disk-io.c 110 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/slab.h>
  29. #include <linux/migrate.h>
  30. #include <linux/ratelimit.h>
  31. #include <linux/uuid.h>
  32. #include <linux/semaphore.h>
  33. #include <asm/unaligned.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "hash.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "async-thread.h"
  42. #include "locking.h"
  43. #include "tree-log.h"
  44. #include "free-space-cache.h"
  45. #include "inode-map.h"
  46. #include "check-integrity.h"
  47. #include "rcu-string.h"
  48. #include "dev-replace.h"
  49. #include "raid56.h"
  50. #include "sysfs.h"
  51. #ifdef CONFIG_X86
  52. #include <asm/cpufeature.h>
  53. #endif
  54. static struct extent_io_ops btree_extent_io_ops;
  55. static void end_workqueue_fn(struct btrfs_work_struct *work);
  56. static void free_fs_root(struct btrfs_root *root);
  57. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  58. int read_only);
  59. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  60. struct btrfs_root *root);
  61. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  62. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  63. struct btrfs_root *root);
  64. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  65. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  66. struct extent_io_tree *dirty_pages,
  67. int mark);
  68. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  69. struct extent_io_tree *pinned_extents);
  70. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  71. static void btrfs_error_commit_super(struct btrfs_root *root);
  72. /*
  73. * end_io_wq structs are used to do processing in task context when an IO is
  74. * complete. This is used during reads to verify checksums, and it is used
  75. * by writes to insert metadata for new file extents after IO is complete.
  76. */
  77. struct end_io_wq {
  78. struct bio *bio;
  79. bio_end_io_t *end_io;
  80. void *private;
  81. struct btrfs_fs_info *info;
  82. int error;
  83. int metadata;
  84. struct list_head list;
  85. struct btrfs_work_struct work;
  86. };
  87. /*
  88. * async submit bios are used to offload expensive checksumming
  89. * onto the worker threads. They checksum file and metadata bios
  90. * just before they are sent down the IO stack.
  91. */
  92. struct async_submit_bio {
  93. struct inode *inode;
  94. struct bio *bio;
  95. struct list_head list;
  96. extent_submit_bio_hook_t *submit_bio_start;
  97. extent_submit_bio_hook_t *submit_bio_done;
  98. int rw;
  99. int mirror_num;
  100. unsigned long bio_flags;
  101. /*
  102. * bio_offset is optional, can be used if the pages in the bio
  103. * can't tell us where in the file the bio should go
  104. */
  105. u64 bio_offset;
  106. struct btrfs_work_struct work;
  107. int error;
  108. };
  109. /*
  110. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  111. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  112. * the level the eb occupies in the tree.
  113. *
  114. * Different roots are used for different purposes and may nest inside each
  115. * other and they require separate keysets. As lockdep keys should be
  116. * static, assign keysets according to the purpose of the root as indicated
  117. * by btrfs_root->objectid. This ensures that all special purpose roots
  118. * have separate keysets.
  119. *
  120. * Lock-nesting across peer nodes is always done with the immediate parent
  121. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  122. * subclass to avoid triggering lockdep warning in such cases.
  123. *
  124. * The key is set by the readpage_end_io_hook after the buffer has passed
  125. * csum validation but before the pages are unlocked. It is also set by
  126. * btrfs_init_new_buffer on freshly allocated blocks.
  127. *
  128. * We also add a check to make sure the highest level of the tree is the
  129. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  130. * needs update as well.
  131. */
  132. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  133. # if BTRFS_MAX_LEVEL != 8
  134. # error
  135. # endif
  136. static struct btrfs_lockdep_keyset {
  137. u64 id; /* root objectid */
  138. const char *name_stem; /* lock name stem */
  139. char names[BTRFS_MAX_LEVEL + 1][20];
  140. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  141. } btrfs_lockdep_keysets[] = {
  142. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  143. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  144. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  145. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  146. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  147. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  148. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  149. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  150. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  151. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  152. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  153. { .id = 0, .name_stem = "tree" },
  154. };
  155. void __init btrfs_init_lockdep(void)
  156. {
  157. int i, j;
  158. /* initialize lockdep class names */
  159. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  160. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  161. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  162. snprintf(ks->names[j], sizeof(ks->names[j]),
  163. "btrfs-%s-%02d", ks->name_stem, j);
  164. }
  165. }
  166. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  167. int level)
  168. {
  169. struct btrfs_lockdep_keyset *ks;
  170. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  171. /* find the matching keyset, id 0 is the default entry */
  172. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  173. if (ks->id == objectid)
  174. break;
  175. lockdep_set_class_and_name(&eb->lock,
  176. &ks->keys[level], ks->names[level]);
  177. }
  178. #endif
  179. /*
  180. * extents on the btree inode are pretty simple, there's one extent
  181. * that covers the entire device
  182. */
  183. static struct extent_map *btree_get_extent(struct inode *inode,
  184. struct page *page, size_t pg_offset, u64 start, u64 len,
  185. int create)
  186. {
  187. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  188. struct extent_map *em;
  189. int ret;
  190. read_lock(&em_tree->lock);
  191. em = lookup_extent_mapping(em_tree, start, len);
  192. if (em) {
  193. em->bdev =
  194. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  195. read_unlock(&em_tree->lock);
  196. goto out;
  197. }
  198. read_unlock(&em_tree->lock);
  199. em = alloc_extent_map();
  200. if (!em) {
  201. em = ERR_PTR(-ENOMEM);
  202. goto out;
  203. }
  204. em->start = 0;
  205. em->len = (u64)-1;
  206. em->block_len = (u64)-1;
  207. em->block_start = 0;
  208. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  209. write_lock(&em_tree->lock);
  210. ret = add_extent_mapping(em_tree, em, 0);
  211. if (ret == -EEXIST) {
  212. free_extent_map(em);
  213. em = lookup_extent_mapping(em_tree, start, len);
  214. if (!em)
  215. em = ERR_PTR(-EIO);
  216. } else if (ret) {
  217. free_extent_map(em);
  218. em = ERR_PTR(ret);
  219. }
  220. write_unlock(&em_tree->lock);
  221. out:
  222. return em;
  223. }
  224. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  225. {
  226. return btrfs_crc32c(seed, data, len);
  227. }
  228. void btrfs_csum_final(u32 crc, char *result)
  229. {
  230. put_unaligned_le32(~crc, result);
  231. }
  232. /*
  233. * compute the csum for a btree block, and either verify it or write it
  234. * into the csum field of the block.
  235. */
  236. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  237. int verify)
  238. {
  239. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  240. char *result = NULL;
  241. unsigned long len;
  242. unsigned long cur_len;
  243. unsigned long offset = BTRFS_CSUM_SIZE;
  244. char *kaddr;
  245. unsigned long map_start;
  246. unsigned long map_len;
  247. int err;
  248. u32 crc = ~(u32)0;
  249. unsigned long inline_result;
  250. len = buf->len - offset;
  251. while (len > 0) {
  252. err = map_private_extent_buffer(buf, offset, 32,
  253. &kaddr, &map_start, &map_len);
  254. if (err)
  255. return 1;
  256. cur_len = min(len, map_len - (offset - map_start));
  257. crc = btrfs_csum_data(kaddr + offset - map_start,
  258. crc, cur_len);
  259. len -= cur_len;
  260. offset += cur_len;
  261. }
  262. if (csum_size > sizeof(inline_result)) {
  263. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  264. if (!result)
  265. return 1;
  266. } else {
  267. result = (char *)&inline_result;
  268. }
  269. btrfs_csum_final(crc, result);
  270. if (verify) {
  271. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  272. u32 val;
  273. u32 found = 0;
  274. memcpy(&found, result, csum_size);
  275. read_extent_buffer(buf, &val, 0, csum_size);
  276. printk_ratelimited(KERN_INFO
  277. "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
  278. "level %d\n",
  279. root->fs_info->sb->s_id, buf->start,
  280. val, found, btrfs_header_level(buf));
  281. if (result != (char *)&inline_result)
  282. kfree(result);
  283. return 1;
  284. }
  285. } else {
  286. write_extent_buffer(buf, result, 0, csum_size);
  287. }
  288. if (result != (char *)&inline_result)
  289. kfree(result);
  290. return 0;
  291. }
  292. /*
  293. * we can't consider a given block up to date unless the transid of the
  294. * block matches the transid in the parent node's pointer. This is how we
  295. * detect blocks that either didn't get written at all or got written
  296. * in the wrong place.
  297. */
  298. static int verify_parent_transid(struct extent_io_tree *io_tree,
  299. struct extent_buffer *eb, u64 parent_transid,
  300. int atomic)
  301. {
  302. struct extent_state *cached_state = NULL;
  303. int ret;
  304. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  305. return 0;
  306. if (atomic)
  307. return -EAGAIN;
  308. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  309. 0, &cached_state);
  310. if (extent_buffer_uptodate(eb) &&
  311. btrfs_header_generation(eb) == parent_transid) {
  312. ret = 0;
  313. goto out;
  314. }
  315. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  316. "found %llu\n",
  317. eb->start, parent_transid, btrfs_header_generation(eb));
  318. ret = 1;
  319. clear_extent_buffer_uptodate(eb);
  320. out:
  321. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  322. &cached_state, GFP_NOFS);
  323. return ret;
  324. }
  325. /*
  326. * Return 0 if the superblock checksum type matches the checksum value of that
  327. * algorithm. Pass the raw disk superblock data.
  328. */
  329. static int btrfs_check_super_csum(char *raw_disk_sb)
  330. {
  331. struct btrfs_super_block *disk_sb =
  332. (struct btrfs_super_block *)raw_disk_sb;
  333. u16 csum_type = btrfs_super_csum_type(disk_sb);
  334. int ret = 0;
  335. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  336. u32 crc = ~(u32)0;
  337. const int csum_size = sizeof(crc);
  338. char result[csum_size];
  339. /*
  340. * The super_block structure does not span the whole
  341. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  342. * is filled with zeros and is included in the checkum.
  343. */
  344. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  345. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  346. btrfs_csum_final(crc, result);
  347. if (memcmp(raw_disk_sb, result, csum_size))
  348. ret = 1;
  349. if (ret && btrfs_super_generation(disk_sb) < 10) {
  350. printk(KERN_WARNING
  351. "BTRFS: super block crcs don't match, older mkfs detected\n");
  352. ret = 0;
  353. }
  354. }
  355. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  356. printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
  357. csum_type);
  358. ret = 1;
  359. }
  360. return ret;
  361. }
  362. /*
  363. * helper to read a given tree block, doing retries as required when
  364. * the checksums don't match and we have alternate mirrors to try.
  365. */
  366. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  367. struct extent_buffer *eb,
  368. u64 start, u64 parent_transid)
  369. {
  370. struct extent_io_tree *io_tree;
  371. int failed = 0;
  372. int ret;
  373. int num_copies = 0;
  374. int mirror_num = 0;
  375. int failed_mirror = 0;
  376. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  377. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  378. while (1) {
  379. ret = read_extent_buffer_pages(io_tree, eb, start,
  380. WAIT_COMPLETE,
  381. btree_get_extent, mirror_num);
  382. if (!ret) {
  383. if (!verify_parent_transid(io_tree, eb,
  384. parent_transid, 0))
  385. break;
  386. else
  387. ret = -EIO;
  388. }
  389. /*
  390. * This buffer's crc is fine, but its contents are corrupted, so
  391. * there is no reason to read the other copies, they won't be
  392. * any less wrong.
  393. */
  394. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  395. break;
  396. num_copies = btrfs_num_copies(root->fs_info,
  397. eb->start, eb->len);
  398. if (num_copies == 1)
  399. break;
  400. if (!failed_mirror) {
  401. failed = 1;
  402. failed_mirror = eb->read_mirror;
  403. }
  404. mirror_num++;
  405. if (mirror_num == failed_mirror)
  406. mirror_num++;
  407. if (mirror_num > num_copies)
  408. break;
  409. }
  410. if (failed && !ret && failed_mirror)
  411. repair_eb_io_failure(root, eb, failed_mirror);
  412. return ret;
  413. }
  414. /*
  415. * checksum a dirty tree block before IO. This has extra checks to make sure
  416. * we only fill in the checksum field in the first page of a multi-page block
  417. */
  418. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  419. {
  420. u64 start = page_offset(page);
  421. u64 found_start;
  422. struct extent_buffer *eb;
  423. eb = (struct extent_buffer *)page->private;
  424. if (page != eb->pages[0])
  425. return 0;
  426. found_start = btrfs_header_bytenr(eb);
  427. if (WARN_ON(found_start != start || !PageUptodate(page)))
  428. return 0;
  429. csum_tree_block(root, eb, 0);
  430. return 0;
  431. }
  432. static int check_tree_block_fsid(struct btrfs_root *root,
  433. struct extent_buffer *eb)
  434. {
  435. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  436. u8 fsid[BTRFS_UUID_SIZE];
  437. int ret = 1;
  438. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  439. while (fs_devices) {
  440. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  441. ret = 0;
  442. break;
  443. }
  444. fs_devices = fs_devices->seed;
  445. }
  446. return ret;
  447. }
  448. #define CORRUPT(reason, eb, root, slot) \
  449. btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
  450. "root=%llu, slot=%d", reason, \
  451. btrfs_header_bytenr(eb), root->objectid, slot)
  452. static noinline int check_leaf(struct btrfs_root *root,
  453. struct extent_buffer *leaf)
  454. {
  455. struct btrfs_key key;
  456. struct btrfs_key leaf_key;
  457. u32 nritems = btrfs_header_nritems(leaf);
  458. int slot;
  459. if (nritems == 0)
  460. return 0;
  461. /* Check the 0 item */
  462. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  463. BTRFS_LEAF_DATA_SIZE(root)) {
  464. CORRUPT("invalid item offset size pair", leaf, root, 0);
  465. return -EIO;
  466. }
  467. /*
  468. * Check to make sure each items keys are in the correct order and their
  469. * offsets make sense. We only have to loop through nritems-1 because
  470. * we check the current slot against the next slot, which verifies the
  471. * next slot's offset+size makes sense and that the current's slot
  472. * offset is correct.
  473. */
  474. for (slot = 0; slot < nritems - 1; slot++) {
  475. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  476. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  477. /* Make sure the keys are in the right order */
  478. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  479. CORRUPT("bad key order", leaf, root, slot);
  480. return -EIO;
  481. }
  482. /*
  483. * Make sure the offset and ends are right, remember that the
  484. * item data starts at the end of the leaf and grows towards the
  485. * front.
  486. */
  487. if (btrfs_item_offset_nr(leaf, slot) !=
  488. btrfs_item_end_nr(leaf, slot + 1)) {
  489. CORRUPT("slot offset bad", leaf, root, slot);
  490. return -EIO;
  491. }
  492. /*
  493. * Check to make sure that we don't point outside of the leaf,
  494. * just incase all the items are consistent to eachother, but
  495. * all point outside of the leaf.
