percpu.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921
  1. /*
  2. * mm/percpu.c - percpu memory allocator
  3. *
  4. * Copyright (C) 2009 SUSE Linux Products GmbH
  5. * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
  6. *
  7. * This file is released under the GPLv2.
  8. *
  9. * This is percpu allocator which can handle both static and dynamic
  10. * areas. Percpu areas are allocated in chunks. Each chunk is
  11. * consisted of boot-time determined number of units and the first
  12. * chunk is used for static percpu variables in the kernel image
  13. * (special boot time alloc/init handling necessary as these areas
  14. * need to be brought up before allocation services are running).
  15. * Unit grows as necessary and all units grow or shrink in unison.
  16. * When a chunk is filled up, another chunk is allocated.
  17. *
  18. * c0 c1 c2
  19. * ------------------- ------------------- ------------
  20. * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
  21. * ------------------- ...... ------------------- .... ------------
  22. *
  23. * Allocation is done in offset-size areas of single unit space. Ie,
  24. * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
  25. * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
  26. * cpus. On NUMA, the mapping can be non-linear and even sparse.
  27. * Percpu access can be done by configuring percpu base registers
  28. * according to cpu to unit mapping and pcpu_unit_size.
  29. *
  30. * There are usually many small percpu allocations many of them being
  31. * as small as 4 bytes. The allocator organizes chunks into lists
  32. * according to free size and tries to allocate from the fullest one.
  33. * Each chunk keeps the maximum contiguous area size hint which is
  34. * guaranteed to be equal to or larger than the maximum contiguous
  35. * area in the chunk. This helps the allocator not to iterate the
  36. * chunk maps unnecessarily.
  37. *
  38. * Allocation state in each chunk is kept using an array of integers
  39. * on chunk->map. A positive value in the map represents a free
  40. * region and negative allocated. Allocation inside a chunk is done
  41. * by scanning this map sequentially and serving the first matching
  42. * entry. This is mostly copied from the percpu_modalloc() allocator.
  43. * Chunks can be determined from the address using the index field
  44. * in the page struct. The index field contains a pointer to the chunk.
  45. *
  46. * To use this allocator, arch code should do the followings.
  47. *
  48. * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
  49. * regular address to percpu pointer and back if they need to be
  50. * different from the default
  51. *
  52. * - use pcpu_setup_first_chunk() during percpu area initialization to
  53. * setup the first chunk containing the kernel static percpu area
  54. */
  55. #include <linux/bitmap.h>
  56. #include <linux/bootmem.h>
  57. #include <linux/err.h>
  58. #include <linux/list.h>
  59. #include <linux/log2.h>
  60. #include <linux/mm.h>
  61. #include <linux/module.h>
  62. #include <linux/mutex.h>
  63. #include <linux/percpu.h>
  64. #include <linux/pfn.h>
  65. #include <linux/slab.h>
  66. #include <linux/spinlock.h>
  67. #include <linux/vmalloc.h>
  68. #include <linux/workqueue.h>
  69. #include <linux/kmemleak.h>
  70. #include <asm/cacheflush.h>
  71. #include <asm/sections.h>
  72. #include <asm/tlbflush.h>
  73. #include <asm/io.h>
  74. #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
  75. #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
  76. #ifdef CONFIG_SMP
  77. /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
  78. #ifndef __addr_to_pcpu_ptr
  79. #define __addr_to_pcpu_ptr(addr) \
  80. (void __percpu *)((unsigned long)(addr) - \
  81. (unsigned long)pcpu_base_addr + \
  82. (unsigned long)__per_cpu_start)
  83. #endif
  84. #ifndef __pcpu_ptr_to_addr
  85. #define __pcpu_ptr_to_addr(ptr) \
  86. (void __force *)((unsigned long)(ptr) + \
  87. (unsigned long)pcpu_base_addr - \
  88. (unsigned long)__per_cpu_start)
  89. #endif
  90. #else /* CONFIG_SMP */
  91. /* on UP, it's always identity mapped */
  92. #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
  93. #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
  94. #endif /* CONFIG_SMP */
  95. struct pcpu_chunk {
  96. struct list_head list; /* linked to pcpu_slot lists */
  97. int free_size; /* free bytes in the chunk */
  98. int contig_hint; /* max contiguous size hint */
  99. void *base_addr; /* base address of this chunk */
  100. int map_used; /* # of map entries used */
  101. int map_alloc; /* # of map entries allocated */
  102. int *map; /* allocation map */
  103. void *data; /* chunk data */
  104. bool immutable; /* no [de]population allowed */
  105. unsigned long populated[]; /* populated bitmap */
  106. };
  107. static int pcpu_unit_pages __read_mostly;
  108. static int pcpu_unit_size __read_mostly;
  109. static int pcpu_nr_units __read_mostly;
  110. static int pcpu_atom_size __read_mostly;
  111. static int pcpu_nr_slots __read_mostly;
  112. static size_t pcpu_chunk_struct_size __read_mostly;
  113. /* cpus with the lowest and highest unit addresses */
  114. static unsigned int pcpu_low_unit_cpu __read_mostly;
  115. static unsigned int pcpu_high_unit_cpu __read_mostly;
  116. /* the address of the first chunk which starts with the kernel static area */
  117. void *pcpu_base_addr __read_mostly;
  118. EXPORT_SYMBOL_GPL(pcpu_base_addr);
  119. static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
  120. const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
  121. /* group information, used for vm allocation */
  122. static int pcpu_nr_groups __read_mostly;
  123. static const unsigned long *pcpu_group_offsets __read_mostly;
  124. static const size_t *pcpu_group_sizes __read_mostly;
  125. /*
  126. * The first chunk which always exists. Note that unlike other
  127. * chunks, this one can be allocated and mapped in several different
  128. * ways and thus often doesn't live in the vmalloc area.
  129. */
  130. static struct pcpu_chunk *pcpu_first_chunk;
  131. /*
  132. * Optional reserved chunk. This chunk reserves part of the first
  133. * chunk and serves it for reserved allocations. The amount of
  134. * reserved offset is in pcpu_reserved_chunk_limit. When reserved
  135. * area doesn't exist, the following variables contain NULL and 0
  136. * respectively.
  137. */
  138. static struct pcpu_chunk *pcpu_reserved_chunk;
  139. static int pcpu_reserved_chunk_limit;
  140. /*
  141. * Synchronization rules.
  142. *
  143. * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
  144. * protects allocation/reclaim paths, chunks, populated bitmap and
  145. * vmalloc mapping. The latter is a spinlock and protects the index
  146. * data structures - chunk slots, chunks and area maps in chunks.
  147. *
  148. * During allocation, pcpu_alloc_mutex is kept locked all the time and
  149. * pcpu_lock is grabbed and released as necessary. All actual memory
  150. * allocations are done using GFP_KERNEL with pcpu_lock released. In
  151. * general, percpu memory can't be allocated with irq off but
  152. * irqsave/restore are still used in alloc path so that it can be used
  153. * from early init path - sched_init() specifically.
  154. *
  155. * Free path accesses and alters only the index data structures, so it
  156. * can be safely called from atomic context. When memory needs to be
  157. * returned to the system, free path schedules reclaim_work which
  158. * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
  159. * reclaimed, release both locks and frees the chunks. Note that it's
  160. * necessary to grab both locks to remove a chunk from circulation as
  161. * allocation path might be referencing the chunk with only
  162. * pcpu_alloc_mutex locked.
