pipe_fs_i.h 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169
  1. #ifndef _LINUX_PIPE_FS_I_H
  2. #define _LINUX_PIPE_FS_I_H
  3. #define PIPE_DEF_BUFFERS 16
  4. #define PIPE_BUF_FLAG_LRU 0x01 /* page is on the LRU */
  5. #define PIPE_BUF_FLAG_ATOMIC 0x02 /* was atomically mapped */
  6. #define PIPE_BUF_FLAG_GIFT 0x04 /* page is a gift */
  7. #define PIPE_BUF_FLAG_PACKET 0x08 /* read() as a packet */
  8. /**
  9. * struct pipe_buffer - a linux kernel pipe buffer
  10. * @page: the page containing the data for the pipe buffer
  11. * @offset: offset of data inside the @page
  12. * @len: length of data inside the @page
  13. * @ops: operations associated with this buffer. See @pipe_buf_operations.
  14. * @flags: pipe buffer flags. See above.
  15. * @private: private data owned by the ops.
  16. **/
  17. struct pipe_buffer {
  18. struct page *page;
  19. unsigned int offset, len;
  20. const struct pipe_buf_operations *ops;
  21. unsigned int flags;
  22. unsigned long private;
  23. };
  24. /**
  25. * struct pipe_inode_info - a linux kernel pipe
  26. * @mutex: mutex protecting the whole thing
  27. * @wait: reader/writer wait point in case of empty/full pipe
  28. * @nrbufs: the number of non-empty pipe buffers in this pipe
  29. * @buffers: total number of buffers (should be a power of 2)
  30. * @curbuf: the current pipe buffer entry
  31. * @tmp_page: cached released page
  32. * @readers: number of current readers of this pipe
  33. * @writers: number of current writers of this pipe
  34. * @files: number of struct file refering this pipe (protected by ->i_lock)
  35. * @waiting_writers: number of writers blocked waiting for room
  36. * @r_counter: reader counter
  37. * @w_counter: writer counter
  38. * @fasync_readers: reader side fasync
  39. * @fasync_writers: writer side fasync
  40. * @inode: inode this pipe is attached to
  41. * @bufs: the circular array of pipe buffers
  42. **/
  43. struct pipe_inode_info {
  44. struct mutex mutex;
  45. wait_queue_head_t wait;
  46. unsigned int nrbufs, curbuf, buffers;
  47. unsigned int readers;
  48. unsigned int writers;
  49. unsigned int files;
  50. unsigned int waiting_writers;
  51. unsigned int r_counter;
  52. unsigned int w_counter;
  53. struct page *tmp_page;
  54. struct fasync_struct *fasync_readers;
  55. struct fasync_struct *fasync_writers;
  56. struct inode *inode;
  57. struct pipe_buffer *bufs;
  58. };
  59. /*
  60. * Note on the nesting of these functions:
  61. *
  62. * ->confirm()
  63. * ->steal()
  64. * ...
  65. * ->map()
  66. * ...
  67. * ->unmap()
  68. *
  69. * That is, ->map() must be called on a confirmed buffer,
  70. * same goes for ->steal(). See below for the meaning of each
  71. * operation. Also see kerneldoc in fs/pipe.c for the pipe
  72. * and generic variants of these hooks.
  73. */
  74. struct pipe_buf_operations {
  75. /*
  76. * This is set to 1, if the generic pipe read/write may coalesce
  77. * data into an existing buffer. If this is set to 0, a new pipe
  78. * page segment is always used for new data.
  79. */
  80. int can_merge;
  81. /*
  82. * ->map() returns a virtual address mapping of the pipe buffer.
  83. * The last integer flag reflects whether this should be an atomic
  84. * mapping or not. The atomic map is faster, however you can't take
  85. * page faults before calling ->unmap() again. So if you need to eg
  86. * access user data through copy_to/from_user(), then you must get
  87. * a non-atomic map. ->map() uses the kmap_atomic slot for
  88. * atomic maps, you have to be careful if mapping another page as
  89. * source or destination for a copy.
  90. */
  91. void * (*map)(struct pipe_inode_info *, struct pipe_buffer *, int);
  92. /*
  93. * Undoes ->map(), finishes the virtual mapping of the pipe buffer.
  94. */
  95. void (*unmap)(struct pipe_inode_info *, struct pipe_buffer *, void *);
  96. /*
  97. * ->confirm() verifies that the data in the pipe buffer is there
  98. * and that the contents are good. If the pages in the pipe belong
  99. * to a file system, we may need to wait for IO completion in this
  100. * hook. Returns 0 for good, or a negative error value in case of
  101. * error.
  102. */
  103. int (*confirm)(struct pipe_inode_info *, struct pipe_buffer *);
  104. /*
  105. * When the contents of this pipe buffer has been completely
  106. * consumed by a reader, ->release() is called.
  107. */
  108. void (*release)(struct pipe_inode_info *, struct pipe_buffer *);
  109. /*
  110. * Attempt to take ownership of the pipe buffer and its contents.
  111. * ->steal() returns 0 for success, in which case the contents
  112. * of the pipe (the buf->page) is locked and now completely owned
  113. * by the caller. The page may then be transferred to a different
  114. * mapping, the most often used case is insertion into different
  115. * file address space cache.
  116. */
  117. int (*steal)(struct pipe_inode_info *, struct pipe_buffer *);
  118. /*
  119. * Get a reference to the pipe buffer.
  120. */
  121. void (*get)(struct pipe_inode_info *, struct pipe_buffer *);
  122. };
  123. /* Differs from PIPE_BUF in that PIPE_SIZE is the length of the actual
  124. memory allocation, whereas PIPE_BUF makes atomicity guarantees. */
  125. #define PIPE_SIZE PAGE_SIZE
  126. /* Pipe lock and unlock operations */
  127. void pipe_lock(struct pipe_inode_info *);
  128. void pipe_unlock(struct pipe_inode_info *);
  129. void pipe_double_lock(struct pipe_inode_info *, struct pipe_inode_info *);
  130. extern unsigned int pipe_max_size, pipe_min_size;
  131. int pipe_proc_fn(struct ctl_table *, int, void __user *, size_t *, loff_t *);
  132. /* Drop the inode semaphore and wait for a pipe event, atomically */
  133. void pipe_wait(struct pipe_inode_info *pipe);
  134. struct pipe_inode_info * alloc_pipe_info(struct inode * inode);
  135. void free_pipe_info(struct inode * inode);
  136. void __free_pipe_info(struct pipe_inode_info *);
  137. /* Generic pipe buffer ops functions */
  138. void *generic_pipe_buf_map(struct pipe_inode_info *, struct pipe_buffer *, int);
  139. void generic_pipe_buf_unmap(struct pipe_inode_info *, struct pipe_buffer *, void *);
  140. void generic_pipe_buf_get(struct pipe_inode_info *, struct pipe_buffer *);
  141. int generic_pipe_buf_confirm(struct pipe_inode_info *, struct pipe_buffer *);
  142. int generic_pipe_buf_steal(struct pipe_inode_info *, struct pipe_buffer *);
  143. void generic_pipe_buf_release(struct pipe_inode_info *, struct pipe_buffer *);
  144. /* for F_SETPIPE_SZ and F_GETPIPE_SZ */
  145. long pipe_fcntl(struct file *, unsigned int, unsigned long arg);
  146. struct pipe_inode_info *get_pipe_info(struct file *file);
  147. int create_pipe_files(struct file **, int);
  148. #endif