  496. */
  497. if (btrfs_item_end_nr(leaf, slot) >
  498. BTRFS_LEAF_DATA_SIZE(root)) {
  499. CORRUPT("slot end outside of leaf", leaf, root, slot);
  500. return -EIO;
  501. }
  502. }
  503. return 0;
  504. }
  505. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  506. u64 phy_offset, struct page *page,
  507. u64 start, u64 end, int mirror)
  508. {
  509. u64 found_start;
  510. int found_level;
  511. struct extent_buffer *eb;
  512. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  513. int ret = 0;
  514. int reads_done;
  515. if (!page->private)
  516. goto out;
  517. eb = (struct extent_buffer *)page->private;
  518. /* the pending IO might have been the only thing that kept this buffer
  519. * in memory. Make sure we have a ref for all this other checks
  520. */
  521. extent_buffer_get(eb);
  522. reads_done = atomic_dec_and_test(&eb->io_pages);
  523. if (!reads_done)
  524. goto err;
  525. eb->read_mirror = mirror;
  526. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  527. ret = -EIO;
  528. goto err;
  529. }
  530. found_start = btrfs_header_bytenr(eb);
  531. if (found_start != eb->start) {
  532. printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
  533. "%llu %llu\n",
  534. found_start, eb->start);
  535. ret = -EIO;
  536. goto err;
  537. }
  538. if (check_tree_block_fsid(root, eb)) {
  539. printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
  540. eb->start);
  541. ret = -EIO;
  542. goto err;
  543. }
  544. found_level = btrfs_header_level(eb);
  545. if (found_level >= BTRFS_MAX_LEVEL) {
  546. btrfs_info(root->fs_info, "bad tree block level %d",
  547. (int)btrfs_header_level(eb));
  548. ret = -EIO;
  549. goto err;
  550. }
  551. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  552. eb, found_level);
  553. ret = csum_tree_block(root, eb, 1);
  554. if (ret) {
  555. ret = -EIO;
  556. goto err;
  557. }
  558. /*
  559. * If this is a leaf block and it is corrupt, set the corrupt bit so
  560. * that we don't try and read the other copies of this block, just
  561. * return -EIO.
  562. */
  563. if (found_level == 0 && check_leaf(root, eb)) {
  564. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  565. ret = -EIO;
  566. }
  567. if (!ret)
  568. set_extent_buffer_uptodate(eb);
  569. err:
  570. if (reads_done &&
  571. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  572. btree_readahead_hook(root, eb, eb->start, ret);
  573. if (ret) {
  574. /*
  575. * our io error hook is going to dec the io pages
  576. * again, we have to make sure it has something
  577. * to decrement
  578. */
  579. atomic_inc(&eb->io_pages);
  580. clear_extent_buffer_uptodate(eb);
  581. }
  582. free_extent_buffer(eb);
  583. out:
  584. return ret;
  585. }
  586. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  587. {
  588. struct extent_buffer *eb;
  589. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  590. eb = (struct extent_buffer *)page->private;
  591. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  592. eb->read_mirror = failed_mirror;
  593. atomic_dec(&eb->io_pages);
  594. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  595. btree_readahead_hook(root, eb, eb->start, -EIO);
  596. return -EIO; /* we fixed nothing */
  597. }
  598. static void end_workqueue_bio(struct bio *bio, int err)
  599. {
  600. struct end_io_wq *end_io_wq = bio->bi_private;
  601. struct btrfs_fs_info *fs_info;
  602. fs_info = end_io_wq->info;
  603. end_io_wq->error = err;
  604. btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
  605. if (bio->bi_rw & REQ_WRITE) {
  606. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  607. btrfs_queue_work(fs_info->endio_meta_write_workers,
  608. &end_io_wq->work);
  609. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  610. btrfs_queue_work(fs_info->endio_freespace_worker,
  611. &end_io_wq->work);
  612. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  613. btrfs_queue_work(fs_info->endio_raid56_workers,
  614. &end_io_wq->work);
  615. else
  616. btrfs_queue_work(fs_info->endio_write_workers,
  617. &end_io_wq->work);
  618. } else {
  619. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  620. btrfs_queue_work(fs_info->endio_raid56_workers,
  621. &end_io_wq->work);
  622. else if (end_io_wq->metadata)
  623. btrfs_queue_work(fs_info->endio_meta_workers,
  624. &end_io_wq->work);
  625. else
  626. btrfs_queue_work(fs_info->endio_workers,
  627. &end_io_wq->work);
  628. }
  629. }
  630. /*
  631. * For the metadata arg you want
  632. *
  633. * 0 - if data
  634. * 1 - if normal metadta
  635. * 2 - if writing to the free space cache area
  636. * 3 - raid parity work
  637. */
  638. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  639. int metadata)
  640. {
  641. struct end_io_wq *end_io_wq;
  642. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  643. if (!end_io_wq)
  644. return -ENOMEM;
  645. end_io_wq->private = bio->bi_private;
  646. end_io_wq->end_io = bio->bi_end_io;
  647. end_io_wq->info = info;
  648. end_io_wq->error = 0;
  649. end_io_wq->bio = bio;
  650. end_io_wq->metadata = metadata;
  651. bio->bi_private = end_io_wq;
  652. bio->bi_end_io = end_workqueue_bio;
  653. return 0;
  654. }
  655. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  656. {
  657. unsigned long limit = min_t(unsigned long,
  658. info->thread_pool_size,
  659. info->fs_devices->open_devices);
  660. return 256 * limit;
  661. }
  662. static void run_one_async_start(struct btrfs_work_struct *work)
  663. {
  664. struct async_submit_bio *async;
  665. int ret;
  666. async = container_of(work, struct async_submit_bio, work);
  667. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  668. async->mirror_num, async->bio_flags,
  669. async->bio_offset);
  670. if (ret)
  671. async->error = ret;
  672. }
  673. static void run_one_async_done(struct btrfs_work_struct *work)
  674. {
  675. struct btrfs_fs_info *fs_info;
  676. struct async_submit_bio *async;
  677. int limit;
  678. async = container_of(work, struct async_submit_bio, work);
  679. fs_info = BTRFS_I(async->inode)->root->fs_info;
  680. limit = btrfs_async_submit_limit(fs_info);
  681. limit = limit * 2 / 3;
  682. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  683. waitqueue_active(&fs_info->async_submit_wait))
  684. wake_up(&fs_info->async_submit_wait);
  685. /* If an error occured we just want to clean up the bio and move on */
  686. if (async->error) {
  687. bio_endio(async->bio, async->error);
  688. return;
  689. }
  690. async->submit_bio_done(async->inode, async->rw, async->bio,
  691. async->mirror_num, async->bio_flags,
  692. async->bio_offset);
  693. }
  694. static void run_one_async_free(struct btrfs_work_struct *work)
  695. {
  696. struct async_submit_bio *async;
  697. async = container_of(work, struct async_submit_bio, work);
  698. kfree(async);
  699. }
  700. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  701. int rw, struct bio *bio, int mirror_num,
  702. unsigned long bio_flags,
  703. u64 bio_offset,
  704. extent_submit_bio_hook_t *submit_bio_start,
  705. extent_submit_bio_hook_t *submit_bio_done)
  706. {
  707. struct async_submit_bio *async;
  708. async = kmalloc(sizeof(*async), GFP_NOFS);
  709. if (!async)
  710. return -ENOMEM;
  711. async->inode = inode;
  712. async->rw = rw;
  713. async->bio = bio;
  714. async->mirror_num = mirror_num;
  715. async->submit_bio_start = submit_bio_start;
  716. async->submit_bio_done = submit_bio_done;
  717. btrfs_init_work(&async->work, run_one_async_start,
  718. run_one_async_done, run_one_async_free);
  719. async->bio_flags = bio_flags;
  720. async->bio_offset = bio_offset;
  721. async->error = 0;
  722. atomic_inc(&fs_info->nr_async_submits);
  723. if (rw & REQ_SYNC)
  724. btrfs_set_work_high_priority(&async->work);
  725. btrfs_queue_work(fs_info->workers, &async->work);
  726. while (atomic_read(&fs_info->async_submit_draining) &&
  727. atomic_read(&fs_info->nr_async_submits)) {
  728. wait_event(fs_info->async_submit_wait,
  729. (atomic_read(&fs_info->nr_async_submits) == 0));
  730. }
  731. return 0;
  732. }
  733. static int btree_csum_one_bio(struct bio *bio)
  734. {
  735. struct bio_vec *bvec = bio->bi_io_vec;
  736. int bio_index = 0;
  737. struct btrfs_root *root;
  738. int ret = 0;
  739. WARN_ON(bio->bi_vcnt <= 0);
  740. while (bio_index < bio->bi_vcnt) {
  741. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  742. ret = csum_dirty_buffer(root, bvec->bv_page);
  743. if (ret)
  744. break;
  745. bio_index++;
  746. bvec++;
  747. }
  748. return ret;
  749. }
  750. static int __btree_submit_bio_start(struct inode *inode, int rw,
  751. struct bio *bio, int mirror_num,
  752. unsigned long bio_flags,
  753. u64 bio_offset)
  754. {
  755. /*
  756. * when we're called for a write, we're already in the async
  757. * submission context. Just jump into btrfs_map_bio
  758. */
  759. return btree_csum_one_bio(bio);
  760. }
  761. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  762. int mirror_num, unsigned long bio_flags,
  763. u64 bio_offset)
  764. {
  765. int ret;
  766. /*
  767. * when we're called for a write, we're already in the async
  768. * submission context. Just jump into btrfs_map_bio
  769. */
  770. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  771. if (ret)
  772. bio_endio(bio, ret);
  773. return ret;
  774. }
  775. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  776. {
  777. if (bio_flags & EXTENT_BIO_TREE_LOG)
  778. return 0;
  779. #ifdef CONFIG_X86
  780. if (cpu_has_xmm4_2)
  781. return 0;
  782. #endif
  783. return 1;
  784. }
  785. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  786. int mirror_num, unsigned long bio_flags,
  787. u64 bio_offset)
  788. {
  789. int async = check_async_write(inode, bio_flags);
  790. int ret;
  791. if (!(rw & REQ_WRITE)) {
  792. /*
  793. * called for a read, do the setup so that checksum validation
  794. * can happen in the async kernel threads
  795. */
  796. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  797. bio, 1);
  798. if (ret)
  799. goto out_w_error;
  800. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  801. mirror_num, 0);
  802. } else if (!async) {
  803. ret = btree_csum_one_bio(bio);
  804. if (ret)
  805. goto out_w_error;
  806. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  807. mirror_num, 0);
  808. } else {
  809. /*
  810. * kthread helpers are used to submit writes so that
  811. * checksumming can happen in parallel across all CPUs
  812. */
  813. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  814. inode, rw, bio, mirror_num, 0,
  815. bio_offset,
  816. __btree_submit_bio_start,
  817. __btree_submit_bio_done);
  818. }
  819. if (ret) {
  820. out_w_error:
  821. bio_endio(bio, ret);
  822. }
  823. return ret;
  824. }
  825. #ifdef CONFIG_MIGRATION
  826. static int btree_migratepage(struct address_space *mapping,
  827. struct page *newpage, struct page *page,
  828. enum migrate_mode mode)
  829. {
  830. /*
  831. * we can't safely write a btree page from here,
  832. * we haven't done the locking hook
  833. */
  834. if (PageDirty(page))
  835. return -EAGAIN;
  836. /*
  837. * Buffers may be managed in a filesystem specific way.
  838. * We must have no buffers or drop them.
  839. */
  840. if (page_has_private(page) &&
  841. !try_to_release_page(page, GFP_KERNEL))
  842. return -EAGAIN;
  843. return migrate_page(mapping, newpage, page, mode);
  844. }
  845. #endif
  846. static int btree_writepages(struct address_space *mapping,
  847. struct writeback_control *wbc)
  848. {
  849. struct btrfs_fs_info *fs_info;
  850. int ret;
  851. if (wbc->sync_mode == WB_SYNC_NONE) {
  852. if (wbc->for_kupdate)
  853. return 0;
  854. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  855. /* this is a bit racy, but that's ok */
  856. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  857. BTRFS_DIRTY_METADATA_THRESH);
  858. if (ret < 0)
  859. return 0;
  860. }
  861. return btree_write_cache_pages(mapping, wbc);
  862. }
  863. static int btree_readpage(struct file *file, struct page *page)
  864. {
  865. struct extent_io_tree *tree;
  866. tree = &BTRFS_I(page->mapping->host)->io_tree;
  867. return extent_read_full_page(tree, page, btree_get_extent, 0);
  868. }
  869. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  870. {
  871. if (PageWriteback(page) || PageDirty(page))
  872. return 0;
  873. return try_release_extent_buffer(page);
  874. }
  875. static void btree_invalidatepage(struct page *page, unsigned int offset,
  876. unsigned int length)
  877. {
  878. struct extent_io_tree *tree;
  879. tree = &BTRFS_I(page->mapping->host)->io_tree;
  880. extent_invalidatepage(tree, page, offset);
  881. btree_releasepage(page, GFP_NOFS);
  882. if (PagePrivate(page)) {
  883. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  884. "page private not zero on page %llu",
  885. (unsigned long long)page_offset(page));
  886. ClearPagePrivate(page);
  887. set_page_private(page, 0);
  888. page_cache_release(page);
  889. }
  890. }
  891. static int btree_set_page_dirty(struct page *page)
  892. {
  893. #ifdef DEBUG
  894. struct extent_buffer *eb;
  895. BUG_ON(!PagePrivate(page));
  896. eb = (struct extent_buffer *)page->private;
  897. BUG_ON(!eb);
  898. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  899. BUG_ON(!atomic_read(&eb->refs));
  900. btrfs_assert_tree_locked(eb);
  901. #endif
  902. return __set_page_dirty_nobuffers(page);
  903. }
  904. static const struct address_space_operations btree_aops = {
  905. .readpage = btree_readpage,
  906. .writepages = btree_writepages,
  907. .releasepage = btree_releasepage,
  908. .invalidatepage = btree_invalidatepage,
  909. #ifdef CONFIG_MIGRATION
  910. .migratepage = btree_migratepage,
  911. #endif
  912. .set_page_dirty = btree_set_page_dirty,
  913. };
  914. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  915. u64 parent_transid)
  916. {
  917. struct extent_buffer *buf = NULL;
  918. struct inode *btree_inode = root->fs_info->btree_inode;
  919. int ret = 0;
  920. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  921. if (!buf)
  922. return 0;
  923. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  924. buf, 0, WAIT_NONE, btree_get_extent, 0);
  925. free_extent_buffer(buf);
  926. return ret;
  927. }
  928. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  929. int mirror_num, struct extent_buffer **eb)
  930. {
  931. struct extent_buffer *buf = NULL;
  932. struct inode *btree_inode = root->fs_info->btree_inode;
  933. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  934. int ret;
  935. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  936. if (!buf)
  937. return 0;
  938. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  939. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  940. btree_get_extent, mirror_num);
  941. if (ret) {
  942. free_extent_buffer(buf);
  943. return ret;
  944. }
  945. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  946. free_extent_buffer(buf);
  947. return -EIO;
  948. } else if (extent_buffer_uptodate(buf)) {
  949. *eb = buf;
  950. } else {
  951. free_extent_buffer(buf);
  952. }
  953. return 0;
  954. }
  955. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  956. u64 bytenr, u32 blocksize)
  957. {
  958. return find_extent_buffer(root->fs_info, bytenr);
  959. }
  960. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  961. u64 bytenr, u32 blocksize)
  962. {
  963. return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
  964. }
  965. int btrfs_write_tree_block(struct extent_buffer *buf)
  966. {
  967. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  968. buf->start + buf->len - 1);
  969. }
  970. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  971. {
  972. return filemap_fdatawait_range(buf->pages[0]->mapping,
  973. buf->start, buf->start + buf->len - 1);
  974. }
  975. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  976. u32 blocksize, u64 parent_transid)
  977. {
  978. struct extent_buffer *buf = NULL;
  979. int ret;
  980. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  981. if (!buf)
  982. return NULL;