  163. */
  164. static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
  165. static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
  166. static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
  167. /* reclaim work to release fully free chunks, scheduled from free path */
  168. static void pcpu_reclaim(struct work_struct *work);
  169. static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
  170. static bool pcpu_addr_in_first_chunk(void *addr)
  171. {
  172. void *first_start = pcpu_first_chunk->base_addr;
  173. return addr >= first_start && addr < first_start + pcpu_unit_size;
  174. }
  175. static bool pcpu_addr_in_reserved_chunk(void *addr)
  176. {
  177. void *first_start = pcpu_first_chunk->base_addr;
  178. return addr >= first_start &&
  179. addr < first_start + pcpu_reserved_chunk_limit;
  180. }
  181. static int __pcpu_size_to_slot(int size)
  182. {
  183. int highbit = fls(size); /* size is in bytes */
  184. return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
  185. }
  186. static int pcpu_size_to_slot(int size)
  187. {
  188. if (size == pcpu_unit_size)
  189. return pcpu_nr_slots - 1;
  190. return __pcpu_size_to_slot(size);
  191. }
  192. static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
  193. {
  194. if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
  195. return 0;
  196. return pcpu_size_to_slot(chunk->free_size);
  197. }
  198. /* set the pointer to a chunk in a page struct */
  199. static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
  200. {
  201. page->index = (unsigned long)pcpu;
  202. }
  203. /* obtain pointer to a chunk from a page struct */
  204. static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
  205. {
  206. return (struct pcpu_chunk *)page->index;
  207. }
  208. static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
  209. {
  210. return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
  211. }
  212. static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
  213. unsigned int cpu, int page_idx)
  214. {
  215. return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
  216. (page_idx << PAGE_SHIFT);
  217. }
  218. static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
  219. int *rs, int *re, int end)
  220. {
  221. *rs = find_next_zero_bit(chunk->populated, end, *rs);
  222. *re = find_next_bit(chunk->populated, end, *rs + 1);
  223. }
  224. static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
  225. int *rs, int *re, int end)
  226. {
  227. *rs = find_next_bit(chunk->populated, end, *rs);
  228. *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
  229. }
  230. /*
  231. * (Un)populated page region iterators. Iterate over (un)populated
  232. * page regions between @start and @end in @chunk. @rs and @re should
  233. * be integer variables and will be set to start and end page index of
  234. * the current region.
  235. */
  236. #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
  237. for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
  238. (rs) < (re); \
  239. (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
  240. #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
  241. for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
  242. (rs) < (re); \
  243. (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
  244. /**
  245. * pcpu_mem_zalloc - allocate memory
  246. * @size: bytes to allocate
  247. *
  248. * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
  249. * kzalloc() is used; otherwise, vzalloc() is used. The returned
  250. * memory is always zeroed.
  251. *
  252. * CONTEXT:
  253. * Does GFP_KERNEL allocation.
  254. *
  255. * RETURNS:
  256. * Pointer to the allocated area on success, NULL on failure.
  257. */
  258. static void *pcpu_mem_zalloc(size_t size)
  259. {
  260. if (WARN_ON_ONCE(!slab_is_available()))
  261. return NULL;
  262. if (size <= PAGE_SIZE)
  263. return kzalloc(size, GFP_KERNEL);
  264. else
  265. return vzalloc(size);
  266. }
  267. /**
  268. * pcpu_mem_free - free memory
  269. * @ptr: memory to free
  270. * @size: size of the area
  271. *
  272. * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
  273. */
  274. static void pcpu_mem_free(void *ptr, size_t size)
  275. {
  276. if (size <= PAGE_SIZE)
  277. kfree(ptr);
  278. else
  279. vfree(ptr);
  280. }
  281. /**
  282. * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
  283. * @chunk: chunk of interest
  284. * @oslot: the previous slot it was on
  285. *
  286. * This function is called after an allocation or free changed @chunk.
  287. * New slot according to the changed state is determined and @chunk is
  288. * moved to the slot. Note that the reserved chunk is never put on
  289. * chunk slots.
  290. *
  291. * CONTEXT:
  292. * pcpu_lock.
  293. */
  294. static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
  295. {
  296. int nslot = pcpu_chunk_slot(chunk);
  297. if (chunk != pcpu_reserved_chunk && oslot != nslot) {
  298. if (oslot < nslot)
  299. list_move(&chunk->list, &pcpu_slot[nslot]);
  300. else
  301. list_move_tail(&chunk->list, &pcpu_slot[nslot]);
  302. }
  303. }
  304. /**
  305. * pcpu_need_to_extend - determine whether chunk area map needs to be extended
  306. * @chunk: chunk of interest
  307. *
  308. * Determine whether area map of @chunk needs to be extended to
  309. * accommodate a new allocation.
  310. *
  311. * CONTEXT:
  312. * pcpu_lock.
  313. *
  314. * RETURNS:
  315. * New target map allocation length if extension is necessary, 0
  316. * otherwise.
  317. */
  318. static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
  319. {
  320. int new_alloc;
  321. if (chunk->map_alloc >= chunk->map_used + 2)
  322. return 0;
  323. new_alloc = PCPU_DFL_MAP_ALLOC;
  324. while (new_alloc < chunk->map_used + 2)
  325. new_alloc *= 2;
  326. return new_alloc;
  327. }
  328. /**
  329. * pcpu_extend_area_map - extend area map of a chunk
  330. * @chunk: chunk of interest
  331. * @new_alloc: new target allocation length of the area map
  332. *
  333. * Extend area map of @chunk to have @new_alloc entries.
  334. *
  335. * CONTEXT:
  336. * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
  337. *
  338. * RETURNS:
  339. * 0 on success, -errno on failure.
  340. */
  341. static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
  342. {
  343. int *old = NULL, *new = NULL;
  344. size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
  345. unsigned long flags;
  346. new = pcpu_mem_zalloc(new_size);
  347. if (!new)
  348. return -ENOMEM;
  349. /* acquire pcpu_lock and switch to new area map */
  350. spin_lock_irqsave(&pcpu_lock, flags);
  351. if (new_alloc <= chunk->map_alloc)
  352. goto out_unlock;
  353. old_size = chunk->map_alloc * sizeof(chunk->map[0]);
  354. old = chunk->map;
  355. memcpy(new, old, old_size);
  356. chunk->map_alloc = new_alloc;
  357. chunk->map = new;
  358. new = NULL;
  359. out_unlock:
  360. spin_unlock_irqrestore(&pcpu_lock, flags);
  361. /*
  362. * pcpu_mem_free() might end up calling vfree() which uses
  363. * IRQ-unsafe lock and thus can't be called under pcpu_lock.
  364. */
  365. pcpu_mem_free(old, old_size);
  366. pcpu_mem_free(new, new_size);
  367. return 0;
  368. }
  369. /**
  370. * pcpu_alloc_area - allocate area from a pcpu_chunk
  371. * @chunk: chunk of interest
  372. * @size: wanted size in bytes
  373. * @align: wanted align
  374. *
  375. * Try to allocate @size bytes area aligned at @align from @chunk.
  376. * Note that this function only allocates the offset. It doesn't
  377. * populate or map the area.
  378. *
  379. * @chunk->map must have at least two free slots.
  380. *
  381. * CONTEXT:
  382. * pcpu_lock.
  383. *
  384. * RETURNS:
  385. * Allocated offset in @chunk on success, -1 if no matching area is
  386. * found.
  387. */
  388. static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
  389. {
  390. int oslot = pcpu_chunk_slot(chunk);
  391. int max_contig = 0;
  392. int i, off;
  393. for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
  394. bool is_last = i + 1 == chunk->map_used;
  395. int head, tail;
  396. /* extra for alignment requirement */
  397. head = ALIGN(off, align) - off;
  398. BUG_ON(i == 0 && head != 0);
  399. if (chunk->map[i] < 0)
  400. continue;
  401. if (chunk->map[i] < head + size) {
  402. max_contig = max(chunk->map[i], max_contig);
  403. continue;
  404. }
  405. /*
  406. * If head is small or the previous block is free,
  407. * merge'em. Note that 'small' is defined as smaller
  408. * than sizeof(int), which is very small but isn't too
  409. * uncommon for percpu allocations.
