disk-io.c 121 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/slab.h>
  28. #include <linux/migrate.h>
  29. #include <linux/ratelimit.h>
  30. #include <linux/uuid.h>
  31. #include <linux/semaphore.h>
  32. #include <asm/unaligned.h>
  33. #include "ctree.h"
  34. #include "disk-io.h"
  35. #include "hash.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "locking.h"
  41. #include "tree-log.h"
  42. #include "free-space-cache.h"
  43. #include "free-space-tree.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #include "compression.h"
  52. #include "tree-checker.h"
  53. #include "ref-verify.h"
  54. #ifdef CONFIG_X86
  55. #include <asm/cpufeature.h>
  56. #endif
  57. #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
  58. BTRFS_HEADER_FLAG_RELOC |\
  59. BTRFS_SUPER_FLAG_ERROR |\
  60. BTRFS_SUPER_FLAG_SEEDING |\
  61. BTRFS_SUPER_FLAG_METADUMP |\
  62. BTRFS_SUPER_FLAG_METADUMP_V2)
  63. static const struct extent_io_ops btree_extent_io_ops;
  64. static void end_workqueue_fn(struct btrfs_work *work);
  65. static void free_fs_root(struct btrfs_root *root);
  66. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
  67. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  68. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  69. struct btrfs_fs_info *fs_info);
  70. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  71. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  72. struct extent_io_tree *dirty_pages,
  73. int mark);
  74. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  75. struct extent_io_tree *pinned_extents);
  76. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  77. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  78. /*
  79. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  80. * is complete. This is used during reads to verify checksums, and it is used
  81. * by writes to insert metadata for new file extents after IO is complete.
  82. */
  83. struct btrfs_end_io_wq {
  84. struct bio *bio;
  85. bio_end_io_t *end_io;
  86. void *private;
  87. struct btrfs_fs_info *info;
  88. blk_status_t status;
  89. enum btrfs_wq_endio_type metadata;
  90. struct btrfs_work work;
  91. };
  92. static struct kmem_cache *btrfs_end_io_wq_cache;
  93. int __init btrfs_end_io_wq_init(void)
  94. {
  95. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  96. sizeof(struct btrfs_end_io_wq),
  97. 0,
  98. SLAB_MEM_SPREAD,
  99. NULL);
  100. if (!btrfs_end_io_wq_cache)
  101. return -ENOMEM;
  102. return 0;
  103. }
  104. void btrfs_end_io_wq_exit(void)
  105. {
  106. kmem_cache_destroy(btrfs_end_io_wq_cache);
  107. }
  108. /*
  109. * async submit bios are used to offload expensive checksumming
  110. * onto the worker threads. They checksum file and metadata bios
  111. * just before they are sent down the IO stack.
  112. */
  113. struct async_submit_bio {
  114. void *private_data;
  115. struct btrfs_fs_info *fs_info;
  116. struct bio *bio;
  117. extent_submit_bio_hook_t *submit_bio_start;
  118. extent_submit_bio_hook_t *submit_bio_done;
  119. int mirror_num;
  120. unsigned long bio_flags;
  121. /*
  122. * bio_offset is optional, can be used if the pages in the bio
  123. * can't tell us where in the file the bio should go
  124. */
  125. u64 bio_offset;
  126. struct btrfs_work work;
  127. blk_status_t status;
  128. };
  129. /*
  130. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  131. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  132. * the level the eb occupies in the tree.
  133. *
  134. * Different roots are used for different purposes and may nest inside each
  135. * other and they require separate keysets. As lockdep keys should be
  136. * static, assign keysets according to the purpose of the root as indicated
  137. * by btrfs_root->objectid. This ensures that all special purpose roots
  138. * have separate keysets.
  139. *
  140. * Lock-nesting across peer nodes is always done with the immediate parent
  141. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  142. * subclass to avoid triggering lockdep warning in such cases.
  143. *
  144. * The key is set by the readpage_end_io_hook after the buffer has passed
  145. * csum validation but before the pages are unlocked. It is also set by
  146. * btrfs_init_new_buffer on freshly allocated blocks.
  147. *
  148. * We also add a check to make sure the highest level of the tree is the
  149. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  150. * needs update as well.
  151. */
  152. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  153. # if BTRFS_MAX_LEVEL != 8
  154. # error
  155. # endif
  156. static struct btrfs_lockdep_keyset {
  157. u64 id; /* root objectid */
  158. const char *name_stem; /* lock name stem */
  159. char names[BTRFS_MAX_LEVEL + 1][20];
  160. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  161. } btrfs_lockdep_keysets[] = {
  162. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  163. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  164. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  165. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  166. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  167. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  168. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  169. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  170. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  171. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  172. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  173. { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
  174. { .id = 0, .name_stem = "tree" },
  175. };
  176. void __init btrfs_init_lockdep(void)
  177. {
  178. int i, j;
  179. /* initialize lockdep class names */
  180. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  181. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  182. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  183. snprintf(ks->names[j], sizeof(ks->names[j]),
  184. "btrfs-%s-%02d", ks->name_stem, j);
  185. }
  186. }
  187. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  188. int level)
  189. {
  190. struct btrfs_lockdep_keyset *ks;
  191. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  192. /* find the matching keyset, id 0 is the default entry */
  193. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  194. if (ks->id == objectid)
  195. break;
  196. lockdep_set_class_and_name(&eb->lock,
  197. &ks->keys[level], ks->names[level]);
  198. }
  199. #endif
  200. /*
  201. * extents on the btree inode are pretty simple, there's one extent
  202. * that covers the entire device
  203. */
  204. struct extent_map *btree_get_extent(struct btrfs_inode *inode,
  205. struct page *page, size_t pg_offset, u64 start, u64 len,
  206. int create)
  207. {
  208. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  209. struct extent_map_tree *em_tree = &inode->extent_tree;
  210. struct extent_map *em;
  211. int ret;
  212. read_lock(&em_tree->lock);
  213. em = lookup_extent_mapping(em_tree, start, len);
  214. if (em) {
  215. em->bdev = fs_info->fs_devices->latest_bdev;
  216. read_unlock(&em_tree->lock);
  217. goto out;
  218. }
  219. read_unlock(&em_tree->lock);
  220. em = alloc_extent_map();
  221. if (!em) {
  222. em = ERR_PTR(-ENOMEM);
  223. goto out;
  224. }
  225. em->start = 0;
  226. em->len = (u64)-1;
  227. em->block_len = (u64)-1;
  228. em->block_start = 0;
  229. em->bdev = fs_info->fs_devices->latest_bdev;
  230. write_lock(&em_tree->lock);
  231. ret = add_extent_mapping(em_tree, em, 0);
  232. if (ret == -EEXIST) {
  233. free_extent_map(em);
  234. em = lookup_extent_mapping(em_tree, start, len);
  235. if (!em)
  236. em = ERR_PTR(-EIO);
  237. } else if (ret) {
  238. free_extent_map(em);
  239. em = ERR_PTR(ret);
  240. }
  241. write_unlock(&em_tree->lock);
  242. out:
  243. return em;
  244. }
  245. u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
  246. {
  247. return btrfs_crc32c(seed, data, len);
  248. }
  249. void btrfs_csum_final(u32 crc, u8 *result)
  250. {
  251. put_unaligned_le32(~crc, result);
  252. }
  253. /*
  254. * compute the csum for a btree block, and either verify it or write it
  255. * into the csum field of the block.
  256. */
  257. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  258. struct extent_buffer *buf,
  259. int verify)
  260. {
  261. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  262. char result[BTRFS_CSUM_SIZE];
  263. unsigned long len;
  264. unsigned long cur_len;
  265. unsigned long offset = BTRFS_CSUM_SIZE;
  266. char *kaddr;
  267. unsigned long map_start;
  268. unsigned long map_len;
  269. int err;
  270. u32 crc = ~(u32)0;
  271. len = buf->len - offset;
  272. while (len > 0) {
  273. err = map_private_extent_buffer(buf, offset, 32,
  274. &kaddr, &map_start, &map_len);
  275. if (err)
  276. return err;
  277. cur_len = min(len, map_len - (offset - map_start));
  278. crc = btrfs_csum_data(kaddr + offset - map_start,
  279. crc, cur_len);
  280. len -= cur_len;
  281. offset += cur_len;
  282. }
  283. memset(result, 0, BTRFS_CSUM_SIZE);
  284. btrfs_csum_final(crc, result);
  285. if (verify) {
  286. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  287. u32 val;
  288. u32 found = 0;
  289. memcpy(&found, result, csum_size);
  290. read_extent_buffer(buf, &val, 0, csum_size);
  291. btrfs_warn_rl(fs_info,
  292. "%s checksum verify failed on %llu wanted %X found %X level %d",
  293. fs_info->sb->s_id, buf->start,
  294. val, found, btrfs_header_level(buf));
  295. return -EUCLEAN;
  296. }
  297. } else {
  298. write_extent_buffer(buf, result, 0, csum_size);
  299. }
  300. return 0;
  301. }
  302. /*
  303. * we can't consider a given block up to date unless the transid of the
  304. * block matches the transid in the parent node's pointer. This is how we
  305. * detect blocks that either didn't get written at all or got written
  306. * in the wrong place.
  307. */
  308. static int verify_parent_transid(struct extent_io_tree *io_tree,
  309. struct extent_buffer *eb, u64 parent_transid,
  310. int atomic)
  311. {
  312. struct extent_state *cached_state = NULL;
  313. int ret;
  314. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  315. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  316. return 0;
  317. if (atomic)
  318. return -EAGAIN;
  319. if (need_lock) {
  320. btrfs_tree_read_lock(eb);
  321. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  322. }
  323. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  324. &cached_state);
  325. if (extent_buffer_uptodate(eb) &&
  326. btrfs_header_generation(eb) == parent_transid) {
  327. ret = 0;
  328. goto out;
  329. }
  330. btrfs_err_rl(eb->fs_info,
  331. "parent transid verify failed on %llu wanted %llu found %llu",
  332. eb->start,
  333. parent_transid, btrfs_header_generation(eb));
  334. ret = 1;
  335. /*
  336. * Things reading via commit roots that don't have normal protection,
  337. * like send, can have a really old block in cache that may point at a
  338. * block that has been freed and re-allocated. So don't clear uptodate
  339. * if we find an eb that is under IO (dirty/writeback) because we could
  340. * end up reading in the stale data and then writing it back out and
  341. * making everybody very sad.
  342. */
  343. if (!extent_buffer_under_io(eb))
  344. clear_extent_buffer_uptodate(eb);
  345. out:
  346. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  347. &cached_state);
  348. if (need_lock)
  349. btrfs_tree_read_unlock_blocking(eb);
  350. return ret;
  351. }
  352. /*
  353. * Return 0 if the superblock checksum type matches the checksum value of that
  354. * algorithm. Pass the raw disk superblock data.
  355. */
  356. static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
  357. char *raw_disk_sb)
  358. {
  359. struct btrfs_super_block *disk_sb =
  360. (struct btrfs_super_block *)raw_disk_sb;
  361. u16 csum_type = btrfs_super_csum_type(disk_sb);
  362. int ret = 0;
  363. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  364. u32 crc = ~(u32)0;
  365. const int csum_size = sizeof(crc);
  366. char result[csum_size];
  367. /*
  368. * The super_block structure does not span the whole
  369. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  370. * is filled with zeros and is included in the checksum.
  371. */
  372. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  373. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  374. btrfs_csum_final(crc, result);
  375. if (memcmp(raw_disk_sb, result, csum_size))
  376. ret = 1;
  377. }
  378. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  379. btrfs_err(fs_info, "unsupported checksum algorithm %u",
  380. csum_type);
  381. ret = 1;
  382. }
  383. return ret;
  384. }
  385. /*
  386. * helper to read a given tree block, doing retries as required when
  387. * the checksums don't match and we have alternate mirrors to try.
  388. */
  389. static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
  390. struct extent_buffer *eb,
  391. u64 parent_transid)
  392. {
  393. struct extent_io_tree *io_tree;
  394. int failed = 0;
  395. int ret;
  396. int num_copies = 0;
  397. int mirror_num = 0;
  398. int failed_mirror = 0;
  399. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  400. io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
  401. while (1) {
  402. ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
  403. mirror_num);
  404. if (!ret) {
  405. if (!verify_parent_transid(io_tree, eb,
  406. parent_transid, 0))
  407. break;
  408. else
  409. ret = -EIO;
  410. }
  411. /*
  412. * This buffer's crc is fine, but its contents are corrupted, so
  413. * there is no reason to read the other copies, they won't be
  414. * any less wrong.
  415. */
  416. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  417. break;
  418. num_copies = btrfs_num_copies(fs_info,
  419. eb->start, eb->len);
  420. if (num_copies == 1)
  421. break;
  422. if (!failed_mirror) {
  423. failed = 1;
  424. failed_mirror = eb->read_mirror;
  425. }
  426. mirror_num++;
  427. if (mirror_num == failed_mirror)
  428. mirror_num++;
  429. if (mirror_num > num_copies)
  430. break;
  431. }
  432. if (failed && !ret && failed_mirror)
  433. repair_eb_io_failure(fs_info, eb, failed_mirror);
  434. return ret;
  435. }
  436. /*
  437. * checksum a dirty tree block before IO. This has extra checks to make sure
  438. * we only fill in the checksum field in the first page of a multi-page block
  439. */
  440. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  441. {
  442. u64 start = page_offset(page);
  443. u64 found_start;
  444. struct extent_buffer *eb;
  445. eb = (struct extent_buffer *)page->private;
  446. if (page != eb->pages[0])
  447. return 0;
  448. found_start = btrfs_header_bytenr(eb);
  449. /*
  450. * Please do not consolidate these warnings into a single if.
  451. * It is useful to know what went wrong.
  452. */
  453. if (WARN_ON(found_start != start))
  454. return -EUCLEAN;
  455. if (WARN_ON(!PageUptodate(page)))
  456. return -EUCLEAN;
  457. ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
  458. btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
  459. return csum_tree_block(fs_info, eb, 0);
  460. }
  461. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  462. struct extent_buffer *eb)
  463. {
  464. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  465. u8 fsid[BTRFS_FSID_SIZE];
  466. int ret = 1;
  467. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  468. while (fs_devices) {
  469. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  470. ret = 0;
  471. break;
  472. }
  473. fs_devices = fs_devices->seed;
  474. }
  475. return ret;
  476. }
  477. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  478. u64 phy_offset, struct page *page,
  479. u64 start, u64 end, int mirror)
  480. {
  481. u64 found_start;
  482. int found_level;
  483. struct extent_buffer *eb;
  484. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  485. struct btrfs_fs_info *fs_info = root->fs_info;
  486. int ret = 0;
  487. int reads_done;
  488. if (!page->private)
  489. goto out;
  490. eb = (struct extent_buffer *)page->private;
  491. /* the pending IO might have been the only thing that kept this buffer
  492. * in memory. Make sure we have a ref for all this other checks
  493. */
  494. extent_buffer_get(eb);
  495. reads_done = atomic_dec_and_test(&eb->io_pages);
  496. if (!reads_done)
  497. goto err;
  498. eb->read_mirror = mirror;
  499. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  500. ret = -EIO;
  501. goto err;
  502. }
  503. found_start = btrfs_header_bytenr(eb);
  504. if (found_start != eb->start) {
  505. btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
  506. found_start, eb->start);
  507. ret = -EIO;
  508. goto err;
  509. }
  510. if (check_tree_block_fsid(fs_info, eb)) {
  511. btrfs_err_rl(fs_info, "bad fsid on block %llu",
  512. eb->start);
  513. ret = -EIO;
  514. goto err;
  515. }
  516. found_level = btrfs_header_level(eb);
  517. if (found_level >= BTRFS_MAX_LEVEL) {
  518. btrfs_err(fs_info, "bad tree block level %d",
  519. (int)btrfs_header_level(eb));
  520. ret = -EIO;
  521. goto err;
  522. }
  523. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  524. eb, found_level);
  525. ret = csum_tree_block(fs_info, eb, 1);
  526. if (ret)
  527. goto err;
  528. /*
  529. * If this is a leaf block and it is corrupt, set the corrupt bit so
  530. * that we don't try and read the other copies of this block, just
  531. * return -EIO.
