated CPU for local wake-ups targeting it to
  4001. * work. Kick all idle workers so that they migrate to the
  4002. * associated CPU. Doing this in the same loop as
  4003. * replacing UNBOUND with REBOUND is safe as no worker will
  4004. * be bound before @pool->lock is released.
  4005. */
  4006. if (worker_flags & WORKER_IDLE)
  4007. wake_up_process(worker->task);
  4008. /*
  4009. * We want to clear UNBOUND but can't directly call
  4010. * worker_clr_flags() or adjust nr_running. Atomically
  4011. * replace UNBOUND with another NOT_RUNNING flag REBOUND.
  4012. * @worker will clear REBOUND using worker_clr_flags() when
  4013. * it initiates the next execution cycle thus restoring
  4014. * concurrency management. Note that when or whether
  4015. * @worker clears REBOUND doesn't affect correctness.
  4016. *
  4017. * ACCESS_ONCE() is necessary because @worker->flags may be
  4018. * tested without holding any lock in
  4019. * wq_worker_waking_up(). Without it, NOT_RUNNING test may
  4020. * fail incorrectly leading to premature concurrency
  4021. * management operations.
  4022. */
  4023. WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
  4024. worker_flags |= WORKER_REBOUND;
  4025. worker_flags &= ~WORKER_UNBOUND;
  4026. ACCESS_ONCE(worker->flags) = worker_flags;
  4027. }
  4028. spin_unlock_irq(&pool->lock);
  4029. }
  4030. /**
  4031. * restore_unbound_workers_cpumask - restore cpumask of unbound workers
  4032. * @pool: unbound pool of interest
  4033. * @cpu: the CPU which is coming up
  4034. *
  4035. * An unbound pool may end up with a cpumask which doesn't have any online
  4036. * CPUs. When a worker of such pool get scheduled, the scheduler resets
  4037. * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
  4038. * online CPU before, cpus_allowed of all its workers should be restored.
  4039. */
  4040. static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
  4041. {
  4042. static cpumask_t cpumask;
  4043. struct worker *worker;
  4044. int wi;
  4045. lockdep_assert_held(&pool->manager_mutex);
  4046. /* is @cpu allowed for @pool? */
  4047. if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
  4048. return;
  4049. /* is @cpu the only online CPU? */
  4050. cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
  4051. if (cpumask_weight(&cpumask) != 1)
  4052. return;
  4053. /* as we're called from CPU_ONLINE, the following shouldn't fail */
  4054. for_each_pool_worker(worker, wi, pool)
  4055. WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
  4056. pool->attrs->cpumask) < 0);
  4057. }
  4058. /*
  4059. * Workqueues should be brought up before normal priority CPU notifiers.
  4060. * This will be registered high priority CPU notifier.
  4061. */
  4062. static int workqueue_cpu_up_callback(struct notifier_block *nfb,
  4063. unsigned long action,
  4064. void *hcpu)
  4065. {
  4066. int cpu = (unsigned long)hcpu;
  4067. struct worker_pool *pool;
  4068. struct workqueue_struct *wq;
  4069. int pi;
  4070. switch (action & ~CPU_TASKS_FROZEN) {
  4071. case CPU_UP_PREPARE:
  4072. for_each_cpu_worker_pool(pool, cpu) {
  4073. if (pool->nr_workers)
  4074. continue;
  4075. if (create_and_start_worker(pool) < 0)
  4076. return NOTIFY_BAD;
  4077. }
  4078. break;
  4079. case CPU_DOWN_FAILED:
  4080. case CPU_ONLINE:
  4081. mutex_lock(&wq_pool_mutex);
  4082. for_each_pool(pool, pi) {
  4083. mutex_lock(&pool->manager_mutex);
  4084. if (pool->cpu == cpu) {
  4085. spin_lock_irq(&pool->lock);
  4086. pool->flags &= ~POOL_DISASSOCIATED;
  4087. spin_unlock_irq(&pool->lock);
  4088. rebind_workers(pool);
  4089. } else if (pool->cpu < 0) {
  4090. restore_unbound_workers_cpumask(pool, cpu);
  4091. }
  4092. mutex_unlock(&pool->manager_mutex);
  4093. }
  4094. /* update NUMA affinity of unbound workqueues */
  4095. list_for_each_entry(wq, &workqueues, list)
  4096. wq_update_unbound_numa(wq, cpu, true);
  4097. mutex_unlock(&wq_pool_mutex);
  4098. break;
  4099. }
  4100. return NOTIFY_OK;
  4101. }
  4102. /*
  4103. * Workqueues should be brought down after normal priority CPU notifiers.