  410. */
  411. if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
  412. if (chunk->map[i - 1] > 0)
  413. chunk->map[i - 1] += head;
  414. else {
  415. chunk->map[i - 1] -= head;
  416. chunk->free_size -= head;
  417. }
  418. chunk->map[i] -= head;
  419. off += head;
  420. head = 0;
  421. }
  422. /* if tail is small, just keep it around */
  423. tail = chunk->map[i] - head - size;
  424. if (tail < sizeof(int))
  425. tail = 0;
  426. /* split if warranted */
  427. if (head || tail) {
  428. int nr_extra = !!head + !!tail;
  429. /* insert new subblocks */
  430. memmove(&chunk->map[i + nr_extra], &chunk->map[i],
  431. sizeof(chunk->map[0]) * (chunk->map_used - i));
  432. chunk->map_used += nr_extra;
  433. if (head) {
  434. chunk->map[i + 1] = chunk->map[i] - head;
  435. chunk->map[i] = head;
  436. off += head;
  437. i++;
  438. max_contig = max(head, max_contig);
  439. }
  440. if (tail) {
  441. chunk->map[i] -= tail;
  442. chunk->map[i + 1] = tail;
  443. max_contig = max(tail, max_contig);
  444. }
  445. }
  446. /* update hint and mark allocated */
  447. if (is_last)
  448. chunk->contig_hint = max_contig; /* fully scanned */
  449. else
  450. chunk->contig_hint = max(chunk->contig_hint,
  451. max_contig);
  452. chunk->free_size -= chunk->map[i];
  453. chunk->map[i] = -chunk->map[i];
  454. pcpu_chunk_relocate(chunk, oslot);
  455. return off;
  456. }
  457. chunk->contig_hint = max_contig; /* fully scanned */
  458. pcpu_chunk_relocate(chunk, oslot);
  459. /* tell the upper layer that this chunk has no matching area */
  460. return -1;
  461. }
  462. /**
  463. * pcpu_free_area - free area to a pcpu_chunk
  464. * @chunk: chunk of interest
  465. * @freeme: offset of area to free
  466. *
  467. * Free area starting from @freeme to @chunk. Note that this function
  468. * only modifies the allocation map. It doesn't depopulate or unmap
  469. * the area.
  470. *
  471. * CONTEXT:
  472. * pcpu_lock.
  473. */
  474. static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
  475. {
  476. int oslot = pcpu_chunk_slot(chunk);
  477. int i, off;
  478. for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
  479. if (off == freeme)
  480. break;
  481. BUG_ON(off != freeme);
  482. BUG_ON(chunk->map[i] > 0);
  483. chunk->map[i] = -chunk->map[i];
  484. chunk->free_size += chunk->map[i];
  485. /* merge with previous? */
  486. if (i > 0 && chunk->map[i - 1] >= 0) {
  487. chunk->map[i - 1] += chunk->map[i];
  488. chunk->map_used--;
  489. memmove(&chunk->map[i], &chunk->map[i + 1],
  490. (chunk->map_used - i) * sizeof(chunk->map[0]));
  491. i--;
  492. }
  493. /* merge with next? */
  494. if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
  495. chunk->map[i] += chunk->map[i + 1];
  496. chunk->map_used--;
  497. memmove(&chunk->map[i + 1], &chunk->map[i + 2],
  498. (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
  499. }
  500. chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
  501. pcpu_chunk_relocate(chunk, oslot);
  502. }
  503. static struct pcpu_chunk *pcpu_alloc_chunk(void)
  504. {
  505. struct pcpu_chunk *chunk;
  506. chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
  507. if (!chunk)
  508. return NULL;
  509. chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
  510. sizeof(chunk->map[0]));
  511. if (!chunk->map) {
  512. kfree(chunk);
  513. return NULL;
  514. }
  515. chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
  516. chunk->map[chunk->map_used++] = pcpu_unit_size;
  517. INIT_LIST_HEAD(&chunk->list);
  518. chunk->free_size = pcpu_unit_size;
  519. chunk->contig_hint = pcpu_unit_size;
  520. return chunk;
  521. }
  522. static void pcpu_free_chunk(struct pcpu_chunk *chunk)
  523. {
  524. if (!chunk)
  525. return;
  526. pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
  527. pcpu_mem_free(chunk, pcpu_chunk_struct_size);
  528. }
  529. /*
  530. * Chunk management implementation.
  531. *
  532. * To allow different implementations, chunk alloc/free and
  533. * [de]population are implemented in a separate file which is pulled
  534. * into this file and compiled together. The following functions
  535. * should be implemented.
  536. *
  537. * pcpu_populate_chunk - populate the specified range of a chunk
  538. * pcpu_depopulate_chunk - depopulate the specified range of a chunk
  539. * pcpu_create_chunk - create a new chunk
  540. * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
  541. * pcpu_addr_to_page - translate address to physical address
  542. * pcpu_verify_alloc_info - check alloc_info is acceptable during init
  543. */
  544. static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
  545. static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
  546. static struct pcpu_chunk *pcpu_create_chunk(void);
  547. static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
  548. static struct page *pcpu_addr_to_page(void *addr);
  549. static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
  550. #ifdef CONFIG_NEED_PER_CPU_KM
  551. #include "percpu-km.c"
  552. #else
  553. #include "percpu-vm.c"
  554. #endif
  555. /**
  556. * pcpu_chunk_addr_search - determine chunk containing specified address
  557. * @addr: address for which the chunk needs to be determined.
  558. *
  559. * RETURNS:
  560. * The address of the found chunk.
  561. */
  562. static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
  563. {
  564. /* is it in the first chunk? */
  565. if (pcpu_addr_in_first_chunk(addr)) {
  566. /* is it in the reserved area? */
  567. if (pcpu_addr_in_reserved_chunk(addr))
  568. return pcpu_reserved_chunk;
  569. return pcpu_first_chunk;
  570. }
  571. /*
  572. * The address is relative to unit0 which might be unused and
  573. * thus unmapped. Offset the address to the unit space of the
  574. * current processor before looking it up in the vmalloc
  575. * space. Note that any possible cpu id can be used here, so
  576. * there's no need to worry about preemption or cpu hotplug.
  577. */
  578. addr += pcpu_unit_offsets[raw_smp_processor_id()];
  579. return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
  580. }
  581. /**
  582. * pcpu_alloc - the percpu allocator
  583. * @size: size of area to allocate in bytes
  584. * @align: alignment of area (max PAGE_SIZE)
  585. * @reserved: allocate from the reserved chunk if available
  586. *
  587. * Allocate percpu area of @size bytes aligned at @align.
  588. *
  589. * CONTEXT:
  590. * Does GFP_KERNEL allocation.
  591. *
  592. * RETURNS:
  593. * Percpu pointer to the allocated area on success, NULL on failure.
  594. */
  595. static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
  596. {
  597. static int warn_limit = 10;
  598. struct pcpu_chunk *chunk;
  599. const char *err;
  600. int slot, off, new_alloc;
  601. unsigned long flags;
  602. void __percpu *ptr;
  603. if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
  604. WARN(true, "illegal size (%zu) or align (%zu) for "
  605. "percpu allocation\n", size, align);
  606. return NULL;
  607. }
  608. mutex_lock(&pcpu_alloc_mutex);
  609. spin_lock_irqsave(&pcpu_lock, flags);
  610. /* serve reserved allocations from the reserved chunk if available */
  611. if (reserved && pcpu_reserved_chunk) {
  612. chunk = pcpu_reserved_chunk;
  613. if (size > chunk->contig_hint) {
  614. err = "alloc from reserved chunk failed";
  615. goto fail_unlock;
  616. }
  617. while ((new_alloc = pcpu_need_to_extend(chunk))) {
  618. spin_unlock_irqrestore(&pcpu_lock, flags);
  619. if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
  620. err = "failed to extend area map of reserved chunk";
  621. goto fail_unlock_mutex;
  622. }
  623. spin_lock_irqsave(&pcpu_lock, flags);
  624. }
  625. off = pcpu_alloc_area(chunk, size, align);
  626. if (off >= 0)
  627. goto area_found;
  628. err = "alloc from reserved chunk failed";
  629. goto fail_unlock;
  630. }
  631. restart:
  632. /* search through normal chunks */
  633. for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
  634. list_for_each_entry(chunk, &pcpu_slot[slot], list) {
  635. if (size > chunk->contig_hint)
  636. continue;
  637. new_alloc = pcpu_need_to_extend(chunk);
  638. if (new_alloc) {
  639. spin_unlock_irqrestore(&pcpu_lock, flags);
  640. if (pcpu_extend_area_map(chunk,
  641. new_alloc) < 0) {
  642. err = "failed to extend area map";
  643. goto fail_unlock_mutex;
  644. }
  645. spin_lock_irqsave(&pcpu_lock, flags);
  646. /*
  647. * pcpu_lock has been dropped, need to
  648. * restart cpu_slot list walking.