  983. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  984. if (ret) {
  985. free_extent_buffer(buf);
  986. return NULL;
  987. }
  988. return buf;
  989. }
  990. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  991. struct extent_buffer *buf)
  992. {
  993. struct btrfs_fs_info *fs_info = root->fs_info;
  994. if (btrfs_header_generation(buf) ==
  995. fs_info->running_transaction->transid) {
  996. btrfs_assert_tree_locked(buf);
  997. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  998. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  999. -buf->len,
  1000. fs_info->dirty_metadata_batch);
  1001. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1002. btrfs_set_lock_blocking(buf);
  1003. clear_extent_buffer_dirty(buf);
  1004. }
  1005. }
  1006. }
  1007. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1008. u32 stripesize, struct btrfs_root *root,
  1009. struct btrfs_fs_info *fs_info,
  1010. u64 objectid)
  1011. {
  1012. root->node = NULL;
  1013. root->commit_root = NULL;
  1014. root->sectorsize = sectorsize;
  1015. root->nodesize = nodesize;
  1016. root->leafsize = leafsize;
  1017. root->stripesize = stripesize;
  1018. root->ref_cows = 0;
  1019. root->track_dirty = 0;
  1020. root->in_radix = 0;
  1021. root->orphan_item_inserted = 0;
  1022. root->orphan_cleanup_state = 0;
  1023. root->objectid = objectid;
  1024. root->last_trans = 0;
  1025. root->highest_objectid = 0;
  1026. root->nr_delalloc_inodes = 0;
  1027. root->nr_ordered_extents = 0;
  1028. root->name = NULL;
  1029. root->inode_tree = RB_ROOT;
  1030. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1031. root->block_rsv = NULL;
  1032. root->orphan_block_rsv = NULL;
  1033. INIT_LIST_HEAD(&root->dirty_list);
  1034. INIT_LIST_HEAD(&root->root_list);
  1035. INIT_LIST_HEAD(&root->delalloc_inodes);
  1036. INIT_LIST_HEAD(&root->delalloc_root);
  1037. INIT_LIST_HEAD(&root->ordered_extents);
  1038. INIT_LIST_HEAD(&root->ordered_root);
  1039. INIT_LIST_HEAD(&root->logged_list[0]);
  1040. INIT_LIST_HEAD(&root->logged_list[1]);
  1041. spin_lock_init(&root->orphan_lock);
  1042. spin_lock_init(&root->inode_lock);
  1043. spin_lock_init(&root->delalloc_lock);
  1044. spin_lock_init(&root->ordered_extent_lock);
  1045. spin_lock_init(&root->accounting_lock);
  1046. spin_lock_init(&root->log_extents_lock[0]);
  1047. spin_lock_init(&root->log_extents_lock[1]);
  1048. mutex_init(&root->objectid_mutex);
  1049. mutex_init(&root->log_mutex);
  1050. init_waitqueue_head(&root->log_writer_wait);
  1051. init_waitqueue_head(&root->log_commit_wait[0]);
  1052. init_waitqueue_head(&root->log_commit_wait[1]);
  1053. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1054. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1055. atomic_set(&root->log_commit[0], 0);
  1056. atomic_set(&root->log_commit[1], 0);
  1057. atomic_set(&root->log_writers, 0);
  1058. atomic_set(&root->log_batch, 0);
  1059. atomic_set(&root->orphan_inodes, 0);
  1060. atomic_set(&root->refs, 1);
  1061. root->log_transid = 0;
  1062. root->log_transid_committed = -1;
  1063. root->last_log_commit = 0;
  1064. if (fs_info)
  1065. extent_io_tree_init(&root->dirty_log_pages,
  1066. fs_info->btree_inode->i_mapping);
  1067. memset(&root->root_key, 0, sizeof(root->root_key));
  1068. memset(&root->root_item, 0, sizeof(root->root_item));
  1069. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1070. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1071. if (fs_info)
  1072. root->defrag_trans_start = fs_info->generation;
  1073. else
  1074. root->defrag_trans_start = 0;
  1075. init_completion(&root->kobj_unregister);
  1076. root->defrag_running = 0;
  1077. root->root_key.objectid = objectid;
  1078. root->anon_dev = 0;
  1079. spin_lock_init(&root->root_item_lock);
  1080. }
  1081. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1082. {
  1083. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1084. if (root)
  1085. root->fs_info = fs_info;
  1086. return root;
  1087. }
  1088. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1089. /* Should only be used by the testing infrastructure */
  1090. struct btrfs_root *btrfs_alloc_dummy_root(void)
  1091. {
  1092. struct btrfs_root *root;
  1093. root = btrfs_alloc_root(NULL);
  1094. if (!root)
  1095. return ERR_PTR(-ENOMEM);
  1096. __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
  1097. root->dummy_root = 1;
  1098. return root;
  1099. }
  1100. #endif
  1101. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1102. struct btrfs_fs_info *fs_info,
  1103. u64 objectid)
  1104. {
  1105. struct extent_buffer *leaf;
  1106. struct btrfs_root *tree_root = fs_info->tree_root;
  1107. struct btrfs_root *root;
  1108. struct btrfs_key key;
  1109. int ret = 0;
  1110. uuid_le uuid;
  1111. root = btrfs_alloc_root(fs_info);
  1112. if (!root)
  1113. return ERR_PTR(-ENOMEM);
  1114. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1115. tree_root->sectorsize, tree_root->stripesize,
  1116. root, fs_info, objectid);
  1117. root->root_key.objectid = objectid;
  1118. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1119. root->root_key.offset = 0;
  1120. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1121. 0, objectid, NULL, 0, 0, 0);
  1122. if (IS_ERR(leaf)) {
  1123. ret = PTR_ERR(leaf);
  1124. leaf = NULL;
  1125. goto fail;
  1126. }
  1127. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1128. btrfs_set_header_bytenr(leaf, leaf->start);
  1129. btrfs_set_header_generation(leaf, trans->transid);
  1130. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1131. btrfs_set_header_owner(leaf, objectid);
  1132. root->node = leaf;
  1133. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1134. BTRFS_FSID_SIZE);
  1135. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1136. btrfs_header_chunk_tree_uuid(leaf),
  1137. BTRFS_UUID_SIZE);
  1138. btrfs_mark_buffer_dirty(leaf);
  1139. root->commit_root = btrfs_root_node(root);
  1140. root->track_dirty = 1;
  1141. root->root_item.flags = 0;
  1142. root->root_item.byte_limit = 0;
  1143. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1144. btrfs_set_root_generation(&root->root_item, trans->transid);
  1145. btrfs_set_root_level(&root->root_item, 0);
  1146. btrfs_set_root_refs(&root->root_item, 1);
  1147. btrfs_set_root_used(&root->root_item, leaf->len);
  1148. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1149. btrfs_set_root_dirid(&root->root_item, 0);
  1150. uuid_le_gen(&uuid);
  1151. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1152. root->root_item.drop_level = 0;
  1153. key.objectid = objectid;
  1154. key.type = BTRFS_ROOT_ITEM_KEY;
  1155. key.offset = 0;
  1156. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1157. if (ret)
  1158. goto fail;
  1159. btrfs_tree_unlock(leaf);
  1160. return root;
  1161. fail:
  1162. if (leaf) {
  1163. btrfs_tree_unlock(leaf);
  1164. free_extent_buffer(leaf);
  1165. }
  1166. kfree(root);
  1167. return ERR_PTR(ret);
  1168. }
  1169. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1170. struct btrfs_fs_info *fs_info)
  1171. {
  1172. struct btrfs_root *root;
  1173. struct btrfs_root *tree_root = fs_info->tree_root;
  1174. struct extent_buffer *leaf;
  1175. root = btrfs_alloc_root(fs_info);
  1176. if (!root)
  1177. return ERR_PTR(-ENOMEM);
  1178. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1179. tree_root->sectorsize, tree_root->stripesize,
  1180. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1181. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1182. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1183. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1184. /*
  1185. * log trees do not get reference counted because they go away
  1186. * before a real commit is actually done. They do store pointers
  1187. * to file data extents, and those reference counts still get
  1188. * updated (along with back refs to the log tree).
  1189. */
  1190. root->ref_cows = 0;
  1191. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1192. BTRFS_TREE_LOG_OBJECTID, NULL,
  1193. 0, 0, 0);
  1194. if (IS_ERR(leaf)) {
  1195. kfree(root);
  1196. return ERR_CAST(leaf);
  1197. }
  1198. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1199. btrfs_set_header_bytenr(leaf, leaf->start);
  1200. btrfs_set_header_generation(leaf, trans->transid);
  1201. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1202. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1203. root->node = leaf;
  1204. write_extent_buffer(root->node, root->fs_info->fsid,
  1205. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1206. btrfs_mark_buffer_dirty(root->node);
  1207. btrfs_tree_unlock(root->node);
  1208. return root;
  1209. }
  1210. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1211. struct btrfs_fs_info *fs_info)
  1212. {
  1213. struct btrfs_root *log_root;
  1214. log_root = alloc_log_tree(trans, fs_info);
  1215. if (IS_ERR(log_root))
  1216. return PTR_ERR(log_root);
  1217. WARN_ON(fs_info->log_root_tree);
  1218. fs_info->log_root_tree = log_root;
  1219. return 0;
  1220. }
  1221. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1222. struct btrfs_root *root)
  1223. {
  1224. struct btrfs_root *log_root;
  1225. struct btrfs_inode_item *inode_item;
  1226. log_root = alloc_log_tree(trans, root->fs_info);
  1227. if (IS_ERR(log_root))
  1228. return PTR_ERR(log_root);
  1229. log_root->last_trans = trans->transid;
  1230. log_root->root_key.offset = root->root_key.objectid;
  1231. inode_item = &log_root->root_item.inode;
  1232. btrfs_set_stack_inode_generation(inode_item, 1);
  1233. btrfs_set_stack_inode_size(inode_item, 3);
  1234. btrfs_set_stack_inode_nlink(inode_item, 1);
  1235. btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
  1236. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1237. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1238. WARN_ON(root->log_root);
  1239. root->log_root = log_root;
  1240. root->log_transid = 0;
  1241. root->log_transid_committed = -1;
  1242. root->last_log_commit = 0;
  1243. return 0;
  1244. }
  1245. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1246. struct btrfs_key *key)
  1247. {
  1248. struct btrfs_root *root;
  1249. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1250. struct btrfs_path *path;
  1251. u64 generation;
  1252. u32 blocksize;
  1253. int ret;
  1254. path = btrfs_alloc_path();
  1255. if (!path)
  1256. return ERR_PTR(-ENOMEM);
  1257. root = btrfs_alloc_root(fs_info);
  1258. if (!root) {
  1259. ret = -ENOMEM;
  1260. goto alloc_fail;
  1261. }
  1262. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1263. tree_root->sectorsize, tree_root->stripesize,
  1264. root, fs_info, key->objectid);
  1265. ret = btrfs_find_root(tree_root, key, path,
  1266. &root->root_item, &root->root_key);
  1267. if (ret) {
  1268. if (ret > 0)
  1269. ret = -ENOENT;
  1270. goto find_fail;
  1271. }
  1272. generation = btrfs_root_generation(&root->root_item);
  1273. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1274. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1275. blocksize, generation);
  1276. if (!root->node) {
  1277. ret = -ENOMEM;
  1278. goto find_fail;
  1279. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1280. ret = -EIO;
  1281. goto read_fail;
  1282. }
  1283. root->commit_root = btrfs_root_node(root);
  1284. out:
  1285. btrfs_free_path(path);
  1286. return root;
  1287. read_fail:
  1288. free_extent_buffer(root->node);
  1289. find_fail:
  1290. kfree(root);
  1291. alloc_fail:
  1292. root = ERR_PTR(ret);
  1293. goto out;
  1294. }
  1295. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1296. struct btrfs_key *location)
  1297. {
  1298. struct btrfs_root *root;
  1299. root = btrfs_read_tree_root(tree_root, location);
  1300. if (IS_ERR(root))
  1301. return root;
  1302. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1303. root->ref_cows = 1;
  1304. btrfs_check_and_init_root_item(&root->root_item);
  1305. }
  1306. return root;
  1307. }
  1308. int btrfs_init_fs_root(struct btrfs_root *root)
  1309. {
  1310. int ret;
  1311. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1312. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1313. GFP_NOFS);
  1314. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1315. ret = -ENOMEM;
  1316. goto fail;
  1317. }
  1318. btrfs_init_free_ino_ctl(root);
  1319. mutex_init(&root->fs_commit_mutex);
  1320. spin_lock_init(&root->cache_lock);
  1321. init_waitqueue_head(&root->cache_wait);
  1322. ret = get_anon_bdev(&root->anon_dev);
  1323. if (ret)
  1324. goto fail;
  1325. return 0;
  1326. fail:
  1327. kfree(root->free_ino_ctl);
  1328. kfree(root->free_ino_pinned);
  1329. return ret;
  1330. }
  1331. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1332. u64 root_id)
  1333. {
  1334. struct btrfs_root *root;
  1335. spin_lock(&fs_info->fs_roots_radix_lock);
  1336. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1337. (unsigned long)root_id);
  1338. spin_unlock(&fs_info->fs_roots_radix_lock);
  1339. return root;
  1340. }
  1341. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1342. struct btrfs_root *root)
  1343. {
  1344. int ret;
  1345. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1346. if (ret)
  1347. return ret;
  1348. spin_lock(&fs_info->fs_roots_radix_lock);
  1349. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1350. (unsigned long)root->root_key.objectid,
  1351. root);
  1352. if (ret == 0)
  1353. root->in_radix = 1;
  1354. spin_unlock(&fs_info->fs_roots_radix_lock);
  1355. radix_tree_preload_end();
  1356. return ret;
  1357. }
  1358. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1359. struct btrfs_key *location,
  1360. bool check_ref)
  1361. {
  1362. struct btrfs_root *root;
  1363. int ret;
  1364. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1365. return fs_info->tree_root;
  1366. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1367. return fs_info->extent_root;
  1368. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1369. return fs_info->chunk_root;
  1370. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1371. return fs_info->dev_root;
  1372. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1373. return fs_info->csum_root;
  1374. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1375. return fs_info->quota_root ? fs_info->quota_root :
  1376. ERR_PTR(-ENOENT);
  1377. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1378. return fs_info->uuid_root ? fs_info->uuid_root :
  1379. ERR_PTR(-ENOENT);
  1380. again:
  1381. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1382. if (root) {
  1383. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1384. return ERR_PTR(-ENOENT);
  1385. return root;
  1386. }
  1387. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1388. if (IS_ERR(root))
  1389. return root;
  1390. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1391. ret = -ENOENT;
  1392. goto fail;
  1393. }
  1394. ret = btrfs_init_fs_root(root);
  1395. if (ret)
  1396. goto fail;
  1397. ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
  1398. location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
  1399. if (ret < 0)
  1400. goto fail;
  1401. if (ret == 0)
  1402. root->orphan_item_inserted = 1;
  1403. ret = btrfs_insert_fs_root(fs_info, root);
  1404. if (ret) {
  1405. if (ret == -EEXIST) {
  1406. free_fs_root(root);
  1407. goto again;
  1408. }
  1409. goto fail;
  1410. }
  1411. return root;
  1412. fail:
  1413. free_fs_root(root);
  1414. return ERR_PTR(ret);
  1415. }
  1416. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1417. {
  1418. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1419. int ret = 0;
  1420. struct btrfs_device *device;
  1421. struct backing_dev_info *bdi;
  1422. rcu_read_lock();
  1423. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1424. if (!device->bdev)
  1425. continue;
  1426. bdi = blk_get_backing_dev_info(device->bdev);
  1427. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1428. ret = 1;
  1429. break;
  1430. }
  1431. }
  1432. rcu_read_unlock();
  1433. return ret;
  1434. }
  1435. /*
  1436. * If this fails, caller must call bdi_destroy() to get rid of the
  1437. * bdi again.