  532. */
  533. if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
  534. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  535. ret = -EIO;
  536. }
  537. if (found_level > 0 && btrfs_check_node(root, eb))
  538. ret = -EIO;
  539. if (!ret)
  540. set_extent_buffer_uptodate(eb);
  541. err:
  542. if (reads_done &&
  543. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  544. btree_readahead_hook(eb, ret);
  545. if (ret) {
  546. /*
  547. * our io error hook is going to dec the io pages
  548. * again, we have to make sure it has something
  549. * to decrement
  550. */
  551. atomic_inc(&eb->io_pages);
  552. clear_extent_buffer_uptodate(eb);
  553. }
  554. free_extent_buffer(eb);
  555. out:
  556. return ret;
  557. }
  558. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  559. {
  560. struct extent_buffer *eb;
  561. eb = (struct extent_buffer *)page->private;
  562. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  563. eb->read_mirror = failed_mirror;
  564. atomic_dec(&eb->io_pages);
  565. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  566. btree_readahead_hook(eb, -EIO);
  567. return -EIO; /* we fixed nothing */
  568. }
  569. static void end_workqueue_bio(struct bio *bio)
  570. {
  571. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  572. struct btrfs_fs_info *fs_info;
  573. struct btrfs_workqueue *wq;
  574. btrfs_work_func_t func;
  575. fs_info = end_io_wq->info;
  576. end_io_wq->status = bio->bi_status;
  577. if (bio_op(bio) == REQ_OP_WRITE) {
  578. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  579. wq = fs_info->endio_meta_write_workers;
  580. func = btrfs_endio_meta_write_helper;
  581. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  582. wq = fs_info->endio_freespace_worker;
  583. func = btrfs_freespace_write_helper;
  584. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  585. wq = fs_info->endio_raid56_workers;
  586. func = btrfs_endio_raid56_helper;
  587. } else {
  588. wq = fs_info->endio_write_workers;
  589. func = btrfs_endio_write_helper;
  590. }
  591. } else {
  592. if (unlikely(end_io_wq->metadata ==
  593. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  594. wq = fs_info->endio_repair_workers;
  595. func = btrfs_endio_repair_helper;
  596. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  597. wq = fs_info->endio_raid56_workers;
  598. func = btrfs_endio_raid56_helper;
  599. } else if (end_io_wq->metadata) {
  600. wq = fs_info->endio_meta_workers;
  601. func = btrfs_endio_meta_helper;
  602. } else {
  603. wq = fs_info->endio_workers;
  604. func = btrfs_endio_helper;
  605. }
  606. }
  607. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  608. btrfs_queue_work(wq, &end_io_wq->work);
  609. }
  610. blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  611. enum btrfs_wq_endio_type metadata)
  612. {
  613. struct btrfs_end_io_wq *end_io_wq;
  614. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  615. if (!end_io_wq)
  616. return BLK_STS_RESOURCE;
  617. end_io_wq->private = bio->bi_private;
  618. end_io_wq->end_io = bio->bi_end_io;
  619. end_io_wq->info = info;
  620. end_io_wq->status = 0;
  621. end_io_wq->bio = bio;
  622. end_io_wq->metadata = metadata;
  623. bio->bi_private = end_io_wq;
  624. bio->bi_end_io = end_workqueue_bio;
  625. return 0;
  626. }
  627. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  628. {
  629. unsigned long limit = min_t(unsigned long,
  630. info->thread_pool_size,
  631. info->fs_devices->open_devices);
  632. return 256 * limit;
  633. }
  634. static void run_one_async_start(struct btrfs_work *work)
  635. {
  636. struct async_submit_bio *async;
  637. blk_status_t ret;
  638. async = container_of(work, struct async_submit_bio, work);
  639. ret = async->submit_bio_start(async->private_data, async->bio,
  640. async->mirror_num, async->bio_flags,
  641. async->bio_offset);
  642. if (ret)
  643. async->status = ret;
  644. }
  645. static void run_one_async_done(struct btrfs_work *work)
  646. {
  647. struct async_submit_bio *async;
  648. async = container_of(work, struct async_submit_bio, work);
  649. /* If an error occurred we just want to clean up the bio and move on */
  650. if (async->status) {
  651. async->bio->bi_status = async->status;
  652. bio_endio(async->bio);
  653. return;
  654. }
  655. async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
  656. async->bio_flags, async->bio_offset);
  657. }
  658. static void run_one_async_free(struct btrfs_work *work)
  659. {
  660. struct async_submit_bio *async;
  661. async = container_of(work, struct async_submit_bio, work);
  662. kfree(async);
  663. }
  664. blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
  665. int mirror_num, unsigned long bio_flags,
  666. u64 bio_offset, void *private_data,
  667. extent_submit_bio_hook_t *submit_bio_start,
  668. extent_submit_bio_hook_t *submit_bio_done)
  669. {
  670. struct async_submit_bio *async;
  671. async = kmalloc(sizeof(*async), GFP_NOFS);
  672. if (!async)
  673. return BLK_STS_RESOURCE;
  674. async->private_data = private_data;
  675. async->fs_info = fs_info;
  676. async->bio = bio;
  677. async->mirror_num = mirror_num;
  678. async->submit_bio_start = submit_bio_start;
  679. async->submit_bio_done = submit_bio_done;
  680. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  681. run_one_async_done, run_one_async_free);
  682. async->bio_flags = bio_flags;
  683. async->bio_offset = bio_offset;
  684. async->status = 0;
  685. if (op_is_sync(bio->bi_opf))
  686. btrfs_set_work_high_priority(&async->work);
  687. btrfs_queue_work(fs_info->workers, &async->work);
  688. return 0;
  689. }
  690. static blk_status_t btree_csum_one_bio(struct bio *bio)
  691. {
  692. struct bio_vec *bvec;
  693. struct btrfs_root *root;
  694. int i, ret = 0;
  695. ASSERT(!bio_flagged(bio, BIO_CLONED));
  696. bio_for_each_segment_all(bvec, bio, i) {
  697. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  698. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  699. if (ret)
  700. break;
  701. }
  702. return errno_to_blk_status(ret);
  703. }
  704. static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
  705. int mirror_num, unsigned long bio_flags,
  706. u64 bio_offset)
  707. {
  708. /*
  709. * when we're called for a write, we're already in the async
  710. * submission context. Just jump into btrfs_map_bio
  711. */
  712. return btree_csum_one_bio(bio);
  713. }
  714. static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
  715. int mirror_num, unsigned long bio_flags,
  716. u64 bio_offset)
  717. {
  718. struct inode *inode = private_data;
  719. blk_status_t ret;
  720. /*
  721. * when we're called for a write, we're already in the async
  722. * submission context. Just jump into btrfs_map_bio
  723. */
  724. ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
  725. if (ret) {
  726. bio->bi_status = ret;
  727. bio_endio(bio);
  728. }
  729. return ret;
  730. }
  731. static int check_async_write(struct btrfs_inode *bi)
  732. {
  733. if (atomic_read(&bi->sync_writers))
  734. return 0;
  735. #ifdef CONFIG_X86
  736. if (static_cpu_has(X86_FEATURE_XMM4_2))
  737. return 0;
  738. #endif
  739. return 1;
  740. }
  741. static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
  742. int mirror_num, unsigned long bio_flags,
  743. u64 bio_offset)
  744. {
  745. struct inode *inode = private_data;
  746. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  747. int async = check_async_write(BTRFS_I(inode));
  748. blk_status_t ret;
  749. if (bio_op(bio) != REQ_OP_WRITE) {
  750. /*
  751. * called for a read, do the setup so that checksum validation
  752. * can happen in the async kernel threads
  753. */
  754. ret = btrfs_bio_wq_end_io(fs_info, bio,
  755. BTRFS_WQ_ENDIO_METADATA);
  756. if (ret)
  757. goto out_w_error;
  758. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  759. } else if (!async) {
  760. ret = btree_csum_one_bio(bio);
  761. if (ret)
  762. goto out_w_error;
  763. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  764. } else {
  765. /*
  766. * kthread helpers are used to submit writes so that
  767. * checksumming can happen in parallel across all CPUs
  768. */
  769. ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
  770. bio_offset, private_data,
  771. __btree_submit_bio_start,
  772. __btree_submit_bio_done);
  773. }
  774. if (ret)
  775. goto out_w_error;
  776. return 0;
  777. out_w_error:
  778. bio->bi_status = ret;
  779. bio_endio(bio);
  780. return ret;
  781. }
  782. #ifdef CONFIG_MIGRATION
  783. static int btree_migratepage(struct address_space *mapping,
  784. struct page *newpage, struct page *page,
  785. enum migrate_mode mode)
  786. {
  787. /*
  788. * we can't safely write a btree page from here,
  789. * we haven't done the locking hook
  790. */
  791. if (PageDirty(page))
  792. return -EAGAIN;
  793. /*
  794. * Buffers may be managed in a filesystem specific way.
  795. * We must have no buffers or drop them.
  796. */
  797. if (page_has_private(page) &&
  798. !try_to_release_page(page, GFP_KERNEL))
  799. return -EAGAIN;
  800. return migrate_page(mapping, newpage, page, mode);
  801. }
  802. #endif
  803. static int btree_writepages(struct address_space *mapping,
  804. struct writeback_control *wbc)
  805. {
  806. struct btrfs_fs_info *fs_info;
  807. int ret;
  808. if (wbc->sync_mode == WB_SYNC_NONE) {
  809. if (wbc->for_kupdate)
  810. return 0;
  811. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  812. /* this is a bit racy, but that's ok */
  813. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  814. BTRFS_DIRTY_METADATA_THRESH);
  815. if (ret < 0)
  816. return 0;
  817. }
  818. return btree_write_cache_pages(mapping, wbc);
  819. }
  820. static int btree_readpage(struct file *file, struct page *page)
  821. {
  822. struct extent_io_tree *tree;
  823. tree = &BTRFS_I(page->mapping->host)->io_tree;
  824. return extent_read_full_page(tree, page, btree_get_extent, 0);
  825. }
  826. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  827. {
  828. if (PageWriteback(page) || PageDirty(page))
  829. return 0;
  830. return try_release_extent_buffer(page);
  831. }
  832. static void btree_invalidatepage(struct page *page, unsigned int offset,
  833. unsigned int length)
  834. {
  835. struct extent_io_tree *tree;
  836. tree = &BTRFS_I(page->mapping->host)->io_tree;
  837. extent_invalidatepage(tree, page, offset);
  838. btree_releasepage(page, GFP_NOFS);
  839. if (PagePrivate(page)) {
  840. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  841. "page private not zero on page %llu",
  842. (unsigned long long)page_offset(page));
  843. ClearPagePrivate(page);
  844. set_page_private(page, 0);
  845. put_page(page);
  846. }
  847. }
  848. static int btree_set_page_dirty(struct page *page)
  849. {
  850. #ifdef DEBUG
  851. struct extent_buffer *eb;
  852. BUG_ON(!PagePrivate(page));
  853. eb = (struct extent_buffer *)page->private;
  854. BUG_ON(!eb);
  855. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  856. BUG_ON(!atomic_read(&eb->refs));
  857. btrfs_assert_tree_locked(eb);
  858. #endif
  859. return __set_page_dirty_nobuffers(page);
  860. }
  861. static const struct address_space_operations btree_aops = {
  862. .readpage = btree_readpage,
  863. .writepages = btree_writepages,
  864. .releasepage = btree_releasepage,
  865. .invalidatepage = btree_invalidatepage,
  866. #ifdef CONFIG_MIGRATION
  867. .migratepage = btree_migratepage,
  868. #endif
  869. .set_page_dirty = btree_set_page_dirty,
  870. };
  871. void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
  872. {
  873. struct extent_buffer *buf = NULL;
  874. struct inode *btree_inode = fs_info->btree_inode;
  875. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  876. if (IS_ERR(buf))
  877. return;
  878. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  879. buf, WAIT_NONE, 0);
  880. free_extent_buffer(buf);
  881. }
  882. int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
  883. int mirror_num, struct extent_buffer **eb)
  884. {
  885. struct extent_buffer *buf = NULL;
  886. struct inode *btree_inode = fs_info->btree_inode;
  887. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  888. int ret;
  889. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  890. if (IS_ERR(buf))
  891. return 0;
  892. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  893. ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
  894. mirror_num);
  895. if (ret) {
  896. free_extent_buffer(buf);
  897. return ret;
  898. }
  899. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  900. free_extent_buffer(buf);
  901. return -EIO;
  902. } else if (extent_buffer_uptodate(buf)) {
  903. *eb = buf;
  904. } else {
  905. free_extent_buffer(buf);
  906. }
  907. return 0;
  908. }
  909. struct extent_buffer *btrfs_find_create_tree_block(
  910. struct btrfs_fs_info *fs_info,
  911. u64 bytenr)
  912. {
  913. if (btrfs_is_testing(fs_info))
  914. return alloc_test_extent_buffer(fs_info, bytenr);
  915. return alloc_extent_buffer(fs_info, bytenr);
  916. }
  917. int btrfs_write_tree_block(struct extent_buffer *buf)
  918. {
  919. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  920. buf->start + buf->len - 1);
  921. }
  922. void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  923. {
  924. filemap_fdatawait_range(buf->pages[0]->mapping,
  925. buf->start, buf->start + buf->len - 1);
  926. }
  927. struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
  928. u64 parent_transid)
  929. {
  930. struct extent_buffer *buf = NULL;
  931. int ret;
  932. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  933. if (IS_ERR(buf))
  934. return buf;
  935. ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
  936. if (ret) {
  937. free_extent_buffer(buf);
  938. return ERR_PTR(ret);
  939. }
  940. return buf;
  941. }
  942. void clean_tree_block(struct btrfs_fs_info *fs_info,
  943. struct extent_buffer *buf)
  944. {
  945. if (btrfs_header_generation(buf) ==
  946. fs_info->running_transaction->transid) {
  947. btrfs_assert_tree_locked(buf);
  948. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  949. percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
  950. -buf->len,
  951. fs_info->dirty_metadata_batch);
  952. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  953. btrfs_set_lock_blocking(buf);
  954. clear_extent_buffer_dirty(buf);
  955. }
  956. }
  957. }
  958. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  959. {
  960. struct btrfs_subvolume_writers *writers;
  961. int ret;
  962. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  963. if (!writers)
  964. return ERR_PTR(-ENOMEM);
  965. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  966. if (ret < 0) {
  967. kfree(writers);
  968. return ERR_PTR(ret);
  969. }
  970. init_waitqueue_head(&writers->wait);
  971. return writers;
  972. }
  973. static void
  974. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  975. {
  976. percpu_counter_destroy(&writers->counter);
  977. kfree(writers);
  978. }
  979. static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  980. u64 objectid)
  981. {
  982. bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
  983. root->node = NULL;
  984. root->commit_root = NULL;
  985. root->state = 0;
  986. root->orphan_cleanup_state = 0;
  987. root->objectid = objectid;
  988. root->last_trans = 0;
  989. root->highest_objectid = 0;
  990. root->nr_delalloc_inodes = 0;
  991. root->nr_ordered_extents = 0;
  992. root->name = NULL;
  993. root->inode_tree = RB_ROOT;
  994. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  995. root->block_rsv = NULL;
  996. root->orphan_block_rsv = NULL;
  997. INIT_LIST_HEAD(&root->dirty_list);
  998. INIT_LIST_HEAD(&root->root_list);
  999. INIT_LIST_HEAD(&root->delalloc_inodes);
  1000. INIT_LIST_HEAD(&root->delalloc_root);
  1001. INIT_LIST_HEAD(&root->ordered_extents);
  1002. INIT_LIST_HEAD(&root->ordered_root);
  1003. INIT_LIST_HEAD(&root->logged_list[0]);
  1004. INIT_LIST_HEAD(&root->logged_list[1]);
  1005. spin_lock_init(&root->orphan_lock);
  1006. spin_lock_init(&root->inode_lock);
  1007. spin_lock_init(&root->delalloc_lock);
  1008. spin_lock_init(&root->ordered_extent_lock);
  1009. spin_lock_init(&root->accounting_lock);
  1010. spin_lock_init(&root->log_extents_lock[0]);
  1011. spin_lock_init(&root->log_extents_lock[1]);
  1012. mutex_init(&root->objectid_mutex);
  1013. mutex_init(&root->log_mutex);
  1014. mutex_init(&root->ordered_extent_mutex);
  1015. mutex_init(&root->delalloc_mutex);
  1016. init_waitqueue_head(&root->log_writer_wait);
  1017. init_waitqueue_head(&root->log_commit_wait[0]);
  1018. init_waitqueue_head(&root->log_commit_wait[1]);
  1019. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1020. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1021. atomic_set(&root->log_commit[0], 0);
  1022. atomic_set(&root->log_commit[1], 0);
  1023. atomic_set(&root->log_writers, 0);
  1024. atomic_set(&root->log_batch, 0);
  1025. atomic_set(&root->orphan_inodes, 0);
  1026. refcount_set(&root->refs, 1);
  1027. atomic_set(&root->will_be_snapshotted, 0);
  1028. atomic64_set(&root->qgroup_meta_rsv, 0);
  1029. root->log_transid = 0;
  1030. root->log_transid_committed = -1;
  1031. root->last_log_commit = 0;
  1032. if (!dummy)
  1033. extent_io_tree_init(&root->dirty_log_pages, NULL);
  1034. memset(&root->root_key, 0, sizeof(root->root_key));
  1035. memset(&root->root_item, 0, sizeof(root->root_item));
  1036. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1037. if (!dummy)
  1038. root->defrag_trans_start = fs_info->generation;
  1039. else
  1040. root->defrag_trans_start = 0;
  1041. root->root_key.objectid = objectid;
  1042. root->anon_dev = 0;
  1043. spin_lock_init(&root->root_item_lock);
  1044. }
  1045. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
  1046. gfp_t flags)
  1047. {
  1048. struct btrfs_root *root = kzalloc(sizeof(*root), flags);
  1049. if (root)
  1050. root->fs_info = fs_info;
  1051. return root;
  1052. }
  1053. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1054. /* Should only be used by the testing infrastructure */
  1055. struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
  1056. {
  1057. struct btrfs_root *root;
  1058. if (!fs_info)
  1059. return ERR_PTR(-EINVAL);
  1060. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1061. if (!root)
  1062. return ERR_PTR(-ENOMEM);
  1063. /* We don't use the stripesize in selftest, set it as sectorsize */
  1064. __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1065. root->alloc_bytenr = 0;
  1066. return root;
  1067. }
  1068. #endif
  1069. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1070. struct btrfs_fs_info *fs_info,
  1071. u64 objectid)
  1072. {
  1073. struct extent_buffer *leaf;
  1074. struct btrfs_root *tree_root = fs_info->tree_root;
  1075. struct btrfs_root *root;
  1076. struct btrfs_key key;
  1077. int ret = 0;
  1078. uuid_le uuid = NULL_UUID_LE;
  1079. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1080. if (!root)
  1081. return ERR_PTR(-ENOMEM);
  1082. __setup_root(root, fs_info, objectid);
  1083. root->root_key.objectid = objectid;
  1084. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1085. root->root_key.offset = 0;
  1086. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1087. if (IS_ERR(leaf)) {
  1088. ret = PTR_ERR(leaf);
  1089. leaf = NULL;
  1090. goto fail;
  1091. }
  1092. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1093. btrfs_set_header_bytenr(leaf, leaf->start);
  1094. btrfs_set_header_generation(leaf, trans->transid);
  1095. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1096. btrfs_set_header_owner(leaf, objectid);
  1097. root->node = leaf;
  1098. write_extent_buffer_fsid(leaf, fs_info->fsid);
  1099. write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
  1100. btrfs_mark_buffer_dirty(leaf);
  1101. root->commit_root = btrfs_root_node(root);
  1102. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1103. root->root_item.flags = 0;
  1104. root->root_item.byte_limit = 0;
  1105. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1106. btrfs_set_root_generation(&root->root_item, trans->transid);
  1107. btrfs_set_root_level(&root->root_item, 0);
  1108. btrfs_set_root_refs(&root->root_item, 1);
  1109. btrfs_set_root_used(&root->root_item, leaf->len);
  1110. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1111. btrfs_set_root_dirid(&root->root_item, 0);
  1112. if (is_fstree(objectid))
  1113. uuid_le_gen(&uuid);
  1114. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1115. root->root_item.drop_level = 0;
  1116. key.objectid = objectid;
  1117. key.type = BTRFS_ROOT_ITEM_KEY;
  1118. key.offset = 0;
  1119. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1120. if (ret)
  1121. goto fail;
  1122. btrfs_tree_unlock(leaf);
  1123. return root;
  1124. fail:
  1125. if (leaf) {
  1126. btrfs_tree_unlock(leaf);
  1127. free_extent_buffer(root->commit_root);
  1128. free_extent_buffer(leaf);
  1129. }
  1130. kfree(root);
  1131. return ERR_PTR(ret);
  1132. }
  1133. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1134. struct btrfs_fs_info *fs_info)
  1135. {
  1136. struct btrfs_root *root;
  1137. struct extent_buffer *leaf;
  1138. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1139. if (!root)
  1140. return ERR_PTR(-ENOMEM);
  1141. __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1142. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1143. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1144. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1145. /*
  1146. * DON'T set REF_COWS for log trees
  1147. *
  1148. * log trees do not get reference counted because they go away
  1149. * before a real commit is actually done. They do store pointers
  1150. * to file data extents, and those reference counts still get
  1151. * updated (along with back refs to the log tree).