  649. */
  650. goto restart;
  651. }
  652. off = pcpu_alloc_area(chunk, size, align);
  653. if (off >= 0)
  654. goto area_found;
  655. }
  656. }
  657. /* hmmm... no space left, create a new chunk */
  658. spin_unlock_irqrestore(&pcpu_lock, flags);
  659. chunk = pcpu_create_chunk();
  660. if (!chunk) {
  661. err = "failed to allocate new chunk";
  662. goto fail_unlock_mutex;
  663. }
  664. spin_lock_irqsave(&pcpu_lock, flags);
  665. pcpu_chunk_relocate(chunk, -1);
  666. goto restart;
  667. area_found:
  668. spin_unlock_irqrestore(&pcpu_lock, flags);
  669. /* populate, map and clear the area */
  670. if (pcpu_populate_chunk(chunk, off, size)) {
  671. spin_lock_irqsave(&pcpu_lock, flags);
  672. pcpu_free_area(chunk, off);
  673. err = "failed to populate";
  674. goto fail_unlock;
  675. }
  676. mutex_unlock(&pcpu_alloc_mutex);
  677. /* return address relative to base address */
  678. ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
  679. kmemleak_alloc_percpu(ptr, size);
  680. return ptr;
  681. fail_unlock:
  682. spin_unlock_irqrestore(&pcpu_lock, flags);
  683. fail_unlock_mutex:
  684. mutex_unlock(&pcpu_alloc_mutex);
  685. if (warn_limit) {
  686. pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
  687. "%s\n", size, align, err);
  688. dump_stack();
  689. if (!--warn_limit)
  690. pr_info("PERCPU: limit reached, disable warning\n");
  691. }
  692. return NULL;
  693. }
  694. /**
  695. * __alloc_percpu - allocate dynamic percpu area
  696. * @size: size of area to allocate in bytes
  697. * @align: alignment of area (max PAGE_SIZE)
  698. *
  699. * Allocate zero-filled percpu area of @size bytes aligned at @align.
  700. * Might sleep. Might trigger writeouts.
  701. *
  702. * CONTEXT:
  703. * Does GFP_KERNEL allocation.
  704. *
  705. * RETURNS:
  706. * Percpu pointer to the allocated area on success, NULL on failure.
  707. */
  708. void __percpu *__alloc_percpu(size_t size, size_t align)
  709. {
  710. return pcpu_alloc(size, align, false);
  711. }
  712. EXPORT_SYMBOL_GPL(__alloc_percpu);
  713. /**
  714. * __alloc_reserved_percpu - allocate reserved percpu area
  715. * @size: size of area to allocate in bytes
  716. * @align: alignment of area (max PAGE_SIZE)
  717. *
  718. * Allocate zero-filled percpu area of @size bytes aligned at @align
  719. * from reserved percpu area if arch has set it up; otherwise,
  720. * allocation is served from the same dynamic area. Might sleep.
  721. * Might trigger writeouts.
  722. *
  723. * CONTEXT:
  724. * Does GFP_KERNEL allocation.
  725. *
  726. * RETURNS:
  727. * Percpu pointer to the allocated area on success, NULL on failure.
  728. */
  729. void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
  730. {
  731. return pcpu_alloc(size, align, true);
  732. }
  733. /**
  734. * pcpu_reclaim - reclaim fully free chunks, workqueue function
  735. * @work: unused
  736. *
  737. * Reclaim all fully free chunks except for the first one.
  738. *
  739. * CONTEXT:
  740. * workqueue context.
  741. */
  742. static void pcpu_reclaim(struct work_struct *work)
  743. {
  744. LIST_HEAD(todo);
  745. struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
  746. struct pcpu_chunk *chunk, *next;
  747. mutex_lock(&pcpu_alloc_mutex);
  748. spin_lock_irq(&pcpu_lock);
  749. list_for_each_entry_safe(chunk, next, head, list) {
  750. WARN_ON(chunk->immutable);
  751. /* spare the first one */
  752. if (chunk == list_first_entry(head, struct pcpu_chunk, list))
  753. continue;
  754. list_move(&chunk->list, &todo);
  755. }
  756. spin_unlock_irq(&pcpu_lock);
  757. list_for_each_entry_safe(chunk, next, &todo, list) {
  758. pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
  759. pcpu_destroy_chunk(chunk);
  760. }
  761. mutex_unlock(&pcpu_alloc_mutex);
  762. }
  763. /**
  764. * free_percpu - free percpu area
  765. * @ptr: pointer to area to free
  766. *
  767. * Free percpu area @ptr.
  768. *
  769. * CONTEXT:
  770. * Can be called from atomic context.
  771. */
  772. void free_percpu(void __percpu *ptr)
  773. {
  774. void *addr;
  775. struct pcpu_chunk *chunk;
  776. unsigned long flags;
  777. int off;
  778. if (!ptr)
  779. return;
  780. kmemleak_free_percpu(ptr);
  781. addr = __pcpu_ptr_to_addr(ptr);
  782. spin_lock_irqsave(&pcpu_lock, flags);
  783. chunk = pcpu_chunk_addr_search(addr);
  784. off = addr - chunk->base_addr;
  785. pcpu_free_area(chunk, off);
  786. /* if there are more than one fully free chunks, wake up grim reaper */
  787. if (chunk->free_size == pcpu_unit_size) {
  788. struct pcpu_chunk *pos;
  789. list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
  790. if (pos != chunk) {
  791. schedule_work(&pcpu_reclaim_work);
  792. break;
  793. }
  794. }
  795. spin_unlock_irqrestore(&pcpu_lock, flags);
  796. }
  797. EXPORT_SYMBOL_GPL(free_percpu);
  798. /**
  799. * is_kernel_percpu_address - test whether address is from static percpu area
  800. * @addr: address to test
  801. *
  802. * Test whether @addr belongs to in-kernel static percpu area. Module
  803. * static percpu areas are not considered. For those, use
  804. * is_module_percpu_address().
  805. *
  806. * RETURNS:
  807. * %true if @addr is from in-kernel static percpu area, %false otherwise.
  808. */
  809. bool is_kernel_percpu_address(unsigned long addr)
  810. {
  811. #ifdef CONFIG_SMP
  812. const size_t static_size = __per_cpu_end - __per_cpu_start;
  813. void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
  814. unsigned int cpu;
  815. for_each_possible_cpu(cpu) {
  816. void *start = per_cpu_ptr(base, cpu);
  817. if ((void *)addr >= start && (void *)addr < start + static_size)
  818. return true;
  819. }
  820. #endif
  821. /* on UP, can't distinguish from other static vars, always false */
  822. return false;
  823. }
  824. /**
  825. * per_cpu_ptr_to_phys - convert translated percpu address to physical address
  826. * @addr: the address to be converted to physical address
  827. *
  828. * Given @addr which is dereferenceable address obtained via one of
  829. * percpu access macros, this function translates it into its physical
  830. * address. The caller is responsible for ensuring @addr stays valid
  831. * until this function finishes.
  832. *
  833. * percpu allocator has special setup for the first chunk, which currently
  834. * supports either embedding in linear address space or vmalloc mapping,
  835. * and, from the second one, the backing allocator (currently either vm or
  836. * km) provides translation.
  837. *
  838. * The addr can be tranlated simply without checking if it falls into the
  839. * first chunk. But the current code reflects better how percpu allocator
  840. * actually works, and the verification can discover both bugs in percpu
  841. * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
  842. * code.
  843. *
  844. * RETURNS:
  845. * The physical address for @addr.
  846. */
  847. phys_addr_t per_cpu_ptr_to_phys(void *addr)
  848. {
  849. void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
  850. bool in_first_chunk = false;
  851. unsigned long first_low, first_high;
  852. unsigned int cpu;
  853. /*
  854. * The following test on unit_low/high isn't strictly
  855. * necessary but will speed up lookups of addresses which
  856. * aren't in the first chunk.
  857. */
  858. first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
  859. first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
  860. pcpu_unit_pages);
  861. if ((unsigned long)addr >= first_low &&
  862. (unsigned long)addr < first_high) {
  863. for_each_possible_cpu(cpu) {
  864. void *start = per_cpu_ptr(base, cpu);
  865. if (addr >= start && addr < start + pcpu_unit_size) {
  866. in_first_chunk = true;
  867. break;
  868. }
  869. }
  870. }
  871. if (in_first_chunk) {
  872. if (!is_vmalloc_addr(addr))
  873. return __pa(addr);
  874. else
  875. return page_to_phys(vmalloc_to_page(addr)) +
  876. offset_in_page(addr);
  877. } else
  878. return page_to_phys(pcpu_addr_to_page(addr)) +
  879. offset_in_page(addr);
  880. }
  881. /**
  882. * pcpu_alloc_alloc_info - allocate percpu allocation info
  883. * @nr_groups: the number of groups
  884. * @nr_units: the number of units
  885. *
  886. * Allocate ai which is large enough for @nr_groups groups containing
  887. * @nr_units units. The returned ai's groups[0].cpu_map points to the
  888. * cpu_map array which is long enough for @nr_units and filled with
  889. * NR_CPUS. It's the caller's responsibility to initialize cpu_map
  890. * pointer of other groups.