  1438. */
  1439. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1440. {
  1441. int err;
  1442. bdi->capabilities = BDI_CAP_MAP_COPY;
  1443. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1444. if (err)
  1445. return err;
  1446. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1447. bdi->congested_fn = btrfs_congested_fn;
  1448. bdi->congested_data = info;
  1449. return 0;
  1450. }
  1451. /*
  1452. * called by the kthread helper functions to finally call the bio end_io
  1453. * functions. This is where read checksum verification actually happens
  1454. */
  1455. static void end_workqueue_fn(struct btrfs_work_struct *work)
  1456. {
  1457. struct bio *bio;
  1458. struct end_io_wq *end_io_wq;
  1459. int error;
  1460. end_io_wq = container_of(work, struct end_io_wq, work);
  1461. bio = end_io_wq->bio;
  1462. error = end_io_wq->error;
  1463. bio->bi_private = end_io_wq->private;
  1464. bio->bi_end_io = end_io_wq->end_io;
  1465. kfree(end_io_wq);
  1466. bio_endio(bio, error);
  1467. }
  1468. static int cleaner_kthread(void *arg)
  1469. {
  1470. struct btrfs_root *root = arg;
  1471. int again;
  1472. do {
  1473. again = 0;
  1474. /* Make the cleaner go to sleep early. */
  1475. if (btrfs_need_cleaner_sleep(root))
  1476. goto sleep;
  1477. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1478. goto sleep;
  1479. /*
  1480. * Avoid the problem that we change the status of the fs
  1481. * during the above check and trylock.
  1482. */
  1483. if (btrfs_need_cleaner_sleep(root)) {
  1484. mutex_unlock(&root->fs_info->cleaner_mutex);
  1485. goto sleep;
  1486. }
  1487. btrfs_run_delayed_iputs(root);
  1488. again = btrfs_clean_one_deleted_snapshot(root);
  1489. mutex_unlock(&root->fs_info->cleaner_mutex);
  1490. /*
  1491. * The defragger has dealt with the R/O remount and umount,
  1492. * needn't do anything special here.
  1493. */
  1494. btrfs_run_defrag_inodes(root->fs_info);
  1495. sleep:
  1496. if (!try_to_freeze() && !again) {
  1497. set_current_state(TASK_INTERRUPTIBLE);
  1498. if (!kthread_should_stop())
  1499. schedule();
  1500. __set_current_state(TASK_RUNNING);
  1501. }
  1502. } while (!kthread_should_stop());
  1503. return 0;
  1504. }
  1505. static int transaction_kthread(void *arg)
  1506. {
  1507. struct btrfs_root *root = arg;
  1508. struct btrfs_trans_handle *trans;
  1509. struct btrfs_transaction *cur;
  1510. u64 transid;
  1511. unsigned long now;
  1512. unsigned long delay;
  1513. bool cannot_commit;
  1514. do {
  1515. cannot_commit = false;
  1516. delay = HZ * root->fs_info->commit_interval;
  1517. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1518. spin_lock(&root->fs_info->trans_lock);
  1519. cur = root->fs_info->running_transaction;
  1520. if (!cur) {
  1521. spin_unlock(&root->fs_info->trans_lock);
  1522. goto sleep;
  1523. }
  1524. now = get_seconds();
  1525. if (cur->state < TRANS_STATE_BLOCKED &&
  1526. (now < cur->start_time ||
  1527. now - cur->start_time < root->fs_info->commit_interval)) {
  1528. spin_unlock(&root->fs_info->trans_lock);
  1529. delay = HZ * 5;
  1530. goto sleep;
  1531. }
  1532. transid = cur->transid;
  1533. spin_unlock(&root->fs_info->trans_lock);
  1534. /* If the file system is aborted, this will always fail. */
  1535. trans = btrfs_attach_transaction(root);
  1536. if (IS_ERR(trans)) {
  1537. if (PTR_ERR(trans) != -ENOENT)
  1538. cannot_commit = true;
  1539. goto sleep;
  1540. }
  1541. if (transid == trans->transid) {
  1542. btrfs_commit_transaction(trans, root);
  1543. } else {
  1544. btrfs_end_transaction(trans, root);
  1545. }
  1546. sleep:
  1547. wake_up_process(root->fs_info->cleaner_kthread);
  1548. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1549. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1550. &root->fs_info->fs_state)))
  1551. btrfs_cleanup_transaction(root);
  1552. if (!try_to_freeze()) {
  1553. set_current_state(TASK_INTERRUPTIBLE);
  1554. if (!kthread_should_stop() &&
  1555. (!btrfs_transaction_blocked(root->fs_info) ||
  1556. cannot_commit))
  1557. schedule_timeout(delay);
  1558. __set_current_state(TASK_RUNNING);
  1559. }
  1560. } while (!kthread_should_stop());
  1561. return 0;
  1562. }
  1563. /*
  1564. * this will find the highest generation in the array of
  1565. * root backups. The index of the highest array is returned,
  1566. * or -1 if we can't find anything.
  1567. *
  1568. * We check to make sure the array is valid by comparing the
  1569. * generation of the latest root in the array with the generation
  1570. * in the super block. If they don't match we pitch it.
  1571. */
  1572. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1573. {
  1574. u64 cur;
  1575. int newest_index = -1;
  1576. struct btrfs_root_backup *root_backup;
  1577. int i;
  1578. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1579. root_backup = info->super_copy->super_roots + i;
  1580. cur = btrfs_backup_tree_root_gen(root_backup);
  1581. if (cur == newest_gen)
  1582. newest_index = i;
  1583. }
  1584. /* check to see if we actually wrapped around */
  1585. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1586. root_backup = info->super_copy->super_roots;
  1587. cur = btrfs_backup_tree_root_gen(root_backup);
  1588. if (cur == newest_gen)
  1589. newest_index = 0;
  1590. }
  1591. return newest_index;
  1592. }
  1593. /*
  1594. * find the oldest backup so we know where to store new entries
  1595. * in the backup array. This will set the backup_root_index
  1596. * field in the fs_info struct
  1597. */
  1598. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1599. u64 newest_gen)
  1600. {
  1601. int newest_index = -1;
  1602. newest_index = find_newest_super_backup(info, newest_gen);
  1603. /* if there was garbage in there, just move along */
  1604. if (newest_index == -1) {
  1605. info->backup_root_index = 0;
  1606. } else {
  1607. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1608. }
  1609. }
  1610. /*
  1611. * copy all the root pointers into the super backup array.
  1612. * this will bump the backup pointer by one when it is
  1613. * done
  1614. */
  1615. static void backup_super_roots(struct btrfs_fs_info *info)
  1616. {
  1617. int next_backup;
  1618. struct btrfs_root_backup *root_backup;
  1619. int last_backup;
  1620. next_backup = info->backup_root_index;
  1621. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1622. BTRFS_NUM_BACKUP_ROOTS;
  1623. /*
  1624. * just overwrite the last backup if we're at the same generation
  1625. * this happens only at umount
  1626. */
  1627. root_backup = info->super_for_commit->super_roots + last_backup;
  1628. if (btrfs_backup_tree_root_gen(root_backup) ==
  1629. btrfs_header_generation(info->tree_root->node))
  1630. next_backup = last_backup;
  1631. root_backup = info->super_for_commit->super_roots + next_backup;
  1632. /*
  1633. * make sure all of our padding and empty slots get zero filled
  1634. * regardless of which ones we use today
  1635. */
  1636. memset(root_backup, 0, sizeof(*root_backup));
  1637. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1638. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1639. btrfs_set_backup_tree_root_gen(root_backup,
  1640. btrfs_header_generation(info->tree_root->node));
  1641. btrfs_set_backup_tree_root_level(root_backup,
  1642. btrfs_header_level(info->tree_root->node));
  1643. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1644. btrfs_set_backup_chunk_root_gen(root_backup,
  1645. btrfs_header_generation(info->chunk_root->node));
  1646. btrfs_set_backup_chunk_root_level(root_backup,
  1647. btrfs_header_level(info->chunk_root->node));
  1648. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1649. btrfs_set_backup_extent_root_gen(root_backup,
  1650. btrfs_header_generation(info->extent_root->node));
  1651. btrfs_set_backup_extent_root_level(root_backup,
  1652. btrfs_header_level(info->extent_root->node));
  1653. /*
  1654. * we might commit during log recovery, which happens before we set
  1655. * the fs_root. Make sure it is valid before we fill it in.
  1656. */
  1657. if (info->fs_root && info->fs_root->node) {
  1658. btrfs_set_backup_fs_root(root_backup,
  1659. info->fs_root->node->start);
  1660. btrfs_set_backup_fs_root_gen(root_backup,
  1661. btrfs_header_generation(info->fs_root->node));
  1662. btrfs_set_backup_fs_root_level(root_backup,
  1663. btrfs_header_level(info->fs_root->node));
  1664. }
  1665. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1666. btrfs_set_backup_dev_root_gen(root_backup,
  1667. btrfs_header_generation(info->dev_root->node));
  1668. btrfs_set_backup_dev_root_level(root_backup,
  1669. btrfs_header_level(info->dev_root->node));
  1670. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1671. btrfs_set_backup_csum_root_gen(root_backup,
  1672. btrfs_header_generation(info->csum_root->node));
  1673. btrfs_set_backup_csum_root_level(root_backup,
  1674. btrfs_header_level(info->csum_root->node));
  1675. btrfs_set_backup_total_bytes(root_backup,
  1676. btrfs_super_total_bytes(info->super_copy));
  1677. btrfs_set_backup_bytes_used(root_backup,
  1678. btrfs_super_bytes_used(info->super_copy));
  1679. btrfs_set_backup_num_devices(root_backup,
  1680. btrfs_super_num_devices(info->super_copy));
  1681. /*
  1682. * if we don't copy this out to the super_copy, it won't get remembered
  1683. * for the next commit
  1684. */
  1685. memcpy(&info->super_copy->super_roots,
  1686. &info->super_for_commit->super_roots,
  1687. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1688. }
  1689. /*
  1690. * this copies info out of the root backup array and back into
  1691. * the in-memory super block. It is meant to help iterate through
  1692. * the array, so you send it the number of backups you've already
  1693. * tried and the last backup index you used.
  1694. *
  1695. * this returns -1 when it has tried all the backups
  1696. */
  1697. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1698. struct btrfs_super_block *super,
  1699. int *num_backups_tried, int *backup_index)
  1700. {
  1701. struct btrfs_root_backup *root_backup;
  1702. int newest = *backup_index;
  1703. if (*num_backups_tried == 0) {
  1704. u64 gen = btrfs_super_generation(super);
  1705. newest = find_newest_super_backup(info, gen);
  1706. if (newest == -1)
  1707. return -1;
  1708. *backup_index = newest;
  1709. *num_backups_tried = 1;
  1710. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1711. /* we've tried all the backups, all done */
  1712. return -1;
  1713. } else {
  1714. /* jump to the next oldest backup */
  1715. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1716. BTRFS_NUM_BACKUP_ROOTS;
  1717. *backup_index = newest;
  1718. *num_backups_tried += 1;
  1719. }
  1720. root_backup = super->super_roots + newest;
  1721. btrfs_set_super_generation(super,
  1722. btrfs_backup_tree_root_gen(root_backup));
  1723. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1724. btrfs_set_super_root_level(super,
  1725. btrfs_backup_tree_root_level(root_backup));
  1726. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1727. /*
  1728. * fixme: the total bytes and num_devices need to match or we should
  1729. * need a fsck
  1730. */
  1731. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1732. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1733. return 0;
  1734. }
  1735. /* helper to cleanup workers */
  1736. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1737. {
  1738. btrfs_stop_workers(&fs_info->generic_worker);
  1739. btrfs_stop_workers(&fs_info->fixup_workers);
  1740. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1741. btrfs_destroy_workqueue(fs_info->workers);
  1742. btrfs_destroy_workqueue(fs_info->endio_workers);
  1743. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1744. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1745. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1746. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1747. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1748. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1749. btrfs_destroy_workqueue(fs_info->submit_workers);
  1750. btrfs_stop_workers(&fs_info->delayed_workers);
  1751. btrfs_destroy_workqueue(fs_info->caching_workers);
  1752. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1753. btrfs_destroy_workqueue(fs_info->flush_workers);
  1754. btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
  1755. }
  1756. static void free_root_extent_buffers(struct btrfs_root *root)
  1757. {
  1758. if (root) {
  1759. free_extent_buffer(root->node);
  1760. free_extent_buffer(root->commit_root);
  1761. root->node = NULL;
  1762. root->commit_root = NULL;
  1763. }
  1764. }
  1765. /* helper to cleanup tree roots */
  1766. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1767. {
  1768. free_root_extent_buffers(info->tree_root);
  1769. free_root_extent_buffers(info->dev_root);
  1770. free_root_extent_buffers(info->extent_root);
  1771. free_root_extent_buffers(info->csum_root);
  1772. free_root_extent_buffers(info->quota_root);
  1773. free_root_extent_buffers(info->uuid_root);
  1774. if (chunk_root)
  1775. free_root_extent_buffers(info->chunk_root);
  1776. }
  1777. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  1778. {
  1779. int ret;
  1780. struct btrfs_root *gang[8];
  1781. int i;
  1782. while (!list_empty(&fs_info->dead_roots)) {
  1783. gang[0] = list_entry(fs_info->dead_roots.next,
  1784. struct btrfs_root, root_list);
  1785. list_del(&gang[0]->root_list);
  1786. if (gang[0]->in_radix) {
  1787. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1788. } else {
  1789. free_extent_buffer(gang[0]->node);
  1790. free_extent_buffer(gang[0]->commit_root);
  1791. btrfs_put_fs_root(gang[0]);
  1792. }
  1793. }
  1794. while (1) {
  1795. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1796. (void **)gang, 0,
  1797. ARRAY_SIZE(gang));
  1798. if (!ret)
  1799. break;
  1800. for (i = 0; i < ret; i++)
  1801. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1802. }
  1803. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1804. btrfs_free_log_root_tree(NULL, fs_info);
  1805. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1806. fs_info->pinned_extents);
  1807. }
  1808. }
  1809. int open_ctree(struct super_block *sb,
  1810. struct btrfs_fs_devices *fs_devices,
  1811. char *options)
  1812. {
  1813. u32 sectorsize;
  1814. u32 nodesize;
  1815. u32 leafsize;
  1816. u32 blocksize;
  1817. u32 stripesize;
  1818. u64 generation;
  1819. u64 features;
  1820. struct btrfs_key location;
  1821. struct buffer_head *bh;
  1822. struct btrfs_super_block *disk_super;
  1823. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1824. struct btrfs_root *tree_root;
  1825. struct btrfs_root *extent_root;
  1826. struct btrfs_root *csum_root;
  1827. struct btrfs_root *chunk_root;
  1828. struct btrfs_root *dev_root;
  1829. struct btrfs_root *quota_root;
  1830. struct btrfs_root *uuid_root;
  1831. struct btrfs_root *log_tree_root;
  1832. int ret;
  1833. int err = -EINVAL;
  1834. int num_backups_tried = 0;
  1835. int backup_index = 0;
  1836. int max_active;
  1837. int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  1838. bool create_uuid_tree;
  1839. bool check_uuid_tree;
  1840. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1841. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1842. if (!tree_root || !chunk_root) {
