fib_trie.c 66 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version
  5. * 2 of the License, or (at your option) any later version.
  6. *
  7. * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
  8. * & Swedish University of Agricultural Sciences.
  9. *
  10. * Jens Laas <jens.laas@data.slu.se> Swedish University of
  11. * Agricultural Sciences.
  12. *
  13. * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
  14. *
  15. * This work is based on the LPC-trie which is originally described in:
  16. *
  17. * An experimental study of compression methods for dynamic tries
  18. * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19. * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20. *
  21. *
  22. * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23. * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24. *
  25. *
  26. * Code from fib_hash has been reused which includes the following header:
  27. *
  28. *
  29. * INET An implementation of the TCP/IP protocol suite for the LINUX
  30. * operating system. INET is implemented using the BSD Socket
  31. * interface as the means of communication with the user level.
  32. *
  33. * IPv4 FIB: lookup engine and maintenance routines.
  34. *
  35. *
  36. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37. *
  38. * This program is free software; you can redistribute it and/or
  39. * modify it under the terms of the GNU General Public License
  40. * as published by the Free Software Foundation; either version
  41. * 2 of the License, or (at your option) any later version.
  42. *
  43. * Substantial contributions to this work comes from:
  44. *
  45. * David S. Miller, <davem@davemloft.net>
  46. * Stephen Hemminger <shemminger@osdl.org>
  47. * Paul E. McKenney <paulmck@us.ibm.com>
  48. * Patrick McHardy <kaber@trash.net>
  49. */
  50. #define VERSION "0.409"
  51. #include <linux/uaccess.h>
  52. #include <linux/bitops.h>
  53. #include <linux/types.h>
  54. #include <linux/kernel.h>
  55. #include <linux/mm.h>
  56. #include <linux/string.h>
  57. #include <linux/socket.h>
  58. #include <linux/sockios.h>
  59. #include <linux/errno.h>
  60. #include <linux/in.h>
  61. #include <linux/inet.h>
  62. #include <linux/inetdevice.h>
  63. #include <linux/netdevice.h>
  64. #include <linux/if_arp.h>
  65. #include <linux/proc_fs.h>
  66. #include <linux/rcupdate.h>
  67. #include <linux/skbuff.h>
  68. #include <linux/netlink.h>
  69. #include <linux/init.h>
  70. #include <linux/list.h>
  71. #include <linux/slab.h>
  72. #include <linux/export.h>
  73. #include <linux/vmalloc.h>
  74. #include <linux/notifier.h>
  75. #include <net/net_namespace.h>
  76. #include <net/ip.h>
  77. #include <net/protocol.h>
  78. #include <net/route.h>
  79. #include <net/tcp.h>
  80. #include <net/sock.h>
  81. #include <net/ip_fib.h>
  82. #include <net/fib_notifier.h>
  83. #include <trace/events/fib.h>
  84. #include "fib_lookup.h"
  85. static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
  86. enum fib_event_type event_type, u32 dst,
  87. int dst_len, struct fib_alias *fa)
  88. {
  89. struct fib_entry_notifier_info info = {
  90. .dst = dst,
  91. .dst_len = dst_len,
  92. .fi = fa->fa_info,
  93. .tos = fa->fa_tos,
  94. .type = fa->fa_type,
  95. .tb_id = fa->tb_id,
  96. };
  97. return call_fib4_notifier(nb, net, event_type, &info.info);
  98. }
  99. static int call_fib_entry_notifiers(struct net *net,
  100. enum fib_event_type event_type, u32 dst,
  101. int dst_len, struct fib_alias *fa)
  102. {
  103. struct fib_entry_notifier_info info = {
  104. .dst = dst,
  105. .dst_len = dst_len,
  106. .fi = fa->fa_info,
  107. .tos = fa->fa_tos,
  108. .type = fa->fa_type,
  109. .tb_id = fa->tb_id,
  110. };
  111. return call_fib4_notifiers(net, event_type, &info.info);
  112. }
  113. #define MAX_STAT_DEPTH 32
  114. #define KEYLENGTH (8*sizeof(t_key))
  115. #define KEY_MAX ((t_key)~0)
  116. typedef unsigned int t_key;
  117. #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
  118. #define IS_TNODE(n) ((n)->bits)
  119. #define IS_LEAF(n) (!(n)->bits)
  120. struct key_vector {
  121. t_key key;
  122. unsigned char pos; /* 2log(KEYLENGTH) bits needed */
  123. unsigned char bits; /* 2log(KEYLENGTH) bits needed */
  124. unsigned char slen;
  125. union {
  126. /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
  127. struct hlist_head leaf;
  128. /* This array is valid if (pos | bits) > 0 (TNODE) */
  129. struct key_vector __rcu *tnode[0];
  130. };
  131. };
  132. struct tnode {
  133. struct rcu_head rcu;
  134. t_key empty_children; /* KEYLENGTH bits needed */
  135. t_key full_children; /* KEYLENGTH bits needed */
  136. struct key_vector __rcu *parent;
  137. struct key_vector kv[1];
  138. #define tn_bits kv[0].bits
  139. };
  140. #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
  141. #define LEAF_SIZE TNODE_SIZE(1)
  142. #ifdef CONFIG_IP_FIB_TRIE_STATS
  143. struct trie_use_stats {
  144. unsigned int gets;
  145. unsigned int backtrack;
  146. unsigned int semantic_match_passed;
  147. unsigned int semantic_match_miss;
  148. unsigned int null_node_hit;
  149. unsigned int resize_node_skipped;
  150. };
  151. #endif
  152. struct trie_stat {
  153. unsigned int totdepth;
  154. unsigned int maxdepth;
  155. unsigned int tnodes;
  156. unsigned int leaves;
  157. unsigned int nullpointers;
  158. unsigned int prefixes;
  159. unsigned int nodesizes[MAX_STAT_DEPTH];
  160. };
  161. struct trie {
  162. struct key_vector kv[1];
  163. #ifdef CONFIG_IP_FIB_TRIE_STATS
  164. struct trie_use_stats __percpu *stats;
  165. #endif
  166. };
  167. static struct key_vector *resize(struct trie *t, struct key_vector *tn);
  168. static size_t tnode_free_size;
  169. /*
  170. * synchronize_rcu after call_rcu for that many pages; it should be especially
  171. * useful before resizing the root node with PREEMPT_NONE configs; the value was
  172. * obtained experimentally, aiming to avoid visible slowdown.
  173. */
  174. static const int sync_pages = 128;
  175. static struct kmem_cache *fn_alias_kmem __read_mostly;
  176. static struct kmem_cache *trie_leaf_kmem __read_mostly;
  177. static inline struct tnode *tn_info(struct key_vector *kv)
  178. {
  179. return container_of(kv, struct tnode, kv[0]);
  180. }
  181. /* caller must hold RTNL */
  182. #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
  183. #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
  184. /* caller must hold RCU read lock or RTNL */
  185. #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
  186. #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
  187. /* wrapper for rcu_assign_pointer */
  188. static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
  189. {
  190. if (n)
  191. rcu_assign_pointer(tn_info(n)->parent, tp);
  192. }
  193. #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
  194. /* This provides us with the number of children in this node, in the case of a
  195. * leaf this will return 0 meaning none of the children are accessible.
  196. */
  197. static inline unsigned long child_length(const struct key_vector *tn)
  198. {
  199. return (1ul << tn->bits) & ~(1ul);
  200. }
  201. #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
  202. static inline unsigned long get_index(t_key key, struct key_vector *kv)
  203. {
  204. unsigned long index = key ^ kv->key;
  205. if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
  206. return 0;
  207. return index >> kv->pos;
  208. }
  209. /* To understand this stuff, an understanding of keys and all their bits is
  210. * necessary. Every node in the trie has a key associated with it, but not
  211. * all of the bits in that key are significant.
  212. *
  213. * Consider a node 'n' and its parent 'tp'.
  214. *
  215. * If n is a leaf, every bit in its key is significant. Its presence is
  216. * necessitated by path compression, since during a tree traversal (when
  217. * searching for a leaf - unless we are doing an insertion) we will completely
  218. * ignore all skipped bits we encounter. Thus we need to verify, at the end of
  219. * a potentially successful search, that we have indeed been walking the
  220. * correct key path.
  221. *
  222. * Note that we can never "miss" the correct key in the tree if present by
  223. * following the wrong path. Path compression ensures that segments of the key
  224. * that are the same for all keys with a given prefix are skipped, but the
  225. * skipped part *is* identical for each node in the subtrie below the skipped
  226. * bit! trie_insert() in this implementation takes care of that.
  227. *
  228. * if n is an internal node - a 'tnode' here, the various parts of its key
  229. * have many different meanings.
  230. *
  231. * Example:
  232. * _________________________________________________________________
  233. * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
  234. * -----------------------------------------------------------------
  235. * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
  236. *
  237. * _________________________________________________________________
  238. * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
  239. * -----------------------------------------------------------------
  240. * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
  241. *
  242. * tp->pos = 22
  243. * tp->bits = 3
  244. * n->pos = 13
  245. * n->bits = 4
  246. *
  247. * First, let's just ignore the bits that come before the parent tp, that is
  248. * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
  249. * point we do not use them for anything.
  250. *
  251. * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
  252. * index into the parent's child array. That is, they will be used to find
  253. * 'n' among tp's children.
  254. *
  255. * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
  256. * for the node n.
  257. *
  258. * All the bits we have seen so far are significant to the node n. The rest
  259. * of the bits are really not needed or indeed known in n->key.
  260. *
  261. * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
  262. * n's child array, and will of course be different for each child.
  263. *
  264. * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
  265. * at this point.
