intel_ringbuffer.h 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594
  1. #ifndef _INTEL_RINGBUFFER_H_
  2. #define _INTEL_RINGBUFFER_H_
  3. #include <linux/hashtable.h>
  4. #include "i915_gem_batch_pool.h"
  5. #include "i915_gem_request.h"
  6. #include "i915_gem_timeline.h"
  7. #define I915_CMD_HASH_ORDER 9
  8. /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  9. * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  10. * to give some inclination as to some of the magic values used in the various
  11. * workarounds!
  12. */
  13. #define CACHELINE_BYTES 64
  14. #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
  15. /*
  16. * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
  17. * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
  18. * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
  19. *
  20. * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
  21. * cacheline, the Head Pointer must not be greater than the Tail
  22. * Pointer."
  23. */
  24. #define I915_RING_FREE_SPACE 64
  25. struct intel_hw_status_page {
  26. struct i915_vma *vma;
  27. u32 *page_addr;
  28. u32 ggtt_offset;
  29. };
  30. #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
  31. #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
  32. #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
  33. #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
  34. #define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
  35. #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
  36. #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
  37. #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
  38. #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
  39. #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
  40. #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
  41. #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
  42. /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
  43. * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
  44. */
  45. #define gen8_semaphore_seqno_size sizeof(uint64_t)
  46. #define GEN8_SEMAPHORE_OFFSET(__from, __to) \
  47. (((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
  48. #define GEN8_SIGNAL_OFFSET(__ring, to) \
  49. (dev_priv->semaphore->node.start + \
  50. GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
  51. #define GEN8_WAIT_OFFSET(__ring, from) \
  52. (dev_priv->semaphore->node.start + \
  53. GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
  54. enum intel_engine_hangcheck_action {
  55. HANGCHECK_IDLE = 0,
  56. HANGCHECK_WAIT,
  57. HANGCHECK_ACTIVE_SEQNO,
  58. HANGCHECK_ACTIVE_HEAD,
  59. HANGCHECK_ACTIVE_SUBUNITS,
  60. HANGCHECK_KICK,
  61. HANGCHECK_HUNG,
  62. };
  63. #define HANGCHECK_SCORE_RING_HUNG 31
  64. #define I915_MAX_SLICES 3
  65. #define I915_MAX_SUBSLICES 3
  66. #define instdone_slice_mask(dev_priv__) \
  67. (INTEL_GEN(dev_priv__) == 7 ? \
  68. 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
  69. #define instdone_subslice_mask(dev_priv__) \
  70. (INTEL_GEN(dev_priv__) == 7 ? \
  71. 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
  72. #define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
  73. for ((slice__) = 0, (subslice__) = 0; \
  74. (slice__) < I915_MAX_SLICES; \
  75. (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
  76. (slice__) += ((subslice__) == 0)) \
  77. for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
  78. (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
  79. struct intel_instdone {
  80. u32 instdone;
  81. /* The following exist only in the RCS engine */
  82. u32 slice_common;
  83. u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
  84. u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
  85. };
  86. struct intel_engine_hangcheck {
  87. u64 acthd;
  88. u32 seqno;
  89. int score;
  90. enum intel_engine_hangcheck_action action;
  91. int deadlock;
  92. struct intel_instdone instdone;
  93. };
  94. struct intel_ring {
  95. struct i915_vma *vma;
  96. void *vaddr;
  97. struct intel_engine_cs *engine;
  98. struct list_head request_list;
  99. u32 head;
  100. u32 tail;
  101. int space;
  102. int size;
  103. int effective_size;
  104. /** We track the position of the requests in the ring buffer, and
  105. * when each is retired we increment last_retired_head as the GPU
  106. * must have finished processing the request and so we know we
  107. * can advance the ringbuffer up to that position.
  108. *
  109. * last_retired_head is set to -1 after the value is consumed so
  110. * we can detect new retirements.
  111. */
  112. u32 last_retired_head;
  113. };
  114. struct i915_gem_context;
  115. struct drm_i915_reg_table;
  116. /*
  117. * we use a single page to load ctx workarounds so all of these
  118. * values are referred in terms of dwords
  119. *
  120. * struct i915_wa_ctx_bb:
  121. * offset: specifies batch starting position, also helpful in case
  122. * if we want to have multiple batches at different offsets based on
  123. * some criteria. It is not a requirement at the moment but provides
  124. * an option for future use.