  1843. err = -ENOMEM;
  1844. goto fail;
  1845. }
  1846. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1847. if (ret) {
  1848. err = ret;
  1849. goto fail;
  1850. }
  1851. ret = setup_bdi(fs_info, &fs_info->bdi);
  1852. if (ret) {
  1853. err = ret;
  1854. goto fail_srcu;
  1855. }
  1856. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1857. if (ret) {
  1858. err = ret;
  1859. goto fail_bdi;
  1860. }
  1861. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1862. (1 + ilog2(nr_cpu_ids));
  1863. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1864. if (ret) {
  1865. err = ret;
  1866. goto fail_dirty_metadata_bytes;
  1867. }
  1868. ret = percpu_counter_init(&fs_info->bio_counter, 0);
  1869. if (ret) {
  1870. err = ret;
  1871. goto fail_delalloc_bytes;
  1872. }
  1873. fs_info->btree_inode = new_inode(sb);
  1874. if (!fs_info->btree_inode) {
  1875. err = -ENOMEM;
  1876. goto fail_bio_counter;
  1877. }
  1878. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1879. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1880. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  1881. INIT_LIST_HEAD(&fs_info->trans_list);
  1882. INIT_LIST_HEAD(&fs_info->dead_roots);
  1883. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1884. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  1885. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1886. spin_lock_init(&fs_info->delalloc_root_lock);
  1887. spin_lock_init(&fs_info->trans_lock);
  1888. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1889. spin_lock_init(&fs_info->delayed_iput_lock);
  1890. spin_lock_init(&fs_info->defrag_inodes_lock);
  1891. spin_lock_init(&fs_info->free_chunk_lock);
  1892. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1893. spin_lock_init(&fs_info->super_lock);
  1894. spin_lock_init(&fs_info->buffer_lock);
  1895. rwlock_init(&fs_info->tree_mod_log_lock);
  1896. mutex_init(&fs_info->reloc_mutex);
  1897. seqlock_init(&fs_info->profiles_lock);
  1898. init_completion(&fs_info->kobj_unregister);
  1899. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1900. INIT_LIST_HEAD(&fs_info->space_info);
  1901. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1902. btrfs_mapping_init(&fs_info->mapping_tree);
  1903. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1904. BTRFS_BLOCK_RSV_GLOBAL);
  1905. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1906. BTRFS_BLOCK_RSV_DELALLOC);
  1907. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1908. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1909. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1910. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1911. BTRFS_BLOCK_RSV_DELOPS);
  1912. atomic_set(&fs_info->nr_async_submits, 0);
  1913. atomic_set(&fs_info->async_delalloc_pages, 0);
  1914. atomic_set(&fs_info->async_submit_draining, 0);
  1915. atomic_set(&fs_info->nr_async_bios, 0);
  1916. atomic_set(&fs_info->defrag_running, 0);
  1917. atomic64_set(&fs_info->tree_mod_seq, 0);
  1918. fs_info->sb = sb;
  1919. fs_info->max_inline = 8192 * 1024;
  1920. fs_info->metadata_ratio = 0;
  1921. fs_info->defrag_inodes = RB_ROOT;
  1922. fs_info->free_chunk_space = 0;
  1923. fs_info->tree_mod_log = RB_ROOT;
  1924. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  1925. fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
  1926. /* readahead state */
  1927. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1928. spin_lock_init(&fs_info->reada_lock);
  1929. fs_info->thread_pool_size = min_t(unsigned long,
  1930. num_online_cpus() + 2, 8);
  1931. INIT_LIST_HEAD(&fs_info->ordered_roots);
  1932. spin_lock_init(&fs_info->ordered_root_lock);
  1933. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1934. GFP_NOFS);
  1935. if (!fs_info->delayed_root) {
  1936. err = -ENOMEM;
  1937. goto fail_iput;
  1938. }
  1939. btrfs_init_delayed_root(fs_info->delayed_root);
  1940. mutex_init(&fs_info->scrub_lock);
  1941. atomic_set(&fs_info->scrubs_running, 0);
  1942. atomic_set(&fs_info->scrub_pause_req, 0);
  1943. atomic_set(&fs_info->scrubs_paused, 0);
  1944. atomic_set(&fs_info->scrub_cancel_req, 0);
  1945. init_waitqueue_head(&fs_info->replace_wait);
  1946. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1947. fs_info->scrub_workers_refcnt = 0;
  1948. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1949. fs_info->check_integrity_print_mask = 0;
  1950. #endif
  1951. spin_lock_init(&fs_info->balance_lock);
  1952. mutex_init(&fs_info->balance_mutex);
  1953. atomic_set(&fs_info->balance_running, 0);
  1954. atomic_set(&fs_info->balance_pause_req, 0);
  1955. atomic_set(&fs_info->balance_cancel_req, 0);
  1956. fs_info->balance_ctl = NULL;
  1957. init_waitqueue_head(&fs_info->balance_wait_q);
  1958. sb->s_blocksize = 4096;
  1959. sb->s_blocksize_bits = blksize_bits(4096);
  1960. sb->s_bdi = &fs_info->bdi;
  1961. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1962. set_nlink(fs_info->btree_inode, 1);
  1963. /*
  1964. * we set the i_size on the btree inode to the max possible int.
  1965. * the real end of the address space is determined by all of
  1966. * the devices in the system
  1967. */
  1968. fs_info->btree_inode->i_size = OFFSET_MAX;
  1969. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1970. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1971. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1972. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1973. fs_info->btree_inode->i_mapping);
  1974. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1975. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1976. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1977. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1978. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1979. sizeof(struct btrfs_key));
  1980. set_bit(BTRFS_INODE_DUMMY,
  1981. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1982. btrfs_insert_inode_hash(fs_info->btree_inode);
  1983. spin_lock_init(&fs_info->block_group_cache_lock);
  1984. fs_info->block_group_cache_tree = RB_ROOT;
  1985. fs_info->first_logical_byte = (u64)-1;
  1986. extent_io_tree_init(&fs_info->freed_extents[0],
  1987. fs_info->btree_inode->i_mapping);
  1988. extent_io_tree_init(&fs_info->freed_extents[1],
  1989. fs_info->btree_inode->i_mapping);
  1990. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1991. fs_info->do_barriers = 1;
  1992. mutex_init(&fs_info->ordered_operations_mutex);
  1993. mutex_init(&fs_info->ordered_extent_flush_mutex);
  1994. mutex_init(&fs_info->tree_log_mutex);
  1995. mutex_init(&fs_info->chunk_mutex);
  1996. mutex_init(&fs_info->transaction_kthread_mutex);
  1997. mutex_init(&fs_info->cleaner_mutex);
  1998. mutex_init(&fs_info->volume_mutex);
  1999. init_rwsem(&fs_info->extent_commit_sem);
  2000. init_rwsem(&fs_info->cleanup_work_sem);
  2001. init_rwsem(&fs_info->subvol_sem);
  2002. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2003. fs_info->dev_replace.lock_owner = 0;
  2004. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2005. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2006. mutex_init(&fs_info->dev_replace.lock_management_lock);
  2007. mutex_init(&fs_info->dev_replace.lock);
  2008. spin_lock_init(&fs_info->qgroup_lock);
  2009. mutex_init(&fs_info->qgroup_ioctl_lock);
  2010. fs_info->qgroup_tree = RB_ROOT;
  2011. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2012. fs_info->qgroup_seq = 1;
  2013. fs_info->quota_enabled = 0;
  2014. fs_info->pending_quota_state = 0;
  2015. fs_info->qgroup_ulist = NULL;
  2016. mutex_init(&fs_info->qgroup_rescan_lock);
  2017. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2018. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2019. init_waitqueue_head(&fs_info->transaction_throttle);
  2020. init_waitqueue_head(&fs_info->transaction_wait);
  2021. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2022. init_waitqueue_head(&fs_info->async_submit_wait);
  2023. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2024. if (ret) {
  2025. err = ret;
  2026. goto fail_alloc;
  2027. }
  2028. __setup_root(4096, 4096, 4096, 4096, tree_root,
  2029. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2030. invalidate_bdev(fs_devices->latest_bdev);
  2031. /*
  2032. * Read super block and check the signature bytes only
  2033. */
  2034. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2035. if (!bh) {
  2036. err = -EINVAL;
  2037. goto fail_alloc;
  2038. }
  2039. /*
  2040. * We want to check superblock checksum, the type is stored inside.
  2041. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2042. */
  2043. if (btrfs_check_super_csum(bh->b_data)) {
  2044. printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
  2045. err = -EINVAL;
  2046. goto fail_alloc;
  2047. }
  2048. /*
  2049. * super_copy is zeroed at allocation time and we never touch the
  2050. * following bytes up to INFO_SIZE, the checksum is calculated from
  2051. * the whole block of INFO_SIZE
  2052. */
  2053. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2054. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2055. sizeof(*fs_info->super_for_commit));
  2056. brelse(bh);
  2057. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2058. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2059. if (ret) {
  2060. printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
  2061. err = -EINVAL;
  2062. goto fail_alloc;
  2063. }
  2064. disk_super = fs_info->super_copy;
  2065. if (!btrfs_super_root(disk_super))
  2066. goto fail_alloc;
  2067. /* check FS state, whether FS is broken. */
  2068. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2069. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2070. /*
  2071. * run through our array of backup supers and setup
  2072. * our ring pointer to the oldest one
  2073. */
  2074. generation = btrfs_super_generation(disk_super);
  2075. find_oldest_super_backup(fs_info, generation);
  2076. /*
  2077. * In the long term, we'll store the compression type in the super
  2078. * block, and it'll be used for per file compression control.
  2079. */
  2080. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2081. ret = btrfs_parse_options(tree_root, options);
  2082. if (ret) {
  2083. err = ret;
  2084. goto fail_alloc;
  2085. }
  2086. features = btrfs_super_incompat_flags(disk_super) &
  2087. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2088. if (features) {
  2089. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2090. "unsupported optional features (%Lx).\n",
  2091. features);
  2092. err = -EINVAL;
  2093. goto fail_alloc;
  2094. }
  2095. if (btrfs_super_leafsize(disk_super) !=
  2096. btrfs_super_nodesize(disk_super)) {
  2097. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2098. "blocksizes don't match. node %d leaf %d\n",
  2099. btrfs_super_nodesize(disk_super),
  2100. btrfs_super_leafsize(disk_super));
  2101. err = -EINVAL;
  2102. goto fail_alloc;
  2103. }
  2104. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2105. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2106. "blocksize (%d) was too large\n",
  2107. btrfs_super_leafsize(disk_super));
  2108. err = -EINVAL;
  2109. goto fail_alloc;
  2110. }
  2111. features = btrfs_super_incompat_flags(disk_super);
  2112. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2113. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2114. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2115. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2116. printk(KERN_ERR "BTRFS: has skinny extents\n");
  2117. /*
  2118. * flag our filesystem as having big metadata blocks if
  2119. * they are bigger than the page size
  2120. */
  2121. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2122. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2123. printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
  2124. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2125. }
  2126. nodesize = btrfs_super_nodesize(disk_super);
  2127. leafsize = btrfs_super_leafsize(disk_super);
  2128. sectorsize = btrfs_super_sectorsize(disk_super);
  2129. stripesize = btrfs_super_stripesize(disk_super);
  2130. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2131. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2132. /*
  2133. * mixed block groups end up with duplicate but slightly offset
  2134. * extent buffers for the same range. It leads to corruptions
  2135. */
  2136. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2137. (sectorsize != leafsize)) {
  2138. printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
  2139. "are not allowed for mixed block groups on %s\n",
  2140. sb->s_id);
  2141. goto fail_alloc;
  2142. }
  2143. /*
  2144. * Needn't use the lock because there is no other task which will
  2145. * update the flag.
  2146. */
  2147. btrfs_set_super_incompat_flags(disk_super, features);
  2148. features = btrfs_super_compat_ro_flags(disk_super) &
  2149. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2150. if (!(sb->s_flags & MS_RDONLY) && features) {
  2151. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2152. "unsupported option features (%Lx).\n",
  2153. features);
  2154. err = -EINVAL;
  2155. goto fail_alloc;
  2156. }
  2157. max_active = fs_info->thread_pool_size;
  2158. btrfs_init_workers(&fs_info->generic_worker,
  2159. "genwork", 1, NULL);
  2160. fs_info->workers =
  2161. btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
  2162. max_active, 16);
  2163. fs_info->delalloc_workers =
  2164. btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
  2165. fs_info->flush_workers =
  2166. btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
  2167. fs_info->caching_workers =
  2168. btrfs_alloc_workqueue("cache", flags, max_active, 0);
  2169. /*
  2170. * a higher idle thresh on the submit workers makes it much more
  2171. * likely that bios will be send down in a sane order to the
  2172. * devices
  2173. */
  2174. fs_info->submit_workers =
  2175. btrfs_alloc_workqueue("submit", flags,
  2176. min_t(u64, fs_devices->num_devices,
  2177. max_active), 64);
  2178. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2179. &fs_info->generic_worker);
  2180. /*
  2181. * endios are largely parallel and should have a very
  2182. * low idle thresh
  2183. */
  2184. fs_info->endio_workers =
  2185. btrfs_alloc_workqueue("endio", flags, max_active, 4);
  2186. fs_info->endio_meta_workers =
  2187. btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
  2188. fs_info->endio_meta_write_workers =
  2189. btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
  2190. fs_info->endio_raid56_workers =
  2191. btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
  2192. fs_info->rmw_workers =
  2193. btrfs_alloc_workqueue("rmw", flags, max_active, 2);
  2194. fs_info->endio_write_workers =
  2195. btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
  2196. fs_info->endio_freespace_worker =
  2197. btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
  2198. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2199. fs_info->thread_pool_size,
  2200. &fs_info->generic_worker);
  2201. fs_info->readahead_workers =
  2202. btrfs_alloc_workqueue("readahead", flags, max_active, 2);
  2203. btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
  2204. &fs_info->generic_worker);
  2205. /*
  2206. * btrfs_start_workers can really only fail because of ENOMEM so just
  2207. * return -ENOMEM if any of these fail.