  266. */
  267. static const int halve_threshold = 25;
  268. static const int inflate_threshold = 50;
  269. static const int halve_threshold_root = 15;
  270. static const int inflate_threshold_root = 30;
  271. static void __alias_free_mem(struct rcu_head *head)
  272. {
  273. struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
  274. kmem_cache_free(fn_alias_kmem, fa);
  275. }
  276. static inline void alias_free_mem_rcu(struct fib_alias *fa)
  277. {
  278. call_rcu(&fa->rcu, __alias_free_mem);
  279. }
  280. #define TNODE_KMALLOC_MAX \
  281. ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  282. #define TNODE_VMALLOC_MAX \
  283. ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  284. static void __node_free_rcu(struct rcu_head *head)
  285. {
  286. struct tnode *n = container_of(head, struct tnode, rcu);
  287. if (!n->tn_bits)
  288. kmem_cache_free(trie_leaf_kmem, n);
  289. else
  290. kvfree(n);
  291. }
  292. #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
  293. static struct tnode *tnode_alloc(int bits)
  294. {
  295. size_t size;
  296. /* verify bits is within bounds */
  297. if (bits > TNODE_VMALLOC_MAX)
  298. return NULL;
  299. /* determine size and verify it is non-zero and didn't overflow */
  300. size = TNODE_SIZE(1ul << bits);
  301. if (size <= PAGE_SIZE)
  302. return kzalloc(size, GFP_KERNEL);
  303. else
  304. return vzalloc(size);
  305. }
  306. static inline void empty_child_inc(struct key_vector *n)
  307. {
  308. ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
  309. }
  310. static inline void empty_child_dec(struct key_vector *n)
  311. {
  312. tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
  313. }
  314. static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
  315. {
  316. struct key_vector *l;
  317. struct tnode *kv;
  318. kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
  319. if (!kv)
  320. return NULL;
  321. /* initialize key vector */
  322. l = kv->kv;
  323. l->key = key;
  324. l->pos = 0;
  325. l->bits = 0;
  326. l->slen = fa->fa_slen;
  327. /* link leaf to fib alias */
  328. INIT_HLIST_HEAD(&l->leaf);
  329. hlist_add_head(&fa->fa_list, &l->leaf);
  330. return l;
  331. }
  332. static struct key_vector *tnode_new(t_key key, int pos, int bits)
  333. {
  334. unsigned int shift = pos + bits;
  335. struct key_vector *tn;
  336. struct tnode *tnode;
  337. /* verify bits and pos their msb bits clear and values are valid */
  338. BUG_ON(!bits || (shift > KEYLENGTH));
  339. tnode = tnode_alloc(bits);
  340. if (!tnode)
  341. return NULL;
  342. pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
  343. sizeof(struct key_vector *) << bits);
  344. if (bits == KEYLENGTH)
  345. tnode->full_children = 1;
  346. else
  347. tnode->empty_children = 1ul << bits;
  348. tn = tnode->kv;
  349. tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
  350. tn->pos = pos;
  351. tn->bits = bits;
  352. tn->slen = pos;
  353. return tn;
  354. }
  355. /* Check whether a tnode 'n' is "full", i.e. it is an internal node
  356. * and no bits are skipped. See discussion in dyntree paper p. 6
  357. */
  358. static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
  359. {
  360. return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
  361. }
  362. /* Add a child at position i overwriting the old value.
  363. * Update the value of full_children and empty_children.
  364. */
  365. static void put_child(struct key_vector *tn, unsigned long i,
  366. struct key_vector *n)
  367. {
  368. struct key_vector *chi = get_child(tn, i);
  369. int isfull, wasfull;
  370. BUG_ON(i >= child_length(tn));
  371. /* update emptyChildren, overflow into fullChildren */
  372. if (!n && chi)
  373. empty_child_inc(tn);
  374. if (n && !chi)
  375. empty_child_dec(tn);
  376. /* update fullChildren */
  377. wasfull = tnode_full(tn, chi);
  378. isfull = tnode_full(tn, n);
  379. if (wasfull && !isfull)
  380. tn_info(tn)->full_children--;
  381. else if (!wasfull && isfull)
  382. tn_info(tn)->full_children++;
  383. if (n && (tn->slen < n->slen))
  384. tn->slen = n->slen;
  385. rcu_assign_pointer(tn->tnode[i], n);
  386. }
  387. static void update_children(struct key_vector *tn)
  388. {
  389. unsigned long i;
  390. /* update all of the child parent pointers */
  391. for (i = child_length(tn); i;) {
  392. struct key_vector *inode = get_child(tn, --i);
  393. if (!inode)
  394. continue;
  395. /* Either update the children of a tnode that
  396. * already belongs to us or update the child
  397. * to point to ourselves.
  398. */
  399. if (node_parent(inode) == tn)
  400. update_children(inode);
  401. else
  402. node_set_parent(inode, tn);
  403. }
  404. }
  405. static inline void put_child_root(struct key_vector *tp, t_key key,
  406. struct key_vector *n)
  407. {
  408. if (IS_TRIE(tp))
  409. rcu_assign_pointer(tp->tnode[0], n);
  410. else
  411. put_child(tp, get_index(key, tp), n);
  412. }
  413. static inline void tnode_free_init(struct key_vector *tn)
  414. {
  415. tn_info(tn)->rcu.next = NULL;
  416. }
  417. static inline void tnode_free_append(struct key_vector *tn,
  418. struct key_vector *n)
  419. {
  420. tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
  421. tn_info(tn)->rcu.next = &tn_info(n)->rcu;
  422. }
  423. static void tnode_free(struct key_vector *tn)
  424. {
  425. struct callback_head *head = &tn_info(tn)->rcu;
  426. while (head) {
  427. head = head->next;
  428. tnode_free_size += TNODE_SIZE(1ul << tn->bits);
  429. node_free(tn);
  430. tn = container_of(head, struct tnode, rcu)->kv;
  431. }
  432. if (tnode_free_size >= PAGE_SIZE * sync_pages) {
  433. tnode_free_size = 0;
  434. synchronize_rcu();
  435. }
  436. }
  437. static struct key_vector *replace(struct trie *t,
  438. struct key_vector *oldtnode,
  439. struct key_vector *tn)
  440. {
  441. struct key_vector *tp = node_parent(oldtnode);
  442. unsigned long i;
  443. /* setup the parent pointer out of and back into this node */
  444. NODE_INIT_PARENT(tn, tp);
  445. put_child_root(tp, tn->key, tn);
  446. /* update all of the child parent pointers */
  447. update_children(tn);
  448. /* all pointers should be clean so we are done */
  449. tnode_free(oldtnode);
  450. /* resize children now that oldtnode is freed */
  451. for (i = child_length(tn); i;) {
  452. struct key_vector *inode = get_child(tn, --i);
  453. /* resize child node */
  454. if (tnode_full(tn, inode))
  455. tn = resize(t, inode);
  456. }
  457. return tp;
  458. }
  459. static struct key_vector *inflate(struct trie *t,
  460. struct key_vector *oldtnode)
  461. {
  462. struct key_vector *tn;
  463. unsigned long i;
  464. t_key m;
  465. pr_debug("In inflate\n");
  466. tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
  467. if (!tn)
  468. goto notnode;
  469. /* prepare oldtnode to be freed */
  470. tnode_free_init(oldtnode);
  471. /* Assemble all of the pointers in our cluster, in this case that
  472. * represents all of the pointers out of our allocated nodes that
  473. * point to existing tnodes and the links between our allocated
  474. * nodes.
  475. */
  476. for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
  477. struct key_vector *inode = get_child(oldtnode, --i);
  478. struct key_vector *node0, *node1;
  479. unsigned long j, k;
  480. /* An empty child */
  481. if (!inode)
  482. continue;
  483. /* A leaf or an internal node with skipped bits */
  484. if (!tnode_full(oldtnode, inode)) {
  485. put_child(tn, get_index(inode->key, tn), inode);
  486. continue;
  487. }
  488. /* drop the node in the old tnode free list */
  489. tnode_free_append(oldtnode, inode);
  490. /* An internal node with two children */
  491. if (inode->bits == 1) {
  492. put_child(tn, 2 * i + 1, get_child(inode, 1));
  493. put_child(tn, 2 * i, get_child(inode, 0));
  494. continue;
  495. }
  496. /* We will replace this node 'inode' with two new
  497. * ones, 'node0' and 'node1', each with half of the
  498. * original children. The two new nodes will have
  499. * a position one bit further down the key and this
  500. * means that the "significant" part of their keys
  501. * (see the discussion near the top of this file)
  502. * will differ by one bit, which will be "0" in
  503. * node0's key and "1" in node1's key. Since we are
  504. * moving the key position by one step, the bit that
  505. * we are moving away from - the bit at position
  506. * (tn->pos) - is the one that will differ between
  507. * node0 and node1. So... we synthesize that bit in the
  508. * two new keys.
  509. */
  510. node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
  511. if (!node1)
  512. goto nomem;
  513. node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
  514. tnode_free_append(tn, node1);
  515. if (!node0)
  516. goto nomem;
  517. tnode_free_append(tn, node0);
  518. /* populate child pointers in new nodes */
  519. for (k = child_length(inode), j = k / 2; j;) {
  520. put_child(node1, --j, get_child(inode, --k));
  521. put_child(node0, j, get_child(inode, j));
  522. put_child(node1, --j, get_child(inode, --k));
  523. put_child(node0, j, get_child(inode, j));
  524. }
  525. /* link new nodes to parent */
  526. NODE_INIT_PARENT(node1, tn);
  527. NODE_INIT_PARENT(node0, tn);
  528. /* link parent to nodes */
  529. put_child(tn, 2 * i + 1, node1);
  530. put_child(tn, 2 * i, node0);
  531. }
  532. /* setup the parent pointers into and out of this node */
  533. return replace(t, oldtnode, tn);
  534. nomem:
  535. /* all pointers should be clean so we are done */
  536. tnode_free(tn);
  537. notnode:
  538. return NULL;
  539. }
  540. static struct key_vector *halve(struct trie *t,
  541. struct key_vector *oldtnode)
  542. {
  543. struct key_vector *tn;
  544. unsigned long i;
  545. pr_debug("In halve\n");
  546. tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
  547. if (!tn)
  548. goto notnode;
  549. /* prepare oldtnode to be freed */
  550. tnode_free_init(oldtnode);
  551. /* Assemble all of the pointers in our cluster, in this case that
  552. * represents all of the pointers out of our allocated nodes that
  553. * point to existing tnodes and the links between our allocated
  554. * nodes.