  125. * size: size of the batch in DWORDS
  126. */
  127. struct i915_ctx_workarounds {
  128. struct i915_wa_ctx_bb {
  129. u32 offset;
  130. u32 size;
  131. } indirect_ctx, per_ctx;
  132. struct i915_vma *vma;
  133. };
  134. struct drm_i915_gem_request;
  135. struct intel_render_state;
  136. struct intel_engine_cs {
  137. struct drm_i915_private *i915;
  138. const char *name;
  139. enum intel_engine_id {
  140. RCS = 0,
  141. BCS,
  142. VCS,
  143. VCS2, /* Keep instances of the same type engine together. */
  144. VECS
  145. } id;
  146. #define _VCS(n) (VCS + (n))
  147. unsigned int exec_id;
  148. enum intel_engine_hw_id {
  149. RCS_HW = 0,
  150. VCS_HW,
  151. BCS_HW,
  152. VECS_HW,
  153. VCS2_HW
  154. } hw_id;
  155. enum intel_engine_hw_id guc_id; /* XXX same as hw_id? */
  156. u32 mmio_base;
  157. unsigned int irq_shift;
  158. struct intel_ring *buffer;
  159. struct intel_timeline *timeline;
  160. struct intel_render_state *render_state;
  161. /* Rather than have every client wait upon all user interrupts,
  162. * with the herd waking after every interrupt and each doing the
  163. * heavyweight seqno dance, we delegate the task (of being the
  164. * bottom-half of the user interrupt) to the first client. After
  165. * every interrupt, we wake up one client, who does the heavyweight
  166. * coherent seqno read and either goes back to sleep (if incomplete),
  167. * or wakes up all the completed clients in parallel, before then
  168. * transferring the bottom-half status to the next client in the queue.
  169. *
  170. * Compared to walking the entire list of waiters in a single dedicated
  171. * bottom-half, we reduce the latency of the first waiter by avoiding
  172. * a context switch, but incur additional coherent seqno reads when
  173. * following the chain of request breadcrumbs. Since it is most likely
  174. * that we have a single client waiting on each seqno, then reducing
  175. * the overhead of waking that client is much preferred.
  176. */
  177. struct intel_breadcrumbs {
  178. struct task_struct __rcu *irq_seqno_bh; /* bh for interrupts */
  179. bool irq_posted;
  180. spinlock_t lock; /* protects the lists of requests; irqsafe */
  181. struct rb_root waiters; /* sorted by retirement, priority */
  182. struct rb_root signals; /* sorted by retirement */
  183. struct intel_wait *first_wait; /* oldest waiter by retirement */
  184. struct task_struct *signaler; /* used for fence signalling */
  185. struct drm_i915_gem_request *first_signal;
  186. struct timer_list fake_irq; /* used after a missed interrupt */
  187. struct timer_list hangcheck; /* detect missed interrupts */
  188. unsigned long timeout;
  189. bool irq_enabled : 1;
  190. bool rpm_wakelock : 1;
  191. } breadcrumbs;
  192. /*
  193. * A pool of objects to use as shadow copies of client batch buffers
  194. * when the command parser is enabled. Prevents the client from
  195. * modifying the batch contents after software parsing.
  196. */
  197. struct i915_gem_batch_pool batch_pool;
  198. struct intel_hw_status_page status_page;
  199. struct i915_ctx_workarounds wa_ctx;
  200. struct i915_vma *scratch;
  201. u32 irq_keep_mask; /* always keep these interrupts */
  202. u32 irq_enable_mask; /* bitmask to enable ring interrupt */
  203. void (*irq_enable)(struct intel_engine_cs *engine);
  204. void (*irq_disable)(struct intel_engine_cs *engine);
  205. int (*init_hw)(struct intel_engine_cs *engine);
  206. void (*reset_hw)(struct intel_engine_cs *engine,
  207. struct drm_i915_gem_request *req);
  208. int (*init_context)(struct drm_i915_gem_request *req);
  209. int (*emit_flush)(struct drm_i915_gem_request *request,
  210. u32 mode);
  211. #define EMIT_INVALIDATE BIT(0)
  212. #define EMIT_FLUSH BIT(1)
  213. #define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
  214. int (*emit_bb_start)(struct drm_i915_gem_request *req,
  215. u64 offset, u32 length,
  216. unsigned int dispatch_flags);
  217. #define I915_DISPATCH_SECURE BIT(0)
  218. #define I915_DISPATCH_PINNED BIT(1)
  219. #define I915_DISPATCH_RS BIT(2)
  220. void (*emit_breadcrumb)(struct drm_i915_gem_request *req,
  221. u32 *out);
  222. int emit_breadcrumb_sz;
  223. /* Pass the request to the hardware queue (e.g. directly into
  224. * the legacy ringbuffer or to the end of an execlist).
  225. *
  226. * This is called from an atomic context with irqs disabled; must
  227. * be irq safe.
  228. */
  229. void (*submit_request)(struct drm_i915_gem_request *req);
  230. /* Call when the priority on a request has changed and it and its
  231. * dependencies may need rescheduling. Note the request itself may
  232. * not be ready to run!