  1152. */
  1153. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1154. NULL, 0, 0, 0);
  1155. if (IS_ERR(leaf)) {
  1156. kfree(root);
  1157. return ERR_CAST(leaf);
  1158. }
  1159. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1160. btrfs_set_header_bytenr(leaf, leaf->start);
  1161. btrfs_set_header_generation(leaf, trans->transid);
  1162. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1163. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1164. root->node = leaf;
  1165. write_extent_buffer_fsid(root->node, fs_info->fsid);
  1166. btrfs_mark_buffer_dirty(root->node);
  1167. btrfs_tree_unlock(root->node);
  1168. return root;
  1169. }
  1170. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1171. struct btrfs_fs_info *fs_info)
  1172. {
  1173. struct btrfs_root *log_root;
  1174. log_root = alloc_log_tree(trans, fs_info);
  1175. if (IS_ERR(log_root))
  1176. return PTR_ERR(log_root);
  1177. WARN_ON(fs_info->log_root_tree);
  1178. fs_info->log_root_tree = log_root;
  1179. return 0;
  1180. }
  1181. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1182. struct btrfs_root *root)
  1183. {
  1184. struct btrfs_fs_info *fs_info = root->fs_info;
  1185. struct btrfs_root *log_root;
  1186. struct btrfs_inode_item *inode_item;
  1187. log_root = alloc_log_tree(trans, fs_info);
  1188. if (IS_ERR(log_root))
  1189. return PTR_ERR(log_root);
  1190. log_root->last_trans = trans->transid;
  1191. log_root->root_key.offset = root->root_key.objectid;
  1192. inode_item = &log_root->root_item.inode;
  1193. btrfs_set_stack_inode_generation(inode_item, 1);
  1194. btrfs_set_stack_inode_size(inode_item, 3);
  1195. btrfs_set_stack_inode_nlink(inode_item, 1);
  1196. btrfs_set_stack_inode_nbytes(inode_item,
  1197. fs_info->nodesize);
  1198. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1199. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1200. WARN_ON(root->log_root);
  1201. root->log_root = log_root;
  1202. root->log_transid = 0;
  1203. root->log_transid_committed = -1;
  1204. root->last_log_commit = 0;
  1205. return 0;
  1206. }
  1207. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1208. struct btrfs_key *key)
  1209. {
  1210. struct btrfs_root *root;
  1211. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1212. struct btrfs_path *path;
  1213. u64 generation;
  1214. int ret;
  1215. path = btrfs_alloc_path();
  1216. if (!path)
  1217. return ERR_PTR(-ENOMEM);
  1218. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1219. if (!root) {
  1220. ret = -ENOMEM;
  1221. goto alloc_fail;
  1222. }
  1223. __setup_root(root, fs_info, key->objectid);
  1224. ret = btrfs_find_root(tree_root, key, path,
  1225. &root->root_item, &root->root_key);
  1226. if (ret) {
  1227. if (ret > 0)
  1228. ret = -ENOENT;
  1229. goto find_fail;
  1230. }
  1231. generation = btrfs_root_generation(&root->root_item);
  1232. root->node = read_tree_block(fs_info,
  1233. btrfs_root_bytenr(&root->root_item),
  1234. generation);
  1235. if (IS_ERR(root->node)) {
  1236. ret = PTR_ERR(root->node);
  1237. goto find_fail;
  1238. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1239. ret = -EIO;
  1240. free_extent_buffer(root->node);
  1241. goto find_fail;
  1242. }
  1243. root->commit_root = btrfs_root_node(root);
  1244. out:
  1245. btrfs_free_path(path);
  1246. return root;
  1247. find_fail:
  1248. kfree(root);
  1249. alloc_fail:
  1250. root = ERR_PTR(ret);
  1251. goto out;
  1252. }
  1253. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1254. struct btrfs_key *location)
  1255. {
  1256. struct btrfs_root *root;
  1257. root = btrfs_read_tree_root(tree_root, location);
  1258. if (IS_ERR(root))
  1259. return root;
  1260. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1261. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1262. btrfs_check_and_init_root_item(&root->root_item);
  1263. }
  1264. return root;
  1265. }
  1266. int btrfs_init_fs_root(struct btrfs_root *root)
  1267. {
  1268. int ret;
  1269. struct btrfs_subvolume_writers *writers;
  1270. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1271. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1272. GFP_NOFS);
  1273. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1274. ret = -ENOMEM;
  1275. goto fail;
  1276. }
  1277. writers = btrfs_alloc_subvolume_writers();
  1278. if (IS_ERR(writers)) {
  1279. ret = PTR_ERR(writers);
  1280. goto fail;
  1281. }
  1282. root->subv_writers = writers;
  1283. btrfs_init_free_ino_ctl(root);
  1284. spin_lock_init(&root->ino_cache_lock);
  1285. init_waitqueue_head(&root->ino_cache_wait);
  1286. ret = get_anon_bdev(&root->anon_dev);
  1287. if (ret)
  1288. goto fail;
  1289. mutex_lock(&root->objectid_mutex);
  1290. ret = btrfs_find_highest_objectid(root,
  1291. &root->highest_objectid);
  1292. if (ret) {
  1293. mutex_unlock(&root->objectid_mutex);
  1294. goto fail;
  1295. }
  1296. ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  1297. mutex_unlock(&root->objectid_mutex);
  1298. return 0;
  1299. fail:
  1300. /* the caller is responsible to call free_fs_root */
  1301. return ret;
  1302. }
  1303. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1304. u64 root_id)
  1305. {
  1306. struct btrfs_root *root;
  1307. spin_lock(&fs_info->fs_roots_radix_lock);
  1308. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1309. (unsigned long)root_id);
  1310. spin_unlock(&fs_info->fs_roots_radix_lock);
  1311. return root;
  1312. }
  1313. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1314. struct btrfs_root *root)
  1315. {
  1316. int ret;
  1317. ret = radix_tree_preload(GFP_NOFS);
  1318. if (ret)
  1319. return ret;
  1320. spin_lock(&fs_info->fs_roots_radix_lock);
  1321. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1322. (unsigned long)root->root_key.objectid,
  1323. root);
  1324. if (ret == 0)
  1325. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1326. spin_unlock(&fs_info->fs_roots_radix_lock);
  1327. radix_tree_preload_end();
  1328. return ret;
  1329. }
  1330. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1331. struct btrfs_key *location,
  1332. bool check_ref)
  1333. {
  1334. struct btrfs_root *root;
  1335. struct btrfs_path *path;
  1336. struct btrfs_key key;
  1337. int ret;
  1338. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1339. return fs_info->tree_root;
  1340. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1341. return fs_info->extent_root;
  1342. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1343. return fs_info->chunk_root;
  1344. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1345. return fs_info->dev_root;
  1346. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1347. return fs_info->csum_root;
  1348. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1349. return fs_info->quota_root ? fs_info->quota_root :
  1350. ERR_PTR(-ENOENT);
  1351. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1352. return fs_info->uuid_root ? fs_info->uuid_root :
  1353. ERR_PTR(-ENOENT);
  1354. if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  1355. return fs_info->free_space_root ? fs_info->free_space_root :
  1356. ERR_PTR(-ENOENT);
  1357. again:
  1358. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1359. if (root) {
  1360. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1361. return ERR_PTR(-ENOENT);
  1362. return root;
  1363. }
  1364. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1365. if (IS_ERR(root))
  1366. return root;
  1367. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1368. ret = -ENOENT;
  1369. goto fail;
  1370. }
  1371. ret = btrfs_init_fs_root(root);
  1372. if (ret)
  1373. goto fail;
  1374. path = btrfs_alloc_path();
  1375. if (!path) {
  1376. ret = -ENOMEM;
  1377. goto fail;
  1378. }
  1379. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1380. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1381. key.offset = location->objectid;
  1382. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1383. btrfs_free_path(path);
  1384. if (ret < 0)
  1385. goto fail;
  1386. if (ret == 0)
  1387. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1388. ret = btrfs_insert_fs_root(fs_info, root);
  1389. if (ret) {
  1390. if (ret == -EEXIST) {
  1391. free_fs_root(root);
  1392. goto again;
  1393. }
  1394. goto fail;
  1395. }
  1396. return root;
  1397. fail:
  1398. free_fs_root(root);
  1399. return ERR_PTR(ret);
  1400. }
  1401. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1402. {
  1403. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1404. int ret = 0;
  1405. struct btrfs_device *device;
  1406. struct backing_dev_info *bdi;
  1407. rcu_read_lock();
  1408. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1409. if (!device->bdev)
  1410. continue;
  1411. bdi = device->bdev->bd_bdi;
  1412. if (bdi_congested(bdi, bdi_bits)) {
  1413. ret = 1;
  1414. break;
  1415. }
  1416. }
  1417. rcu_read_unlock();
  1418. return ret;
  1419. }
  1420. /*
  1421. * called by the kthread helper functions to finally call the bio end_io
  1422. * functions. This is where read checksum verification actually happens
  1423. */
  1424. static void end_workqueue_fn(struct btrfs_work *work)
  1425. {
  1426. struct bio *bio;
  1427. struct btrfs_end_io_wq *end_io_wq;
  1428. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1429. bio = end_io_wq->bio;
  1430. bio->bi_status = end_io_wq->status;
  1431. bio->bi_private = end_io_wq->private;
  1432. bio->bi_end_io = end_io_wq->end_io;
  1433. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1434. bio_endio(bio);
  1435. }
  1436. static int cleaner_kthread(void *arg)
  1437. {
  1438. struct btrfs_root *root = arg;
  1439. struct btrfs_fs_info *fs_info = root->fs_info;
  1440. int again;
  1441. struct btrfs_trans_handle *trans;
  1442. do {
  1443. again = 0;
  1444. /* Make the cleaner go to sleep early. */
  1445. if (btrfs_need_cleaner_sleep(fs_info))
  1446. goto sleep;
  1447. /*
  1448. * Do not do anything if we might cause open_ctree() to block
  1449. * before we have finished mounting the filesystem.
  1450. */
  1451. if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
  1452. goto sleep;
  1453. if (!mutex_trylock(&fs_info->cleaner_mutex))
  1454. goto sleep;
  1455. /*
  1456. * Avoid the problem that we change the status of the fs
  1457. * during the above check and trylock.
  1458. */
  1459. if (btrfs_need_cleaner_sleep(fs_info)) {
  1460. mutex_unlock(&fs_info->cleaner_mutex);
  1461. goto sleep;
  1462. }
  1463. mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
  1464. btrfs_run_delayed_iputs(fs_info);
  1465. mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
  1466. again = btrfs_clean_one_deleted_snapshot(root);
  1467. mutex_unlock(&fs_info->cleaner_mutex);
  1468. /*
  1469. * The defragger has dealt with the R/O remount and umount,
  1470. * needn't do anything special here.
  1471. */
  1472. btrfs_run_defrag_inodes(fs_info);
  1473. /*
  1474. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1475. * with relocation (btrfs_relocate_chunk) and relocation
  1476. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1477. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1478. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1479. * unused block groups.
  1480. */
  1481. btrfs_delete_unused_bgs(fs_info);
  1482. sleep:
  1483. if (!again) {
  1484. set_current_state(TASK_INTERRUPTIBLE);
  1485. if (!kthread_should_stop())
  1486. schedule();
  1487. __set_current_state(TASK_RUNNING);
  1488. }
  1489. } while (!kthread_should_stop());
  1490. /*
  1491. * Transaction kthread is stopped before us and wakes us up.
  1492. * However we might have started a new transaction and COWed some
  1493. * tree blocks when deleting unused block groups for example. So
  1494. * make sure we commit the transaction we started to have a clean
  1495. * shutdown when evicting the btree inode - if it has dirty pages
  1496. * when we do the final iput() on it, eviction will trigger a
  1497. * writeback for it which will fail with null pointer dereferences
  1498. * since work queues and other resources were already released and
  1499. * destroyed by the time the iput/eviction/writeback is made.
  1500. */
  1501. trans = btrfs_attach_transaction(root);
  1502. if (IS_ERR(trans)) {
  1503. if (PTR_ERR(trans) != -ENOENT)
  1504. btrfs_err(fs_info,
  1505. "cleaner transaction attach returned %ld",
  1506. PTR_ERR(trans));
  1507. } else {
  1508. int ret;
  1509. ret = btrfs_commit_transaction(trans);
  1510. if (ret)
  1511. btrfs_err(fs_info,
  1512. "cleaner open transaction commit returned %d",
  1513. ret);
  1514. }
  1515. return 0;
  1516. }
  1517. static int transaction_kthread(void *arg)
  1518. {
  1519. struct btrfs_root *root = arg;
  1520. struct btrfs_fs_info *fs_info = root->fs_info;
  1521. struct btrfs_trans_handle *trans;
  1522. struct btrfs_transaction *cur;
  1523. u64 transid;
  1524. unsigned long now;
  1525. unsigned long delay;
  1526. bool cannot_commit;
  1527. do {
  1528. cannot_commit = false;
  1529. delay = HZ * fs_info->commit_interval;
  1530. mutex_lock(&fs_info->transaction_kthread_mutex);
  1531. spin_lock(&fs_info->trans_lock);
  1532. cur = fs_info->running_transaction;
  1533. if (!cur) {
  1534. spin_unlock(&fs_info->trans_lock);
  1535. goto sleep;
  1536. }
  1537. now = get_seconds();
  1538. if (cur->state < TRANS_STATE_BLOCKED &&
  1539. (now < cur->start_time ||
  1540. now - cur->start_time < fs_info->commit_interval)) {
  1541. spin_unlock(&fs_info->trans_lock);
  1542. delay = HZ * 5;
  1543. goto sleep;
  1544. }
  1545. transid = cur->transid;
  1546. spin_unlock(&fs_info->trans_lock);
  1547. /* If the file system is aborted, this will always fail. */
  1548. trans = btrfs_attach_transaction(root);
  1549. if (IS_ERR(trans)) {
  1550. if (PTR_ERR(trans) != -ENOENT)
  1551. cannot_commit = true;
  1552. goto sleep;
  1553. }
  1554. if (transid == trans->transid) {
  1555. btrfs_commit_transaction(trans);
  1556. } else {
  1557. btrfs_end_transaction(trans);
  1558. }
  1559. sleep:
  1560. wake_up_process(fs_info->cleaner_kthread);
  1561. mutex_unlock(&fs_info->transaction_kthread_mutex);
  1562. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1563. &fs_info->fs_state)))
  1564. btrfs_cleanup_transaction(fs_info);
  1565. set_current_state(TASK_INTERRUPTIBLE);
  1566. if (!kthread_should_stop() &&
  1567. (!btrfs_transaction_blocked(fs_info) ||
  1568. cannot_commit))
  1569. schedule_timeout(delay);
  1570. __set_current_state(TASK_RUNNING);
  1571. } while (!kthread_should_stop());
  1572. return 0;
  1573. }
  1574. /*
  1575. * this will find the highest generation in the array of
  1576. * root backups. The index of the highest array is returned,
  1577. * or -1 if we can't find anything.