  891. *
  892. * RETURNS:
  893. * Pointer to the allocated pcpu_alloc_info on success, NULL on
  894. * failure.
  895. */
  896. struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
  897. int nr_units)
  898. {
  899. struct pcpu_alloc_info *ai;
  900. size_t base_size, ai_size;
  901. void *ptr;
  902. int unit;
  903. base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
  904. __alignof__(ai->groups[0].cpu_map[0]));
  905. ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
  906. ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
  907. if (!ptr)
  908. return NULL;
  909. ai = ptr;
  910. ptr += base_size;
  911. ai->groups[0].cpu_map = ptr;
  912. for (unit = 0; unit < nr_units; unit++)
  913. ai->groups[0].cpu_map[unit] = NR_CPUS;
  914. ai->nr_groups = nr_groups;
  915. ai->__ai_size = PFN_ALIGN(ai_size);
  916. return ai;
  917. }
  918. /**
  919. * pcpu_free_alloc_info - free percpu allocation info
  920. * @ai: pcpu_alloc_info to free
  921. *
  922. * Free @ai which was allocated by pcpu_alloc_alloc_info().
  923. */
  924. void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
  925. {
  926. memblock_free_early(__pa(ai), ai->__ai_size);
  927. }
  928. /**
  929. * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
  930. * @lvl: loglevel
  931. * @ai: allocation info to dump
  932. *
  933. * Print out information about @ai using loglevel @lvl.
  934. */
  935. static void pcpu_dump_alloc_info(const char *lvl,
  936. const struct pcpu_alloc_info *ai)
  937. {
  938. int group_width = 1, cpu_width = 1, width;
  939. char empty_str[] = "--------";
  940. int alloc = 0, alloc_end = 0;
  941. int group, v;
  942. int upa, apl; /* units per alloc, allocs per line */
  943. v = ai->nr_groups;
  944. while (v /= 10)
  945. group_width++;
  946. v = num_possible_cpus();
  947. while (v /= 10)
  948. cpu_width++;
  949. empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
  950. upa = ai->alloc_size / ai->unit_size;
  951. width = upa * (cpu_width + 1) + group_width + 3;
  952. apl = rounddown_pow_of_two(max(60 / width, 1));
  953. printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
  954. lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
  955. ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
  956. for (group = 0; group < ai->nr_groups; group++) {
  957. const struct pcpu_group_info *gi = &ai->groups[group];
  958. int unit = 0, unit_end = 0;
  959. BUG_ON(gi->nr_units % upa);
  960. for (alloc_end += gi->nr_units / upa;
  961. alloc < alloc_end; alloc++) {
  962. if (!(alloc % apl)) {
  963. printk(KERN_CONT "\n");
  964. printk("%spcpu-alloc: ", lvl);
  965. }
  966. printk(KERN_CONT "[%0*d] ", group_width, group);
  967. for (unit_end += upa; unit < unit_end; unit++)
  968. if (gi->cpu_map[unit] != NR_CPUS)
  969. printk(KERN_CONT "%0*d ", cpu_width,
  970. gi->cpu_map[unit]);
  971. else
  972. printk(KERN_CONT "%s ", empty_str);
  973. }
  974. }
  975. printk(KERN_CONT "\n");
  976. }
  977. /**
  978. * pcpu_setup_first_chunk - initialize the first percpu chunk
  979. * @ai: pcpu_alloc_info describing how to percpu area is shaped
  980. * @base_addr: mapped address
  981. *
  982. * Initialize the first percpu chunk which contains the kernel static
  983. * perpcu area. This function is to be called from arch percpu area
  984. * setup path.
  985. *
  986. * @ai contains all information necessary to initialize the first
  987. * chunk and prime the dynamic percpu allocator.
  988. *
  989. * @ai->static_size is the size of static percpu area.
  990. *
  991. * @ai->reserved_size, if non-zero, specifies the amount of bytes to
  992. * reserve after the static area in the first chunk. This reserves
  993. * the first chunk such that it's available only through reserved
  994. * percpu allocation. This is primarily used to serve module percpu
  995. * static areas on architectures where the addressing model has
  996. * limited offset range for symbol relocations to guarantee module
  997. * percpu symbols fall inside the relocatable range.
  998. *
  999. * @ai->dyn_size determines the number of bytes available for dynamic
  1000. * allocation in the first chunk. The area between @ai->static_size +
  1001. * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
  1002. *
  1003. * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
  1004. * and equal to or larger than @ai->static_size + @ai->reserved_size +
  1005. * @ai->dyn_size.
  1006. *
  1007. * @ai->atom_size is the allocation atom size and used as alignment
  1008. * for vm areas.
  1009. *
  1010. * @ai->alloc_size is the allocation size and always multiple of
  1011. * @ai->atom_size. This is larger than @ai->atom_size if
  1012. * @ai->unit_size is larger than @ai->atom_size.
  1013. *
  1014. * @ai->nr_groups and @ai->groups describe virtual memory layout of
  1015. * percpu areas. Units which should be colocated are put into the
  1016. * same group. Dynamic VM areas will be allocated according to these
  1017. * groupings. If @ai->nr_groups is zero, a single group containing
  1018. * all units is assumed.
  1019. *
  1020. * The caller should have mapped the first chunk at @base_addr and
  1021. * copied static data to each unit.
  1022. *
  1023. * If the first chunk ends up with both reserved and dynamic areas, it
  1024. * is served by two chunks - one to serve the core static and reserved
  1025. * areas and the other for the dynamic area. They share the same vm
  1026. * and page map but uses different area allocation map to stay away
  1027. * from each other. The latter chunk is circulated in the chunk slots
  1028. * and available for dynamic allocation like any other chunks.
  1029. *
  1030. * RETURNS:
  1031. * 0 on success, -errno on failure.
  1032. */
  1033. int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
  1034. void *base_addr)
  1035. {
  1036. static char cpus_buf[4096] __initdata;
  1037. static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
  1038. static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
  1039. size_t dyn_size = ai->dyn_size;
  1040. size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
  1041. struct pcpu_chunk *schunk, *dchunk = NULL;
  1042. unsigned long *group_offsets;
  1043. size_t *group_sizes;
  1044. unsigned long *unit_off;
  1045. unsigned int cpu;
  1046. int *unit_map;
  1047. int group, unit, i;
  1048. cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
  1049. #define PCPU_SETUP_BUG_ON(cond) do { \
  1050. if (unlikely(cond)) { \
  1051. pr_emerg("PERCPU: failed to initialize, %s", #cond); \
  1052. pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
  1053. pcpu_dump_alloc_info(KERN_EMERG, ai); \
  1054. BUG(); \
  1055. } \
  1056. } while (0)
  1057. /* sanity checks */
  1058. PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
  1059. #ifdef CONFIG_SMP
  1060. PCPU_SETUP_BUG_ON(!ai->static_size);
  1061. PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
  1062. #endif
  1063. PCPU_SETUP_BUG_ON(!base_addr);
  1064. PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
  1065. PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
  1066. PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
  1067. PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
  1068. PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
  1069. PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
  1070. /* process group information and build config tables accordingly */
  1071. group_offsets = memblock_virt_alloc(ai->nr_groups *
  1072. sizeof(group_offsets[0]), 0);
  1073. group_sizes = memblock_virt_alloc(ai->nr_groups *
  1074. sizeof(group_sizes[0]), 0);
  1075. unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
  1076. unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
  1077. for (cpu = 0; cpu < nr_cpu_ids; cpu++)
  1078. unit_map[cpu] = UINT_MAX;
  1079. pcpu_low_unit_cpu = NR_CPUS;
  1080. pcpu_high_unit_cpu = NR_CPUS;
  1081. for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
  1082. const struct pcpu_group_info *gi = &ai->groups[group];
  1083. group_offsets[group] = gi->base_offset;
  1084. group_sizes[group] = gi->nr_units * ai->unit_size;
  1085. for (i = 0; i < gi->nr_units; i++) {
  1086. cpu = gi->cpu_map[i];
  1087. if (cpu == NR_CPUS)
  1088. continue;
  1089. PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
  1090. PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
  1091. PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
  1092. unit_map[cpu] = unit + i;
  1093. unit_off[cpu] = gi->base_offset + i * ai->unit_size;
  1094. /* determine low/high unit_cpu */
  1095. if (pcpu_low_unit_cpu == NR_CPUS ||
  1096. unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
  1097. pcpu_low_unit_cpu = cpu;
  1098. if (pcpu_high_unit_cpu == NR_CPUS ||
  1099. unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
  1100. pcpu_high_unit_cpu = cpu;
  1101. }
  1102. }
  1103. pcpu_nr_units = unit;
  1104. for_each_possible_cpu(cpu)
  1105. PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
  1106. /* we're done parsing the input, undefine BUG macro and dump config */
  1107. #undef PCPU_SETUP_BUG_ON
  1108. pcpu_dump_alloc_info(KERN_DEBUG, ai);
  1109. pcpu_nr_groups = ai->nr_groups;
  1110. pcpu_group_offsets = group_offsets;
  1111. pcpu_group_sizes = group_sizes;
  1112. pcpu_unit_map = unit_map;
  1113. pcpu_unit_offsets = unit_off;
  1114. /* determine basic parameters */
  1115. pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
  1116. pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
  1117. pcpu_atom_size = ai->atom_size;
  1118. pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
  1119. BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
  1120. /*
  1121. * Allocate chunk slots. The additional last slot is for
  1122. * empty chunks.