  2208. */
  2209. ret = btrfs_start_workers(&fs_info->generic_worker);
  2210. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2211. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2212. ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
  2213. if (ret) {
  2214. err = -ENOMEM;
  2215. goto fail_sb_buffer;
  2216. }
  2217. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2218. fs_info->submit_workers && fs_info->flush_workers &&
  2219. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2220. fs_info->endio_meta_write_workers &&
  2221. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2222. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2223. fs_info->caching_workers && fs_info->readahead_workers)) {
  2224. err = -ENOMEM;
  2225. goto fail_sb_buffer;
  2226. }
  2227. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2228. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2229. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2230. tree_root->nodesize = nodesize;
  2231. tree_root->leafsize = leafsize;
  2232. tree_root->sectorsize = sectorsize;
  2233. tree_root->stripesize = stripesize;
  2234. sb->s_blocksize = sectorsize;
  2235. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2236. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2237. printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
  2238. goto fail_sb_buffer;
  2239. }
  2240. if (sectorsize != PAGE_SIZE) {
  2241. printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
  2242. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2243. goto fail_sb_buffer;
  2244. }
  2245. mutex_lock(&fs_info->chunk_mutex);
  2246. ret = btrfs_read_sys_array(tree_root);
  2247. mutex_unlock(&fs_info->chunk_mutex);
  2248. if (ret) {
  2249. printk(KERN_WARNING "BTRFS: failed to read the system "
  2250. "array on %s\n", sb->s_id);
  2251. goto fail_sb_buffer;
  2252. }
  2253. blocksize = btrfs_level_size(tree_root,
  2254. btrfs_super_chunk_root_level(disk_super));
  2255. generation = btrfs_super_chunk_root_generation(disk_super);
  2256. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2257. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2258. chunk_root->node = read_tree_block(chunk_root,
  2259. btrfs_super_chunk_root(disk_super),
  2260. blocksize, generation);
  2261. if (!chunk_root->node ||
  2262. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2263. printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
  2264. sb->s_id);
  2265. goto fail_tree_roots;
  2266. }
  2267. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2268. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2269. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2270. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2271. ret = btrfs_read_chunk_tree(chunk_root);
  2272. if (ret) {
  2273. printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
  2274. sb->s_id);
  2275. goto fail_tree_roots;
  2276. }
  2277. /*
  2278. * keep the device that is marked to be the target device for the
  2279. * dev_replace procedure
  2280. */
  2281. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2282. if (!fs_devices->latest_bdev) {
  2283. printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
  2284. sb->s_id);
  2285. goto fail_tree_roots;
  2286. }
  2287. retry_root_backup:
  2288. blocksize = btrfs_level_size(tree_root,
  2289. btrfs_super_root_level(disk_super));
  2290. generation = btrfs_super_generation(disk_super);
  2291. tree_root->node = read_tree_block(tree_root,
  2292. btrfs_super_root(disk_super),
  2293. blocksize, generation);
  2294. if (!tree_root->node ||
  2295. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2296. printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
  2297. sb->s_id);
  2298. goto recovery_tree_root;
  2299. }
  2300. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2301. tree_root->commit_root = btrfs_root_node(tree_root);
  2302. btrfs_set_root_refs(&tree_root->root_item, 1);
  2303. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2304. location.type = BTRFS_ROOT_ITEM_KEY;
  2305. location.offset = 0;
  2306. extent_root = btrfs_read_tree_root(tree_root, &location);
  2307. if (IS_ERR(extent_root)) {
  2308. ret = PTR_ERR(extent_root);
  2309. goto recovery_tree_root;
  2310. }
  2311. extent_root->track_dirty = 1;
  2312. fs_info->extent_root = extent_root;
  2313. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2314. dev_root = btrfs_read_tree_root(tree_root, &location);
  2315. if (IS_ERR(dev_root)) {
  2316. ret = PTR_ERR(dev_root);
  2317. goto recovery_tree_root;
  2318. }
  2319. dev_root->track_dirty = 1;
  2320. fs_info->dev_root = dev_root;
  2321. btrfs_init_devices_late(fs_info);
  2322. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2323. csum_root = btrfs_read_tree_root(tree_root, &location);
  2324. if (IS_ERR(csum_root)) {
  2325. ret = PTR_ERR(csum_root);
  2326. goto recovery_tree_root;
  2327. }
  2328. csum_root->track_dirty = 1;
  2329. fs_info->csum_root = csum_root;
  2330. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2331. quota_root = btrfs_read_tree_root(tree_root, &location);
  2332. if (!IS_ERR(quota_root)) {
  2333. quota_root->track_dirty = 1;
  2334. fs_info->quota_enabled = 1;
  2335. fs_info->pending_quota_state = 1;
  2336. fs_info->quota_root = quota_root;
  2337. }
  2338. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2339. uuid_root = btrfs_read_tree_root(tree_root, &location);
  2340. if (IS_ERR(uuid_root)) {
  2341. ret = PTR_ERR(uuid_root);
  2342. if (ret != -ENOENT)
  2343. goto recovery_tree_root;
  2344. create_uuid_tree = true;
  2345. check_uuid_tree = false;
  2346. } else {
  2347. uuid_root->track_dirty = 1;
  2348. fs_info->uuid_root = uuid_root;
  2349. create_uuid_tree = false;
  2350. check_uuid_tree =
  2351. generation != btrfs_super_uuid_tree_generation(disk_super);
  2352. }
  2353. fs_info->generation = generation;
  2354. fs_info->last_trans_committed = generation;
  2355. ret = btrfs_recover_balance(fs_info);
  2356. if (ret) {
  2357. printk(KERN_WARNING "BTRFS: failed to recover balance\n");
  2358. goto fail_block_groups;
  2359. }
  2360. ret = btrfs_init_dev_stats(fs_info);
  2361. if (ret) {
  2362. printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
  2363. ret);
  2364. goto fail_block_groups;
  2365. }
  2366. ret = btrfs_init_dev_replace(fs_info);
  2367. if (ret) {
  2368. pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
  2369. goto fail_block_groups;
  2370. }
  2371. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2372. ret = btrfs_sysfs_add_one(fs_info);
  2373. if (ret) {
  2374. pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
  2375. goto fail_block_groups;
  2376. }
  2377. ret = btrfs_init_space_info(fs_info);
  2378. if (ret) {
  2379. printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
  2380. goto fail_sysfs;
  2381. }
  2382. ret = btrfs_read_block_groups(extent_root);
  2383. if (ret) {
  2384. printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
  2385. goto fail_sysfs;
  2386. }
  2387. fs_info->num_tolerated_disk_barrier_failures =
  2388. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2389. if (fs_info->fs_devices->missing_devices >
  2390. fs_info->num_tolerated_disk_barrier_failures &&
  2391. !(sb->s_flags & MS_RDONLY)) {
  2392. printk(KERN_WARNING "BTRFS: "
  2393. "too many missing devices, writeable mount is not allowed\n");
  2394. goto fail_sysfs;
  2395. }
  2396. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2397. "btrfs-cleaner");
  2398. if (IS_ERR(fs_info->cleaner_kthread))
  2399. goto fail_sysfs;
  2400. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2401. tree_root,
  2402. "btrfs-transaction");
  2403. if (IS_ERR(fs_info->transaction_kthread))
  2404. goto fail_cleaner;
  2405. if (!btrfs_test_opt(tree_root, SSD) &&
  2406. !btrfs_test_opt(tree_root, NOSSD) &&
  2407. !fs_info->fs_devices->rotating) {
  2408. printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
  2409. "mode\n");
  2410. btrfs_set_opt(fs_info->mount_opt, SSD);
  2411. }
  2412. /* Set the real inode map cache flag */
  2413. if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
  2414. btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
  2415. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2416. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2417. ret = btrfsic_mount(tree_root, fs_devices,
  2418. btrfs_test_opt(tree_root,
  2419. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2420. 1 : 0,
  2421. fs_info->check_integrity_print_mask);
  2422. if (ret)
  2423. printk(KERN_WARNING "BTRFS: failed to initialize"
  2424. " integrity check module %s\n", sb->s_id);
  2425. }
  2426. #endif
  2427. ret = btrfs_read_qgroup_config(fs_info);
  2428. if (ret)
  2429. goto fail_trans_kthread;
  2430. /* do not make disk changes in broken FS */
  2431. if (btrfs_super_log_root(disk_super) != 0) {
  2432. u64 bytenr = btrfs_super_log_root(disk_super);
  2433. if (fs_devices->rw_devices == 0) {
  2434. printk(KERN_WARNING "BTRFS: log replay required "
  2435. "on RO media\n");
  2436. err = -EIO;
  2437. goto fail_qgroup;
  2438. }
  2439. blocksize =
  2440. btrfs_level_size(tree_root,
  2441. btrfs_super_log_root_level(disk_super));
  2442. log_tree_root = btrfs_alloc_root(fs_info);
  2443. if (!log_tree_root) {
  2444. err = -ENOMEM;
  2445. goto fail_qgroup;
  2446. }
  2447. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2448. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2449. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2450. blocksize,
  2451. generation + 1);
  2452. if (!log_tree_root->node ||
  2453. !extent_buffer_uptodate(log_tree_root->node)) {
  2454. printk(KERN_ERR "BTRFS: failed to read log tree\n");
  2455. free_extent_buffer(log_tree_root->node);
  2456. kfree(log_tree_root);
  2457. goto fail_trans_kthread;
  2458. }
  2459. /* returns with log_tree_root freed on success */
  2460. ret = btrfs_recover_log_trees(log_tree_root);
  2461. if (ret) {
  2462. btrfs_error(tree_root->fs_info, ret,
  2463. "Failed to recover log tree");
  2464. free_extent_buffer(log_tree_root->node);
  2465. kfree(log_tree_root);
  2466. goto fail_trans_kthread;
  2467. }
  2468. if (sb->s_flags & MS_RDONLY) {
  2469. ret = btrfs_commit_super(tree_root);
  2470. if (ret)
  2471. goto fail_trans_kthread;
  2472. }
  2473. }
  2474. ret = btrfs_find_orphan_roots(tree_root);
  2475. if (ret)
  2476. goto fail_trans_kthread;
  2477. if (!(sb->s_flags & MS_RDONLY)) {
  2478. ret = btrfs_cleanup_fs_roots(fs_info);
  2479. if (ret)
  2480. goto fail_trans_kthread;
  2481. ret = btrfs_recover_relocation(tree_root);
  2482. if (ret < 0) {
  2483. printk(KERN_WARNING
  2484. "BTRFS: failed to recover relocation\n");
  2485. err = -EINVAL;
  2486. goto fail_qgroup;
  2487. }
  2488. }
  2489. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2490. location.type = BTRFS_ROOT_ITEM_KEY;
  2491. location.offset = 0;
  2492. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2493. if (IS_ERR(fs_info->fs_root)) {
  2494. err = PTR_ERR(fs_info->fs_root);
  2495. goto fail_qgroup;
  2496. }
  2497. if (sb->s_flags & MS_RDONLY)
  2498. return 0;
  2499. down_read(&fs_info->cleanup_work_sem);
  2500. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2501. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2502. up_read(&fs_info->cleanup_work_sem);
  2503. close_ctree(tree_root);
  2504. return ret;
  2505. }
  2506. up_read(&fs_info->cleanup_work_sem);
  2507. ret = btrfs_resume_balance_async(fs_info);
  2508. if (ret) {
  2509. printk(KERN_WARNING "BTRFS: failed to resume balance\n");
  2510. close_ctree(tree_root);
  2511. return ret;
  2512. }
  2513. ret = btrfs_resume_dev_replace_async(fs_info);
  2514. if (ret) {
  2515. pr_warn("BTRFS: failed to resume dev_replace\n");
  2516. close_ctree(tree_root);
  2517. return ret;
  2518. }
  2519. btrfs_qgroup_rescan_resume(fs_info);
  2520. if (create_uuid_tree) {
  2521. pr_info("BTRFS: creating UUID tree\n");
  2522. ret = btrfs_create_uuid_tree(fs_info);
  2523. if (ret) {
  2524. pr_warn("BTRFS: failed to create the UUID tree %d\n",
  2525. ret);
  2526. close_ctree(tree_root);
  2527. return ret;
  2528. }
  2529. } else if (check_uuid_tree ||
  2530. btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
  2531. pr_info("BTRFS: checking UUID tree\n");
  2532. ret = btrfs_check_uuid_tree(fs_info);
  2533. if (ret) {
  2534. pr_warn("BTRFS: failed to check the UUID tree %d\n",
  2535. ret);
  2536. close_ctree(tree_root);
  2537. return ret;
  2538. }
  2539. } else {
  2540. fs_info->update_uuid_tree_gen = 1;
  2541. }
  2542. return 0;
  2543. fail_qgroup:
  2544. btrfs_free_qgroup_config(fs_info);
  2545. fail_trans_kthread:
  2546. kthread_stop(fs_info->transaction_kthread);
  2547. btrfs_cleanup_transaction(fs_info->tree_root);
  2548. del_fs_roots(fs_info);
  2549. fail_cleaner:
  2550. kthread_stop(fs_info->cleaner_kthread);
  2551. /*
  2552. * make sure we're done with the btree inode before we stop our
  2553. * kthreads
  2554. */
  2555. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2556. fail_sysfs:
  2557. btrfs_sysfs_remove_one(fs_info);
  2558. fail_block_groups:
  2559. btrfs_put_block_group_cache(fs_info);
  2560. btrfs_free_block_groups(fs_info);
  2561. fail_tree_roots:
  2562. free_root_pointers(fs_info, 1);
  2563. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2564. fail_sb_buffer:
  2565. btrfs_stop_all_workers(fs_info);
  2566. fail_alloc:
  2567. fail_iput:
  2568. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2569. iput(fs_info->btree_inode);
  2570. fail_bio_counter:
  2571. percpu_counter_destroy(&fs_info->bio_counter);
  2572. fail_delalloc_bytes:
  2573. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2574. fail_dirty_metadata_bytes:
  2575. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2576. fail_bdi:
  2577. bdi_destroy(&fs_info->bdi);
  2578. fail_srcu:
  2579. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2580. fail:
  2581. btrfs_free_stripe_hash_table(fs_info);
  2582. btrfs_close_devices(fs_info->fs_devices);
  2583. return err;
  2584. recovery_tree_root:
  2585. if (!btrfs_test_opt(tree_root, RECOVERY))
  2586. goto fail_tree_roots;
  2587. free_root_pointers(fs_info, 0);
  2588. /* don't use the log in recovery mode, it won't be valid */
  2589. btrfs_set_super_log_root(disk_super, 0);
  2590. /* we can't trust the free space cache either */
  2591. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2592. ret = next_root_backup(fs_info, fs_info->super_copy,
  2593. &num_backups_tried, &backup_index);
  2594. if (ret == -1)
  2595. goto fail_block_groups;
  2596. goto retry_root_backup;
  2597. }
  2598. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2599. {
  2600. if (uptodate) {
  2601. set_buffer_uptodate(bh);
  2602. } else {
  2603. struct btrfs_device *device = (struct btrfs_device *)
  2604. bh->b_private;
  2605. printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
  2606. "I/O error on %s\n",
  2607. rcu_str_deref(device->name));
  2608. /* note, we dont' set_buffer_write_io_error because we have
  2609. * our own ways of dealing with the IO errors
  2610. */
  2611. clear_buffer_uptodate(bh);
  2612. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2613. }
  2614. unlock_buffer(bh);
  2615. put_bh(bh);
  2616. }
  2617. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2618. {
  2619. struct buffer_head *bh;
  2620. struct buffer_head *latest = NULL;
  2621. struct btrfs_super_block *super;
  2622. int i;
  2623. u64 transid = 0;
  2624. u64 bytenr;
  2625. /* we would like to check all the supers, but that would make
  2626. * a btrfs mount succeed after a mkfs from a different FS.
  2627. * So, we need to add a special mount option to scan for
  2628. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2629. */
  2630. for (i = 0; i < 1; i++) {
  2631. bytenr = btrfs_sb_offset(i);
  2632. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2633. i_size_read(bdev->bd_inode))
  2634. break;
  2635. bh = __bread(bdev, bytenr / 4096,
  2636. BTRFS_SUPER_INFO_SIZE);
  2637. if (!bh)
  2638. continue;
  2639. super = (struct btrfs_super_block *)bh->b_data;
  2640. if (btrfs_super_bytenr(super) != bytenr ||
  2641. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2642. brelse(bh);
  2643. continue;
  2644. }
  2645. if (!latest || btrfs_super_generation(super) > transid) {
  2646. brelse(latest);
  2647. latest = bh;
  2648. transid = btrfs_super_generation(super);
  2649. } else {
  2650. brelse(bh);
  2651. }
  2652. }
  2653. return latest;
  2654. }
  2655. /*
  2656. * this should be called twice, once with wait == 0 and
  2657. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2658. * we write are pinned.
  2659. *
  2660. * They are released when wait == 1 is done.
  2661. * max_mirrors must be the same for both runs, and it indicates how
  2662. * many supers on this one device should be written.
  2663. *
  2664. * max_mirrors == 0 means to write them all.