  555. */
  556. for (i = child_length(oldtnode); i;) {
  557. struct key_vector *node1 = get_child(oldtnode, --i);
  558. struct key_vector *node0 = get_child(oldtnode, --i);
  559. struct key_vector *inode;
  560. /* At least one of the children is empty */
  561. if (!node1 || !node0) {
  562. put_child(tn, i / 2, node1 ? : node0);
  563. continue;
  564. }
  565. /* Two nonempty children */
  566. inode = tnode_new(node0->key, oldtnode->pos, 1);
  567. if (!inode)
  568. goto nomem;
  569. tnode_free_append(tn, inode);
  570. /* initialize pointers out of node */
  571. put_child(inode, 1, node1);
  572. put_child(inode, 0, node0);
  573. NODE_INIT_PARENT(inode, tn);
  574. /* link parent to node */
  575. put_child(tn, i / 2, inode);
  576. }
  577. /* setup the parent pointers into and out of this node */
  578. return replace(t, oldtnode, tn);
  579. nomem:
  580. /* all pointers should be clean so we are done */
  581. tnode_free(tn);
  582. notnode:
  583. return NULL;
  584. }
  585. static struct key_vector *collapse(struct trie *t,
  586. struct key_vector *oldtnode)
  587. {
  588. struct key_vector *n, *tp;
  589. unsigned long i;
  590. /* scan the tnode looking for that one child that might still exist */
  591. for (n = NULL, i = child_length(oldtnode); !n && i;)
  592. n = get_child(oldtnode, --i);
  593. /* compress one level */
  594. tp = node_parent(oldtnode);
  595. put_child_root(tp, oldtnode->key, n);
  596. node_set_parent(n, tp);
  597. /* drop dead node */
  598. node_free(oldtnode);
  599. return tp;
  600. }
  601. static unsigned char update_suffix(struct key_vector *tn)
  602. {
  603. unsigned char slen = tn->pos;
  604. unsigned long stride, i;
  605. unsigned char slen_max;
  606. /* only vector 0 can have a suffix length greater than or equal to
  607. * tn->pos + tn->bits, the second highest node will have a suffix
  608. * length at most of tn->pos + tn->bits - 1
  609. */
  610. slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
  611. /* search though the list of children looking for nodes that might
  612. * have a suffix greater than the one we currently have. This is
  613. * why we start with a stride of 2 since a stride of 1 would
  614. * represent the nodes with suffix length equal to tn->pos
  615. */
  616. for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
  617. struct key_vector *n = get_child(tn, i);
  618. if (!n || (n->slen <= slen))
  619. continue;
  620. /* update stride and slen based on new value */
  621. stride <<= (n->slen - slen);
  622. slen = n->slen;
  623. i &= ~(stride - 1);
  624. /* stop searching if we have hit the maximum possible value */
  625. if (slen >= slen_max)
  626. break;
  627. }
  628. tn->slen = slen;
  629. return slen;
  630. }
  631. /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
  632. * the Helsinki University of Technology and Matti Tikkanen of Nokia
  633. * Telecommunications, page 6:
  634. * "A node is doubled if the ratio of non-empty children to all
  635. * children in the *doubled* node is at least 'high'."
  636. *
  637. * 'high' in this instance is the variable 'inflate_threshold'. It
  638. * is expressed as a percentage, so we multiply it with
  639. * child_length() and instead of multiplying by 2 (since the
  640. * child array will be doubled by inflate()) and multiplying
  641. * the left-hand side by 100 (to handle the percentage thing) we
  642. * multiply the left-hand side by 50.
  643. *
  644. * The left-hand side may look a bit weird: child_length(tn)
  645. * - tn->empty_children is of course the number of non-null children
  646. * in the current node. tn->full_children is the number of "full"
  647. * children, that is non-null tnodes with a skip value of 0.
  648. * All of those will be doubled in the resulting inflated tnode, so
  649. * we just count them one extra time here.
  650. *
  651. * A clearer way to write this would be:
  652. *
  653. * to_be_doubled = tn->full_children;
  654. * not_to_be_doubled = child_length(tn) - tn->empty_children -
  655. * tn->full_children;
  656. *
  657. * new_child_length = child_length(tn) * 2;
  658. *
  659. * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
  660. * new_child_length;
  661. * if (new_fill_factor >= inflate_threshold)
  662. *
  663. * ...and so on, tho it would mess up the while () loop.
  664. *
  665. * anyway,
  666. * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
  667. * inflate_threshold
  668. *
  669. * avoid a division:
  670. * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
  671. * inflate_threshold * new_child_length
  672. *
  673. * expand not_to_be_doubled and to_be_doubled, and shorten:
  674. * 100 * (child_length(tn) - tn->empty_children +
  675. * tn->full_children) >= inflate_threshold * new_child_length
  676. *
  677. * expand new_child_length:
  678. * 100 * (child_length(tn) - tn->empty_children +
  679. * tn->full_children) >=
  680. * inflate_threshold * child_length(tn) * 2
  681. *
  682. * shorten again:
  683. * 50 * (tn->full_children + child_length(tn) -
  684. * tn->empty_children) >= inflate_threshold *
  685. * child_length(tn)
  686. *
  687. */
  688. static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
  689. {
  690. unsigned long used = child_length(tn);
  691. unsigned long threshold = used;
  692. /* Keep root node larger */
  693. threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
  694. used -= tn_info(tn)->empty_children;
  695. used += tn_info(tn)->full_children;
  696. /* if bits == KEYLENGTH then pos = 0, and will fail below */
  697. return (used > 1) && tn->pos && ((50 * used) >= threshold);
  698. }
  699. static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
  700. {
  701. unsigned long used = child_length(tn);
  702. unsigned long threshold = used;
  703. /* Keep root node larger */
  704. threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
  705. used -= tn_info(tn)->empty_children;
  706. /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
  707. return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
  708. }
  709. static inline bool should_collapse(struct key_vector *tn)
  710. {
  711. unsigned long used = child_length(tn);
  712. used -= tn_info(tn)->empty_children;
  713. /* account for bits == KEYLENGTH case */
  714. if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
  715. used -= KEY_MAX;
  716. /* One child or none, time to drop us from the trie */
  717. return used < 2;
  718. }
  719. #define MAX_WORK 10
  720. static struct key_vector *resize(struct trie *t, struct key_vector *tn)
  721. {
  722. #ifdef CONFIG_IP_FIB_TRIE_STATS
  723. struct trie_use_stats __percpu *stats = t->stats;
  724. #endif
  725. struct key_vector *tp = node_parent(tn);
  726. unsigned long cindex = get_index(tn->key, tp);
  727. int max_work = MAX_WORK;
  728. pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
  729. tn, inflate_threshold, halve_threshold);
  730. /* track the tnode via the pointer from the parent instead of
  731. * doing it ourselves. This way we can let RCU fully do its
  732. * thing without us interfering
  733. */
  734. BUG_ON(tn != get_child(tp, cindex));
  735. /* Double as long as the resulting node has a number of
  736. * nonempty nodes that are above the threshold.
  737. */
  738. while (should_inflate(tp, tn) && max_work) {
  739. tp = inflate(t, tn);
  740. if (!tp) {
  741. #ifdef CONFIG_IP_FIB_TRIE_STATS
  742. this_cpu_inc(stats->resize_node_skipped);
  743. #endif
  744. break;
  745. }
  746. max_work--;
  747. tn = get_child(tp, cindex);
  748. }
  749. /* update parent in case inflate failed */
  750. tp = node_parent(tn);
  751. /* Return if at least one inflate is run */
  752. if (max_work != MAX_WORK)
  753. return tp;
  754. /* Halve as long as the number of empty children in this
  755. * node is above threshold.
  756. */
  757. while (should_halve(tp, tn) && max_work) {
  758. tp = halve(t, tn);
  759. if (!tp) {
  760. #ifdef CONFIG_IP_FIB_TRIE_STATS
  761. this_cpu_inc(stats->resize_node_skipped);
  762. #endif
  763. break;
  764. }
  765. max_work--;
  766. tn = get_child(tp, cindex);
  767. }
  768. /* Only one child remains */
  769. if (should_collapse(tn))
  770. return collapse(t, tn);
  771. /* update parent in case halve failed */
  772. return node_parent(tn);
  773. }
  774. static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
  775. {
  776. unsigned char node_slen = tn->slen;
  777. while ((node_slen > tn->pos) && (node_slen > slen)) {
  778. slen = update_suffix(tn);
  779. if (node_slen == slen)
  780. break;
  781. tn = node_parent(tn);
  782. node_slen = tn->slen;
  783. }
  784. }
  785. static void node_push_suffix(struct key_vector *tn, unsigned char slen)
  786. {
  787. while (tn->slen < slen) {
  788. tn->slen = slen;
  789. tn = node_parent(tn);
  790. }
  791. }
  792. /* rcu_read_lock needs to be hold by caller from readside */
  793. static struct key_vector *fib_find_node(struct trie *t,
  794. struct key_vector **tp, u32 key)
  795. {
  796. struct key_vector *pn, *n = t->kv;
  797. unsigned long index = 0;
  798. do {
  799. pn = n;
  800. n = get_child_rcu(n, index);
  801. if (!n)
  802. break;
  803. index = get_cindex(key, n);
  804. /* This bit of code is a bit tricky but it combines multiple
  805. * checks into a single check. The prefix consists of the
  806. * prefix plus zeros for the bits in the cindex. The index
  807. * is the difference between the key and this value. From
  808. * this we can actually derive several pieces of data.
  809. * if (index >= (1ul << bits))
  810. * we have a mismatch in skip bits and failed
  811. * else
  812. * we know the value is cindex
  813. *
  814. * This check is safe even if bits == KEYLENGTH due to the
  815. * fact that we can only allocate a node with 32 bits if a
  816. * long is greater than 32 bits.
  817. */
  818. if (index >= (1ul << n->bits)) {
  819. n = NULL;
  820. break;
  821. }
  822. /* keep searching until we find a perfect match leaf or NULL */
  823. } while (IS_TNODE(n));
  824. *tp = pn;
  825. return n;
  826. }
  827. /* Return the first fib alias matching TOS with
  828. * priority less than or equal to PRIO.