  1123. */
  1124. pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
  1125. pcpu_slot = memblock_virt_alloc(
  1126. pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
  1127. for (i = 0; i < pcpu_nr_slots; i++)
  1128. INIT_LIST_HEAD(&pcpu_slot[i]);
  1129. /*
  1130. * Initialize static chunk. If reserved_size is zero, the
  1131. * static chunk covers static area + dynamic allocation area
  1132. * in the first chunk. If reserved_size is not zero, it
  1133. * covers static area + reserved area (mostly used for module
  1134. * static percpu allocation).
  1135. */
  1136. schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
  1137. INIT_LIST_HEAD(&schunk->list);
  1138. schunk->base_addr = base_addr;
  1139. schunk->map = smap;
  1140. schunk->map_alloc = ARRAY_SIZE(smap);
  1141. schunk->immutable = true;
  1142. bitmap_fill(schunk->populated, pcpu_unit_pages);
  1143. if (ai->reserved_size) {
  1144. schunk->free_size = ai->reserved_size;
  1145. pcpu_reserved_chunk = schunk;
  1146. pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
  1147. } else {
  1148. schunk->free_size = dyn_size;
  1149. dyn_size = 0; /* dynamic area covered */
  1150. }
  1151. schunk->contig_hint = schunk->free_size;
  1152. schunk->map[schunk->map_used++] = -ai->static_size;
  1153. if (schunk->free_size)
  1154. schunk->map[schunk->map_used++] = schunk->free_size;
  1155. /* init dynamic chunk if necessary */
  1156. if (dyn_size) {
  1157. dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
  1158. INIT_LIST_HEAD(&dchunk->list);
  1159. dchunk->base_addr = base_addr;
  1160. dchunk->map = dmap;
  1161. dchunk->map_alloc = ARRAY_SIZE(dmap);
  1162. dchunk->immutable = true;
  1163. bitmap_fill(dchunk->populated, pcpu_unit_pages);
  1164. dchunk->contig_hint = dchunk->free_size = dyn_size;
  1165. dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
  1166. dchunk->map[dchunk->map_used++] = dchunk->free_size;
  1167. }
  1168. /* link the first chunk in */
  1169. pcpu_first_chunk = dchunk ?: schunk;
  1170. pcpu_chunk_relocate(pcpu_first_chunk, -1);
  1171. /* we're done */
  1172. pcpu_base_addr = base_addr;
  1173. return 0;
  1174. }
  1175. #ifdef CONFIG_SMP
  1176. const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
  1177. [PCPU_FC_AUTO] = "auto",
  1178. [PCPU_FC_EMBED] = "embed",
  1179. [PCPU_FC_PAGE] = "page",
  1180. };
  1181. enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
  1182. static int __init percpu_alloc_setup(char *str)
  1183. {
  1184. if (!str)
  1185. return -EINVAL;
  1186. if (0)
  1187. /* nada */;
  1188. #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
  1189. else if (!strcmp(str, "embed"))
  1190. pcpu_chosen_fc = PCPU_FC_EMBED;
  1191. #endif
  1192. #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
  1193. else if (!strcmp(str, "page"))
  1194. pcpu_chosen_fc = PCPU_FC_PAGE;
  1195. #endif
  1196. else
  1197. pr_warning("PERCPU: unknown allocator %s specified\n", str);
  1198. return 0;
  1199. }
  1200. early_param("percpu_alloc", percpu_alloc_setup);
  1201. /*
  1202. * pcpu_embed_first_chunk() is used by the generic percpu setup.
  1203. * Build it if needed by the arch config or the generic setup is going
  1204. * to be used.
  1205. */
  1206. #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
  1207. !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
  1208. #define BUILD_EMBED_FIRST_CHUNK
  1209. #endif
  1210. /* build pcpu_page_first_chunk() iff needed by the arch config */
  1211. #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
  1212. #define BUILD_PAGE_FIRST_CHUNK
  1213. #endif
  1214. /* pcpu_build_alloc_info() is used by both embed and page first chunk */
  1215. #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
  1216. /**
  1217. * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
  1218. * @reserved_size: the size of reserved percpu area in bytes
  1219. * @dyn_size: minimum free size for dynamic allocation in bytes
  1220. * @atom_size: allocation atom size
  1221. * @cpu_distance_fn: callback to determine distance between cpus, optional
  1222. *
  1223. * This function determines grouping of units, their mappings to cpus
  1224. * and other parameters considering needed percpu size, allocation
  1225. * atom size and distances between CPUs.
  1226. *
  1227. * Groups are always mutliples of atom size and CPUs which are of
  1228. * LOCAL_DISTANCE both ways are grouped together and share space for
  1229. * units in the same group. The returned configuration is guaranteed
  1230. * to have CPUs on different nodes on different groups and >=75% usage
  1231. * of allocated virtual address space.
  1232. *
  1233. * RETURNS:
  1234. * On success, pointer to the new allocation_info is returned. On
  1235. * failure, ERR_PTR value is returned.
  1236. */
  1237. static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
  1238. size_t reserved_size, size_t dyn_size,
  1239. size_t atom_size,
  1240. pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
  1241. {
  1242. static int group_map[NR_CPUS] __initdata;
  1243. static int group_cnt[NR_CPUS] __initdata;
  1244. const size_t static_size = __per_cpu_end - __per_cpu_start;
  1245. int nr_groups = 1, nr_units = 0;
  1246. size_t size_sum, min_unit_size, alloc_size;
  1247. int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
  1248. int last_allocs, group, unit;
  1249. unsigned int cpu, tcpu;
  1250. struct pcpu_alloc_info *ai;
  1251. unsigned int *cpu_map;
  1252. /* this function may be called multiple times */
  1253. memset(group_map, 0, sizeof(group_map));
  1254. memset(group_cnt, 0, sizeof(group_cnt));
  1255. /* calculate size_sum and ensure dyn_size is enough for early alloc */
  1256. size_sum = PFN_ALIGN(static_size + reserved_size +
  1257. max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
  1258. dyn_size = size_sum - static_size - reserved_size;
  1259. /*
  1260. * Determine min_unit_size, alloc_size and max_upa such that
  1261. * alloc_size is multiple of atom_size and is the smallest
  1262. * which can accommodate 4k aligned segments which are equal to
  1263. * or larger than min_unit_size.
  1264. */
  1265. min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
  1266. alloc_size = roundup(min_unit_size, atom_size);
  1267. upa = alloc_size / min_unit_size;
  1268. while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
  1269. upa--;
  1270. max_upa = upa;
  1271. /* group cpus according to their proximity */
  1272. for_each_possible_cpu(cpu) {
  1273. group = 0;
  1274. next_group:
  1275. for_each_possible_cpu(tcpu) {
  1276. if (cpu == tcpu)
  1277. break;
  1278. if (group_map[tcpu] == group && cpu_distance_fn &&
  1279. (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
  1280. cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
  1281. group++;
  1282. nr_groups = max(nr_groups, group + 1);
  1283. goto next_group;
  1284. }
  1285. }
  1286. group_map[cpu] = group;
  1287. group_cnt[group]++;
  1288. }
  1289. /*
  1290. * Expand unit size until address space usage goes over 75%
  1291. * and then as much as possible without using more address
  1292. * space.