  1578. *
  1579. * We check to make sure the array is valid by comparing the
  1580. * generation of the latest root in the array with the generation
  1581. * in the super block. If they don't match we pitch it.
  1582. */
  1583. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1584. {
  1585. u64 cur;
  1586. int newest_index = -1;
  1587. struct btrfs_root_backup *root_backup;
  1588. int i;
  1589. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1590. root_backup = info->super_copy->super_roots + i;
  1591. cur = btrfs_backup_tree_root_gen(root_backup);
  1592. if (cur == newest_gen)
  1593. newest_index = i;
  1594. }
  1595. /* check to see if we actually wrapped around */
  1596. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1597. root_backup = info->super_copy->super_roots;
  1598. cur = btrfs_backup_tree_root_gen(root_backup);
  1599. if (cur == newest_gen)
  1600. newest_index = 0;
  1601. }
  1602. return newest_index;
  1603. }
  1604. /*
  1605. * find the oldest backup so we know where to store new entries
  1606. * in the backup array. This will set the backup_root_index
  1607. * field in the fs_info struct
  1608. */
  1609. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1610. u64 newest_gen)
  1611. {
  1612. int newest_index = -1;
  1613. newest_index = find_newest_super_backup(info, newest_gen);
  1614. /* if there was garbage in there, just move along */
  1615. if (newest_index == -1) {
  1616. info->backup_root_index = 0;
  1617. } else {
  1618. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1619. }
  1620. }
  1621. /*
  1622. * copy all the root pointers into the super backup array.
  1623. * this will bump the backup pointer by one when it is
  1624. * done
  1625. */
  1626. static void backup_super_roots(struct btrfs_fs_info *info)
  1627. {
  1628. int next_backup;
  1629. struct btrfs_root_backup *root_backup;
  1630. int last_backup;
  1631. next_backup = info->backup_root_index;
  1632. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1633. BTRFS_NUM_BACKUP_ROOTS;
  1634. /*
  1635. * just overwrite the last backup if we're at the same generation
  1636. * this happens only at umount
  1637. */
  1638. root_backup = info->super_for_commit->super_roots + last_backup;
  1639. if (btrfs_backup_tree_root_gen(root_backup) ==
  1640. btrfs_header_generation(info->tree_root->node))
  1641. next_backup = last_backup;
  1642. root_backup = info->super_for_commit->super_roots + next_backup;
  1643. /*
  1644. * make sure all of our padding and empty slots get zero filled
  1645. * regardless of which ones we use today
  1646. */
  1647. memset(root_backup, 0, sizeof(*root_backup));
  1648. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1649. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1650. btrfs_set_backup_tree_root_gen(root_backup,
  1651. btrfs_header_generation(info->tree_root->node));
  1652. btrfs_set_backup_tree_root_level(root_backup,
  1653. btrfs_header_level(info->tree_root->node));
  1654. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1655. btrfs_set_backup_chunk_root_gen(root_backup,
  1656. btrfs_header_generation(info->chunk_root->node));
  1657. btrfs_set_backup_chunk_root_level(root_backup,
  1658. btrfs_header_level(info->chunk_root->node));
  1659. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1660. btrfs_set_backup_extent_root_gen(root_backup,
  1661. btrfs_header_generation(info->extent_root->node));
  1662. btrfs_set_backup_extent_root_level(root_backup,
  1663. btrfs_header_level(info->extent_root->node));
  1664. /*
  1665. * we might commit during log recovery, which happens before we set
  1666. * the fs_root. Make sure it is valid before we fill it in.
  1667. */
  1668. if (info->fs_root && info->fs_root->node) {
  1669. btrfs_set_backup_fs_root(root_backup,
  1670. info->fs_root->node->start);
  1671. btrfs_set_backup_fs_root_gen(root_backup,
  1672. btrfs_header_generation(info->fs_root->node));
  1673. btrfs_set_backup_fs_root_level(root_backup,
  1674. btrfs_header_level(info->fs_root->node));
  1675. }
  1676. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1677. btrfs_set_backup_dev_root_gen(root_backup,
  1678. btrfs_header_generation(info->dev_root->node));
  1679. btrfs_set_backup_dev_root_level(root_backup,
  1680. btrfs_header_level(info->dev_root->node));
  1681. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1682. btrfs_set_backup_csum_root_gen(root_backup,
  1683. btrfs_header_generation(info->csum_root->node));
  1684. btrfs_set_backup_csum_root_level(root_backup,
  1685. btrfs_header_level(info->csum_root->node));
  1686. btrfs_set_backup_total_bytes(root_backup,
  1687. btrfs_super_total_bytes(info->super_copy));
  1688. btrfs_set_backup_bytes_used(root_backup,
  1689. btrfs_super_bytes_used(info->super_copy));
  1690. btrfs_set_backup_num_devices(root_backup,
  1691. btrfs_super_num_devices(info->super_copy));
  1692. /*
  1693. * if we don't copy this out to the super_copy, it won't get remembered
  1694. * for the next commit
  1695. */
  1696. memcpy(&info->super_copy->super_roots,
  1697. &info->super_for_commit->super_roots,
  1698. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1699. }
  1700. /*
  1701. * this copies info out of the root backup array and back into
  1702. * the in-memory super block. It is meant to help iterate through
  1703. * the array, so you send it the number of backups you've already
  1704. * tried and the last backup index you used.
  1705. *
  1706. * this returns -1 when it has tried all the backups
  1707. */
  1708. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1709. struct btrfs_super_block *super,
  1710. int *num_backups_tried, int *backup_index)
  1711. {
  1712. struct btrfs_root_backup *root_backup;
  1713. int newest = *backup_index;
  1714. if (*num_backups_tried == 0) {
  1715. u64 gen = btrfs_super_generation(super);
  1716. newest = find_newest_super_backup(info, gen);
  1717. if (newest == -1)
  1718. return -1;
  1719. *backup_index = newest;
  1720. *num_backups_tried = 1;
  1721. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1722. /* we've tried all the backups, all done */
  1723. return -1;
  1724. } else {
  1725. /* jump to the next oldest backup */
  1726. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1727. BTRFS_NUM_BACKUP_ROOTS;
  1728. *backup_index = newest;
  1729. *num_backups_tried += 1;
  1730. }
  1731. root_backup = super->super_roots + newest;
  1732. btrfs_set_super_generation(super,
  1733. btrfs_backup_tree_root_gen(root_backup));
  1734. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1735. btrfs_set_super_root_level(super,
  1736. btrfs_backup_tree_root_level(root_backup));
  1737. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1738. /*
  1739. * fixme: the total bytes and num_devices need to match or we should
  1740. * need a fsck
  1741. */
  1742. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1743. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1744. return 0;
  1745. }
  1746. /* helper to cleanup workers */
  1747. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1748. {
  1749. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1750. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1751. btrfs_destroy_workqueue(fs_info->workers);
  1752. btrfs_destroy_workqueue(fs_info->endio_workers);
  1753. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1754. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1755. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1756. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1757. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1758. btrfs_destroy_workqueue(fs_info->submit_workers);
  1759. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1760. btrfs_destroy_workqueue(fs_info->caching_workers);
  1761. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1762. btrfs_destroy_workqueue(fs_info->flush_workers);
  1763. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1764. btrfs_destroy_workqueue(fs_info->extent_workers);
  1765. /*
  1766. * Now that all other work queues are destroyed, we can safely destroy
  1767. * the queues used for metadata I/O, since tasks from those other work
  1768. * queues can do metadata I/O operations.
  1769. */
  1770. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1771. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1772. }
  1773. static void free_root_extent_buffers(struct btrfs_root *root)
  1774. {
  1775. if (root) {
  1776. free_extent_buffer(root->node);
  1777. free_extent_buffer(root->commit_root);
  1778. root->node = NULL;
  1779. root->commit_root = NULL;
  1780. }
  1781. }
  1782. /* helper to cleanup tree roots */
  1783. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1784. {
  1785. free_root_extent_buffers(info->tree_root);
  1786. free_root_extent_buffers(info->dev_root);
  1787. free_root_extent_buffers(info->extent_root);
  1788. free_root_extent_buffers(info->csum_root);
  1789. free_root_extent_buffers(info->quota_root);
  1790. free_root_extent_buffers(info->uuid_root);
  1791. if (chunk_root)
  1792. free_root_extent_buffers(info->chunk_root);
  1793. free_root_extent_buffers(info->free_space_root);
  1794. }
  1795. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1796. {
  1797. int ret;
  1798. struct btrfs_root *gang[8];
  1799. int i;
  1800. while (!list_empty(&fs_info->dead_roots)) {
  1801. gang[0] = list_entry(fs_info->dead_roots.next,
  1802. struct btrfs_root, root_list);
  1803. list_del(&gang[0]->root_list);
  1804. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1805. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1806. } else {
  1807. free_extent_buffer(gang[0]->node);
  1808. free_extent_buffer(gang[0]->commit_root);
  1809. btrfs_put_fs_root(gang[0]);
  1810. }
  1811. }
  1812. while (1) {
  1813. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1814. (void **)gang, 0,
  1815. ARRAY_SIZE(gang));
  1816. if (!ret)
  1817. break;
  1818. for (i = 0; i < ret; i++)
  1819. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1820. }
  1821. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1822. btrfs_free_log_root_tree(NULL, fs_info);
  1823. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  1824. }
  1825. }
  1826. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1827. {
  1828. mutex_init(&fs_info->scrub_lock);
  1829. atomic_set(&fs_info->scrubs_running, 0);
  1830. atomic_set(&fs_info->scrub_pause_req, 0);
  1831. atomic_set(&fs_info->scrubs_paused, 0);
  1832. atomic_set(&fs_info->scrub_cancel_req, 0);
  1833. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1834. fs_info->scrub_workers_refcnt = 0;
  1835. }
  1836. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1837. {
  1838. spin_lock_init(&fs_info->balance_lock);
  1839. mutex_init(&fs_info->balance_mutex);
  1840. atomic_set(&fs_info->balance_running, 0);
  1841. atomic_set(&fs_info->balance_pause_req, 0);
  1842. atomic_set(&fs_info->balance_cancel_req, 0);
  1843. fs_info->balance_ctl = NULL;
  1844. init_waitqueue_head(&fs_info->balance_wait_q);
  1845. }
  1846. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
  1847. {
  1848. struct inode *inode = fs_info->btree_inode;
  1849. inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1850. set_nlink(inode, 1);
  1851. /*
  1852. * we set the i_size on the btree inode to the max possible int.
  1853. * the real end of the address space is determined by all of
  1854. * the devices in the system
  1855. */
  1856. inode->i_size = OFFSET_MAX;
  1857. inode->i_mapping->a_ops = &btree_aops;
  1858. RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
  1859. extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
  1860. BTRFS_I(inode)->io_tree.track_uptodate = 0;
  1861. extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
  1862. BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
  1863. BTRFS_I(inode)->root = fs_info->tree_root;
  1864. memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
  1865. set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
  1866. btrfs_insert_inode_hash(inode);
  1867. }
  1868. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  1869. {
  1870. fs_info->dev_replace.lock_owner = 0;
  1871. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1872. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1873. rwlock_init(&fs_info->dev_replace.lock);
  1874. atomic_set(&fs_info->dev_replace.read_locks, 0);
  1875. atomic_set(&fs_info->dev_replace.blocking_readers, 0);
  1876. init_waitqueue_head(&fs_info->replace_wait);
  1877. init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
  1878. }
  1879. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  1880. {
  1881. spin_lock_init(&fs_info->qgroup_lock);
  1882. mutex_init(&fs_info->qgroup_ioctl_lock);
  1883. fs_info->qgroup_tree = RB_ROOT;
  1884. fs_info->qgroup_op_tree = RB_ROOT;
  1885. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1886. fs_info->qgroup_seq = 1;
  1887. fs_info->qgroup_ulist = NULL;
  1888. fs_info->qgroup_rescan_running = false;
  1889. mutex_init(&fs_info->qgroup_rescan_lock);
  1890. }
  1891. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  1892. struct btrfs_fs_devices *fs_devices)
  1893. {
  1894. int max_active = fs_info->thread_pool_size;
  1895. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  1896. fs_info->workers =
  1897. btrfs_alloc_workqueue(fs_info, "worker",
  1898. flags | WQ_HIGHPRI, max_active, 16);
  1899. fs_info->delalloc_workers =
  1900. btrfs_alloc_workqueue(fs_info, "delalloc",
  1901. flags, max_active, 2);
  1902. fs_info->flush_workers =
  1903. btrfs_alloc_workqueue(fs_info, "flush_delalloc",
  1904. flags, max_active, 0);
  1905. fs_info->caching_workers =
  1906. btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
  1907. /*
  1908. * a higher idle thresh on the submit workers makes it much more
  1909. * likely that bios will be send down in a sane order to the
  1910. * devices
  1911. */
  1912. fs_info->submit_workers =
  1913. btrfs_alloc_workqueue(fs_info, "submit", flags,
  1914. min_t(u64, fs_devices->num_devices,
  1915. max_active), 64);
  1916. fs_info->fixup_workers =
  1917. btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
  1918. /*
  1919. * endios are largely parallel and should have a very
  1920. * low idle thresh
  1921. */
  1922. fs_info->endio_workers =
  1923. btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
  1924. fs_info->endio_meta_workers =
  1925. btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
  1926. max_active, 4);
  1927. fs_info->endio_meta_write_workers =
  1928. btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
  1929. max_active, 2);
  1930. fs_info->endio_raid56_workers =
  1931. btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
  1932. max_active, 4);
  1933. fs_info->endio_repair_workers =
  1934. btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
  1935. fs_info->rmw_workers =
  1936. btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
  1937. fs_info->endio_write_workers =
  1938. btrfs_alloc_workqueue(fs_info, "endio-write", flags,
  1939. max_active, 2);
  1940. fs_info->endio_freespace_worker =
  1941. btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
  1942. max_active, 0);
  1943. fs_info->delayed_workers =
  1944. btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
  1945. max_active, 0);
  1946. fs_info->readahead_workers =
  1947. btrfs_alloc_workqueue(fs_info, "readahead", flags,
  1948. max_active, 2);
  1949. fs_info->qgroup_rescan_workers =
  1950. btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
  1951. fs_info->extent_workers =
  1952. btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
  1953. min_t(u64, fs_devices->num_devices,