  829. */
  830. static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
  831. u8 tos, u32 prio, u32 tb_id)
  832. {
  833. struct fib_alias *fa;
  834. if (!fah)
  835. return NULL;
  836. hlist_for_each_entry(fa, fah, fa_list) {
  837. if (fa->fa_slen < slen)
  838. continue;
  839. if (fa->fa_slen != slen)
  840. break;
  841. if (fa->tb_id > tb_id)
  842. continue;
  843. if (fa->tb_id != tb_id)
  844. break;
  845. if (fa->fa_tos > tos)
  846. continue;
  847. if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
  848. return fa;
  849. }
  850. return NULL;
  851. }
  852. static void trie_rebalance(struct trie *t, struct key_vector *tn)
  853. {
  854. while (!IS_TRIE(tn))
  855. tn = resize(t, tn);
  856. }
  857. static int fib_insert_node(struct trie *t, struct key_vector *tp,
  858. struct fib_alias *new, t_key key)
  859. {
  860. struct key_vector *n, *l;
  861. l = leaf_new(key, new);
  862. if (!l)
  863. goto noleaf;
  864. /* retrieve child from parent node */
  865. n = get_child(tp, get_index(key, tp));
  866. /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
  867. *
  868. * Add a new tnode here
  869. * first tnode need some special handling
  870. * leaves us in position for handling as case 3
  871. */
  872. if (n) {
  873. struct key_vector *tn;
  874. tn = tnode_new(key, __fls(key ^ n->key), 1);
  875. if (!tn)
  876. goto notnode;
  877. /* initialize routes out of node */
  878. NODE_INIT_PARENT(tn, tp);
  879. put_child(tn, get_index(key, tn) ^ 1, n);
  880. /* start adding routes into the node */
  881. put_child_root(tp, key, tn);
  882. node_set_parent(n, tn);
  883. /* parent now has a NULL spot where the leaf can go */
  884. tp = tn;
  885. }
  886. /* Case 3: n is NULL, and will just insert a new leaf */
  887. node_push_suffix(tp, new->fa_slen);
  888. NODE_INIT_PARENT(l, tp);
  889. put_child_root(tp, key, l);
  890. trie_rebalance(t, tp);
  891. return 0;
  892. notnode:
  893. node_free(l);
  894. noleaf:
  895. return -ENOMEM;
  896. }
  897. static int fib_insert_alias(struct trie *t, struct key_vector *tp,
  898. struct key_vector *l, struct fib_alias *new,
  899. struct fib_alias *fa, t_key key)
  900. {
  901. if (!l)
  902. return fib_insert_node(t, tp, new, key);
  903. if (fa) {
  904. hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
  905. } else {
  906. struct fib_alias *last;
  907. hlist_for_each_entry(last, &l->leaf, fa_list) {
  908. if (new->fa_slen < last->fa_slen)
  909. break;
  910. if ((new->fa_slen == last->fa_slen) &&
  911. (new->tb_id > last->tb_id))
  912. break;
  913. fa = last;
  914. }
  915. if (fa)
  916. hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
  917. else
  918. hlist_add_head_rcu(&new->fa_list, &l->leaf);
  919. }
  920. /* if we added to the tail node then we need to update slen */
  921. if (l->slen < new->fa_slen) {
  922. l->slen = new->fa_slen;
  923. node_push_suffix(tp, new->fa_slen);
  924. }
  925. return 0;
  926. }
  927. static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
  928. {
  929. if (plen > KEYLENGTH) {
  930. NL_SET_ERR_MSG(extack, "Invalid prefix length");
  931. return false;
  932. }
  933. if ((plen < KEYLENGTH) && (key << plen)) {
  934. NL_SET_ERR_MSG(extack,
  935. "Invalid prefix for given prefix length");
  936. return false;
  937. }
  938. return true;
  939. }
  940. /* Caller must hold RTNL. */
  941. int fib_table_insert(struct net *net, struct fib_table *tb,
  942. struct fib_config *cfg, struct netlink_ext_ack *extack)
  943. {
  944. enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
  945. struct trie *t = (struct trie *)tb->tb_data;
  946. struct fib_alias *fa, *new_fa;
  947. struct key_vector *l, *tp;
  948. u16 nlflags = NLM_F_EXCL;
  949. struct fib_info *fi;
  950. u8 plen = cfg->fc_dst_len;
  951. u8 slen = KEYLENGTH - plen;
  952. u8 tos = cfg->fc_tos;
  953. u32 key;
  954. int err;
  955. key = ntohl(cfg->fc_dst);
  956. if (!fib_valid_key_len(key, plen, extack))
  957. return -EINVAL;
  958. pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
  959. fi = fib_create_info(cfg, extack);
  960. if (IS_ERR(fi)) {
  961. err = PTR_ERR(fi);
  962. goto err;
  963. }
  964. l = fib_find_node(t, &tp, key);
  965. fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
  966. tb->tb_id) : NULL;
  967. /* Now fa, if non-NULL, points to the first fib alias
  968. * with the same keys [prefix,tos,priority], if such key already
  969. * exists or to the node before which we will insert new one.
  970. *
  971. * If fa is NULL, we will need to allocate a new one and
  972. * insert to the tail of the section matching the suffix length
  973. * of the new alias.
  974. */
  975. if (fa && fa->fa_tos == tos &&
  976. fa->fa_info->fib_priority == fi->fib_priority) {
  977. struct fib_alias *fa_first, *fa_match;
  978. err = -EEXIST;
  979. if (cfg->fc_nlflags & NLM_F_EXCL)
  980. goto out;
  981. nlflags &= ~NLM_F_EXCL;
  982. /* We have 2 goals:
  983. * 1. Find exact match for type, scope, fib_info to avoid
  984. * duplicate routes
  985. * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
  986. */
  987. fa_match = NULL;
  988. fa_first = fa;
  989. hlist_for_each_entry_from(fa, fa_list) {
  990. if ((fa->fa_slen != slen) ||
  991. (fa->tb_id != tb->tb_id) ||
  992. (fa->fa_tos != tos))
  993. break;
  994. if (fa->fa_info->fib_priority != fi->fib_priority)
  995. break;
  996. if (fa->fa_type == cfg->fc_type &&
  997. fa->fa_info == fi) {
  998. fa_match = fa;
  999. break;
  1000. }
  1001. }
  1002. if (cfg->fc_nlflags & NLM_F_REPLACE) {
  1003. struct fib_info *fi_drop;
  1004. u8 state;
  1005. nlflags |= NLM_F_REPLACE;
  1006. fa = fa_first;
  1007. if (fa_match) {
  1008. if (fa == fa_match)
  1009. err = 0;
  1010. goto out;
  1011. }
  1012. err = -ENOBUFS;
  1013. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1014. if (!new_fa)
  1015. goto out;
  1016. fi_drop = fa->fa_info;
  1017. new_fa->fa_tos = fa->fa_tos;
  1018. new_fa->fa_info = fi;
  1019. new_fa->fa_type = cfg->fc_type;
  1020. state = fa->fa_state;
  1021. new_fa->fa_state = state & ~FA_S_ACCESSED;
  1022. new_fa->fa_slen = fa->fa_slen;
  1023. new_fa->tb_id = tb->tb_id;
  1024. new_fa->fa_default = -1;
  1025. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
  1026. key, plen, new_fa);
  1027. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
  1028. tb->tb_id, &cfg->fc_nlinfo, nlflags);
  1029. hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
  1030. alias_free_mem_rcu(fa);
  1031. fib_release_info(fi_drop);
  1032. if (state & FA_S_ACCESSED)
  1033. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1034. goto succeeded;
  1035. }
  1036. /* Error if we find a perfect match which
  1037. * uses the same scope, type, and nexthop
  1038. * information.
  1039. */
  1040. if (fa_match)
  1041. goto out;
  1042. if (cfg->fc_nlflags & NLM_F_APPEND) {
  1043. event = FIB_EVENT_ENTRY_APPEND;
  1044. nlflags |= NLM_F_APPEND;
  1045. } else {
  1046. fa = fa_first;
  1047. }
  1048. }
  1049. err = -ENOENT;
  1050. if (!(cfg->fc_nlflags & NLM_F_CREATE))
  1051. goto out;
  1052. nlflags |= NLM_F_CREATE;
  1053. err = -ENOBUFS;
  1054. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1055. if (!new_fa)
  1056. goto out;
  1057. new_fa->fa_info = fi;
  1058. new_fa->fa_tos = tos;
  1059. new_fa->fa_type = cfg->fc_type;
  1060. new_fa->fa_state = 0;
  1061. new_fa->fa_slen = slen;
  1062. new_fa->tb_id = tb->tb_id;
  1063. new_fa->fa_default = -1;
  1064. /* Insert new entry to the list. */
  1065. err = fib_insert_alias(t, tp, l, new_fa, fa, key);
  1066. if (err)
  1067. goto out_free_new_fa;
  1068. if (!plen)
  1069. tb->tb_num_default++;
  1070. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1071. call_fib_entry_notifiers(net, event, key, plen, new_fa);
  1072. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
  1073. &cfg->fc_nlinfo, nlflags);
  1074. succeeded:
  1075. return 0;
  1076. out_free_new_fa:
  1077. kmem_cache_free(fn_alias_kmem, new_fa);
  1078. out:
  1079. fib_release_info(fi);
  1080. err:
  1081. return err;
  1082. }
  1083. static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
  1084. {
  1085. t_key prefix = n->key;
  1086. return (key ^ prefix) & (prefix | -prefix);
  1087. }
  1088. /* should be called with rcu_read_lock */
  1089. int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
  1090. struct fib_result *res, int fib_flags)
  1091. {
  1092. struct trie *t = (struct trie *) tb->tb_data;
  1093. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1094. struct trie_use_stats __percpu *stats = t->stats;
  1095. #endif
  1096. const t_key key = ntohl(flp->daddr);
  1097. struct key_vector *n, *pn;
  1098. struct fib_alias *fa;
  1099. unsigned long index;
  1100. t_key cindex;
  1101. trace_fib_table_lookup(tb->tb_id, flp);
  1102. pn = t->kv;
  1103. cindex = 0;
  1104. n = get_child_rcu(pn, cindex);
  1105. if (!n)
  1106. return -EAGAIN;
  1107. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1108. this_cpu_inc(stats->gets);
  1109. #endif
  1110. /* Step 1: Travel to the longest prefix match in the trie */
  1111. for (;;) {
  1112. index = get_cindex(key, n);
  1113. /* This bit of code is a bit tricky but it combines multiple
  1114. * checks into a single check. The prefix consists of the
  1115. * prefix plus zeros for the "bits" in the prefix. The index
  1116. * is the difference between the key and this value. From
  1117. * this we can actually derive several pieces of data.
  1118. * if (index >= (1ul << bits))
  1119. * we have a mismatch in skip bits and failed
  1120. * else
  1121. * we know the value is cindex
  1122. *
  1123. * This check is safe even if bits == KEYLENGTH due to the
  1124. * fact that we can only allocate a node with 32 bits if a
  1125. * long is greater than 32 bits.
  1126. */
  1127. if (index >= (1ul << n->bits))
  1128. break;
  1129. /* we have found a leaf. Prefixes have already been compared */
  1130. if (IS_LEAF(n))
  1131. goto found;
  1132. /* only record pn and cindex if we are going to be chopping
  1133. * bits later. Otherwise we are just wasting cycles.
  1134. */
  1135. if (n->slen > n->pos) {
  1136. pn = n;
  1137. cindex = index;
  1138. }
  1139. n = get_child_rcu(n, index);
  1140. if (unlikely(!n))
  1141. goto backtrace;
  1142. }
  1143. /* Step 2: Sort out leaves and begin backtracing for longest prefix */
  1144. for (;;) {
  1145. /* record the pointer where our next node pointer is stored */
  1146. struct key_vector __rcu **cptr = n->tnode;
  1147. /* This test verifies that none of the bits that differ
  1148. * between the key and the prefix exist in the region of
  1149. * the lsb and higher in the prefix.