  1293. */
  1294. last_allocs = INT_MAX;
  1295. for (upa = max_upa; upa; upa--) {
  1296. int allocs = 0, wasted = 0;
  1297. if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
  1298. continue;
  1299. for (group = 0; group < nr_groups; group++) {
  1300. int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
  1301. allocs += this_allocs;
  1302. wasted += this_allocs * upa - group_cnt[group];
  1303. }
  1304. /*
  1305. * Don't accept if wastage is over 1/3. The
  1306. * greater-than comparison ensures upa==1 always
  1307. * passes the following check.
  1308. */
  1309. if (wasted > num_possible_cpus() / 3)
  1310. continue;
  1311. /* and then don't consume more memory */
  1312. if (allocs > last_allocs)
  1313. break;
  1314. last_allocs = allocs;
  1315. best_upa = upa;
  1316. }
  1317. upa = best_upa;
  1318. /* allocate and fill alloc_info */
  1319. for (group = 0; group < nr_groups; group++)
  1320. nr_units += roundup(group_cnt[group], upa);
  1321. ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
  1322. if (!ai)
  1323. return ERR_PTR(-ENOMEM);
  1324. cpu_map = ai->groups[0].cpu_map;
  1325. for (group = 0; group < nr_groups; group++) {
  1326. ai->groups[group].cpu_map = cpu_map;
  1327. cpu_map += roundup(group_cnt[group], upa);
  1328. }
  1329. ai->static_size = static_size;
  1330. ai->reserved_size = reserved_size;
  1331. ai->dyn_size = dyn_size;
  1332. ai->unit_size = alloc_size / upa;
  1333. ai->atom_size = atom_size;
  1334. ai->alloc_size = alloc_size;
  1335. for (group = 0, unit = 0; group_cnt[group]; group++) {
  1336. struct pcpu_group_info *gi = &ai->groups[group];
  1337. /*
  1338. * Initialize base_offset as if all groups are located
  1339. * back-to-back. The caller should update this to
  1340. * reflect actual allocation.
  1341. */
  1342. gi->base_offset = unit * ai->unit_size;
  1343. for_each_possible_cpu(cpu)
  1344. if (group_map[cpu] == group)
  1345. gi->cpu_map[gi->nr_units++] = cpu;
  1346. gi->nr_units = roundup(gi->nr_units, upa);
  1347. unit += gi->nr_units;
  1348. }
  1349. BUG_ON(unit != nr_units);
  1350. return ai;
  1351. }
  1352. #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
  1353. #if defined(BUILD_EMBED_FIRST_CHUNK)
  1354. /**
  1355. * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
  1356. * @reserved_size: the size of reserved percpu area in bytes
  1357. * @dyn_size: minimum free size for dynamic allocation in bytes
  1358. * @atom_size: allocation atom size
  1359. * @cpu_distance_fn: callback to determine distance between cpus, optional
  1360. * @alloc_fn: function to allocate percpu page
  1361. * @free_fn: function to free percpu page
  1362. *
  1363. * This is a helper to ease setting up embedded first percpu chunk and
  1364. * can be called where pcpu_setup_first_chunk() is expected.
  1365. *
  1366. * If this function is used to setup the first chunk, it is allocated
  1367. * by calling @alloc_fn and used as-is without being mapped into
  1368. * vmalloc area. Allocations are always whole multiples of @atom_size
  1369. * aligned to @atom_size.
  1370. *
  1371. * This enables the first chunk to piggy back on the linear physical
  1372. * mapping which often uses larger page size. Please note that this
  1373. * can result in very sparse cpu->unit mapping on NUMA machines thus
  1374. * requiring large vmalloc address space. Don't use this allocator if
  1375. * vmalloc space is not orders of magnitude larger than distances
  1376. * between node memory addresses (ie. 32bit NUMA machines).
  1377. *
  1378. * @dyn_size specifies the minimum dynamic area size.
  1379. *
  1380. * If the needed size is smaller than the minimum or specified unit
  1381. * size, the leftover is returned using @free_fn.
  1382. *
  1383. * RETURNS:
  1384. * 0 on success, -errno on failure.
  1385. */
  1386. int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
  1387. size_t atom_size,
  1388. pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
  1389. pcpu_fc_alloc_fn_t alloc_fn,
  1390. pcpu_fc_free_fn_t free_fn)
  1391. {
  1392. void *base = (void *)ULONG_MAX;
  1393. void **areas = NULL;
  1394. struct pcpu_alloc_info *ai;
  1395. size_t size_sum, areas_size, max_distance;
  1396. int group, i, rc;
  1397. ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
  1398. cpu_distance_fn);
  1399. if (IS_ERR(ai))
  1400. return PTR_ERR(ai);
  1401. size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
  1402. areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
  1403. areas = memblock_virt_alloc_nopanic(areas_size, 0);
  1404. if (!areas) {
  1405. rc = -ENOMEM;
  1406. goto out_free;
  1407. }
  1408. /* allocate, copy and determine base address */
  1409. for (group = 0; group < ai->nr_groups; group++) {
  1410. struct pcpu_group_info *gi = &ai->groups[group];
  1411. unsigned int cpu = NR_CPUS;
  1412. void *ptr;
  1413. for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
  1414. cpu = gi->cpu_map[i];
  1415. BUG_ON(cpu == NR_CPUS);
  1416. /* allocate space for the whole group */
  1417. ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
  1418. if (!ptr) {
  1419. rc = -ENOMEM;
  1420. goto out_free_areas;
  1421. }
  1422. /* kmemleak tracks the percpu allocations separately */
  1423. kmemleak_free(ptr);
  1424. areas[group] = ptr;
  1425. base = min(ptr, base);
  1426. }
  1427. /*
  1428. * Copy data and free unused parts. This should happen after all
  1429. * allocations are complete; otherwise, we may end up with
  1430. * overlapping groups.
  1431. */
  1432. for (group = 0; group < ai->nr_groups; group++) {
  1433. struct pcpu_group_info *gi = &ai->groups[group];
  1434. void *ptr = areas[group];
  1435. for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
  1436. if (gi->cpu_map[i] == NR_CPUS) {
  1437. /* unused unit, free whole */
  1438. free_fn(ptr, ai->unit_size);
  1439. continue;
  1440. }
  1441. /* copy and return the unused part */
  1442. memcpy(ptr, __per_cpu_load, ai->static_size);
  1443. free_fn(ptr + size_sum, ai->unit_size - size_sum);
  1444. }
  1445. }
  1446. /* base address is now known, determine group base offsets */
  1447. max_distance = 0;
  1448. for (group = 0; group < ai->nr_groups; group++) {
  1449. ai->groups[group].base_offset = areas[group] - base;
  1450. max_distance = max_t(size_t, max_distance,
  1451. ai->groups[group].base_offset);
  1452. }
  1453. max_distance += ai->unit_size;
  1454. /* warn if maximum distance is further than 75% of vmalloc space */
  1455. if (max_distance > VMALLOC_TOTAL * 3 / 4) {
  1456. pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
  1457. "space 0x%lx\n", max_distance,
  1458. VMALLOC_TOTAL);
  1459. #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
  1460. /* and fail if we have fallback */
  1461. rc = -EINVAL;
  1462. goto out_free;
  1463. #endif
  1464. }
  1465. pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
  1466. PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
  1467. ai->dyn_size, ai->unit_size);
  1468. rc = pcpu_setup_first_chunk(ai, base);
  1469. goto out_free;
  1470. out_free_areas:
  1471. for (group = 0; group < ai->nr_groups; group++)
  1472. if (areas[group])
  1473. free_fn(areas[group],
  1474. ai->groups[group].nr_units * ai->unit_size);
  1475. out_free:
  1476. pcpu_free_alloc_info(ai);
  1477. if (areas)
  1478. memblock_free_early(__pa(areas), areas_size);
  1479. return rc;
  1480. }
  1481. #endif /* BUILD_EMBED_FIRST_CHUNK */
  1482. #ifdef BUILD_PAGE_FIRST_CHUNK
  1483. /**
  1484. * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
  1485. * @reserved_size: the size of reserved percpu area in bytes
  1486. * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
  1487. * @free_fn: function to free percpu page, always called with PAGE_SIZE
  1488. * @populate_pte_fn: function to populate pte
  1489. *
  1490. * This is a helper to ease setting up page-remapped first percpu
  1491. * chunk and can be called where pcpu_setup_first_chunk() is expected.