  1954. max_active), 8);
  1955. if (!(fs_info->workers && fs_info->delalloc_workers &&
  1956. fs_info->submit_workers && fs_info->flush_workers &&
  1957. fs_info->endio_workers && fs_info->endio_meta_workers &&
  1958. fs_info->endio_meta_write_workers &&
  1959. fs_info->endio_repair_workers &&
  1960. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  1961. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  1962. fs_info->caching_workers && fs_info->readahead_workers &&
  1963. fs_info->fixup_workers && fs_info->delayed_workers &&
  1964. fs_info->extent_workers &&
  1965. fs_info->qgroup_rescan_workers)) {
  1966. return -ENOMEM;
  1967. }
  1968. return 0;
  1969. }
  1970. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  1971. struct btrfs_fs_devices *fs_devices)
  1972. {
  1973. int ret;
  1974. struct btrfs_root *log_tree_root;
  1975. struct btrfs_super_block *disk_super = fs_info->super_copy;
  1976. u64 bytenr = btrfs_super_log_root(disk_super);
  1977. if (fs_devices->rw_devices == 0) {
  1978. btrfs_warn(fs_info, "log replay required on RO media");
  1979. return -EIO;
  1980. }
  1981. log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1982. if (!log_tree_root)
  1983. return -ENOMEM;
  1984. __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1985. log_tree_root->node = read_tree_block(fs_info, bytenr,
  1986. fs_info->generation + 1);
  1987. if (IS_ERR(log_tree_root->node)) {
  1988. btrfs_warn(fs_info, "failed to read log tree");
  1989. ret = PTR_ERR(log_tree_root->node);
  1990. kfree(log_tree_root);
  1991. return ret;
  1992. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  1993. btrfs_err(fs_info, "failed to read log tree");
  1994. free_extent_buffer(log_tree_root->node);
  1995. kfree(log_tree_root);
  1996. return -EIO;
  1997. }
  1998. /* returns with log_tree_root freed on success */
  1999. ret = btrfs_recover_log_trees(log_tree_root);
  2000. if (ret) {
  2001. btrfs_handle_fs_error(fs_info, ret,
  2002. "Failed to recover log tree");
  2003. free_extent_buffer(log_tree_root->node);
  2004. kfree(log_tree_root);
  2005. return ret;
  2006. }
  2007. if (sb_rdonly(fs_info->sb)) {
  2008. ret = btrfs_commit_super(fs_info);
  2009. if (ret)
  2010. return ret;
  2011. }
  2012. return 0;
  2013. }
  2014. static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
  2015. {
  2016. struct btrfs_root *tree_root = fs_info->tree_root;
  2017. struct btrfs_root *root;
  2018. struct btrfs_key location;
  2019. int ret;
  2020. BUG_ON(!fs_info->tree_root);
  2021. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2022. location.type = BTRFS_ROOT_ITEM_KEY;
  2023. location.offset = 0;
  2024. root = btrfs_read_tree_root(tree_root, &location);
  2025. if (IS_ERR(root))
  2026. return PTR_ERR(root);
  2027. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2028. fs_info->extent_root = root;
  2029. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2030. root = btrfs_read_tree_root(tree_root, &location);
  2031. if (IS_ERR(root))
  2032. return PTR_ERR(root);
  2033. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2034. fs_info->dev_root = root;
  2035. btrfs_init_devices_late(fs_info);
  2036. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2037. root = btrfs_read_tree_root(tree_root, &location);
  2038. if (IS_ERR(root))
  2039. return PTR_ERR(root);
  2040. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2041. fs_info->csum_root = root;
  2042. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2043. root = btrfs_read_tree_root(tree_root, &location);
  2044. if (!IS_ERR(root)) {
  2045. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2046. set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
  2047. fs_info->quota_root = root;
  2048. }
  2049. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2050. root = btrfs_read_tree_root(tree_root, &location);
  2051. if (IS_ERR(root)) {
  2052. ret = PTR_ERR(root);
  2053. if (ret != -ENOENT)
  2054. return ret;
  2055. } else {
  2056. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2057. fs_info->uuid_root = root;
  2058. }
  2059. if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2060. location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
  2061. root = btrfs_read_tree_root(tree_root, &location);
  2062. if (IS_ERR(root))
  2063. return PTR_ERR(root);
  2064. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2065. fs_info->free_space_root = root;
  2066. }
  2067. return 0;
  2068. }
  2069. int open_ctree(struct super_block *sb,
  2070. struct btrfs_fs_devices *fs_devices,
  2071. char *options)
  2072. {
  2073. u32 sectorsize;
  2074. u32 nodesize;
  2075. u32 stripesize;
  2076. u64 generation;
  2077. u64 features;
  2078. struct btrfs_key location;
  2079. struct buffer_head *bh;
  2080. struct btrfs_super_block *disk_super;
  2081. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2082. struct btrfs_root *tree_root;
  2083. struct btrfs_root *chunk_root;
  2084. int ret;
  2085. int err = -EINVAL;
  2086. int num_backups_tried = 0;
  2087. int backup_index = 0;
  2088. int max_active;
  2089. int clear_free_space_tree = 0;
  2090. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2091. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2092. if (!tree_root || !chunk_root) {
  2093. err = -ENOMEM;
  2094. goto fail;
  2095. }
  2096. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2097. if (ret) {
  2098. err = ret;
  2099. goto fail;
  2100. }
  2101. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2102. if (ret) {
  2103. err = ret;
  2104. goto fail_srcu;
  2105. }
  2106. fs_info->dirty_metadata_batch = PAGE_SIZE *
  2107. (1 + ilog2(nr_cpu_ids));
  2108. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2109. if (ret) {
  2110. err = ret;
  2111. goto fail_dirty_metadata_bytes;
  2112. }
  2113. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2114. if (ret) {
  2115. err = ret;
  2116. goto fail_delalloc_bytes;
  2117. }
  2118. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2119. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2120. INIT_LIST_HEAD(&fs_info->trans_list);
  2121. INIT_LIST_HEAD(&fs_info->dead_roots);
  2122. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2123. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2124. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2125. spin_lock_init(&fs_info->delalloc_root_lock);
  2126. spin_lock_init(&fs_info->trans_lock);
  2127. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2128. spin_lock_init(&fs_info->delayed_iput_lock);
  2129. spin_lock_init(&fs_info->defrag_inodes_lock);
  2130. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2131. spin_lock_init(&fs_info->super_lock);
  2132. spin_lock_init(&fs_info->qgroup_op_lock);
  2133. spin_lock_init(&fs_info->buffer_lock);
  2134. spin_lock_init(&fs_info->unused_bgs_lock);
  2135. rwlock_init(&fs_info->tree_mod_log_lock);
  2136. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2137. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2138. mutex_init(&fs_info->reloc_mutex);
  2139. mutex_init(&fs_info->delalloc_root_mutex);
  2140. mutex_init(&fs_info->cleaner_delayed_iput_mutex);
  2141. seqlock_init(&fs_info->profiles_lock);
  2142. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2143. INIT_LIST_HEAD(&fs_info->space_info);
  2144. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2145. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2146. btrfs_mapping_init(&fs_info->mapping_tree);
  2147. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2148. BTRFS_BLOCK_RSV_GLOBAL);
  2149. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2150. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2151. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2152. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2153. BTRFS_BLOCK_RSV_DELOPS);
  2154. atomic_set(&fs_info->async_delalloc_pages, 0);
  2155. atomic_set(&fs_info->defrag_running, 0);
  2156. atomic_set(&fs_info->qgroup_op_seq, 0);
  2157. atomic_set(&fs_info->reada_works_cnt, 0);
  2158. atomic64_set(&fs_info->tree_mod_seq, 0);
  2159. fs_info->sb = sb;
  2160. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2161. fs_info->metadata_ratio = 0;
  2162. fs_info->defrag_inodes = RB_ROOT;
  2163. atomic64_set(&fs_info->free_chunk_space, 0);
  2164. fs_info->tree_mod_log = RB_ROOT;
  2165. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2166. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2167. /* readahead state */
  2168. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2169. spin_lock_init(&fs_info->reada_lock);
  2170. btrfs_init_ref_verify(fs_info);
  2171. fs_info->thread_pool_size = min_t(unsigned long,
  2172. num_online_cpus() + 2, 8);
  2173. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2174. spin_lock_init(&fs_info->ordered_root_lock);
  2175. fs_info->btree_inode = new_inode(sb);
  2176. if (!fs_info->btree_inode) {
  2177. err = -ENOMEM;
  2178. goto fail_bio_counter;
  2179. }
  2180. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2181. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2182. GFP_KERNEL);
  2183. if (!fs_info->delayed_root) {
  2184. err = -ENOMEM;
  2185. goto fail_iput;
  2186. }
  2187. btrfs_init_delayed_root(fs_info->delayed_root);
  2188. btrfs_init_scrub(fs_info);
  2189. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2190. fs_info->check_integrity_print_mask = 0;
  2191. #endif
  2192. btrfs_init_balance(fs_info);
  2193. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2194. sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
  2195. sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
  2196. btrfs_init_btree_inode(fs_info);
  2197. spin_lock_init(&fs_info->block_group_cache_lock);
  2198. fs_info->block_group_cache_tree = RB_ROOT;
  2199. fs_info->first_logical_byte = (u64)-1;
  2200. extent_io_tree_init(&fs_info->freed_extents[0], NULL);
  2201. extent_io_tree_init(&fs_info->freed_extents[1], NULL);
  2202. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2203. set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
  2204. mutex_init(&fs_info->ordered_operations_mutex);
  2205. mutex_init(&fs_info->tree_log_mutex);
  2206. mutex_init(&fs_info->chunk_mutex);
  2207. mutex_init(&fs_info->transaction_kthread_mutex);
  2208. mutex_init(&fs_info->cleaner_mutex);
  2209. mutex_init(&fs_info->volume_mutex);
  2210. mutex_init(&fs_info->ro_block_group_mutex);
  2211. init_rwsem(&fs_info->commit_root_sem);
  2212. init_rwsem(&fs_info->cleanup_work_sem);
  2213. init_rwsem(&fs_info->subvol_sem);
  2214. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2215. btrfs_init_dev_replace_locks(fs_info);
  2216. btrfs_init_qgroup(fs_info);
  2217. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2218. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2219. init_waitqueue_head(&fs_info->transaction_throttle);
  2220. init_waitqueue_head(&fs_info->transaction_wait);
  2221. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2222. init_waitqueue_head(&fs_info->async_submit_wait);
  2223. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2224. /* Usable values until the real ones are cached from the superblock */
  2225. fs_info->nodesize = 4096;
  2226. fs_info->sectorsize = 4096;
  2227. fs_info->stripesize = 4096;
  2228. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2229. if (ret) {
  2230. err = ret;
  2231. goto fail_alloc;
  2232. }
  2233. __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2234. invalidate_bdev(fs_devices->latest_bdev);
  2235. /*
  2236. * Read super block and check the signature bytes only
  2237. */
  2238. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2239. if (IS_ERR(bh)) {
  2240. err = PTR_ERR(bh);
  2241. goto fail_alloc;
  2242. }
  2243. /*
  2244. * We want to check superblock checksum, the type is stored inside.
  2245. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2246. */
  2247. if (btrfs_check_super_csum(fs_info, bh->b_data)) {
  2248. btrfs_err(fs_info, "superblock checksum mismatch");
  2249. err = -EINVAL;
  2250. brelse(bh);
  2251. goto fail_alloc;
  2252. }
  2253. /*
  2254. * super_copy is zeroed at allocation time and we never touch the
  2255. * following bytes up to INFO_SIZE, the checksum is calculated from
  2256. * the whole block of INFO_SIZE
  2257. */
  2258. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2259. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2260. sizeof(*fs_info->super_for_commit));
  2261. brelse(bh);
  2262. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2263. ret = btrfs_check_super_valid(fs_info);
  2264. if (ret) {
  2265. btrfs_err(fs_info, "superblock contains fatal errors");
  2266. err = -EINVAL;
  2267. goto fail_alloc;
  2268. }
  2269. disk_super = fs_info->super_copy;
  2270. if (!btrfs_super_root(disk_super))
  2271. goto fail_alloc;
  2272. /* check FS state, whether FS is broken. */
  2273. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2274. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2275. /*
  2276. * run through our array of backup supers and setup
  2277. * our ring pointer to the oldest one
  2278. */
  2279. generation = btrfs_super_generation(disk_super);
  2280. find_oldest_super_backup(fs_info, generation);
  2281. /*
  2282. * In the long term, we'll store the compression type in the super
  2283. * block, and it'll be used for per file compression control.
  2284. */
  2285. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2286. ret = btrfs_parse_options(fs_info, options, sb->s_flags);
  2287. if (ret) {
  2288. err = ret;
  2289. goto fail_alloc;
  2290. }
  2291. features = btrfs_super_incompat_flags(disk_super) &
  2292. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2293. if (features) {
  2294. btrfs_err(fs_info,
  2295. "cannot mount because of unsupported optional features (%llx)",
  2296. features);
  2297. err = -EINVAL;
  2298. goto fail_alloc;
  2299. }
  2300. features = btrfs_super_incompat_flags(disk_super);
  2301. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2302. if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2303. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2304. else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
  2305. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
  2306. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2307. btrfs_info(fs_info, "has skinny extents");
  2308. /*
  2309. * flag our filesystem as having big metadata blocks if
  2310. * they are bigger than the page size
  2311. */
  2312. if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
  2313. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2314. btrfs_info(fs_info,
  2315. "flagging fs with big metadata feature");
  2316. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2317. }
  2318. nodesize = btrfs_super_nodesize(disk_super);
  2319. sectorsize = btrfs_super_sectorsize(disk_super);
  2320. stripesize = sectorsize;
  2321. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2322. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2323. /* Cache block sizes */
  2324. fs_info->nodesize = nodesize;
  2325. fs_info->sectorsize = sectorsize;
  2326. fs_info->stripesize = stripesize;
  2327. /*
  2328. * mixed block groups end up with duplicate but slightly offset
  2329. * extent buffers for the same range. It leads to corruptions
  2330. */
  2331. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2332. (sectorsize != nodesize)) {
  2333. btrfs_err(fs_info,
  2334. "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
  2335. nodesize, sectorsize);
  2336. goto fail_alloc;
  2337. }
  2338. /*
  2339. * Needn't use the lock because there is no other task which will
  2340. * update the flag.