  4104. * This will be registered as low priority CPU notifier.
  4105. */
  4106. static int workqueue_cpu_down_callback(struct notifier_block *nfb,
  4107. unsigned long action,
  4108. void *hcpu)
  4109. {
  4110. int cpu = (unsigned long)hcpu;
  4111. struct work_struct unbind_work;
  4112. struct workqueue_struct *wq;
  4113. switch (action & ~CPU_TASKS_FROZEN) {
  4114. case CPU_DOWN_PREPARE:
  4115. /* unbinding per-cpu workers should happen on the local CPU */
  4116. INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
  4117. queue_work_on(cpu, system_highpri_wq, &unbind_work);
  4118. /* update NUMA affinity of unbound workqueues */
  4119. mutex_lock(&wq_pool_mutex);
  4120. list_for_each_entry(wq, &workqueues, list)
  4121. wq_update_unbound_numa(wq, cpu, false);
  4122. mutex_unlock(&wq_pool_mutex);
  4123. /* wait for per-cpu unbinding to finish */
  4124. flush_work(&unbind_work);
  4125. destroy_work_on_stack(&unbind_work);
  4126. break;
  4127. }
  4128. return NOTIFY_OK;
  4129. }
  4130. #ifdef CONFIG_SMP
  4131. struct work_for_cpu {
  4132. struct work_struct work;
  4133. long (*fn)(void *);
  4134. void *arg;
  4135. long ret;
  4136. };
  4137. static void work_for_cpu_fn(struct work_struct *work)
  4138. {
  4139. struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
  4140. wfc->ret = wfc->fn(wfc->arg);
  4141. }
  4142. /**
  4143. * work_on_cpu - run a function in user context on a particular cpu
  4144. * @cpu: the cpu to run on
  4145. * @fn: the function to run
  4146. * @arg: the function arg
  4147. *
  4148. * It is up to the caller to ensure that the cpu doesn't go offline.
  4149. * The caller must not hold any locks which would prevent @fn from completing.
  4150. *
  4151. * Return: The value @fn returns.
  4152. */
  4153. long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
  4154. {
  4155. struct work_for_cpu wfc = { .fn = fn, .arg = arg };
  4156. INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
  4157. schedule_work_on(cpu, &wfc.work);
  4158. flush_work(&wfc.work);
  4159. destroy_work_on_stack(&wfc.work);
  4160. return wfc.ret;
  4161. }
  4162. EXPORT_SYMBOL_GPL(work_on_cpu);
  4163. #endif /* CONFIG_SMP */
  4164. #ifdef CONFIG_FREEZER
  4165. /**
  4166. * freeze_workqueues_begin - begin freezing workqueues
  4167. *
  4168. * Start freezing workqueues. After this function returns, all freezable
  4169. * workqueues will queue new works to their delayed_works list instead of
  4170. * pool->worklist.