  1150. */
  1151. if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
  1152. goto backtrace;
  1153. /* exit out and process leaf */
  1154. if (unlikely(IS_LEAF(n)))
  1155. break;
  1156. /* Don't bother recording parent info. Since we are in
  1157. * prefix match mode we will have to come back to wherever
  1158. * we started this traversal anyway
  1159. */
  1160. while ((n = rcu_dereference(*cptr)) == NULL) {
  1161. backtrace:
  1162. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1163. if (!n)
  1164. this_cpu_inc(stats->null_node_hit);
  1165. #endif
  1166. /* If we are at cindex 0 there are no more bits for
  1167. * us to strip at this level so we must ascend back
  1168. * up one level to see if there are any more bits to
  1169. * be stripped there.
  1170. */
  1171. while (!cindex) {
  1172. t_key pkey = pn->key;
  1173. /* If we don't have a parent then there is
  1174. * nothing for us to do as we do not have any
  1175. * further nodes to parse.
  1176. */
  1177. if (IS_TRIE(pn))
  1178. return -EAGAIN;
  1179. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1180. this_cpu_inc(stats->backtrack);
  1181. #endif
  1182. /* Get Child's index */
  1183. pn = node_parent_rcu(pn);
  1184. cindex = get_index(pkey, pn);
  1185. }
  1186. /* strip the least significant bit from the cindex */
  1187. cindex &= cindex - 1;
  1188. /* grab pointer for next child node */
  1189. cptr = &pn->tnode[cindex];
  1190. }
  1191. }
  1192. found:
  1193. /* this line carries forward the xor from earlier in the function */
  1194. index = key ^ n->key;
  1195. /* Step 3: Process the leaf, if that fails fall back to backtracing */
  1196. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  1197. struct fib_info *fi = fa->fa_info;
  1198. int nhsel, err;
  1199. if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
  1200. if (index >= (1ul << fa->fa_slen))
  1201. continue;
  1202. }
  1203. if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
  1204. continue;
  1205. if (fi->fib_dead)
  1206. continue;
  1207. if (fa->fa_info->fib_scope < flp->flowi4_scope)
  1208. continue;
  1209. fib_alias_accessed(fa);
  1210. err = fib_props[fa->fa_type].error;
  1211. if (unlikely(err < 0)) {
  1212. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1213. this_cpu_inc(stats->semantic_match_passed);
  1214. #endif
  1215. return err;
  1216. }
  1217. if (fi->fib_flags & RTNH_F_DEAD)
  1218. continue;
  1219. for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
  1220. const struct fib_nh *nh = &fi->fib_nh[nhsel];
  1221. struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
  1222. if (nh->nh_flags & RTNH_F_DEAD)
  1223. continue;
  1224. if (in_dev &&
  1225. IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
  1226. nh->nh_flags & RTNH_F_LINKDOWN &&
  1227. !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
  1228. continue;
  1229. if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
  1230. if (flp->flowi4_oif &&
  1231. flp->flowi4_oif != nh->nh_oif)
  1232. continue;
  1233. }
  1234. if (!(fib_flags & FIB_LOOKUP_NOREF))
  1235. refcount_inc(&fi->fib_clntref);
  1236. res->prefix = htonl(n->key);
  1237. res->prefixlen = KEYLENGTH - fa->fa_slen;
  1238. res->nh_sel = nhsel;
  1239. res->type = fa->fa_type;
  1240. res->scope = fi->fib_scope;
  1241. res->fi = fi;
  1242. res->table = tb;
  1243. res->fa_head = &n->leaf;
  1244. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1245. this_cpu_inc(stats->semantic_match_passed);
  1246. #endif
  1247. trace_fib_table_lookup_nh(nh);
  1248. return err;
  1249. }
  1250. }
  1251. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1252. this_cpu_inc(stats->semantic_match_miss);
  1253. #endif
  1254. goto backtrace;
  1255. }
  1256. EXPORT_SYMBOL_GPL(fib_table_lookup);
  1257. static void fib_remove_alias(struct trie *t, struct key_vector *tp,
  1258. struct key_vector *l, struct fib_alias *old)
  1259. {
  1260. /* record the location of the previous list_info entry */
  1261. struct hlist_node **pprev = old->fa_list.pprev;
  1262. struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
  1263. /* remove the fib_alias from the list */
  1264. hlist_del_rcu(&old->fa_list);
  1265. /* if we emptied the list this leaf will be freed and we can sort
  1266. * out parent suffix lengths as a part of trie_rebalance
  1267. */
  1268. if (hlist_empty(&l->leaf)) {
  1269. if (tp->slen == l->slen)
  1270. node_pull_suffix(tp, tp->pos);
  1271. put_child_root(tp, l->key, NULL);
  1272. node_free(l);
  1273. trie_rebalance(t, tp);
  1274. return;
  1275. }
  1276. /* only access fa if it is pointing at the last valid hlist_node */
  1277. if (*pprev)
  1278. return;
  1279. /* update the trie with the latest suffix length */
  1280. l->slen = fa->fa_slen;
  1281. node_pull_suffix(tp, fa->fa_slen);
  1282. }
  1283. /* Caller must hold RTNL. */
  1284. int fib_table_delete(struct net *net, struct fib_table *tb,
  1285. struct fib_config *cfg, struct netlink_ext_ack *extack)
  1286. {
  1287. struct trie *t = (struct trie *) tb->tb_data;
  1288. struct fib_alias *fa, *fa_to_delete;
  1289. struct key_vector *l, *tp;
  1290. u8 plen = cfg->fc_dst_len;
  1291. u8 slen = KEYLENGTH - plen;
  1292. u8 tos = cfg->fc_tos;
  1293. u32 key;
  1294. key = ntohl(cfg->fc_dst);
  1295. if (!fib_valid_key_len(key, plen, extack))
  1296. return -EINVAL;
  1297. l = fib_find_node(t, &tp, key);
  1298. if (!l)
  1299. return -ESRCH;
  1300. fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
  1301. if (!fa)
  1302. return -ESRCH;
  1303. pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
  1304. fa_to_delete = NULL;
  1305. hlist_for_each_entry_from(fa, fa_list) {
  1306. struct fib_info *fi = fa->fa_info;
  1307. if ((fa->fa_slen != slen) ||
  1308. (fa->tb_id != tb->tb_id) ||
  1309. (fa->fa_tos != tos))
  1310. break;
  1311. if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
  1312. (cfg->fc_scope == RT_SCOPE_NOWHERE ||
  1313. fa->fa_info->fib_scope == cfg->fc_scope) &&
  1314. (!cfg->fc_prefsrc ||
  1315. fi->fib_prefsrc == cfg->fc_prefsrc) &&
  1316. (!cfg->fc_protocol ||
  1317. fi->fib_protocol == cfg->fc_protocol) &&
  1318. fib_nh_match(cfg, fi, extack) == 0 &&
  1319. fib_metrics_match(cfg, fi)) {
  1320. fa_to_delete = fa;
  1321. break;
  1322. }
  1323. }
  1324. if (!fa_to_delete)
  1325. return -ESRCH;
  1326. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
  1327. fa_to_delete);
  1328. rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
  1329. &cfg->fc_nlinfo, 0);
  1330. if (!plen)
  1331. tb->tb_num_default--;
  1332. fib_remove_alias(t, tp, l, fa_to_delete);
  1333. if (fa_to_delete->fa_state & FA_S_ACCESSED)
  1334. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1335. fib_release_info(fa_to_delete->fa_info);
  1336. alias_free_mem_rcu(fa_to_delete);
  1337. return 0;
  1338. }
  1339. /* Scan for the next leaf starting at the provided key value */
  1340. static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
  1341. {
  1342. struct key_vector *pn, *n = *tn;
  1343. unsigned long cindex;
  1344. /* this loop is meant to try and find the key in the trie */
  1345. do {
  1346. /* record parent and next child index */
  1347. pn = n;
  1348. cindex = (key > pn->key) ? get_index(key, pn) : 0;
  1349. if (cindex >> pn->bits)
  1350. break;
  1351. /* descend into the next child */
  1352. n = get_child_rcu(pn, cindex++);
  1353. if (!n)
  1354. break;
  1355. /* guarantee forward progress on the keys */
  1356. if (IS_LEAF(n) && (n->key >= key))
  1357. goto found;
  1358. } while (IS_TNODE(n));
  1359. /* this loop will search for the next leaf with a greater key */
  1360. while (!IS_TRIE(pn)) {
  1361. /* if we exhausted the parent node we will need to climb */
  1362. if (cindex >= (1ul << pn->bits)) {
  1363. t_key pkey = pn->key;
  1364. pn = node_parent_rcu(pn);
  1365. cindex = get_index(pkey, pn) + 1;
  1366. continue;
  1367. }
  1368. /* grab the next available node */
  1369. n = get_child_rcu(pn, cindex++);
  1370. if (!n)
  1371. continue;
  1372. /* no need to compare keys since we bumped the index */
  1373. if (IS_LEAF(n))
  1374. goto found;
  1375. /* Rescan start scanning in new node */
  1376. pn = n;
  1377. cindex = 0;
  1378. }
  1379. *tn = pn;
  1380. return NULL; /* Root of trie */
  1381. found:
  1382. /* if we are at the limit for keys just return NULL for the tnode */
  1383. *tn = pn;
  1384. return n;
  1385. }
  1386. static void fib_trie_free(struct fib_table *tb)
  1387. {
  1388. struct trie *t = (struct trie *)tb->tb_data;
  1389. struct key_vector *pn = t->kv;
  1390. unsigned long cindex = 1;
  1391. struct hlist_node *tmp;
  1392. struct fib_alias *fa;
  1393. /* walk trie in reverse order and free everything */
  1394. for (;;) {
  1395. struct key_vector *n;
  1396. if (!(cindex--)) {
  1397. t_key pkey = pn->key;
  1398. if (IS_TRIE(pn))
  1399. break;
  1400. n = pn;