  2341. */
  2342. btrfs_set_super_incompat_flags(disk_super, features);
  2343. features = btrfs_super_compat_ro_flags(disk_super) &
  2344. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2345. if (!sb_rdonly(sb) && features) {
  2346. btrfs_err(fs_info,
  2347. "cannot mount read-write because of unsupported optional features (%llx)",
  2348. features);
  2349. err = -EINVAL;
  2350. goto fail_alloc;
  2351. }
  2352. max_active = fs_info->thread_pool_size;
  2353. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2354. if (ret) {
  2355. err = ret;
  2356. goto fail_sb_buffer;
  2357. }
  2358. sb->s_bdi->congested_fn = btrfs_congested_fn;
  2359. sb->s_bdi->congested_data = fs_info;
  2360. sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  2361. sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
  2362. sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
  2363. sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
  2364. sb->s_blocksize = sectorsize;
  2365. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2366. memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
  2367. mutex_lock(&fs_info->chunk_mutex);
  2368. ret = btrfs_read_sys_array(fs_info);
  2369. mutex_unlock(&fs_info->chunk_mutex);
  2370. if (ret) {
  2371. btrfs_err(fs_info, "failed to read the system array: %d", ret);
  2372. goto fail_sb_buffer;
  2373. }
  2374. generation = btrfs_super_chunk_root_generation(disk_super);
  2375. __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2376. chunk_root->node = read_tree_block(fs_info,
  2377. btrfs_super_chunk_root(disk_super),
  2378. generation);
  2379. if (IS_ERR(chunk_root->node) ||
  2380. !extent_buffer_uptodate(chunk_root->node)) {
  2381. btrfs_err(fs_info, "failed to read chunk root");
  2382. if (!IS_ERR(chunk_root->node))
  2383. free_extent_buffer(chunk_root->node);
  2384. chunk_root->node = NULL;
  2385. goto fail_tree_roots;
  2386. }
  2387. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2388. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2389. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2390. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2391. ret = btrfs_read_chunk_tree(fs_info);
  2392. if (ret) {
  2393. btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
  2394. goto fail_tree_roots;
  2395. }
  2396. /*
  2397. * keep the device that is marked to be the target device for the
  2398. * dev_replace procedure
  2399. */
  2400. btrfs_close_extra_devices(fs_devices, 0);
  2401. if (!fs_devices->latest_bdev) {
  2402. btrfs_err(fs_info, "failed to read devices");
  2403. goto fail_tree_roots;
  2404. }
  2405. retry_root_backup:
  2406. generation = btrfs_super_generation(disk_super);
  2407. tree_root->node = read_tree_block(fs_info,
  2408. btrfs_super_root(disk_super),
  2409. generation);
  2410. if (IS_ERR(tree_root->node) ||
  2411. !extent_buffer_uptodate(tree_root->node)) {
  2412. btrfs_warn(fs_info, "failed to read tree root");
  2413. if (!IS_ERR(tree_root->node))
  2414. free_extent_buffer(tree_root->node);
  2415. tree_root->node = NULL;
  2416. goto recovery_tree_root;
  2417. }
  2418. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2419. tree_root->commit_root = btrfs_root_node(tree_root);
  2420. btrfs_set_root_refs(&tree_root->root_item, 1);
  2421. mutex_lock(&tree_root->objectid_mutex);
  2422. ret = btrfs_find_highest_objectid(tree_root,
  2423. &tree_root->highest_objectid);
  2424. if (ret) {
  2425. mutex_unlock(&tree_root->objectid_mutex);
  2426. goto recovery_tree_root;
  2427. }
  2428. ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  2429. mutex_unlock(&tree_root->objectid_mutex);
  2430. ret = btrfs_read_roots(fs_info);
  2431. if (ret)
  2432. goto recovery_tree_root;
  2433. fs_info->generation = generation;
  2434. fs_info->last_trans_committed = generation;
  2435. ret = btrfs_recover_balance(fs_info);
  2436. if (ret) {
  2437. btrfs_err(fs_info, "failed to recover balance: %d", ret);
  2438. goto fail_block_groups;
  2439. }
  2440. ret = btrfs_init_dev_stats(fs_info);
  2441. if (ret) {
  2442. btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
  2443. goto fail_block_groups;
  2444. }
  2445. ret = btrfs_init_dev_replace(fs_info);
  2446. if (ret) {
  2447. btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
  2448. goto fail_block_groups;
  2449. }
  2450. btrfs_close_extra_devices(fs_devices, 1);
  2451. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2452. if (ret) {
  2453. btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
  2454. ret);
  2455. goto fail_block_groups;
  2456. }
  2457. ret = btrfs_sysfs_add_device(fs_devices);
  2458. if (ret) {
  2459. btrfs_err(fs_info, "failed to init sysfs device interface: %d",
  2460. ret);
  2461. goto fail_fsdev_sysfs;
  2462. }
  2463. ret = btrfs_sysfs_add_mounted(fs_info);
  2464. if (ret) {
  2465. btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
  2466. goto fail_fsdev_sysfs;
  2467. }
  2468. ret = btrfs_init_space_info(fs_info);
  2469. if (ret) {
  2470. btrfs_err(fs_info, "failed to initialize space info: %d", ret);
  2471. goto fail_sysfs;
  2472. }
  2473. ret = btrfs_read_block_groups(fs_info);
  2474. if (ret) {
  2475. btrfs_err(fs_info, "failed to read block groups: %d", ret);
  2476. goto fail_sysfs;
  2477. }
  2478. if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
  2479. btrfs_warn(fs_info,
  2480. "writeable mount is not allowed due to too many missing devices");
  2481. goto fail_sysfs;
  2482. }
  2483. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2484. "btrfs-cleaner");
  2485. if (IS_ERR(fs_info->cleaner_kthread))
  2486. goto fail_sysfs;
  2487. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2488. tree_root,
  2489. "btrfs-transaction");
  2490. if (IS_ERR(fs_info->transaction_kthread))
  2491. goto fail_cleaner;
  2492. if (!btrfs_test_opt(fs_info, NOSSD) &&
  2493. !fs_info->fs_devices->rotating) {
  2494. btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
  2495. }
  2496. /*
  2497. * Mount does not set all options immediately, we can do it now and do
  2498. * not have to wait for transaction commit
  2499. */
  2500. btrfs_apply_pending_changes(fs_info);
  2501. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2502. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
  2503. ret = btrfsic_mount(fs_info, fs_devices,
  2504. btrfs_test_opt(fs_info,
  2505. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2506. 1 : 0,
  2507. fs_info->check_integrity_print_mask);
  2508. if (ret)
  2509. btrfs_warn(fs_info,
  2510. "failed to initialize integrity check module: %d",
  2511. ret);
  2512. }
  2513. #endif
  2514. ret = btrfs_read_qgroup_config(fs_info);
  2515. if (ret)
  2516. goto fail_trans_kthread;
  2517. if (btrfs_build_ref_tree(fs_info))
  2518. btrfs_err(fs_info, "couldn't build ref tree");
  2519. /* do not make disk changes in broken FS or nologreplay is given */
  2520. if (btrfs_super_log_root(disk_super) != 0 &&
  2521. !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
  2522. ret = btrfs_replay_log(fs_info, fs_devices);
  2523. if (ret) {
  2524. err = ret;
  2525. goto fail_qgroup;
  2526. }
  2527. }
  2528. ret = btrfs_find_orphan_roots(fs_info);
  2529. if (ret)
  2530. goto fail_qgroup;
  2531. if (!sb_rdonly(sb)) {
  2532. ret = btrfs_cleanup_fs_roots(fs_info);
  2533. if (ret)
  2534. goto fail_qgroup;
  2535. mutex_lock(&fs_info->cleaner_mutex);
  2536. ret = btrfs_recover_relocation(tree_root);
  2537. mutex_unlock(&fs_info->cleaner_mutex);
  2538. if (ret < 0) {
  2539. btrfs_warn(fs_info, "failed to recover relocation: %d",
  2540. ret);
  2541. err = -EINVAL;
  2542. goto fail_qgroup;
  2543. }
  2544. }
  2545. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2546. location.type = BTRFS_ROOT_ITEM_KEY;
  2547. location.offset = 0;
  2548. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2549. if (IS_ERR(fs_info->fs_root)) {
  2550. err = PTR_ERR(fs_info->fs_root);
  2551. goto fail_qgroup;
  2552. }
  2553. if (sb_rdonly(sb))
  2554. return 0;
  2555. if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
  2556. btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2557. clear_free_space_tree = 1;
  2558. } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
  2559. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
  2560. btrfs_warn(fs_info, "free space tree is invalid");
  2561. clear_free_space_tree = 1;
  2562. }
  2563. if (clear_free_space_tree) {
  2564. btrfs_info(fs_info, "clearing free space tree");
  2565. ret = btrfs_clear_free_space_tree(fs_info);
  2566. if (ret) {
  2567. btrfs_warn(fs_info,
  2568. "failed to clear free space tree: %d", ret);
  2569. close_ctree(fs_info);
  2570. return ret;
  2571. }
  2572. }
  2573. if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
  2574. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2575. btrfs_info(fs_info, "creating free space tree");
  2576. ret = btrfs_create_free_space_tree(fs_info);
  2577. if (ret) {
  2578. btrfs_warn(fs_info,
  2579. "failed to create free space tree: %d", ret);
  2580. close_ctree(fs_info);
  2581. return ret;
  2582. }
  2583. }
  2584. down_read(&fs_info->cleanup_work_sem);
  2585. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2586. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2587. up_read(&fs_info->cleanup_work_sem);
  2588. close_ctree(fs_info);
  2589. return ret;
  2590. }
  2591. up_read(&fs_info->cleanup_work_sem);
  2592. ret = btrfs_resume_balance_async(fs_info);
  2593. if (ret) {
  2594. btrfs_warn(fs_info, "failed to resume balance: %d", ret);
  2595. close_ctree(fs_info);
  2596. return ret;
  2597. }
  2598. ret = btrfs_resume_dev_replace_async(fs_info);
  2599. if (ret) {
  2600. btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
  2601. close_ctree(fs_info);
  2602. return ret;
  2603. }
  2604. btrfs_qgroup_rescan_resume(fs_info);
  2605. if (!fs_info->uuid_root) {
  2606. btrfs_info(fs_info, "creating UUID tree");
  2607. ret = btrfs_create_uuid_tree(fs_info);
  2608. if (ret) {
  2609. btrfs_warn(fs_info,
  2610. "failed to create the UUID tree: %d", ret);
  2611. close_ctree(fs_info);
  2612. return ret;
  2613. }
  2614. } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
  2615. fs_info->generation !=
  2616. btrfs_super_uuid_tree_generation(disk_super)) {
  2617. btrfs_info(fs_info, "checking UUID tree");
  2618. ret = btrfs_check_uuid_tree(fs_info);
  2619. if (ret) {
  2620. btrfs_warn(fs_info,
  2621. "failed to check the UUID tree: %d", ret);
  2622. close_ctree(fs_info);
  2623. return ret;
  2624. }
  2625. } else {
  2626. set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
  2627. }
  2628. set_bit(BTRFS_FS_OPEN, &fs_info->flags);
  2629. /*
  2630. * backuproot only affect mount behavior, and if open_ctree succeeded,
  2631. * no need to keep the flag
  2632. */
  2633. btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
  2634. return 0;
  2635. fail_qgroup:
  2636. btrfs_free_qgroup_config(fs_info);
  2637. fail_trans_kthread:
  2638. kthread_stop(fs_info->transaction_kthread);
  2639. btrfs_cleanup_transaction(fs_info);
  2640. btrfs_free_fs_roots(fs_info);
  2641. fail_cleaner:
  2642. kthread_stop(fs_info->cleaner_kthread);
  2643. /*
  2644. * make sure we're done with the btree inode before we stop our
  2645. * kthreads
  2646. */
  2647. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2648. fail_sysfs:
  2649. btrfs_sysfs_remove_mounted(fs_info);
  2650. fail_fsdev_sysfs:
  2651. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2652. fail_block_groups:
  2653. btrfs_put_block_group_cache(fs_info);
  2654. fail_tree_roots:
  2655. free_root_pointers(fs_info, 1);
  2656. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2657. fail_sb_buffer:
  2658. btrfs_stop_all_workers(fs_info);
  2659. btrfs_free_block_groups(fs_info);
  2660. fail_alloc:
  2661. fail_iput:
  2662. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2663. iput(fs_info->btree_inode);
  2664. fail_bio_counter:
  2665. percpu_counter_destroy(&fs_info->bio_counter);
  2666. fail_delalloc_bytes:
  2667. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2668. fail_dirty_metadata_bytes:
  2669. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2670. fail_srcu:
  2671. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2672. fail:
  2673. btrfs_free_stripe_hash_table(fs_info);
  2674. btrfs_close_devices(fs_info->fs_devices);
  2675. return err;
  2676. recovery_tree_root:
  2677. if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
  2678. goto fail_tree_roots;
  2679. free_root_pointers(fs_info, 0);
  2680. /* don't use the log in recovery mode, it won't be valid */
  2681. btrfs_set_super_log_root(disk_super, 0);
  2682. /* we can't trust the free space cache either */
  2683. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2684. ret = next_root_backup(fs_info, fs_info->super_copy,
  2685. &num_backups_tried, &backup_index);
  2686. if (ret == -1)
  2687. goto fail_block_groups;
  2688. goto retry_root_backup;
  2689. }
  2690. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2691. {
  2692. if (uptodate) {
  2693. set_buffer_uptodate(bh);
  2694. } else {
  2695. struct btrfs_device *device = (struct btrfs_device *)
  2696. bh->b_private;
  2697. btrfs_warn_rl_in_rcu(device->fs_info,
  2698. "lost page write due to IO error on %s",
  2699. rcu_str_deref(device->name));
  2700. /* note, we don't set_buffer_write_io_error because we have
  2701. * our own ways of dealing with the IO errors
  2702. */
  2703. clear_buffer_uptodate(bh);
  2704. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2705. }
  2706. unlock_buffer(bh);
  2707. put_bh(bh);
  2708. }
  2709. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2710. struct buffer_head **bh_ret)
  2711. {
  2712. struct buffer_head *bh;
  2713. struct btrfs_super_block *super;
  2714. u64 bytenr;
  2715. bytenr = btrfs_sb_offset(copy_num);
  2716. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2717. return -EINVAL;
  2718. bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
  2719. /*
  2720. * If we fail to read from the underlying devices, as of now
  2721. * the best option we have is to mark it EIO.
  2722. */
  2723. if (!bh)
  2724. return -EIO;
  2725. super = (struct btrfs_super_block *)bh->b_data;
  2726. if (btrfs_super_bytenr(super) != bytenr ||
  2727. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2728. brelse(bh);
  2729. return -EINVAL;
  2730. }
  2731. *bh_ret = bh;
  2732. return 0;
  2733. }
  2734. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2735. {
  2736. struct buffer_head *bh;
  2737. struct buffer_head *latest = NULL;
  2738. struct btrfs_super_block *super;
  2739. int i;
  2740. u64 transid = 0;
  2741. int ret = -EINVAL;
  2742. /* we would like to check all the supers, but that would make
  2743. * a btrfs mount succeed after a mkfs from a different FS.
  2744. * So, we need to add a special mount option to scan for
  2745. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2746. */
  2747. for (i = 0; i < 1; i++) {
  2748. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2749. if (ret)
  2750. continue;
  2751. super = (struct btrfs_super_block *)bh->b_data;
  2752. if (!latest || btrfs_super_generation(super) > transid) {
  2753. brelse(latest);
  2754. latest = bh;
  2755. transid = btrfs_super_generation(super);
  2756. } else {
  2757. brelse(bh);
  2758. }
  2759. }
  2760. if (!latest)
  2761. return ERR_PTR(ret);
  2762. return latest;
  2763. }
  2764. /*
  2765. * Write superblock @sb to the @device. Do not wait for completion, all the
  2766. * buffer heads we write are pinned.
  2767. *
  2768. * Write @max_mirrors copies of the superblock, where 0 means default that fit
  2769. * the expected device size at commit time. Note that max_mirrors must be
  2770. * same for write and wait phases.
  2771. *
  2772. * Return number of errors when buffer head is not found or submission fails.
  2773. */
  2774. static int write_dev_supers(struct btrfs_device *device,
  2775. struct btrfs_super_block *sb, int max_mirrors)
  2776. {
  2777. struct buffer_head *bh;
  2778. int i;
  2779. int ret;
  2780. int errors = 0;
  2781. u32 crc;
  2782. u64 bytenr;
  2783. int op_flags;
  2784. if (max_mirrors == 0)
  2785. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2786. for (i = 0; i < max_mirrors; i++) {
  2787. bytenr = btrfs_sb_offset(i);
  2788. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2789. device->commit_total_bytes)
  2790. break;
  2791. btrfs_set_super_bytenr(sb, bytenr);
  2792. crc = ~(u32)0;
  2793. crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
  2794. BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  2795. btrfs_csum_final(crc, sb->csum);
  2796. /* One reference for us, and we leave it for the caller */
  2797. bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
  2798. BTRFS_SUPER_INFO_SIZE);
  2799. if (!bh) {
  2800. btrfs_err(device->fs_info,
  2801. "couldn't get super buffer head for bytenr %llu",
  2802. bytenr);
  2803. errors++;
  2804. continue;
  2805. }
  2806. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2807. /* one reference for submit_bh */
  2808. get_bh(bh);
  2809. set_buffer_uptodate(bh);
  2810. lock_buffer(bh);
  2811. bh->b_end_io = btrfs_end_buffer_write_sync;
  2812. bh->b_private = device;
  2813. /*
  2814. * we fua the first super. The others we allow
  2815. * to go down lazy.
  2816. */
  2817. op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
  2818. if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
  2819. op_flags |= REQ_FUA;
  2820. ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
  2821. if (ret)
  2822. errors++;
  2823. }
  2824. return errors < i ? 0 : -1;
  2825. }
  2826. /*
  2827. * Wait for write completion of superblocks done by write_dev_supers,
  2828. * @max_mirrors same for write and wait phases.
  2829. *
  2830. * Return number of errors when buffer head is not found or not marked up to
  2831. * date.
  2832. */
  2833. static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
  2834. {
  2835. struct buffer_head *bh;
  2836. int i;
  2837. int errors = 0;
  2838. u64 bytenr;
  2839. if (max_mirrors == 0)
  2840. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2841. for (i = 0; i < max_mirrors; i++) {
  2842. bytenr = btrfs_sb_offset(i);
  2843. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2844. device->commit_total_bytes)
  2845. break;
  2846. bh = __find_get_block(device->bdev,
  2847. bytenr / BTRFS_BDEV_BLOCKSIZE,
  2848. BTRFS_SUPER_INFO_SIZE);
  2849. if (!bh) {
  2850. errors++;
  2851. continue;
  2852. }
  2853. wait_on_buffer(bh);
  2854. if (!buffer_uptodate(bh))
  2855. errors++;
  2856. /* drop our reference */
  2857. brelse(bh);
  2858. /* drop the reference from the writing run */
  2859. brelse(bh);
  2860. }
  2861. return errors < i ? 0 : -1;
  2862. }
  2863. /*
  2864. * endio for the write_dev_flush, this will wake anyone waiting
  2865. * for the barrier when it is done
  2866. */
  2867. static void btrfs_end_empty_barrier(struct bio *bio)
  2868. {
  2869. complete(bio->bi_private);
  2870. }
  2871. /*
  2872. * Submit a flush request to the device if it supports it. Error handling is
  2873. * done in the waiting counterpart.
  2874. */
  2875. static void write_dev_flush(struct btrfs_device *device)
  2876. {
  2877. struct request_queue *q = bdev_get_queue(device->bdev);
  2878. struct bio *bio = device->flush_bio;
  2879. if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
  2880. return;
  2881. bio_reset(bio);
  2882. bio->bi_end_io = btrfs_end_empty_barrier;
  2883. bio_set_dev(bio, device->bdev);
  2884. bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
  2885. init_completion(&device->flush_wait);
  2886. bio->bi_private = &device->flush_wait;
  2887. btrfsic_submit_bio(bio);
  2888. set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
  2889. }
  2890. /*
  2891. * If the flush bio has been submitted by write_dev_flush, wait for it.
  2892. */
  2893. static blk_status_t wait_dev_flush(struct btrfs_device *device)
  2894. {
  2895. struct bio *bio = device->flush_bio;
  2896. if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
  2897. return BLK_STS_OK;
  2898. clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
  2899. wait_for_completion_io(&device->flush_wait);
  2900. return bio->bi_status;
  2901. }
  2902. static int check_barrier_error(struct btrfs_fs_info *fs_info)
  2903. {
  2904. if (!btrfs_check_rw_degradable(fs_info, NULL))
  2905. return -EIO;
  2906. return 0;
  2907. }
  2908. /*
  2909. * send an empty flush down to each device in parallel,
  2910. * then wait for them
  2911. */
  2912. static int barrier_all_devices(struct btrfs_fs_info *info)
  2913. {
  2914. struct list_head *head;
  2915. struct btrfs_device *dev;
  2916. int errors_wait = 0;
  2917. blk_status_t ret;
  2918. lockdep_assert_held(&info->fs_devices->device_list_mutex);
  2919. /* send down all the barriers */
  2920. head = &info->fs_devices->devices;
  2921. list_for_each_entry(dev, head, dev_list) {
  2922. if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
  2923. continue;
  2924. if (!dev->bdev)
  2925. continue;
  2926. if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
  2927. !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
  2928. continue;
  2929. write_dev_flush(dev);
  2930. dev->last_flush_error = BLK_STS_OK;
  2931. }
  2932. /* wait for all the barriers */
  2933. list_for_each_entry(dev, head, dev_list) {
  2934. if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
  2935. continue;
  2936. if (!dev->bdev) {
  2937. errors_wait++;
  2938. continue;
  2939. }
  2940. if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
  2941. !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
  2942. continue;
  2943. ret = wait_dev_flush(dev);
  2944. if (ret) {
  2945. dev->last_flush_error = ret;
  2946. btrfs_dev_stat_inc_and_print(dev,
  2947. BTRFS_DEV_STAT_FLUSH_ERRS);
  2948. errors_wait++;
  2949. }
  2950. }
  2951. if (errors_wait) {
  2952. /*
  2953. * At some point we need the status of all disks
  2954. * to arrive at the volume status. So error checking
  2955. * is being pushed to a separate loop.