  233. *
  234. * Called under the struct_mutex.
  235. */
  236. void (*schedule)(struct drm_i915_gem_request *request,
  237. int priority);
  238. /* Some chipsets are not quite as coherent as advertised and need
  239. * an expensive kick to force a true read of the up-to-date seqno.
  240. * However, the up-to-date seqno is not always required and the last
  241. * seen value is good enough. Note that the seqno will always be
  242. * monotonic, even if not coherent.
  243. */
  244. void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
  245. void (*cleanup)(struct intel_engine_cs *engine);
  246. /* GEN8 signal/wait table - never trust comments!
  247. * signal to signal to signal to signal to signal to
  248. * RCS VCS BCS VECS VCS2
  249. * --------------------------------------------------------------------
  250. * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
  251. * |-------------------------------------------------------------------
  252. * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
  253. * |-------------------------------------------------------------------
  254. * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
  255. * |-------------------------------------------------------------------
  256. * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
  257. * |-------------------------------------------------------------------
  258. * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
  259. * |-------------------------------------------------------------------
  260. *
  261. * Generalization:
  262. * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
  263. * ie. transpose of g(x, y)
  264. *
  265. * sync from sync from sync from sync from sync from
  266. * RCS VCS BCS VECS VCS2
  267. * --------------------------------------------------------------------
  268. * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
  269. * |-------------------------------------------------------------------
  270. * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
  271. * |-------------------------------------------------------------------
  272. * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
  273. * |-------------------------------------------------------------------
  274. * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
  275. * |-------------------------------------------------------------------
  276. * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
  277. * |-------------------------------------------------------------------
  278. *
  279. * Generalization:
  280. * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
  281. * ie. transpose of f(x, y)
  282. */
  283. struct {
  284. union {
  285. #define GEN6_SEMAPHORE_LAST VECS_HW
  286. #define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1)
  287. #define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0)
  288. struct {
  289. /* our mbox written by others */
  290. u32 wait[GEN6_NUM_SEMAPHORES];
  291. /* mboxes this ring signals to */
  292. i915_reg_t signal[GEN6_NUM_SEMAPHORES];
  293. } mbox;
  294. u64 signal_ggtt[I915_NUM_ENGINES];
  295. };
  296. /* AKA wait() */
  297. int (*sync_to)(struct drm_i915_gem_request *req,
  298. struct drm_i915_gem_request *signal);
  299. u32 *(*signal)(struct drm_i915_gem_request *req, u32 *out);
  300. } semaphore;
  301. /* Execlists */
  302. struct tasklet_struct irq_tasklet;
  303. struct execlist_port {
  304. struct drm_i915_gem_request *request;
  305. unsigned int count;
  306. } execlist_port[2];
  307. struct rb_root execlist_queue;
  308. struct rb_node *execlist_first;
  309. unsigned int fw_domains;
  310. bool disable_lite_restore_wa;
  311. bool preempt_wa;
  312. u32 ctx_desc_template;
  313. struct i915_gem_context *last_context;
  314. struct intel_engine_hangcheck hangcheck;
  315. bool needs_cmd_parser;
  316. /*
  317. * Table of commands the command parser needs to know about
  318. * for this engine.
  319. */
  320. DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
  321. /*
  322. * Table of registers allowed in commands that read/write registers.
  323. */
  324. const struct drm_i915_reg_table *reg_tables;
  325. int reg_table_count;
  326. /*
  327. * Returns the bitmask for the length field of the specified command.
  328. * Return 0 for an unrecognized/invalid command.
  329. *
  330. * If the command parser finds an entry for a command in the engine's
  331. * cmd_tables, it gets the command's length based on the table entry.
  332. * If not, it calls this function to determine the per-engine length
  333. * field encoding for the command (i.e. different opcode ranges use
  334. * certain bits to encode the command length in the header).
  335. */
  336. u32 (*get_cmd_length_mask)(u32 cmd_header);
  337. };
  338. static inline unsigned
  339. intel_engine_flag(const struct intel_engine_cs *engine)
  340. {
  341. return 1 << engine->id;
  342. }
  343. static inline void
  344. intel_flush_status_page(struct intel_engine_cs *engine, int reg)
  345. {
  346. mb();
  347. clflush(&engine->status_page.page_addr[reg]);
  348. mb();
  349. }
  350. static inline u32
  351. intel_read_status_page(struct intel_engine_cs *engine, int reg)
  352. {
  353. /* Ensure that the compiler doesn't optimize away the load. */
  354. return READ_ONCE(engine->status_page.page_addr[reg]);
  355. }
  356. static inline void
  357. intel_write_status_page(struct intel_engine_cs *engine,
  358. int reg, u32 value)
  359. {
  360. engine->status_page.page_addr[reg] = value;
  361. }
  362. /*
  363. * Reads a dword out of the status page, which is written to from the command
  364. * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
  365. * MI_STORE_DATA_IMM.