  1401. pn = node_parent(pn);
  1402. /* drop emptied tnode */
  1403. put_child_root(pn, n->key, NULL);
  1404. node_free(n);
  1405. cindex = get_index(pkey, pn);
  1406. continue;
  1407. }
  1408. /* grab the next available node */
  1409. n = get_child(pn, cindex);
  1410. if (!n)
  1411. continue;
  1412. if (IS_TNODE(n)) {
  1413. /* record pn and cindex for leaf walking */
  1414. pn = n;
  1415. cindex = 1ul << n->bits;
  1416. continue;
  1417. }
  1418. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1419. hlist_del_rcu(&fa->fa_list);
  1420. alias_free_mem_rcu(fa);
  1421. }
  1422. put_child_root(pn, n->key, NULL);
  1423. node_free(n);
  1424. }
  1425. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1426. free_percpu(t->stats);
  1427. #endif
  1428. kfree(tb);
  1429. }
  1430. struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
  1431. {
  1432. struct trie *ot = (struct trie *)oldtb->tb_data;
  1433. struct key_vector *l, *tp = ot->kv;
  1434. struct fib_table *local_tb;
  1435. struct fib_alias *fa;
  1436. struct trie *lt;
  1437. t_key key = 0;
  1438. if (oldtb->tb_data == oldtb->__data)
  1439. return oldtb;
  1440. local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
  1441. if (!local_tb)
  1442. return NULL;
  1443. lt = (struct trie *)local_tb->tb_data;
  1444. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1445. struct key_vector *local_l = NULL, *local_tp;
  1446. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1447. struct fib_alias *new_fa;
  1448. if (local_tb->tb_id != fa->tb_id)
  1449. continue;
  1450. /* clone fa for new local table */
  1451. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1452. if (!new_fa)
  1453. goto out;
  1454. memcpy(new_fa, fa, sizeof(*fa));
  1455. /* insert clone into table */
  1456. if (!local_l)
  1457. local_l = fib_find_node(lt, &local_tp, l->key);
  1458. if (fib_insert_alias(lt, local_tp, local_l, new_fa,
  1459. NULL, l->key)) {
  1460. kmem_cache_free(fn_alias_kmem, new_fa);
  1461. goto out;
  1462. }
  1463. }
  1464. /* stop loop if key wrapped back to 0 */
  1465. key = l->key + 1;
  1466. if (key < l->key)
  1467. break;
  1468. }
  1469. return local_tb;
  1470. out:
  1471. fib_trie_free(local_tb);
  1472. return NULL;
  1473. }
  1474. /* Caller must hold RTNL */
  1475. void fib_table_flush_external(struct fib_table *tb)
  1476. {
  1477. struct trie *t = (struct trie *)tb->tb_data;
  1478. struct key_vector *pn = t->kv;
  1479. unsigned long cindex = 1;
  1480. struct hlist_node *tmp;
  1481. struct fib_alias *fa;
  1482. /* walk trie in reverse order */
  1483. for (;;) {
  1484. unsigned char slen = 0;
  1485. struct key_vector *n;
  1486. if (!(cindex--)) {
  1487. t_key pkey = pn->key;
  1488. /* cannot resize the trie vector */
  1489. if (IS_TRIE(pn))
  1490. break;
  1491. /* update the suffix to address pulled leaves */
  1492. if (pn->slen > pn->pos)
  1493. update_suffix(pn);
  1494. /* resize completed node */
  1495. pn = resize(t, pn);
  1496. cindex = get_index(pkey, pn);
  1497. continue;
  1498. }
  1499. /* grab the next available node */
  1500. n = get_child(pn, cindex);
  1501. if (!n)
  1502. continue;
  1503. if (IS_TNODE(n)) {
  1504. /* record pn and cindex for leaf walking */
  1505. pn = n;
  1506. cindex = 1ul << n->bits;
  1507. continue;
  1508. }
  1509. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1510. /* if alias was cloned to local then we just
  1511. * need to remove the local copy from main
  1512. */
  1513. if (tb->tb_id != fa->tb_id) {
  1514. hlist_del_rcu(&fa->fa_list);
  1515. alias_free_mem_rcu(fa);
  1516. continue;
  1517. }
  1518. /* record local slen */
  1519. slen = fa->fa_slen;
  1520. }
  1521. /* update leaf slen */
  1522. n->slen = slen;
  1523. if (hlist_empty(&n->leaf)) {
  1524. put_child_root(pn, n->key, NULL);
  1525. node_free(n);
  1526. }
  1527. }
  1528. }
  1529. /* Caller must hold RTNL. */
  1530. int fib_table_flush(struct net *net, struct fib_table *tb)
  1531. {
  1532. struct trie *t = (struct trie *)tb->tb_data;
  1533. struct key_vector *pn = t->kv;
  1534. unsigned long cindex = 1;
  1535. struct hlist_node *tmp;
  1536. struct fib_alias *fa;
  1537. int found = 0;
  1538. /* walk trie in reverse order */
  1539. for (;;) {
  1540. unsigned char slen = 0;
  1541. struct key_vector *n;
  1542. if (!(cindex--)) {
  1543. t_key pkey = pn->key;
  1544. /* cannot resize the trie vector */
  1545. if (IS_TRIE(pn))
  1546. break;
  1547. /* update the suffix to address pulled leaves */
  1548. if (pn->slen > pn->pos)
  1549. update_suffix(pn);
  1550. /* resize completed node */
  1551. pn = resize(t, pn);
  1552. cindex = get_index(pkey, pn);
  1553. continue;
  1554. }
  1555. /* grab the next available node */
  1556. n = get_child(pn, cindex);
  1557. if (!n)
  1558. continue;
  1559. if (IS_TNODE(n)) {
  1560. /* record pn and cindex for leaf walking */
  1561. pn = n;
  1562. cindex = 1ul << n->bits;
  1563. continue;
  1564. }
  1565. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1566. struct fib_info *fi = fa->fa_info;
  1567. if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
  1568. tb->tb_id != fa->tb_id) {
  1569. slen = fa->fa_slen;
  1570. continue;
  1571. }
  1572. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
  1573. n->key,
  1574. KEYLENGTH - fa->fa_slen, fa);
  1575. hlist_del_rcu(&fa->fa_list);
  1576. fib_release_info(fa->fa_info);
  1577. alias_free_mem_rcu(fa);
  1578. found++;
  1579. }
  1580. /* update leaf slen */
  1581. n->slen = slen;
  1582. if (hlist_empty(&n->leaf)) {
  1583. put_child_root(pn, n->key, NULL);
  1584. node_free(n);
  1585. }
  1586. }
  1587. pr_debug("trie_flush found=%d\n", found);
  1588. return found;
  1589. }
  1590. static void fib_leaf_notify(struct net *net, struct key_vector *l,
  1591. struct fib_table *tb, struct notifier_block *nb)
  1592. {
  1593. struct fib_alias *fa;
  1594. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1595. struct fib_info *fi = fa->fa_info;
  1596. if (!fi)
  1597. continue;
  1598. /* local and main table can share the same trie,
  1599. * so don't notify twice for the same entry.
  1600. */
  1601. if (tb->tb_id != fa->tb_id)
  1602. continue;
  1603. call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
  1604. KEYLENGTH - fa->fa_slen, fa);
  1605. }
  1606. }
  1607. static void fib_table_notify(struct net *net, struct fib_table *tb,
  1608. struct notifier_block *nb)
  1609. {
  1610. struct trie *t = (struct trie *)tb->tb_data;
  1611. struct key_vector *l, *tp = t->kv;
  1612. t_key key = 0;
  1613. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1614. fib_leaf_notify(net, l, tb, nb);
  1615. key = l->key + 1;
  1616. /* stop in case of wrap around */
  1617. if (key < l->key)
  1618. break;
  1619. }
  1620. }
  1621. void fib_notify(struct net *net, struct notifier_block *nb)
  1622. {
  1623. unsigned int h;
  1624. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1625. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1626. struct fib_table *tb;
  1627. hlist_for_each_entry_rcu(tb, head, tb_hlist)
  1628. fib_table_notify(net, tb, nb);
  1629. }
  1630. }
  1631. static void __trie_free_rcu(struct rcu_head *head)
  1632. {
  1633. struct fib_table *tb = container_of(head, struct fib_table, rcu);
  1634. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1635. struct trie *t = (struct trie *)tb->tb_data;
  1636. if (tb->tb_data == tb->__data)
  1637. free_percpu(t->stats);
  1638. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1639. kfree(tb);
  1640. }
  1641. void fib_free_table(struct fib_table *tb)
  1642. {
  1643. call_rcu(&tb->rcu, __trie_free_rcu);
  1644. }
  1645. static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
  1646. struct sk_buff *skb, struct netlink_callback *cb)
  1647. {
  1648. __be32 xkey = htonl(l->key);
  1649. struct fib_alias *fa;
  1650. int i, s_i;
  1651. s_i = cb->args[4];
  1652. i = 0;
  1653. /* rcu_read_lock is hold by caller */
  1654. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1655. int err;
  1656. if (i < s_i) {
  1657. i++;
  1658. continue;
  1659. }
  1660. if (tb->tb_id != fa->tb_id) {
  1661. i++;
  1662. continue;
  1663. }
  1664. err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
  1665. cb->nlh->nlmsg_seq, RTM_NEWROUTE,
  1666. tb->tb_id, fa->fa_type,
  1667. xkey, KEYLENGTH - fa->fa_slen,
  1668. fa->fa_tos, fa->fa_info, NLM_F_MULTI);
  1669. if (err < 0) {
  1670. cb->args[4] = i;
  1671. return err;
  1672. }
  1673. i++;
  1674. }
  1675. cb->args[4] = i;
  1676. return skb->len;
  1677. }
  1678. /* rcu_read_lock needs to be hold by caller from readside */
  1679. int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
  1680. struct netlink_callback *cb)
  1681. {
  1682. struct trie *t = (struct trie *)tb->tb_data;
  1683. struct key_vector *l, *tp = t->kv;
  1684. /* Dump starting at last key.
  1685. * Note: 0.0.0.0/0 (ie default) is first key.