  2956. */
  2957. return check_barrier_error(info);
  2958. }
  2959. return 0;
  2960. }
  2961. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  2962. {
  2963. int raid_type;
  2964. int min_tolerated = INT_MAX;
  2965. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  2966. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  2967. min_tolerated = min(min_tolerated,
  2968. btrfs_raid_array[BTRFS_RAID_SINGLE].
  2969. tolerated_failures);
  2970. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  2971. if (raid_type == BTRFS_RAID_SINGLE)
  2972. continue;
  2973. if (!(flags & btrfs_raid_group[raid_type]))
  2974. continue;
  2975. min_tolerated = min(min_tolerated,
  2976. btrfs_raid_array[raid_type].
  2977. tolerated_failures);
  2978. }
  2979. if (min_tolerated == INT_MAX) {
  2980. pr_warn("BTRFS: unknown raid flag: %llu", flags);
  2981. min_tolerated = 0;
  2982. }
  2983. return min_tolerated;
  2984. }
  2985. int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
  2986. {
  2987. struct list_head *head;
  2988. struct btrfs_device *dev;
  2989. struct btrfs_super_block *sb;
  2990. struct btrfs_dev_item *dev_item;
  2991. int ret;
  2992. int do_barriers;
  2993. int max_errors;
  2994. int total_errors = 0;
  2995. u64 flags;
  2996. do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
  2997. /*
  2998. * max_mirrors == 0 indicates we're from commit_transaction,
  2999. * not from fsync where the tree roots in fs_info have not
  3000. * been consistent on disk.
  3001. */
  3002. if (max_mirrors == 0)
  3003. backup_super_roots(fs_info);
  3004. sb = fs_info->super_for_commit;
  3005. dev_item = &sb->dev_item;
  3006. mutex_lock(&fs_info->fs_devices->device_list_mutex);
  3007. head = &fs_info->fs_devices->devices;
  3008. max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
  3009. if (do_barriers) {
  3010. ret = barrier_all_devices(fs_info);
  3011. if (ret) {
  3012. mutex_unlock(
  3013. &fs_info->fs_devices->device_list_mutex);
  3014. btrfs_handle_fs_error(fs_info, ret,
  3015. "errors while submitting device barriers.");
  3016. return ret;
  3017. }
  3018. }
  3019. list_for_each_entry(dev, head, dev_list) {
  3020. if (!dev->bdev) {
  3021. total_errors++;
  3022. continue;
  3023. }
  3024. if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
  3025. !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
  3026. continue;
  3027. btrfs_set_stack_device_generation(dev_item, 0);
  3028. btrfs_set_stack_device_type(dev_item, dev->type);
  3029. btrfs_set_stack_device_id(dev_item, dev->devid);
  3030. btrfs_set_stack_device_total_bytes(dev_item,
  3031. dev->commit_total_bytes);
  3032. btrfs_set_stack_device_bytes_used(dev_item,
  3033. dev->commit_bytes_used);
  3034. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3035. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3036. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3037. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3038. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
  3039. flags = btrfs_super_flags(sb);
  3040. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3041. ret = write_dev_supers(dev, sb, max_mirrors);
  3042. if (ret)
  3043. total_errors++;
  3044. }
  3045. if (total_errors > max_errors) {
  3046. btrfs_err(fs_info, "%d errors while writing supers",
  3047. total_errors);
  3048. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3049. /* FUA is masked off if unsupported and can't be the reason */
  3050. btrfs_handle_fs_error(fs_info, -EIO,
  3051. "%d errors while writing supers",
  3052. total_errors);
  3053. return -EIO;
  3054. }
  3055. total_errors = 0;
  3056. list_for_each_entry(dev, head, dev_list) {
  3057. if (!dev->bdev)
  3058. continue;
  3059. if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
  3060. !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
  3061. continue;
  3062. ret = wait_dev_supers(dev, max_mirrors);
  3063. if (ret)
  3064. total_errors++;
  3065. }
  3066. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3067. if (total_errors > max_errors) {
  3068. btrfs_handle_fs_error(fs_info, -EIO,
  3069. "%d errors while writing supers",
  3070. total_errors);
  3071. return -EIO;
  3072. }
  3073. return 0;
  3074. }
  3075. /* Drop a fs root from the radix tree and free it. */
  3076. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3077. struct btrfs_root *root)
  3078. {
  3079. spin_lock(&fs_info->fs_roots_radix_lock);
  3080. radix_tree_delete(&fs_info->fs_roots_radix,
  3081. (unsigned long)root->root_key.objectid);
  3082. spin_unlock(&fs_info->fs_roots_radix_lock);
  3083. if (btrfs_root_refs(&root->root_item) == 0)
  3084. synchronize_srcu(&fs_info->subvol_srcu);
  3085. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3086. btrfs_free_log(NULL, root);
  3087. if (root->reloc_root) {
  3088. free_extent_buffer(root->reloc_root->node);
  3089. free_extent_buffer(root->reloc_root->commit_root);
  3090. btrfs_put_fs_root(root->reloc_root);
  3091. root->reloc_root = NULL;
  3092. }
  3093. }
  3094. if (root->free_ino_pinned)
  3095. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3096. if (root->free_ino_ctl)
  3097. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3098. free_fs_root(root);
  3099. }
  3100. static void free_fs_root(struct btrfs_root *root)
  3101. {
  3102. iput(root->ino_cache_inode);
  3103. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3104. btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
  3105. root->orphan_block_rsv = NULL;
  3106. if (root->anon_dev)
  3107. free_anon_bdev(root->anon_dev);
  3108. if (root->subv_writers)
  3109. btrfs_free_subvolume_writers(root->subv_writers);
  3110. free_extent_buffer(root->node);
  3111. free_extent_buffer(root->commit_root);
  3112. kfree(root->free_ino_ctl);
  3113. kfree(root->free_ino_pinned);
  3114. kfree(root->name);
  3115. btrfs_put_fs_root(root);
  3116. }
  3117. void btrfs_free_fs_root(struct btrfs_root *root)
  3118. {
  3119. free_fs_root(root);
  3120. }
  3121. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3122. {
  3123. u64 root_objectid = 0;
  3124. struct btrfs_root *gang[8];
  3125. int i = 0;
  3126. int err = 0;
  3127. unsigned int ret = 0;
  3128. int index;
  3129. while (1) {
  3130. index = srcu_read_lock(&fs_info->subvol_srcu);
  3131. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3132. (void **)gang, root_objectid,
  3133. ARRAY_SIZE(gang));
  3134. if (!ret) {
  3135. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3136. break;
  3137. }
  3138. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3139. for (i = 0; i < ret; i++) {
  3140. /* Avoid to grab roots in dead_roots */
  3141. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3142. gang[i] = NULL;
  3143. continue;
  3144. }
  3145. /* grab all the search result for later use */
  3146. gang[i] = btrfs_grab_fs_root(gang[i]);
  3147. }
  3148. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3149. for (i = 0; i < ret; i++) {
  3150. if (!gang[i])
  3151. continue;
  3152. root_objectid = gang[i]->root_key.objectid;
  3153. err = btrfs_orphan_cleanup(gang[i]);
  3154. if (err)
  3155. break;
  3156. btrfs_put_fs_root(gang[i]);
  3157. }
  3158. root_objectid++;
  3159. }
  3160. /* release the uncleaned roots due to error */
  3161. for (; i < ret; i++) {
  3162. if (gang[i])
  3163. btrfs_put_fs_root(gang[i]);
  3164. }
  3165. return err;
  3166. }
  3167. int btrfs_commit_super(struct btrfs_fs_info *fs_info)
  3168. {
  3169. struct btrfs_root *root = fs_info->tree_root;
  3170. struct btrfs_trans_handle *trans;
  3171. mutex_lock(&fs_info->cleaner_mutex);
  3172. btrfs_run_delayed_iputs(fs_info);
  3173. mutex_unlock(&fs_info->cleaner_mutex);
  3174. wake_up_process(fs_info->cleaner_kthread);
  3175. /* wait until ongoing cleanup work done */
  3176. down_write(&fs_info->cleanup_work_sem);
  3177. up_write(&fs_info->cleanup_work_sem);
  3178. trans = btrfs_join_transaction(root);
  3179. if (IS_ERR(trans))
  3180. return PTR_ERR(trans);
  3181. return btrfs_commit_transaction(trans);
  3182. }
  3183. void close_ctree(struct btrfs_fs_info *fs_info)
  3184. {
  3185. struct btrfs_root *root = fs_info->tree_root;
  3186. int ret;
  3187. set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
  3188. /* wait for the qgroup rescan worker to stop */
  3189. btrfs_qgroup_wait_for_completion(fs_info, false);
  3190. /* wait for the uuid_scan task to finish */
  3191. down(&fs_info->uuid_tree_rescan_sem);
  3192. /* avoid complains from lockdep et al., set sem back to initial state */
  3193. up(&fs_info->uuid_tree_rescan_sem);
  3194. /* pause restriper - we want to resume on mount */
  3195. btrfs_pause_balance(fs_info);
  3196. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3197. btrfs_scrub_cancel(fs_info);
  3198. /* wait for any defraggers to finish */
  3199. wait_event(fs_info->transaction_wait,
  3200. (atomic_read(&fs_info->defrag_running) == 0));
  3201. /* clear out the rbtree of defraggable inodes */
  3202. btrfs_cleanup_defrag_inodes(fs_info);
  3203. cancel_work_sync(&fs_info->async_reclaim_work);
  3204. if (!sb_rdonly(fs_info->sb)) {
  3205. /*
  3206. * If the cleaner thread is stopped and there are
  3207. * block groups queued for removal, the deletion will be
  3208. * skipped when we quit the cleaner thread.
  3209. */
  3210. btrfs_delete_unused_bgs(fs_info);
  3211. ret = btrfs_commit_super(fs_info);
  3212. if (ret)
  3213. btrfs_err(fs_info, "commit super ret %d", ret);
  3214. }
  3215. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3216. btrfs_error_commit_super(fs_info);
  3217. kthread_stop(fs_info->transaction_kthread);
  3218. kthread_stop(fs_info->cleaner_kthread);
  3219. set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
  3220. btrfs_free_qgroup_config(fs_info);
  3221. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3222. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3223. percpu_counter_sum(&fs_info->delalloc_bytes));
  3224. }
  3225. btrfs_sysfs_remove_mounted(fs_info);
  3226. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3227. btrfs_free_fs_roots(fs_info);
  3228. btrfs_put_block_group_cache(fs_info);
  3229. /*
  3230. * we must make sure there is not any read request to
  3231. * submit after we stopping all workers.
  3232. */
  3233. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3234. btrfs_stop_all_workers(fs_info);
  3235. btrfs_free_block_groups(fs_info);
  3236. clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
  3237. free_root_pointers(fs_info, 1);
  3238. iput(fs_info->btree_inode);
  3239. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3240. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
  3241. btrfsic_unmount(fs_info->fs_devices);
  3242. #endif
  3243. btrfs_close_devices(fs_info->fs_devices);
  3244. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3245. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3246. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3247. percpu_counter_destroy(&fs_info->bio_counter);
  3248. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3249. btrfs_free_stripe_hash_table(fs_info);
  3250. btrfs_free_ref_cache(fs_info);
  3251. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3252. root->orphan_block_rsv = NULL;
  3253. while (!list_empty(&fs_info->pinned_chunks)) {
  3254. struct extent_map *em;
  3255. em = list_first_entry(&fs_info->pinned_chunks,
  3256. struct extent_map, list);
  3257. list_del_init(&em->list);
  3258. free_extent_map(em);
  3259. }
  3260. }
  3261. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3262. int atomic)
  3263. {
  3264. int ret;
  3265. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3266. ret = extent_buffer_uptodate(buf);
  3267. if (!ret)
  3268. return ret;
  3269. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3270. parent_transid, atomic);
  3271. if (ret == -EAGAIN)
  3272. return ret;
  3273. return !ret;
  3274. }
  3275. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3276. {
  3277. struct btrfs_fs_info *fs_info;
  3278. struct btrfs_root *root;
  3279. u64 transid = btrfs_header_generation(buf);
  3280. int was_dirty;
  3281. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3282. /*
  3283. * This is a fast path so only do this check if we have sanity tests
  3284. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3285. * outside of the sanity tests.
  3286. */
  3287. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3288. return;
  3289. #endif
  3290. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3291. fs_info = root->fs_info;
  3292. btrfs_assert_tree_locked(buf);
  3293. if (transid != fs_info->generation)
  3294. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
  3295. buf->start, transid, fs_info->generation);
  3296. was_dirty = set_extent_buffer_dirty(buf);
  3297. if (!was_dirty)
  3298. percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
  3299. buf->len,
  3300. fs_info->dirty_metadata_batch);
  3301. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3302. /*
  3303. * Since btrfs_mark_buffer_dirty() can be called with item pointer set
  3304. * but item data not updated.
  3305. * So here we should only check item pointers, not item data.
  3306. */
  3307. if (btrfs_header_level(buf) == 0 &&
  3308. btrfs_check_leaf_relaxed(root, buf)) {
  3309. btrfs_print_leaf(buf);
  3310. ASSERT(0);
  3311. }
  3312. #endif
  3313. }
  3314. static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
  3315. int flush_delayed)
  3316. {
  3317. /*
  3318. * looks as though older kernels can get into trouble with
  3319. * this code, they end up stuck in balance_dirty_pages forever
  3320. */
  3321. int ret;
  3322. if (current->flags & PF_MEMALLOC)
  3323. return;
  3324. if (flush_delayed)
  3325. btrfs_balance_delayed_items(fs_info);
  3326. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  3327. BTRFS_DIRTY_METADATA_THRESH);
  3328. if (ret > 0) {
  3329. balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
  3330. }
  3331. }
  3332. void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
  3333. {
  3334. __btrfs_btree_balance_dirty(fs_info, 1);
  3335. }
  3336. void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
  3337. {
  3338. __btrfs_btree_balance_dirty(fs_info, 0);
  3339. }
  3340. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3341. {
  3342. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3343. struct btrfs_fs_info *fs_info = root->fs_info;
  3344. return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
  3345. }
  3346. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
  3347. {
  3348. struct btrfs_super_block *sb = fs_info->super_copy;
  3349. u64 nodesize = btrfs_super_nodesize(sb);
  3350. u64 sectorsize = btrfs_super_sectorsize(sb);
  3351. int ret = 0;
  3352. if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
  3353. btrfs_err(fs_info, "no valid FS found");
  3354. ret = -EINVAL;
  3355. }
  3356. if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
  3357. btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
  3358. btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
  3359. ret = -EINVAL;
  3360. }
  3361. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3362. btrfs_err(fs_info, "tree_root level too big: %d >= %d",
  3363. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3364. ret = -EINVAL;
  3365. }
  3366. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3367. btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
  3368. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3369. ret = -EINVAL;
  3370. }
  3371. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3372. btrfs_err(fs_info, "log_root level too big: %d >= %d",
  3373. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3374. ret = -EINVAL;
  3375. }
  3376. /*
  3377. * Check sectorsize and nodesize first, other check will need it.