  4171. *
  4172. * CONTEXT:
  4173. * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
  4174. */
  4175. void freeze_workqueues_begin(void)
  4176. {
  4177. struct worker_pool *pool;
  4178. struct workqueue_struct *wq;
  4179. struct pool_workqueue *pwq;
  4180. int pi;
  4181. mutex_lock(&wq_pool_mutex);
  4182. WARN_ON_ONCE(workqueue_freezing);
  4183. workqueue_freezing = true;
  4184. /* set FREEZING */
  4185. for_each_pool(pool, pi) {
  4186. spin_lock_irq(&pool->lock);
  4187. WARN_ON_ONCE(pool->flags & POOL_FREEZING);
  4188. pool->flags |= POOL_FREEZING;
  4189. spin_unlock_irq(&pool->lock);
  4190. }
  4191. list_for_each_entry(wq, &workqueues, list) {
  4192. mutex_lock(&wq->mutex);
  4193. for_each_pwq(pwq, wq)
  4194. pwq_adjust_max_active(pwq);
  4195. mutex_unlock(&wq->mutex);
  4196. }
  4197. mutex_unlock(&wq_pool_mutex);
  4198. }
  4199. /**
  4200. * freeze_workqueues_busy - are freezable workqueues still busy?
  4201. *
  4202. * Check whether freezing is complete. This function must be called
  4203. * between freeze_workqueues_begin() and thaw_workqueues().
  4204. *
  4205. * CONTEXT:
  4206. * Grabs and releases wq_pool_mutex.
  4207. *
  4208. * Return:
  4209. * %true if some freezable workqueues are still busy. %false if freezing
  4210. * is complete.
  4211. */
  4212. bool freeze_workqueues_busy(void)
  4213. {
  4214. bool busy = false;
  4215. struct workqueue_struct *wq;
  4216. struct pool_workqueue *pwq;
  4217. mutex_lock(&wq_pool_mutex);
  4218. WARN_ON_ONCE(!workqueue_freezing);
  4219. list_for_each_entry(wq, &workqueues, list) {
  4220. if (!(wq->flags & WQ_FREEZABLE))
  4221. continue;
  4222. /*
  4223. * nr_active is monotonically decreasing. It's safe
  4224. * to peek without lock.
  4225. */
  4226. rcu_read_lock_sched();
  4227. for_each_pwq(pwq, wq) {
  4228. WARN_ON_ONCE(pwq->nr_active < 0);
  4229. if (pwq->nr_active) {
  4230. busy = true;
  4231. rcu_read_unlock_sched();
  4232. goto out_unlock;
  4233. }
  4234. }
  4235. rcu_read_unlock_sched();
  4236. }
  4237. out_unlock:
  4238. mutex_unlock(&wq_pool_mutex);
  4239. return busy;
  4240. }
  4241. /**
  4242. * thaw_workqueues - thaw workqueues
  4243. *
  4244. * Thaw workqueues. Normal queueing is restored and all collected
  4245. * frozen works are transferred to their respective pool worklists.
  4246. *
  4247. * CONTEXT:
  4248. * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
  4249. */
  4250. void thaw_workqueues(void)
  4251. {
  4252. struct workqueue_struct *wq;
  4253. struct pool_workqueue *pwq;
  4254. struct worker_pool *pool;
  4255. int pi;
  4256. mutex_lock(&wq_pool_mutex);
  4257. if (!workqueue_freezing)
  4258. goto out_unlock;
  4259. /* clear FREEZING */
  4260. for_each_pool(pool, pi) {
  4261. spin_lock_irq(&pool->lock);
  4262. WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
  4263. pool->flags &= ~POOL_FREEZING;
  4264. spin_unlock_irq(&pool->lock);
  4265. }
  4266. /* restore max_active and repopulate worklist */
  4267. list_for_each_entry(wq, &workqueues, list) {
  4268. mutex_lock(&wq->mutex);
  4269. for_each_pwq(pwq, wq)
  4270. pwq_adjust_max_active(pwq);
  4271. mutex_unlock(&wq->mutex);
  4272. }
  4273. workqueue_freezing = false;
  4274. out_unlock:
  4275. mutex_unlock(&wq_pool_mutex);
  4276. }
  4277. #endif /* CONFIG_FREEZER */
  4278. static void __init wq_numa_init(void)
  4279. {
  4280. cpumask_var_t *tbl;
  4281. int node, cpu;
  4282. /* determine NUMA pwq table len - highest node id + 1 */
  4283. for_each_node(node)
  4284. wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
  4285. if (num_possible_nodes() <= 1)
  4286. return;
  4287. if (wq_disable_numa) {
  4288. pr_info("workqueue: NUMA affinity support disabled\n");
  4289. return;
  4290. }
  4291. wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
  4292. BUG_ON(!wq_update_unbound_numa_attrs_buf);
  4293. /*
  4294. * We want masks of possible CPUs of each node which isn't readily
  4295. * available. Build one from cpu_to_node() which should have been
  4296. * fully initialized by now.