  1686. */
  1687. int count = cb->args[2];
  1688. t_key key = cb->args[3];
  1689. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1690. int err;
  1691. err = fn_trie_dump_leaf(l, tb, skb, cb);
  1692. if (err < 0) {
  1693. cb->args[3] = key;
  1694. cb->args[2] = count;
  1695. return err;
  1696. }
  1697. ++count;
  1698. key = l->key + 1;
  1699. memset(&cb->args[4], 0,
  1700. sizeof(cb->args) - 4*sizeof(cb->args[0]));
  1701. /* stop loop if key wrapped back to 0 */
  1702. if (key < l->key)
  1703. break;
  1704. }
  1705. cb->args[3] = key;
  1706. cb->args[2] = count;
  1707. return skb->len;
  1708. }
  1709. void __init fib_trie_init(void)
  1710. {
  1711. fn_alias_kmem = kmem_cache_create("ip_fib_alias",
  1712. sizeof(struct fib_alias),
  1713. 0, SLAB_PANIC, NULL);
  1714. trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
  1715. LEAF_SIZE,
  1716. 0, SLAB_PANIC, NULL);
  1717. }
  1718. struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
  1719. {
  1720. struct fib_table *tb;
  1721. struct trie *t;
  1722. size_t sz = sizeof(*tb);
  1723. if (!alias)
  1724. sz += sizeof(struct trie);
  1725. tb = kzalloc(sz, GFP_KERNEL);
  1726. if (!tb)
  1727. return NULL;
  1728. tb->tb_id = id;
  1729. tb->tb_num_default = 0;
  1730. tb->tb_data = (alias ? alias->__data : tb->__data);
  1731. if (alias)
  1732. return tb;
  1733. t = (struct trie *) tb->tb_data;
  1734. t->kv[0].pos = KEYLENGTH;
  1735. t->kv[0].slen = KEYLENGTH;
  1736. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1737. t->stats = alloc_percpu(struct trie_use_stats);
  1738. if (!t->stats) {
  1739. kfree(tb);
  1740. tb = NULL;
  1741. }
  1742. #endif
  1743. return tb;
  1744. }
  1745. #ifdef CONFIG_PROC_FS
  1746. /* Depth first Trie walk iterator */
  1747. struct fib_trie_iter {
  1748. struct seq_net_private p;
  1749. struct fib_table *tb;
  1750. struct key_vector *tnode;
  1751. unsigned int index;
  1752. unsigned int depth;
  1753. };
  1754. static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
  1755. {
  1756. unsigned long cindex = iter->index;
  1757. struct key_vector *pn = iter->tnode;
  1758. t_key pkey;
  1759. pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
  1760. iter->tnode, iter->index, iter->depth);
  1761. while (!IS_TRIE(pn)) {
  1762. while (cindex < child_length(pn)) {
  1763. struct key_vector *n = get_child_rcu(pn, cindex++);
  1764. if (!n)
  1765. continue;
  1766. if (IS_LEAF(n)) {
  1767. iter->tnode = pn;
  1768. iter->index = cindex;
  1769. } else {
  1770. /* push down one level */
  1771. iter->tnode = n;
  1772. iter->index = 0;
  1773. ++iter->depth;
  1774. }
  1775. return n;
  1776. }
  1777. /* Current node exhausted, pop back up */
  1778. pkey = pn->key;
  1779. pn = node_parent_rcu(pn);
  1780. cindex = get_index(pkey, pn) + 1;
  1781. --iter->depth;
  1782. }
  1783. /* record root node so further searches know we are done */
  1784. iter->tnode = pn;
  1785. iter->index = 0;
  1786. return NULL;
  1787. }
  1788. static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
  1789. struct trie *t)
  1790. {
  1791. struct key_vector *n, *pn;
  1792. if (!t)
  1793. return NULL;
  1794. pn = t->kv;
  1795. n = rcu_dereference(pn->tnode[0]);
  1796. if (!n)
  1797. return NULL;
  1798. if (IS_TNODE(n)) {
  1799. iter->tnode = n;
  1800. iter->index = 0;
  1801. iter->depth = 1;
  1802. } else {
  1803. iter->tnode = pn;
  1804. iter->index = 0;
  1805. iter->depth = 0;
  1806. }
  1807. return n;
  1808. }
  1809. static void trie_collect_stats(struct trie *t, struct trie_stat *s)
  1810. {
  1811. struct key_vector *n;
  1812. struct fib_trie_iter iter;
  1813. memset(s, 0, sizeof(*s));
  1814. rcu_read_lock();
  1815. for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
  1816. if (IS_LEAF(n)) {
  1817. struct fib_alias *fa;
  1818. s->leaves++;
  1819. s->totdepth += iter.depth;
  1820. if (iter.depth > s->maxdepth)
  1821. s->maxdepth = iter.depth;
  1822. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
  1823. ++s->prefixes;
  1824. } else {
  1825. s->tnodes++;
  1826. if (n->bits < MAX_STAT_DEPTH)
  1827. s->nodesizes[n->bits]++;
  1828. s->nullpointers += tn_info(n)->empty_children;
  1829. }
  1830. }
  1831. rcu_read_unlock();
  1832. }
  1833. /*
  1834. * This outputs /proc/net/fib_triestats
  1835. */
  1836. static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
  1837. {
  1838. unsigned int i, max, pointers, bytes, avdepth;
  1839. if (stat->leaves)
  1840. avdepth = stat->totdepth*100 / stat->leaves;
  1841. else
  1842. avdepth = 0;
  1843. seq_printf(seq, "\tAver depth: %u.%02d\n",
  1844. avdepth / 100, avdepth % 100);
  1845. seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
  1846. seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
  1847. bytes = LEAF_SIZE * stat->leaves;
  1848. seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
  1849. bytes += sizeof(struct fib_alias) * stat->prefixes;
  1850. seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
  1851. bytes += TNODE_SIZE(0) * stat->tnodes;
  1852. max = MAX_STAT_DEPTH;
  1853. while (max > 0 && stat->nodesizes[max-1] == 0)
  1854. max--;
  1855. pointers = 0;
  1856. for (i = 1; i < max; i++)
  1857. if (stat->nodesizes[i] != 0) {
  1858. seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
  1859. pointers += (1<<i) * stat->nodesizes[i];
  1860. }
  1861. seq_putc(seq, '\n');
  1862. seq_printf(seq, "\tPointers: %u\n", pointers);
  1863. bytes += sizeof(struct key_vector *) * pointers;
  1864. seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
  1865. seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
  1866. }
  1867. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1868. static void trie_show_usage(struct seq_file *seq,
  1869. const struct trie_use_stats __percpu *stats)
  1870. {
  1871. struct trie_use_stats s = { 0 };
  1872. int cpu;
  1873. /* loop through all of the CPUs and gather up the stats */
  1874. for_each_possible_cpu(cpu) {
  1875. const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
  1876. s.gets += pcpu->gets;
  1877. s.backtrack += pcpu->backtrack;
  1878. s.semantic_match_passed += pcpu->semantic_match_passed;
  1879. s.semantic_match_miss += pcpu->semantic_match_miss;
  1880. s.null_node_hit += pcpu->null_node_hit;
  1881. s.resize_node_skipped += pcpu->resize_node_skipped;
  1882. }
  1883. seq_printf(seq, "\nCounters:\n---------\n");
  1884. seq_printf(seq, "gets = %u\n", s.gets);
  1885. seq_printf(seq, "backtracks = %u\n", s.backtrack);
  1886. seq_printf(seq, "semantic match passed = %u\n",
  1887. s.semantic_match_passed);
  1888. seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
  1889. seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
  1890. seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
  1891. }
  1892. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1893. static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
  1894. {
  1895. if (tb->tb_id == RT_TABLE_LOCAL)
  1896. seq_puts(seq, "Local:\n");
  1897. else if (tb->tb_id == RT_TABLE_MAIN)
  1898. seq_puts(seq, "Main:\n");
  1899. else
  1900. seq_printf(seq, "Id %d:\n", tb->tb_id);
  1901. }
  1902. static int fib_triestat_seq_show(struct seq_file *seq, void *v)
  1903. {
  1904. struct net *net = (struct net *)seq->private;
  1905. unsigned int h;
  1906. seq_printf(seq,
  1907. "Basic info: size of leaf:"
  1908. " %zd bytes, size of tnode: %zd bytes.\n",
  1909. LEAF_SIZE, TNODE_SIZE(0));
  1910. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1911. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1912. struct fib_table *tb;
  1913. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1914. struct trie *t = (struct trie *) tb->tb_data;
  1915. struct trie_stat stat;
  1916. if (!t)
  1917. continue;
  1918. fib_table_print(seq, tb);
  1919. trie_collect_stats(t, &stat);
  1920. trie_show_stats(seq, &stat);
  1921. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1922. trie_show_usage(seq, t->stats);
  1923. #endif
  1924. }
  1925. }
  1926. return 0;
  1927. }
  1928. static int fib_triestat_seq_open(struct inode *inode, struct file *file)
  1929. {
  1930. return single_open_net(inode, file, fib_triestat_seq_show);
  1931. }
  1932. static const struct file_operations fib_triestat_fops = {
  1933. .owner = THIS_MODULE,
  1934. .open = fib_triestat_seq_open,
  1935. .read = seq_read,
  1936. .llseek = seq_lseek,
  1937. .release = single_release_net,
  1938. };
  1939. static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
  1940. {
  1941. struct fib_trie_iter *iter = seq->private;
  1942. struct net *net = seq_file_net(seq);
  1943. loff_t idx = 0;
  1944. unsigned int h;
  1945. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1946. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1947. struct fib_table *tb;
  1948. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1949. struct key_vector *n;
  1950. for (n = fib_trie_get_first(iter,
  1951. (struct trie *) tb->tb_data);
  1952. n; n = fib_trie_get_next(iter))
  1953. if (pos == idx++) {
  1954. iter->tb = tb;
  1955. return n;
  1956. }
  1957. }
  1958. }
  1959. return NULL;
  1960. }
  1961. static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
  1962. __acquires(RCU)
  1963. {
  1964. rcu_read_lock();
  1965. return fib_trie_get_idx(seq, *pos);
  1966. }
  1967. static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1968. {
  1969. struct fib_trie_iter *iter = seq->private;
  1970. struct net *net = seq_file_net(seq);
  1971. struct fib_table *tb = iter->tb;
  1972. struct hlist_node *tb_node;
  1973. unsigned int h;
  1974. struct key_vector *n;
  1975. ++*pos;
  1976. /* next node in same table */
  1977. n = fib_trie_get_next(iter);
  1978. if (n)
  1979. return n;