  3378. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
  3379. */
  3380. if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
  3381. sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3382. btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
  3383. ret = -EINVAL;
  3384. }
  3385. /* Only PAGE SIZE is supported yet */
  3386. if (sectorsize != PAGE_SIZE) {
  3387. btrfs_err(fs_info,
  3388. "sectorsize %llu not supported yet, only support %lu",
  3389. sectorsize, PAGE_SIZE);
  3390. ret = -EINVAL;
  3391. }
  3392. if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
  3393. nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3394. btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
  3395. ret = -EINVAL;
  3396. }
  3397. if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
  3398. btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
  3399. le32_to_cpu(sb->__unused_leafsize), nodesize);
  3400. ret = -EINVAL;
  3401. }
  3402. /* Root alignment check */
  3403. if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
  3404. btrfs_warn(fs_info, "tree_root block unaligned: %llu",
  3405. btrfs_super_root(sb));
  3406. ret = -EINVAL;
  3407. }
  3408. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
  3409. btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
  3410. btrfs_super_chunk_root(sb));
  3411. ret = -EINVAL;
  3412. }
  3413. if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
  3414. btrfs_warn(fs_info, "log_root block unaligned: %llu",
  3415. btrfs_super_log_root(sb));
  3416. ret = -EINVAL;
  3417. }
  3418. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
  3419. btrfs_err(fs_info,
  3420. "dev_item UUID does not match fsid: %pU != %pU",
  3421. fs_info->fsid, sb->dev_item.fsid);
  3422. ret = -EINVAL;
  3423. }
  3424. /*
  3425. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3426. * done later
  3427. */
  3428. if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
  3429. btrfs_err(fs_info, "bytes_used is too small %llu",
  3430. btrfs_super_bytes_used(sb));
  3431. ret = -EINVAL;
  3432. }
  3433. if (!is_power_of_2(btrfs_super_stripesize(sb))) {
  3434. btrfs_err(fs_info, "invalid stripesize %u",
  3435. btrfs_super_stripesize(sb));
  3436. ret = -EINVAL;
  3437. }
  3438. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3439. btrfs_warn(fs_info, "suspicious number of devices: %llu",
  3440. btrfs_super_num_devices(sb));
  3441. if (btrfs_super_num_devices(sb) == 0) {
  3442. btrfs_err(fs_info, "number of devices is 0");
  3443. ret = -EINVAL;
  3444. }
  3445. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3446. btrfs_err(fs_info, "super offset mismatch %llu != %u",
  3447. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3448. ret = -EINVAL;
  3449. }
  3450. /*
  3451. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3452. * and one chunk
  3453. */
  3454. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3455. btrfs_err(fs_info, "system chunk array too big %u > %u",
  3456. btrfs_super_sys_array_size(sb),
  3457. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3458. ret = -EINVAL;
  3459. }
  3460. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3461. + sizeof(struct btrfs_chunk)) {
  3462. btrfs_err(fs_info, "system chunk array too small %u < %zu",
  3463. btrfs_super_sys_array_size(sb),
  3464. sizeof(struct btrfs_disk_key)
  3465. + sizeof(struct btrfs_chunk));
  3466. ret = -EINVAL;
  3467. }
  3468. /*
  3469. * The generation is a global counter, we'll trust it more than the others
  3470. * but it's still possible that it's the one that's wrong.
  3471. */
  3472. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3473. btrfs_warn(fs_info,
  3474. "suspicious: generation < chunk_root_generation: %llu < %llu",
  3475. btrfs_super_generation(sb),
  3476. btrfs_super_chunk_root_generation(sb));
  3477. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3478. && btrfs_super_cache_generation(sb) != (u64)-1)
  3479. btrfs_warn(fs_info,
  3480. "suspicious: generation < cache_generation: %llu < %llu",
  3481. btrfs_super_generation(sb),
  3482. btrfs_super_cache_generation(sb));
  3483. return ret;
  3484. }
  3485. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
  3486. {
  3487. mutex_lock(&fs_info->cleaner_mutex);
  3488. btrfs_run_delayed_iputs(fs_info);
  3489. mutex_unlock(&fs_info->cleaner_mutex);
  3490. down_write(&fs_info->cleanup_work_sem);
  3491. up_write(&fs_info->cleanup_work_sem);
  3492. /* cleanup FS via transaction */
  3493. btrfs_cleanup_transaction(fs_info);
  3494. }
  3495. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3496. {
  3497. struct btrfs_ordered_extent *ordered;
  3498. spin_lock(&root->ordered_extent_lock);
  3499. /*
  3500. * This will just short circuit the ordered completion stuff which will
  3501. * make sure the ordered extent gets properly cleaned up.
  3502. */
  3503. list_for_each_entry(ordered, &root->ordered_extents,
  3504. root_extent_list)
  3505. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3506. spin_unlock(&root->ordered_extent_lock);
  3507. }
  3508. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3509. {
  3510. struct btrfs_root *root;
  3511. struct list_head splice;
  3512. INIT_LIST_HEAD(&splice);
  3513. spin_lock(&fs_info->ordered_root_lock);
  3514. list_splice_init(&fs_info->ordered_roots, &splice);
  3515. while (!list_empty(&splice)) {
  3516. root = list_first_entry(&splice, struct btrfs_root,
  3517. ordered_root);
  3518. list_move_tail(&root->ordered_root,
  3519. &fs_info->ordered_roots);
  3520. spin_unlock(&fs_info->ordered_root_lock);
  3521. btrfs_destroy_ordered_extents(root);
  3522. cond_resched();
  3523. spin_lock(&fs_info->ordered_root_lock);
  3524. }
  3525. spin_unlock(&fs_info->ordered_root_lock);
  3526. }
  3527. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3528. struct btrfs_fs_info *fs_info)
  3529. {
  3530. struct rb_node *node;
  3531. struct btrfs_delayed_ref_root *delayed_refs;
  3532. struct btrfs_delayed_ref_node *ref;
  3533. int ret = 0;
  3534. delayed_refs = &trans->delayed_refs;
  3535. spin_lock(&delayed_refs->lock);
  3536. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3537. spin_unlock(&delayed_refs->lock);
  3538. btrfs_info(fs_info, "delayed_refs has NO entry");
  3539. return ret;
  3540. }
  3541. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3542. struct btrfs_delayed_ref_head *head;
  3543. struct rb_node *n;
  3544. bool pin_bytes = false;
  3545. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3546. href_node);
  3547. if (!mutex_trylock(&head->mutex)) {
  3548. refcount_inc(&head->refs);
  3549. spin_unlock(&delayed_refs->lock);
  3550. mutex_lock(&head->mutex);
  3551. mutex_unlock(&head->mutex);
  3552. btrfs_put_delayed_ref_head(head);
  3553. spin_lock(&delayed_refs->lock);
  3554. continue;
  3555. }
  3556. spin_lock(&head->lock);
  3557. while ((n = rb_first(&head->ref_tree)) != NULL) {
  3558. ref = rb_entry(n, struct btrfs_delayed_ref_node,
  3559. ref_node);
  3560. ref->in_tree = 0;
  3561. rb_erase(&ref->ref_node, &head->ref_tree);
  3562. RB_CLEAR_NODE(&ref->ref_node);
  3563. if (!list_empty(&ref->add_list))
  3564. list_del(&ref->add_list);
  3565. atomic_dec(&delayed_refs->num_entries);
  3566. btrfs_put_delayed_ref(ref);
  3567. }
  3568. if (head->must_insert_reserved)
  3569. pin_bytes = true;
  3570. btrfs_free_delayed_extent_op(head->extent_op);
  3571. delayed_refs->num_heads--;
  3572. if (head->processing == 0)
  3573. delayed_refs->num_heads_ready--;
  3574. atomic_dec(&delayed_refs->num_entries);
  3575. rb_erase(&head->href_node, &delayed_refs->href_root);
  3576. RB_CLEAR_NODE(&head->href_node);
  3577. spin_unlock(&head->lock);
  3578. spin_unlock(&delayed_refs->lock);
  3579. mutex_unlock(&head->mutex);
  3580. if (pin_bytes)
  3581. btrfs_pin_extent(fs_info, head->bytenr,
  3582. head->num_bytes, 1);
  3583. btrfs_put_delayed_ref_head(head);
  3584. cond_resched();
  3585. spin_lock(&delayed_refs->lock);
  3586. }
  3587. spin_unlock(&delayed_refs->lock);
  3588. return ret;
  3589. }
  3590. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3591. {
  3592. struct btrfs_inode *btrfs_inode;
  3593. struct list_head splice;
  3594. INIT_LIST_HEAD(&splice);
  3595. spin_lock(&root->delalloc_lock);
  3596. list_splice_init(&root->delalloc_inodes, &splice);
  3597. while (!list_empty(&splice)) {
  3598. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3599. delalloc_inodes);
  3600. list_del_init(&btrfs_inode->delalloc_inodes);
  3601. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3602. &btrfs_inode->runtime_flags);
  3603. spin_unlock(&root->delalloc_lock);
  3604. btrfs_invalidate_inodes(btrfs_inode->root);
  3605. spin_lock(&root->delalloc_lock);
  3606. }
  3607. spin_unlock(&root->delalloc_lock);
  3608. }
  3609. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3610. {
  3611. struct btrfs_root *root;
  3612. struct list_head splice;
  3613. INIT_LIST_HEAD(&splice);
  3614. spin_lock(&fs_info->delalloc_root_lock);
  3615. list_splice_init(&fs_info->delalloc_roots, &splice);
  3616. while (!list_empty(&splice)) {
  3617. root = list_first_entry(&splice, struct btrfs_root,
  3618. delalloc_root);
  3619. list_del_init(&root->delalloc_root);
  3620. root = btrfs_grab_fs_root(root);
  3621. BUG_ON(!root);
  3622. spin_unlock(&fs_info->delalloc_root_lock);
  3623. btrfs_destroy_delalloc_inodes(root);
  3624. btrfs_put_fs_root(root);
  3625. spin_lock(&fs_info->delalloc_root_lock);
  3626. }
  3627. spin_unlock(&fs_info->delalloc_root_lock);
  3628. }
  3629. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  3630. struct extent_io_tree *dirty_pages,
  3631. int mark)
  3632. {
  3633. int ret;
  3634. struct extent_buffer *eb;
  3635. u64 start = 0;
  3636. u64 end;
  3637. while (1) {
  3638. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3639. mark, NULL);
  3640. if (ret)
  3641. break;
  3642. clear_extent_bits(dirty_pages, start, end, mark);
  3643. while (start <= end) {
  3644. eb = find_extent_buffer(fs_info, start);
  3645. start += fs_info->nodesize;
  3646. if (!eb)
  3647. continue;
  3648. wait_on_extent_buffer_writeback(eb);
  3649. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3650. &eb->bflags))
  3651. clear_extent_buffer_dirty(eb);
  3652. free_extent_buffer_stale(eb);
  3653. }
  3654. }
  3655. return ret;
  3656. }
  3657. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  3658. struct extent_io_tree *pinned_extents)
  3659. {
  3660. struct extent_io_tree *unpin;
  3661. u64 start;
  3662. u64 end;
  3663. int ret;
  3664. bool loop = true;
  3665. unpin = pinned_extents;
  3666. again:
  3667. while (1) {
  3668. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3669. EXTENT_DIRTY, NULL);
  3670. if (ret)
  3671. break;
  3672. clear_extent_dirty(unpin, start, end);
  3673. btrfs_error_unpin_extent_range(fs_info, start, end);
  3674. cond_resched();
  3675. }
  3676. if (loop) {
  3677. if (unpin == &fs_info->freed_extents[0])
  3678. unpin = &fs_info->freed_extents[1];
  3679. else
  3680. unpin = &fs_info->freed_extents[0];
  3681. loop = false;
  3682. goto again;
  3683. }
  3684. return 0;
  3685. }
  3686. static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
  3687. {
  3688. struct inode *inode;
  3689. inode = cache->io_ctl.inode;
  3690. if (inode) {
  3691. invalidate_inode_pages2(inode->i_mapping);
  3692. BTRFS_I(inode)->generation = 0;
  3693. cache->io_ctl.inode = NULL;
  3694. iput(inode);
  3695. }
  3696. btrfs_put_block_group(cache);
  3697. }
  3698. void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
  3699. struct btrfs_fs_info *fs_info)
  3700. {
  3701. struct btrfs_block_group_cache *cache;
  3702. spin_lock(&cur_trans->dirty_bgs_lock);
  3703. while (!list_empty(&cur_trans->dirty_bgs)) {
  3704. cache = list_first_entry(&cur_trans->dirty_bgs,
  3705. struct btrfs_block_group_cache,
  3706. dirty_list);
  3707. if (!cache) {
  3708. btrfs_err(fs_info, "orphan block group dirty_bgs list");
  3709. spin_unlock(&cur_trans->dirty_bgs_lock);
  3710. return;
  3711. }
  3712. if (!list_empty(&cache->io_list)) {
  3713. spin_unlock(&cur_trans->dirty_bgs_lock);
  3714. list_del_init(&cache->io_list);
  3715. btrfs_cleanup_bg_io(cache);
  3716. spin_lock(&cur_trans->dirty_bgs_lock);
  3717. }
  3718. list_del_init(&cache->dirty_list);
  3719. spin_lock(&cache->lock);
  3720. cache->disk_cache_state = BTRFS_DC_ERROR;
  3721. spin_unlock(&cache->lock);
  3722. spin_unlock(&cur_trans->dirty_bgs_lock);
  3723. btrfs_put_block_group(cache);
  3724. spin_lock(&cur_trans->dirty_bgs_lock);
  3725. }
  3726. spin_unlock(&cur_trans->dirty_bgs_lock);
  3727. while (!list_empty(&cur_trans->io_bgs)) {
  3728. cache = list_first_entry(&cur_trans->io_bgs,
  3729. struct btrfs_block_group_cache,
  3730. io_list);
  3731. if (!cache) {
  3732. btrfs_err(fs_info, "orphan block group on io_bgs list");
  3733. return;
  3734. }
  3735. list_del_init(&cache->io_list);
  3736. spin_lock(&cache->lock);
  3737. cache->disk_cache_state = BTRFS_DC_ERROR;
  3738. spin_unlock(&cache->lock);
  3739. btrfs_cleanup_bg_io(cache);
  3740. }
  3741. }
  3742. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3743. struct btrfs_fs_info *fs_info)
  3744. {
  3745. btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
  3746. ASSERT(list_empty(&cur_trans->dirty_bgs));
  3747. ASSERT(list_empty(&cur_trans->io_bgs));
  3748. btrfs_destroy_delayed_refs(cur_trans, fs_info);
  3749. cur_trans->state = TRANS_STATE_COMMIT_START;
  3750. wake_up(&fs_info->transaction_blocked_wait);
  3751. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3752. wake_up(&fs_info->transaction_wait);
  3753. btrfs_destroy_delayed_inodes(fs_info);
  3754. btrfs_assert_delayed_root_empty(fs_info);
  3755. btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
  3756. EXTENT_DIRTY);
  3757. btrfs_destroy_pinned_extent(fs_info,
  3758. fs_info->pinned_extents);
  3759. cur_trans->state =TRANS_STATE_COMPLETED;
  3760. wake_up(&cur_trans->commit_wait);
  3761. }
  3762. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
  3763. {
  3764. struct btrfs_transaction *t;
  3765. mutex_lock(&fs_info->transaction_kthread_mutex);
  3766. spin_lock(&fs_info->trans_lock);
  3767. while (!list_empty(&fs_info->trans_list)) {
  3768. t = list_first_entry(&fs_info->trans_list,
  3769. struct btrfs_transaction, list);
  3770. if (t->state >= TRANS_STATE_COMMIT_START) {
  3771. refcount_inc(&t->use_count);
  3772. spin_unlock(&fs_info->trans_lock);
  3773. btrfs_wait_for_commit(fs_info, t->transid);
  3774. btrfs_put_transaction(t);
  3775. spin_lock(&fs_info->trans_lock);
  3776. continue;
  3777. }
  3778. if (t == fs_info->running_transaction) {
  3779. t->state = TRANS_STATE_COMMIT_DOING;
  3780. spin_unlock(&fs_info->trans_lock);
  3781. /*
  3782. * We wait for 0 num_writers since we don't hold a trans
  3783. * handle open currently for this transaction.
  3784. */
  3785. wait_event(t->writer_wait,
  3786. atomic_read(&t->num_writers) == 0);
  3787. } else {
  3788. spin_unlock(&fs_info->trans_lock);
  3789. }
  3790. btrfs_cleanup_one_transaction(t, fs_info);
  3791. spin_lock(&fs_info->trans_lock);
  3792. if (t == fs_info->running_transaction)
  3793. fs_info->running_transaction = NULL;
  3794. list_del_init(&t->list);
  3795. spin_unlock(&fs_info->trans_lock);
  3796. btrfs_put_transaction(t);
  3797. trace_btrfs_transaction_commit(fs_info->tree_root);
  3798. spin_lock(&fs_info->trans_lock);
  3799. }
  3800. spin_unlock(&fs_info->trans_lock);
  3801. btrfs_destroy_all_ordered_extents(fs_info);
  3802. btrfs_destroy_delayed_inodes(fs_info);
  3803. btrfs_assert_delayed_root_empty(fs_info);
  3804. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  3805. btrfs_destroy_all_delalloc_inodes(fs_info);
  3806. mutex_unlock(&fs_info->transaction_kthread_mutex);
  3807. return 0;
  3808. }
  3809. static struct btrfs_fs_info *btree_fs_info(void *private_data)
  3810. {
  3811. struct inode *inode = private_data;
  3812. return btrfs_sb(inode->i_sb);
  3813. }
  3814. static const struct extent_io_ops btree_extent_io_ops = {
  3815. /* mandatory callbacks */
  3816. .submit_bio_hook = btree_submit_bio_hook,
  3817. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3818. /* note we're sharing with inode.c for the merge bio hook */
  3819. .merge_bio_hook = btrfs_merge_bio_hook,
  3820. .readpage_io_failed_hook = btree_io_failed_hook,
  3821. .set_range_writeback = btrfs_set_range_writeback,
  3822. .tree_fs_info = btree_fs_info,
  3823. /* optional callbacks */
  3824. };