  2665. */
  2666. static int write_dev_supers(struct btrfs_device *device,
  2667. struct btrfs_super_block *sb,
  2668. int do_barriers, int wait, int max_mirrors)
  2669. {
  2670. struct buffer_head *bh;
  2671. int i;
  2672. int ret;
  2673. int errors = 0;
  2674. u32 crc;
  2675. u64 bytenr;
  2676. if (max_mirrors == 0)
  2677. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2678. for (i = 0; i < max_mirrors; i++) {
  2679. bytenr = btrfs_sb_offset(i);
  2680. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2681. break;
  2682. if (wait) {
  2683. bh = __find_get_block(device->bdev, bytenr / 4096,
  2684. BTRFS_SUPER_INFO_SIZE);
  2685. if (!bh) {
  2686. errors++;
  2687. continue;
  2688. }
  2689. wait_on_buffer(bh);
  2690. if (!buffer_uptodate(bh))
  2691. errors++;
  2692. /* drop our reference */
  2693. brelse(bh);
  2694. /* drop the reference from the wait == 0 run */
  2695. brelse(bh);
  2696. continue;
  2697. } else {
  2698. btrfs_set_super_bytenr(sb, bytenr);
  2699. crc = ~(u32)0;
  2700. crc = btrfs_csum_data((char *)sb +
  2701. BTRFS_CSUM_SIZE, crc,
  2702. BTRFS_SUPER_INFO_SIZE -
  2703. BTRFS_CSUM_SIZE);
  2704. btrfs_csum_final(crc, sb->csum);
  2705. /*
  2706. * one reference for us, and we leave it for the
  2707. * caller
  2708. */
  2709. bh = __getblk(device->bdev, bytenr / 4096,
  2710. BTRFS_SUPER_INFO_SIZE);
  2711. if (!bh) {
  2712. printk(KERN_ERR "BTRFS: couldn't get super "
  2713. "buffer head for bytenr %Lu\n", bytenr);
  2714. errors++;
  2715. continue;
  2716. }
  2717. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2718. /* one reference for submit_bh */
  2719. get_bh(bh);
  2720. set_buffer_uptodate(bh);
  2721. lock_buffer(bh);
  2722. bh->b_end_io = btrfs_end_buffer_write_sync;
  2723. bh->b_private = device;
  2724. }
  2725. /*
  2726. * we fua the first super. The others we allow
  2727. * to go down lazy.
  2728. */
  2729. if (i == 0)
  2730. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2731. else
  2732. ret = btrfsic_submit_bh(WRITE_SYNC, bh);
  2733. if (ret)
  2734. errors++;
  2735. }
  2736. return errors < i ? 0 : -1;
  2737. }
  2738. /*
  2739. * endio for the write_dev_flush, this will wake anyone waiting
  2740. * for the barrier when it is done
  2741. */
  2742. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2743. {
  2744. if (err) {
  2745. if (err == -EOPNOTSUPP)
  2746. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2747. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2748. }
  2749. if (bio->bi_private)
  2750. complete(bio->bi_private);
  2751. bio_put(bio);
  2752. }
  2753. /*
  2754. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2755. * sent down. With wait == 1, it waits for the previous flush.
  2756. *
  2757. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2758. * capable
  2759. */
  2760. static int write_dev_flush(struct btrfs_device *device, int wait)
  2761. {
  2762. struct bio *bio;
  2763. int ret = 0;
  2764. if (device->nobarriers)
  2765. return 0;
  2766. if (wait) {
  2767. bio = device->flush_bio;
  2768. if (!bio)
  2769. return 0;
  2770. wait_for_completion(&device->flush_wait);
  2771. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2772. printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
  2773. rcu_str_deref(device->name));
  2774. device->nobarriers = 1;
  2775. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2776. ret = -EIO;
  2777. btrfs_dev_stat_inc_and_print(device,
  2778. BTRFS_DEV_STAT_FLUSH_ERRS);
  2779. }
  2780. /* drop the reference from the wait == 0 run */
  2781. bio_put(bio);
  2782. device->flush_bio = NULL;
  2783. return ret;
  2784. }
  2785. /*
  2786. * one reference for us, and we leave it for the
  2787. * caller
  2788. */
  2789. device->flush_bio = NULL;
  2790. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2791. if (!bio)
  2792. return -ENOMEM;
  2793. bio->bi_end_io = btrfs_end_empty_barrier;
  2794. bio->bi_bdev = device->bdev;
  2795. init_completion(&device->flush_wait);
  2796. bio->bi_private = &device->flush_wait;
  2797. device->flush_bio = bio;
  2798. bio_get(bio);
  2799. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2800. return 0;
  2801. }
  2802. /*
  2803. * send an empty flush down to each device in parallel,
  2804. * then wait for them
  2805. */
  2806. static int barrier_all_devices(struct btrfs_fs_info *info)
  2807. {
  2808. struct list_head *head;
  2809. struct btrfs_device *dev;
  2810. int errors_send = 0;
  2811. int errors_wait = 0;
  2812. int ret;
  2813. /* send down all the barriers */
  2814. head = &info->fs_devices->devices;
  2815. list_for_each_entry_rcu(dev, head, dev_list) {
  2816. if (dev->missing)
  2817. continue;
  2818. if (!dev->bdev) {
  2819. errors_send++;
  2820. continue;
  2821. }
  2822. if (!dev->in_fs_metadata || !dev->writeable)
  2823. continue;
  2824. ret = write_dev_flush(dev, 0);
  2825. if (ret)
  2826. errors_send++;
  2827. }
  2828. /* wait for all the barriers */
  2829. list_for_each_entry_rcu(dev, head, dev_list) {
  2830. if (dev->missing)
  2831. continue;
  2832. if (!dev->bdev) {
  2833. errors_wait++;
  2834. continue;
  2835. }
  2836. if (!dev->in_fs_metadata || !dev->writeable)
  2837. continue;
  2838. ret = write_dev_flush(dev, 1);
  2839. if (ret)
  2840. errors_wait++;
  2841. }
  2842. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2843. errors_wait > info->num_tolerated_disk_barrier_failures)
  2844. return -EIO;
  2845. return 0;
  2846. }
  2847. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2848. struct btrfs_fs_info *fs_info)
  2849. {
  2850. struct btrfs_ioctl_space_info space;
  2851. struct btrfs_space_info *sinfo;
  2852. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2853. BTRFS_BLOCK_GROUP_SYSTEM,
  2854. BTRFS_BLOCK_GROUP_METADATA,
  2855. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2856. int num_types = 4;
  2857. int i;
  2858. int c;
  2859. int num_tolerated_disk_barrier_failures =
  2860. (int)fs_info->fs_devices->num_devices;
  2861. for (i = 0; i < num_types; i++) {
  2862. struct btrfs_space_info *tmp;
  2863. sinfo = NULL;
  2864. rcu_read_lock();
  2865. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2866. if (tmp->flags == types[i]) {
  2867. sinfo = tmp;
  2868. break;
  2869. }
  2870. }
  2871. rcu_read_unlock();
  2872. if (!sinfo)
  2873. continue;
  2874. down_read(&sinfo->groups_sem);
  2875. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2876. if (!list_empty(&sinfo->block_groups[c])) {
  2877. u64 flags;
  2878. btrfs_get_block_group_info(
  2879. &sinfo->block_groups[c], &space);
  2880. if (space.total_bytes == 0 ||
  2881. space.used_bytes == 0)
  2882. continue;
  2883. flags = space.flags;
  2884. /*
  2885. * return
  2886. * 0: if dup, single or RAID0 is configured for
  2887. * any of metadata, system or data, else
  2888. * 1: if RAID5 is configured, or if RAID1 or
  2889. * RAID10 is configured and only two mirrors
  2890. * are used, else
  2891. * 2: if RAID6 is configured, else
  2892. * num_mirrors - 1: if RAID1 or RAID10 is
  2893. * configured and more than
  2894. * 2 mirrors are used.
  2895. */
  2896. if (num_tolerated_disk_barrier_failures > 0 &&
  2897. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2898. BTRFS_BLOCK_GROUP_RAID0)) ||
  2899. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2900. == 0)))
  2901. num_tolerated_disk_barrier_failures = 0;
  2902. else if (num_tolerated_disk_barrier_failures > 1) {
  2903. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2904. BTRFS_BLOCK_GROUP_RAID5 |
  2905. BTRFS_BLOCK_GROUP_RAID10)) {
  2906. num_tolerated_disk_barrier_failures = 1;
  2907. } else if (flags &
  2908. BTRFS_BLOCK_GROUP_RAID6) {
  2909. num_tolerated_disk_barrier_failures = 2;
  2910. }
  2911. }
  2912. }
  2913. }
  2914. up_read(&sinfo->groups_sem);
  2915. }
  2916. return num_tolerated_disk_barrier_failures;
  2917. }
  2918. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2919. {
  2920. struct list_head *head;
  2921. struct btrfs_device *dev;
  2922. struct btrfs_super_block *sb;
  2923. struct btrfs_dev_item *dev_item;
  2924. int ret;
  2925. int do_barriers;
  2926. int max_errors;
  2927. int total_errors = 0;
  2928. u64 flags;
  2929. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2930. backup_super_roots(root->fs_info);
  2931. sb = root->fs_info->super_for_commit;
  2932. dev_item = &sb->dev_item;
  2933. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2934. head = &root->fs_info->fs_devices->devices;
  2935. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2936. if (do_barriers) {
  2937. ret = barrier_all_devices(root->fs_info);
  2938. if (ret) {
  2939. mutex_unlock(
  2940. &root->fs_info->fs_devices->device_list_mutex);
  2941. btrfs_error(root->fs_info, ret,
  2942. "errors while submitting device barriers.");
  2943. return ret;
  2944. }
  2945. }
  2946. list_for_each_entry_rcu(dev, head, dev_list) {
  2947. if (!dev->bdev) {
  2948. total_errors++;
  2949. continue;
  2950. }
  2951. if (!dev->in_fs_metadata || !dev->writeable)
  2952. continue;
  2953. btrfs_set_stack_device_generation(dev_item, 0);
  2954. btrfs_set_stack_device_type(dev_item, dev->type);
  2955. btrfs_set_stack_device_id(dev_item, dev->devid);
  2956. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2957. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2958. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2959. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2960. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2961. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2962. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2963. flags = btrfs_super_flags(sb);
  2964. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2965. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2966. if (ret)
  2967. total_errors++;
  2968. }
  2969. if (total_errors > max_errors) {
  2970. btrfs_err(root->fs_info, "%d errors while writing supers",
  2971. total_errors);
  2972. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2973. /* FUA is masked off if unsupported and can't be the reason */
  2974. btrfs_error(root->fs_info, -EIO,
  2975. "%d errors while writing supers", total_errors);
  2976. return -EIO;
  2977. }
  2978. total_errors = 0;
  2979. list_for_each_entry_rcu(dev, head, dev_list) {
  2980. if (!dev->bdev)
  2981. continue;
  2982. if (!dev->in_fs_metadata || !dev->writeable)
  2983. continue;
  2984. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2985. if (ret)
  2986. total_errors++;
  2987. }
  2988. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2989. if (total_errors > max_errors) {
  2990. btrfs_error(root->fs_info, -EIO,
  2991. "%d errors while writing supers", total_errors);
  2992. return -EIO;
  2993. }
  2994. return 0;
  2995. }
  2996. int write_ctree_super(struct btrfs_trans_handle *trans,
  2997. struct btrfs_root *root, int max_mirrors)
  2998. {
  2999. return write_all_supers(root, max_mirrors);
  3000. }
  3001. /* Drop a fs root from the radix tree and free it. */
  3002. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3003. struct btrfs_root *root)
  3004. {
  3005. spin_lock(&fs_info->fs_roots_radix_lock);
  3006. radix_tree_delete(&fs_info->fs_roots_radix,
  3007. (unsigned long)root->root_key.objectid);
  3008. spin_unlock(&fs_info->fs_roots_radix_lock);
  3009. if (btrfs_root_refs(&root->root_item) == 0)
  3010. synchronize_srcu(&fs_info->subvol_srcu);
  3011. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3012. btrfs_free_log(NULL, root);
  3013. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3014. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3015. free_fs_root(root);
  3016. }
  3017. static void free_fs_root(struct btrfs_root *root)
  3018. {
  3019. iput(root->cache_inode);
  3020. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3021. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3022. root->orphan_block_rsv = NULL;
  3023. if (root->anon_dev)
  3024. free_anon_bdev(root->anon_dev);
  3025. free_extent_buffer(root->node);
  3026. free_extent_buffer(root->commit_root);
  3027. kfree(root->free_ino_ctl);
  3028. kfree(root->free_ino_pinned);
  3029. kfree(root->name);
  3030. btrfs_put_fs_root(root);
  3031. }
  3032. void btrfs_free_fs_root(struct btrfs_root *root)
  3033. {
  3034. free_fs_root(root);
  3035. }
  3036. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3037. {
  3038. u64 root_objectid = 0;
  3039. struct btrfs_root *gang[8];
  3040. int i;
  3041. int ret;
  3042. while (1) {
  3043. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3044. (void **)gang, root_objectid,
  3045. ARRAY_SIZE(gang));
  3046. if (!ret)
  3047. break;
  3048. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3049. for (i = 0; i < ret; i++) {
  3050. int err;
  3051. root_objectid = gang[i]->root_key.objectid;
  3052. err = btrfs_orphan_cleanup(gang[i]);
  3053. if (err)
  3054. return err;
  3055. }
  3056. root_objectid++;
  3057. }
  3058. return 0;
  3059. }
  3060. int btrfs_commit_super(struct btrfs_root *root)
  3061. {
  3062. struct btrfs_trans_handle *trans;
  3063. mutex_lock(&root->fs_info->cleaner_mutex);
  3064. btrfs_run_delayed_iputs(root);
  3065. mutex_unlock(&root->fs_info->cleaner_mutex);
  3066. wake_up_process(root->fs_info->cleaner_kthread);
  3067. /* wait until ongoing cleanup work done */
  3068. down_write(&root->fs_info->cleanup_work_sem);
  3069. up_write(&root->fs_info->cleanup_work_sem);
  3070. trans = btrfs_join_transaction(root);
  3071. if (IS_ERR(trans))
  3072. return PTR_ERR(trans);
  3073. return btrfs_commit_transaction(trans, root);
  3074. }
  3075. int close_ctree(struct btrfs_root *root)
  3076. {
  3077. struct btrfs_fs_info *fs_info = root->fs_info;
  3078. int ret;
  3079. fs_info->closing = 1;
  3080. smp_mb();
  3081. /* wait for the uuid_scan task to finish */
  3082. down(&fs_info->uuid_tree_rescan_sem);
  3083. /* avoid complains from lockdep et al., set sem back to initial state */
  3084. up(&fs_info->uuid_tree_rescan_sem);
  3085. /* pause restriper - we want to resume on mount */
  3086. btrfs_pause_balance(fs_info);
  3087. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3088. btrfs_scrub_cancel(fs_info);
  3089. /* wait for any defraggers to finish */
  3090. wait_event(fs_info->transaction_wait,
  3091. (atomic_read(&fs_info->defrag_running) == 0));
  3092. /* clear out the rbtree of defraggable inodes */
  3093. btrfs_cleanup_defrag_inodes(fs_info);
  3094. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3095. ret = btrfs_commit_super(root);
  3096. if (ret)
  3097. btrfs_err(root->fs_info, "commit super ret %d", ret);
  3098. }
  3099. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3100. btrfs_error_commit_super(root);
  3101. kthread_stop(fs_info->transaction_kthread);
  3102. kthread_stop(fs_info->cleaner_kthread);
  3103. fs_info->closing = 2;
  3104. smp_mb();
  3105. btrfs_free_qgroup_config(root->fs_info);
  3106. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3107. btrfs_info(root->fs_info, "at unmount delalloc count %lld",
  3108. percpu_counter_sum(&fs_info->delalloc_bytes));
  3109. }
  3110. btrfs_sysfs_remove_one(fs_info);
  3111. del_fs_roots(fs_info);
  3112. btrfs_put_block_group_cache(fs_info);
  3113. btrfs_free_block_groups(fs_info);
  3114. btrfs_stop_all_workers(fs_info);
  3115. free_root_pointers(fs_info, 1);
  3116. iput(fs_info->btree_inode);
  3117. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3118. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3119. btrfsic_unmount(root, fs_info->fs_devices);
  3120. #endif
  3121. btrfs_close_devices(fs_info->fs_devices);
  3122. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3123. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3124. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3125. percpu_counter_destroy(&fs_info->bio_counter);
  3126. bdi_destroy(&fs_info->bdi);
  3127. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3128. btrfs_free_stripe_hash_table(fs_info);
  3129. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3130. root->orphan_block_rsv = NULL;
  3131. return 0;
  3132. }
  3133. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3134. int atomic)
  3135. {
  3136. int ret;
  3137. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3138. ret = extent_buffer_uptodate(buf);
  3139. if (!ret)
  3140. return ret;
  3141. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3142. parent_transid, atomic);
  3143. if (ret == -EAGAIN)
  3144. return ret;
  3145. return !ret;
  3146. }
  3147. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3148. {
  3149. return set_extent_buffer_uptodate(buf);
  3150. }
  3151. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3152. {
  3153. struct btrfs_root *root;
  3154. u64 transid = btrfs_header_generation(buf);
  3155. int was_dirty;
  3156. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3157. /*
  3158. * This is a fast path so only do this check if we have sanity tests
  3159. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3160. * outside of the sanity tests.