  1980. /* walk rest of this hash chain */
  1981. h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
  1982. while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
  1983. tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
  1984. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  1985. if (n)
  1986. goto found;
  1987. }
  1988. /* new hash chain */
  1989. while (++h < FIB_TABLE_HASHSZ) {
  1990. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1991. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1992. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  1993. if (n)
  1994. goto found;
  1995. }
  1996. }
  1997. return NULL;
  1998. found:
  1999. iter->tb = tb;
  2000. return n;
  2001. }
  2002. static void fib_trie_seq_stop(struct seq_file *seq, void *v)
  2003. __releases(RCU)
  2004. {
  2005. rcu_read_unlock();
  2006. }
  2007. static void seq_indent(struct seq_file *seq, int n)
  2008. {
  2009. while (n-- > 0)
  2010. seq_puts(seq, " ");
  2011. }
  2012. static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
  2013. {
  2014. switch (s) {
  2015. case RT_SCOPE_UNIVERSE: return "universe";
  2016. case RT_SCOPE_SITE: return "site";
  2017. case RT_SCOPE_LINK: return "link";
  2018. case RT_SCOPE_HOST: return "host";
  2019. case RT_SCOPE_NOWHERE: return "nowhere";
  2020. default:
  2021. snprintf(buf, len, "scope=%d", s);
  2022. return buf;
  2023. }
  2024. }
  2025. static const char *const rtn_type_names[__RTN_MAX] = {
  2026. [RTN_UNSPEC] = "UNSPEC",
  2027. [RTN_UNICAST] = "UNICAST",
  2028. [RTN_LOCAL] = "LOCAL",
  2029. [RTN_BROADCAST] = "BROADCAST",
  2030. [RTN_ANYCAST] = "ANYCAST",
  2031. [RTN_MULTICAST] = "MULTICAST",
  2032. [RTN_BLACKHOLE] = "BLACKHOLE",
  2033. [RTN_UNREACHABLE] = "UNREACHABLE",
  2034. [RTN_PROHIBIT] = "PROHIBIT",
  2035. [RTN_THROW] = "THROW",
  2036. [RTN_NAT] = "NAT",
  2037. [RTN_XRESOLVE] = "XRESOLVE",
  2038. };
  2039. static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
  2040. {
  2041. if (t < __RTN_MAX && rtn_type_names[t])
  2042. return rtn_type_names[t];
  2043. snprintf(buf, len, "type %u", t);
  2044. return buf;
  2045. }
  2046. /* Pretty print the trie */
  2047. static int fib_trie_seq_show(struct seq_file *seq, void *v)
  2048. {
  2049. const struct fib_trie_iter *iter = seq->private;
  2050. struct key_vector *n = v;
  2051. if (IS_TRIE(node_parent_rcu(n)))
  2052. fib_table_print(seq, iter->tb);
  2053. if (IS_TNODE(n)) {
  2054. __be32 prf = htonl(n->key);
  2055. seq_indent(seq, iter->depth-1);
  2056. seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
  2057. &prf, KEYLENGTH - n->pos - n->bits, n->bits,
  2058. tn_info(n)->full_children,
  2059. tn_info(n)->empty_children);
  2060. } else {
  2061. __be32 val = htonl(n->key);
  2062. struct fib_alias *fa;
  2063. seq_indent(seq, iter->depth);
  2064. seq_printf(seq, " |-- %pI4\n", &val);
  2065. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  2066. char buf1[32], buf2[32];
  2067. seq_indent(seq, iter->depth + 1);
  2068. seq_printf(seq, " /%zu %s %s",
  2069. KEYLENGTH - fa->fa_slen,
  2070. rtn_scope(buf1, sizeof(buf1),
  2071. fa->fa_info->fib_scope),
  2072. rtn_type(buf2, sizeof(buf2),
  2073. fa->fa_type));
  2074. if (fa->fa_tos)
  2075. seq_printf(seq, " tos=%d", fa->fa_tos);
  2076. seq_putc(seq, '\n');
  2077. }
  2078. }
  2079. return 0;
  2080. }
  2081. static const struct seq_operations fib_trie_seq_ops = {
  2082. .start = fib_trie_seq_start,
  2083. .next = fib_trie_seq_next,
  2084. .stop = fib_trie_seq_stop,
  2085. .show = fib_trie_seq_show,
  2086. };
  2087. static int fib_trie_seq_open(struct inode *inode, struct file *file)
  2088. {
  2089. return seq_open_net(inode, file, &fib_trie_seq_ops,
  2090. sizeof(struct fib_trie_iter));
  2091. }
  2092. static const struct file_operations fib_trie_fops = {
  2093. .owner = THIS_MODULE,
  2094. .open = fib_trie_seq_open,
  2095. .read = seq_read,
  2096. .llseek = seq_lseek,
  2097. .release = seq_release_net,
  2098. };
  2099. struct fib_route_iter {
  2100. struct seq_net_private p;
  2101. struct fib_table *main_tb;
  2102. struct key_vector *tnode;
  2103. loff_t pos;
  2104. t_key key;
  2105. };
  2106. static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
  2107. loff_t pos)
  2108. {
  2109. struct key_vector *l, **tp = &iter->tnode;
  2110. t_key key;
  2111. /* use cached location of previously found key */
  2112. if (iter->pos > 0 && pos >= iter->pos) {
  2113. key = iter->key;
  2114. } else {
  2115. iter->pos = 1;
  2116. key = 0;
  2117. }
  2118. pos -= iter->pos;
  2119. while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
  2120. key = l->key + 1;
  2121. iter->pos++;
  2122. l = NULL;
  2123. /* handle unlikely case of a key wrap */
  2124. if (!key)
  2125. break;
  2126. }
  2127. if (l)
  2128. iter->key = l->key; /* remember it */
  2129. else
  2130. iter->pos = 0; /* forget it */
  2131. return l;
  2132. }
  2133. static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
  2134. __acquires(RCU)
  2135. {
  2136. struct fib_route_iter *iter = seq->private;
  2137. struct fib_table *tb;
  2138. struct trie *t;
  2139. rcu_read_lock();
  2140. tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
  2141. if (!tb)
  2142. return NULL;
  2143. iter->main_tb = tb;
  2144. t = (struct trie *)tb->tb_data;
  2145. iter->tnode = t->kv;
  2146. if (*pos != 0)
  2147. return fib_route_get_idx(iter, *pos);
  2148. iter->pos = 0;
  2149. iter->key = KEY_MAX;
  2150. return SEQ_START_TOKEN;
  2151. }
  2152. static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2153. {
  2154. struct fib_route_iter *iter = seq->private;
  2155. struct key_vector *l = NULL;
  2156. t_key key = iter->key + 1;
  2157. ++*pos;
  2158. /* only allow key of 0 for start of sequence */
  2159. if ((v == SEQ_START_TOKEN) || key)
  2160. l = leaf_walk_rcu(&iter->tnode, key);
  2161. if (l) {
  2162. iter->key = l->key;
  2163. iter->pos++;
  2164. } else {
  2165. iter->pos = 0;
  2166. }
  2167. return l;
  2168. }
  2169. static void fib_route_seq_stop(struct seq_file *seq, void *v)
  2170. __releases(RCU)
  2171. {
  2172. rcu_read_unlock();
  2173. }
  2174. static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
  2175. {
  2176. unsigned int flags = 0;
  2177. if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
  2178. flags = RTF_REJECT;
  2179. if (fi && fi->fib_nh->nh_gw)
  2180. flags |= RTF_GATEWAY;
  2181. if (mask == htonl(0xFFFFFFFF))
  2182. flags |= RTF_HOST;
  2183. flags |= RTF_UP;
  2184. return flags;
  2185. }
  2186. /*
  2187. * This outputs /proc/net/route.
  2188. * The format of the file is not supposed to be changed
  2189. * and needs to be same as fib_hash output to avoid breaking
  2190. * legacy utilities
  2191. */
  2192. static int fib_route_seq_show(struct seq_file *seq, void *v)
  2193. {
  2194. struct fib_route_iter *iter = seq->private;
  2195. struct fib_table *tb = iter->main_tb;
  2196. struct fib_alias *fa;
  2197. struct key_vector *l = v;
  2198. __be32 prefix;
  2199. if (v == SEQ_START_TOKEN) {
  2200. seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
  2201. "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
  2202. "\tWindow\tIRTT");
  2203. return 0;
  2204. }
  2205. prefix = htonl(l->key);
  2206. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  2207. const struct fib_info *fi = fa->fa_info;
  2208. __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
  2209. unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
  2210. if ((fa->fa_type == RTN_BROADCAST) ||
  2211. (fa->fa_type == RTN_MULTICAST))
  2212. continue;
  2213. if (fa->tb_id != tb->tb_id)
  2214. continue;
  2215. seq_setwidth(seq, 127);
  2216. if (fi)
  2217. seq_printf(seq,
  2218. "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
  2219. "%d\t%08X\t%d\t%u\t%u",
  2220. fi->fib_dev ? fi->fib_dev->name : "*",
  2221. prefix,
  2222. fi->fib_nh->nh_gw, flags, 0, 0,
  2223. fi->fib_priority,
  2224. mask,
  2225. (fi->fib_advmss ?
  2226. fi->fib_advmss + 40 : 0),
  2227. fi->fib_window,
  2228. fi->fib_rtt >> 3);
  2229. else
  2230. seq_printf(seq,
  2231. "*\t%08X\t%08X\t%04X\t%d\t%u\t"
  2232. "%d\t%08X\t%d\t%u\t%u",
  2233. prefix, 0, flags, 0, 0, 0,
  2234. mask, 0, 0, 0);
  2235. seq_pad(seq, '\n');
  2236. }
  2237. return 0;
  2238. }
  2239. static const struct seq_operations fib_route_seq_ops = {
  2240. .start = fib_route_seq_start,
  2241. .next = fib_route_seq_next,
  2242. .stop = fib_route_seq_stop,
  2243. .show = fib_route_seq_show,
  2244. };
  2245. static int fib_route_seq_open(struct inode *inode, struct file *file)
  2246. {
  2247. return seq_open_net(inode, file, &fib_route_seq_ops,
  2248. sizeof(struct fib_route_iter));
  2249. }
  2250. static const struct file_operations fib_route_fops = {
  2251. .owner = THIS_MODULE,
  2252. .open = fib_route_seq_open,
  2253. .read = seq_read,
  2254. .llseek = seq_lseek,
  2255. .release = seq_release_net,
  2256. };
  2257. int __net_init fib_proc_init(struct net *net)
  2258. {
  2259. if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
  2260. goto out1;
  2261. if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
  2262. &fib_triestat_fops))
  2263. goto out2;
  2264. if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
  2265. goto out3;
  2266. return 0;
  2267. out3:
  2268. remove_proc_entry("fib_triestat", net->proc_net);
  2269. out2:
  2270. remove_proc_entry("fib_trie", net->proc_net);
  2271. out1:
  2272. return -ENOMEM;
  2273. }
  2274. void __net_exit fib_proc_exit(struct net *net)
  2275. {
  2276. remove_proc_entry("fib_trie", net->proc_net);
  2277. remove_proc_entry("fib_triestat", net->proc_net);
  2278. remove_proc_entry("route", net->proc_net);
  2279. }
  2280. #endif /* CONFIG_PROC_FS */