  4297. */
  4298. tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
  4299. BUG_ON(!tbl);
  4300. for_each_node(node)
  4301. BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
  4302. node_online(node) ? node : NUMA_NO_NODE));
  4303. for_each_possible_cpu(cpu) {
  4304. node = cpu_to_node(cpu);
  4305. if (WARN_ON(node == NUMA_NO_NODE)) {
  4306. pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
  4307. /* happens iff arch is bonkers, let's just proceed */
  4308. return;
  4309. }
  4310. cpumask_set_cpu(cpu, tbl[node]);
  4311. }
  4312. wq_numa_possible_cpumask = tbl;
  4313. wq_numa_enabled = true;
  4314. }
  4315. static int __init init_workqueues(void)
  4316. {
  4317. int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
  4318. int i, cpu;
  4319. WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
  4320. pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
  4321. cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
  4322. hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
  4323. wq_numa_init();
  4324. /* initialize CPU pools */
  4325. for_each_possible_cpu(cpu) {
  4326. struct worker_pool *pool;
  4327. i = 0;
  4328. for_each_cpu_worker_pool(pool, cpu) {
  4329. BUG_ON(init_worker_pool(pool));
  4330. pool->cpu = cpu;
  4331. cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
  4332. pool->attrs->nice = std_nice[i++];
  4333. pool->node = cpu_to_node(cpu);
  4334. /* alloc pool ID */
  4335. mutex_lock(&wq_pool_mutex);
  4336. BUG_ON(worker_pool_assign_id(pool));
  4337. mutex_unlock(&wq_pool_mutex);
  4338. }
  4339. }
  4340. /* create the initial worker */
  4341. for_each_online_cpu(cpu) {
  4342. struct worker_pool *pool;
  4343. for_each_cpu_worker_pool(pool, cpu) {
  4344. pool->flags &= ~POOL_DISASSOCIATED;
  4345. BUG_ON(create_and_start_worker(pool) < 0);
  4346. }
  4347. }
  4348. /* create default unbound and ordered wq attrs */
  4349. for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
  4350. struct workqueue_attrs *attrs;
  4351. BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
  4352. attrs->nice = std_nice[i];
  4353. unbound_std_wq_attrs[i] = attrs;
  4354. /*
  4355. * An ordered wq should have only one pwq as ordering is
  4356. * guaranteed by max_active which is enforced by pwqs.
  4357. * Turn off NUMA so that dfl_pwq is used for all nodes.
  4358. */
  4359. BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
  4360. attrs->nice = std_nice[i];
  4361. attrs->no_numa = true;
  4362. ordered_wq_attrs[i] = attrs;
  4363. }
  4364. system_wq = alloc_workqueue("events", 0, 0);
  4365. system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
  4366. system_long_wq = alloc_workqueue("events_long", 0, 0);
  4367. system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
  4368. WQ_UNBOUND_MAX_ACTIVE);
  4369. system_freezable_wq = alloc_workqueue("events_freezable",
  4370. WQ_FREEZABLE, 0);
  4371. system_power_efficient_wq = alloc_workqueue("events_power_efficient",
  4372. WQ_POWER_EFFICIENT, 0);
  4373. system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
  4374. WQ_FREEZABLE | WQ_POWER_EFFICIENT,
  4375. 0);
  4376. BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
  4377. !system_unbound_wq || !system_freezable_wq ||
  4378. !system_power_efficient_wq ||
  4379. !system_freezable_power_efficient_wq);
  4380. return 0;
  4381. }
  4382. early_initcall(init_workqueues);