  3161. */
  3162. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3163. return;
  3164. #endif
  3165. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3166. btrfs_assert_tree_locked(buf);
  3167. if (transid != root->fs_info->generation)
  3168. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3169. "found %llu running %llu\n",
  3170. buf->start, transid, root->fs_info->generation);
  3171. was_dirty = set_extent_buffer_dirty(buf);
  3172. if (!was_dirty)
  3173. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3174. buf->len,
  3175. root->fs_info->dirty_metadata_batch);
  3176. }
  3177. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3178. int flush_delayed)
  3179. {
  3180. /*
  3181. * looks as though older kernels can get into trouble with
  3182. * this code, they end up stuck in balance_dirty_pages forever
  3183. */
  3184. int ret;
  3185. if (current->flags & PF_MEMALLOC)
  3186. return;
  3187. if (flush_delayed)
  3188. btrfs_balance_delayed_items(root);
  3189. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3190. BTRFS_DIRTY_METADATA_THRESH);
  3191. if (ret > 0) {
  3192. balance_dirty_pages_ratelimited(
  3193. root->fs_info->btree_inode->i_mapping);
  3194. }
  3195. return;
  3196. }
  3197. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3198. {
  3199. __btrfs_btree_balance_dirty(root, 1);
  3200. }
  3201. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3202. {
  3203. __btrfs_btree_balance_dirty(root, 0);
  3204. }
  3205. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3206. {
  3207. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3208. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3209. }
  3210. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3211. int read_only)
  3212. {
  3213. /*
  3214. * Placeholder for checks
  3215. */
  3216. return 0;
  3217. }
  3218. static void btrfs_error_commit_super(struct btrfs_root *root)
  3219. {
  3220. mutex_lock(&root->fs_info->cleaner_mutex);
  3221. btrfs_run_delayed_iputs(root);
  3222. mutex_unlock(&root->fs_info->cleaner_mutex);
  3223. down_write(&root->fs_info->cleanup_work_sem);
  3224. up_write(&root->fs_info->cleanup_work_sem);
  3225. /* cleanup FS via transaction */
  3226. btrfs_cleanup_transaction(root);
  3227. }
  3228. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3229. struct btrfs_root *root)
  3230. {
  3231. struct btrfs_inode *btrfs_inode;
  3232. struct list_head splice;
  3233. INIT_LIST_HEAD(&splice);
  3234. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3235. spin_lock(&root->fs_info->ordered_root_lock);
  3236. list_splice_init(&t->ordered_operations, &splice);
  3237. while (!list_empty(&splice)) {
  3238. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3239. ordered_operations);
  3240. list_del_init(&btrfs_inode->ordered_operations);
  3241. spin_unlock(&root->fs_info->ordered_root_lock);
  3242. btrfs_invalidate_inodes(btrfs_inode->root);
  3243. spin_lock(&root->fs_info->ordered_root_lock);
  3244. }
  3245. spin_unlock(&root->fs_info->ordered_root_lock);
  3246. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3247. }
  3248. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3249. {
  3250. struct btrfs_ordered_extent *ordered;
  3251. spin_lock(&root->ordered_extent_lock);
  3252. /*
  3253. * This will just short circuit the ordered completion stuff which will
  3254. * make sure the ordered extent gets properly cleaned up.
  3255. */
  3256. list_for_each_entry(ordered, &root->ordered_extents,
  3257. root_extent_list)
  3258. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3259. spin_unlock(&root->ordered_extent_lock);
  3260. }
  3261. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3262. {
  3263. struct btrfs_root *root;
  3264. struct list_head splice;
  3265. INIT_LIST_HEAD(&splice);
  3266. spin_lock(&fs_info->ordered_root_lock);
  3267. list_splice_init(&fs_info->ordered_roots, &splice);
  3268. while (!list_empty(&splice)) {
  3269. root = list_first_entry(&splice, struct btrfs_root,
  3270. ordered_root);
  3271. list_move_tail(&root->ordered_root,
  3272. &fs_info->ordered_roots);
  3273. spin_unlock(&fs_info->ordered_root_lock);
  3274. btrfs_destroy_ordered_extents(root);
  3275. cond_resched();
  3276. spin_lock(&fs_info->ordered_root_lock);
  3277. }
  3278. spin_unlock(&fs_info->ordered_root_lock);
  3279. }
  3280. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3281. struct btrfs_root *root)
  3282. {
  3283. struct rb_node *node;
  3284. struct btrfs_delayed_ref_root *delayed_refs;
  3285. struct btrfs_delayed_ref_node *ref;
  3286. int ret = 0;
  3287. delayed_refs = &trans->delayed_refs;
  3288. spin_lock(&delayed_refs->lock);
  3289. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3290. spin_unlock(&delayed_refs->lock);
  3291. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3292. return ret;
  3293. }
  3294. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3295. struct btrfs_delayed_ref_head *head;
  3296. bool pin_bytes = false;
  3297. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3298. href_node);
  3299. if (!mutex_trylock(&head->mutex)) {
  3300. atomic_inc(&head->node.refs);
  3301. spin_unlock(&delayed_refs->lock);
  3302. mutex_lock(&head->mutex);
  3303. mutex_unlock(&head->mutex);
  3304. btrfs_put_delayed_ref(&head->node);
  3305. spin_lock(&delayed_refs->lock);
  3306. continue;
  3307. }
  3308. spin_lock(&head->lock);
  3309. while ((node = rb_first(&head->ref_root)) != NULL) {
  3310. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  3311. rb_node);
  3312. ref->in_tree = 0;
  3313. rb_erase(&ref->rb_node, &head->ref_root);
  3314. atomic_dec(&delayed_refs->num_entries);
  3315. btrfs_put_delayed_ref(ref);
  3316. }
  3317. if (head->must_insert_reserved)
  3318. pin_bytes = true;
  3319. btrfs_free_delayed_extent_op(head->extent_op);
  3320. delayed_refs->num_heads--;
  3321. if (head->processing == 0)
  3322. delayed_refs->num_heads_ready--;
  3323. atomic_dec(&delayed_refs->num_entries);
  3324. head->node.in_tree = 0;
  3325. rb_erase(&head->href_node, &delayed_refs->href_root);
  3326. spin_unlock(&head->lock);
  3327. spin_unlock(&delayed_refs->lock);
  3328. mutex_unlock(&head->mutex);
  3329. if (pin_bytes)
  3330. btrfs_pin_extent(root, head->node.bytenr,
  3331. head->node.num_bytes, 1);
  3332. btrfs_put_delayed_ref(&head->node);
  3333. cond_resched();
  3334. spin_lock(&delayed_refs->lock);
  3335. }
  3336. spin_unlock(&delayed_refs->lock);
  3337. return ret;
  3338. }
  3339. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3340. {
  3341. struct btrfs_inode *btrfs_inode;
  3342. struct list_head splice;
  3343. INIT_LIST_HEAD(&splice);
  3344. spin_lock(&root->delalloc_lock);
  3345. list_splice_init(&root->delalloc_inodes, &splice);
  3346. while (!list_empty(&splice)) {
  3347. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3348. delalloc_inodes);
  3349. list_del_init(&btrfs_inode->delalloc_inodes);
  3350. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3351. &btrfs_inode->runtime_flags);
  3352. spin_unlock(&root->delalloc_lock);
  3353. btrfs_invalidate_inodes(btrfs_inode->root);
  3354. spin_lock(&root->delalloc_lock);
  3355. }
  3356. spin_unlock(&root->delalloc_lock);
  3357. }
  3358. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3359. {
  3360. struct btrfs_root *root;
  3361. struct list_head splice;
  3362. INIT_LIST_HEAD(&splice);
  3363. spin_lock(&fs_info->delalloc_root_lock);
  3364. list_splice_init(&fs_info->delalloc_roots, &splice);
  3365. while (!list_empty(&splice)) {
  3366. root = list_first_entry(&splice, struct btrfs_root,
  3367. delalloc_root);
  3368. list_del_init(&root->delalloc_root);
  3369. root = btrfs_grab_fs_root(root);
  3370. BUG_ON(!root);
  3371. spin_unlock(&fs_info->delalloc_root_lock);
  3372. btrfs_destroy_delalloc_inodes(root);
  3373. btrfs_put_fs_root(root);
  3374. spin_lock(&fs_info->delalloc_root_lock);
  3375. }
  3376. spin_unlock(&fs_info->delalloc_root_lock);
  3377. }
  3378. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3379. struct extent_io_tree *dirty_pages,
  3380. int mark)
  3381. {
  3382. int ret;
  3383. struct extent_buffer *eb;
  3384. u64 start = 0;
  3385. u64 end;
  3386. while (1) {
  3387. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3388. mark, NULL);
  3389. if (ret)
  3390. break;
  3391. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3392. while (start <= end) {
  3393. eb = btrfs_find_tree_block(root, start,
  3394. root->leafsize);
  3395. start += root->leafsize;
  3396. if (!eb)
  3397. continue;
  3398. wait_on_extent_buffer_writeback(eb);
  3399. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3400. &eb->bflags))
  3401. clear_extent_buffer_dirty(eb);
  3402. free_extent_buffer_stale(eb);
  3403. }
  3404. }
  3405. return ret;
  3406. }
  3407. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3408. struct extent_io_tree *pinned_extents)
  3409. {
  3410. struct extent_io_tree *unpin;
  3411. u64 start;
  3412. u64 end;
  3413. int ret;
  3414. bool loop = true;
  3415. unpin = pinned_extents;
  3416. again:
  3417. while (1) {
  3418. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3419. EXTENT_DIRTY, NULL);
  3420. if (ret)
  3421. break;
  3422. /* opt_discard */
  3423. if (btrfs_test_opt(root, DISCARD))
  3424. ret = btrfs_error_discard_extent(root, start,
  3425. end + 1 - start,
  3426. NULL);
  3427. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3428. btrfs_error_unpin_extent_range(root, start, end);
  3429. cond_resched();
  3430. }
  3431. if (loop) {
  3432. if (unpin == &root->fs_info->freed_extents[0])
  3433. unpin = &root->fs_info->freed_extents[1];
  3434. else
  3435. unpin = &root->fs_info->freed_extents[0];
  3436. loop = false;
  3437. goto again;
  3438. }
  3439. return 0;
  3440. }
  3441. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3442. struct btrfs_root *root)
  3443. {
  3444. btrfs_destroy_ordered_operations(cur_trans, root);
  3445. btrfs_destroy_delayed_refs(cur_trans, root);
  3446. cur_trans->state = TRANS_STATE_COMMIT_START;
  3447. wake_up(&root->fs_info->transaction_blocked_wait);
  3448. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3449. wake_up(&root->fs_info->transaction_wait);
  3450. btrfs_destroy_delayed_inodes(root);
  3451. btrfs_assert_delayed_root_empty(root);
  3452. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3453. EXTENT_DIRTY);
  3454. btrfs_destroy_pinned_extent(root,
  3455. root->fs_info->pinned_extents);
  3456. cur_trans->state =TRANS_STATE_COMPLETED;
  3457. wake_up(&cur_trans->commit_wait);
  3458. /*
  3459. memset(cur_trans, 0, sizeof(*cur_trans));
  3460. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3461. */
  3462. }
  3463. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3464. {
  3465. struct btrfs_transaction *t;
  3466. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3467. spin_lock(&root->fs_info->trans_lock);
  3468. while (!list_empty(&root->fs_info->trans_list)) {
  3469. t = list_first_entry(&root->fs_info->trans_list,
  3470. struct btrfs_transaction, list);
  3471. if (t->state >= TRANS_STATE_COMMIT_START) {
  3472. atomic_inc(&t->use_count);
  3473. spin_unlock(&root->fs_info->trans_lock);
  3474. btrfs_wait_for_commit(root, t->transid);
  3475. btrfs_put_transaction(t);
  3476. spin_lock(&root->fs_info->trans_lock);
  3477. continue;
  3478. }
  3479. if (t == root->fs_info->running_transaction) {
  3480. t->state = TRANS_STATE_COMMIT_DOING;
  3481. spin_unlock(&root->fs_info->trans_lock);
  3482. /*
  3483. * We wait for 0 num_writers since we don't hold a trans
  3484. * handle open currently for this transaction.
  3485. */
  3486. wait_event(t->writer_wait,
  3487. atomic_read(&t->num_writers) == 0);
  3488. } else {
  3489. spin_unlock(&root->fs_info->trans_lock);
  3490. }
  3491. btrfs_cleanup_one_transaction(t, root);
  3492. spin_lock(&root->fs_info->trans_lock);
  3493. if (t == root->fs_info->running_transaction)
  3494. root->fs_info->running_transaction = NULL;
  3495. list_del_init(&t->list);
  3496. spin_unlock(&root->fs_info->trans_lock);
  3497. btrfs_put_transaction(t);
  3498. trace_btrfs_transaction_commit(root);
  3499. spin_lock(&root->fs_info->trans_lock);
  3500. }
  3501. spin_unlock(&root->fs_info->trans_lock);
  3502. btrfs_destroy_all_ordered_extents(root->fs_info);
  3503. btrfs_destroy_delayed_inodes(root);
  3504. btrfs_assert_delayed_root_empty(root);
  3505. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3506. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3507. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3508. return 0;
  3509. }
  3510. static struct extent_io_ops btree_extent_io_ops = {
  3511. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3512. .readpage_io_failed_hook = btree_io_failed_hook,
  3513. .submit_bio_hook = btree_submit_bio_hook,
  3514. /* note we're sharing with inode.c for the merge bio hook */
  3515. .merge_bio_hook = btrfs_merge_bio_hook,
  3516. };