  1492. *
  1493. * This is the basic allocator. Static percpu area is allocated
  1494. * page-by-page into vmalloc area.
  1495. *
  1496. * RETURNS:
  1497. * 0 on success, -errno on failure.
  1498. */
  1499. int __init pcpu_page_first_chunk(size_t reserved_size,
  1500. pcpu_fc_alloc_fn_t alloc_fn,
  1501. pcpu_fc_free_fn_t free_fn,
  1502. pcpu_fc_populate_pte_fn_t populate_pte_fn)
  1503. {
  1504. static struct vm_struct vm;
  1505. struct pcpu_alloc_info *ai;
  1506. char psize_str[16];
  1507. int unit_pages;
  1508. size_t pages_size;
  1509. struct page **pages;
  1510. int unit, i, j, rc;
  1511. snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
  1512. ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
  1513. if (IS_ERR(ai))
  1514. return PTR_ERR(ai);
  1515. BUG_ON(ai->nr_groups != 1);
  1516. BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
  1517. unit_pages = ai->unit_size >> PAGE_SHIFT;
  1518. /* unaligned allocations can't be freed, round up to page size */
  1519. pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
  1520. sizeof(pages[0]));
  1521. pages = memblock_virt_alloc(pages_size, 0);
  1522. /* allocate pages */
  1523. j = 0;
  1524. for (unit = 0; unit < num_possible_cpus(); unit++)
  1525. for (i = 0; i < unit_pages; i++) {
  1526. unsigned int cpu = ai->groups[0].cpu_map[unit];
  1527. void *ptr;
  1528. ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
  1529. if (!ptr) {
  1530. pr_warning("PERCPU: failed to allocate %s page "
  1531. "for cpu%u\n", psize_str, cpu);
  1532. goto enomem;
  1533. }
  1534. /* kmemleak tracks the percpu allocations separately */
  1535. kmemleak_free(ptr);
  1536. pages[j++] = virt_to_page(ptr);
  1537. }
  1538. /* allocate vm area, map the pages and copy static data */
  1539. vm.flags = VM_ALLOC;
  1540. vm.size = num_possible_cpus() * ai->unit_size;
  1541. vm_area_register_early(&vm, PAGE_SIZE);
  1542. for (unit = 0; unit < num_possible_cpus(); unit++) {
  1543. unsigned long unit_addr =
  1544. (unsigned long)vm.addr + unit * ai->unit_size;
  1545. for (i = 0; i < unit_pages; i++)
  1546. populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
  1547. /* pte already populated, the following shouldn't fail */
  1548. rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
  1549. unit_pages);
  1550. if (rc < 0)
  1551. panic("failed to map percpu area, err=%d\n", rc);
  1552. /*
  1553. * FIXME: Archs with virtual cache should flush local
  1554. * cache for the linear mapping here - something
  1555. * equivalent to flush_cache_vmap() on the local cpu.
  1556. * flush_cache_vmap() can't be used as most supporting
  1557. * data structures are not set up yet.
  1558. */
  1559. /* copy static data */
  1560. memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
  1561. }
  1562. /* we're ready, commit */
  1563. pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
  1564. unit_pages, psize_str, vm.addr, ai->static_size,
  1565. ai->reserved_size, ai->dyn_size);
  1566. rc = pcpu_setup_first_chunk(ai, vm.addr);
  1567. goto out_free_ar;
  1568. enomem:
  1569. while (--j >= 0)
  1570. free_fn(page_address(pages[j]), PAGE_SIZE);
  1571. rc = -ENOMEM;
  1572. out_free_ar:
  1573. memblock_free_early(__pa(pages), pages_size);
  1574. pcpu_free_alloc_info(ai);
  1575. return rc;
  1576. }
  1577. #endif /* BUILD_PAGE_FIRST_CHUNK */
  1578. #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
  1579. /*
  1580. * Generic SMP percpu area setup.
  1581. *
  1582. * The embedding helper is used because its behavior closely resembles
  1583. * the original non-dynamic generic percpu area setup. This is
  1584. * important because many archs have addressing restrictions and might
  1585. * fail if the percpu area is located far away from the previous
  1586. * location. As an added bonus, in non-NUMA cases, embedding is
  1587. * generally a good idea TLB-wise because percpu area can piggy back
  1588. * on the physical linear memory mapping which uses large page
  1589. * mappings on applicable archs.
  1590. */
  1591. unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
  1592. EXPORT_SYMBOL(__per_cpu_offset);
  1593. static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
  1594. size_t align)
  1595. {
  1596. return memblock_virt_alloc_from_nopanic(
  1597. size, align, __pa(MAX_DMA_ADDRESS));
  1598. }
  1599. static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
  1600. {
  1601. memblock_free_early(__pa(ptr), size);
  1602. }
  1603. void __init setup_per_cpu_areas(void)
  1604. {
  1605. unsigned long delta;
  1606. unsigned int cpu;
  1607. int rc;
  1608. /*
  1609. * Always reserve area for module percpu variables. That's
  1610. * what the legacy allocator did.
  1611. */
  1612. rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
  1613. PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
  1614. pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
  1615. if (rc < 0)
  1616. panic("Failed to initialize percpu areas.");
  1617. delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
  1618. for_each_possible_cpu(cpu)
  1619. __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
  1620. }
  1621. #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
  1622. #else /* CONFIG_SMP */
  1623. /*
  1624. * UP percpu area setup.
  1625. *
  1626. * UP always uses km-based percpu allocator with identity mapping.
  1627. * Static percpu variables are indistinguishable from the usual static
  1628. * variables and don't require any special preparation.
  1629. */
  1630. void __init setup_per_cpu_areas(void)
  1631. {
  1632. const size_t unit_size =
  1633. roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
  1634. PERCPU_DYNAMIC_RESERVE));
  1635. struct pcpu_alloc_info *ai;
  1636. void *fc;
  1637. ai = pcpu_alloc_alloc_info(1, 1);
  1638. fc = memblock_virt_alloc_from_nopanic(unit_size,
  1639. PAGE_SIZE,
  1640. __pa(MAX_DMA_ADDRESS));
  1641. if (!ai || !fc)
  1642. panic("Failed to allocate memory for percpu areas.");
  1643. /* kmemleak tracks the percpu allocations separately */
  1644. kmemleak_free(fc);
  1645. ai->dyn_size = unit_size;
  1646. ai->unit_size = unit_size;
  1647. ai->atom_size = unit_size;
  1648. ai->alloc_size = unit_size;
  1649. ai->groups[0].nr_units = 1;
  1650. ai->groups[0].cpu_map[0] = 0;
  1651. if (pcpu_setup_first_chunk(ai, fc) < 0)
  1652. panic("Failed to initialize percpu areas.");
  1653. }
  1654. #endif /* CONFIG_SMP */
  1655. /*
  1656. * First and reserved chunks are initialized with temporary allocation
  1657. * map in initdata so that they can be used before slab is online.
  1658. * This function is called after slab is brought up and replaces those
  1659. * with properly allocated maps.
  1660. */
  1661. void __init percpu_init_late(void)
  1662. {
  1663. struct pcpu_chunk *target_chunks[] =
  1664. { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
  1665. struct pcpu_chunk *chunk;
  1666. unsigned long flags;
  1667. int i;
  1668. for (i = 0; (chunk = target_chunks[i]); i++) {
  1669. int *map;
  1670. const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
  1671. BUILD_BUG_ON(size > PAGE_SIZE);
  1672. map = pcpu_mem_zalloc(size);
  1673. BUG_ON(!map);
  1674. spin_lock_irqsave(&pcpu_lock, flags);
  1675. memcpy(map, chunk->map, size);
  1676. chunk->map = map;
  1677. spin_unlock_irqrestore(&pcpu_lock, flags);
  1678. }
  1679. }