  366. *
  367. * The following dwords have a reserved meaning:
  368. * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
  369. * 0x04: ring 0 head pointer
  370. * 0x05: ring 1 head pointer (915-class)
  371. * 0x06: ring 2 head pointer (915-class)
  372. * 0x10-0x1b: Context status DWords (GM45)
  373. * 0x1f: Last written status offset. (GM45)
  374. * 0x20-0x2f: Reserved (Gen6+)
  375. *
  376. * The area from dword 0x30 to 0x3ff is available for driver usage.
  377. */
  378. #define I915_GEM_HWS_INDEX 0x30
  379. #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
  380. #define I915_GEM_HWS_SCRATCH_INDEX 0x40
  381. #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
  382. struct intel_ring *
  383. intel_engine_create_ring(struct intel_engine_cs *engine, int size);
  384. int intel_ring_pin(struct intel_ring *ring);
  385. void intel_ring_unpin(struct intel_ring *ring);
  386. void intel_ring_free(struct intel_ring *ring);
  387. void intel_engine_stop(struct intel_engine_cs *engine);
  388. void intel_engine_cleanup(struct intel_engine_cs *engine);
  389. void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
  390. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);
  391. int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
  392. int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
  393. static inline void intel_ring_emit(struct intel_ring *ring, u32 data)
  394. {
  395. *(uint32_t *)(ring->vaddr + ring->tail) = data;
  396. ring->tail += 4;
  397. }
  398. static inline void intel_ring_emit_reg(struct intel_ring *ring, i915_reg_t reg)
  399. {
  400. intel_ring_emit(ring, i915_mmio_reg_offset(reg));
  401. }
  402. static inline void intel_ring_advance(struct intel_ring *ring)
  403. {
  404. /* Dummy function.
  405. *
  406. * This serves as a placeholder in the code so that the reader
  407. * can compare against the preceding intel_ring_begin() and
  408. * check that the number of dwords emitted matches the space
  409. * reserved for the command packet (i.e. the value passed to
  410. * intel_ring_begin()).
  411. */
  412. }
  413. static inline u32 intel_ring_offset(struct intel_ring *ring, void *addr)
  414. {
  415. /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
  416. u32 offset = addr - ring->vaddr;
  417. return offset & (ring->size - 1);
  418. }
  419. int __intel_ring_space(int head, int tail, int size);
  420. void intel_ring_update_space(struct intel_ring *ring);
  421. void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
  422. void intel_engine_setup_common(struct intel_engine_cs *engine);
  423. int intel_engine_init_common(struct intel_engine_cs *engine);
  424. int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
  425. void intel_engine_cleanup_common(struct intel_engine_cs *engine);
  426. int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
  427. int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
  428. int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
  429. int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
  430. int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
  431. u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
  432. u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);
  433. static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
  434. {
  435. return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
  436. }
  437. static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
  438. {
  439. /* We are only peeking at the tail of the submit queue (and not the
  440. * queue itself) in order to gain a hint as to the current active
  441. * state of the engine. Callers are not expected to be taking
  442. * engine->timeline->lock, nor are they expected to be concerned
  443. * wtih serialising this hint with anything, so document it as
  444. * a hint and nothing more.
  445. */
  446. return READ_ONCE(engine->timeline->last_submitted_seqno);
  447. }
  448. int init_workarounds_ring(struct intel_engine_cs *engine);
  449. void intel_engine_get_instdone(struct intel_engine_cs *engine,
  450. struct intel_instdone *instdone);
  451. /*
  452. * Arbitrary size for largest possible 'add request' sequence. The code paths
  453. * are complex and variable. Empirical measurement shows that the worst case
  454. * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
  455. * we need to allocate double the largest single packet within that emission
  456. * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
  457. */
  458. #define MIN_SPACE_FOR_ADD_REQUEST 336
  459. static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
  460. {
  461. return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
  462. }
  463. /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
  464. int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
  465. static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
  466. {
  467. wait->tsk = current;
  468. wait->seqno = seqno;
  469. }
  470. static inline bool intel_wait_complete(const struct intel_wait *wait)
  471. {
  472. return RB_EMPTY_NODE(&wait->node);
  473. }
  474. bool intel_engine_add_wait(struct intel_engine_cs *engine,
  475. struct intel_wait *wait);
  476. void intel_engine_remove_wait(struct intel_engine_cs *engine,
  477. struct intel_wait *wait);
  478. void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
  479. static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
  480. {
  481. return rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh);
  482. }
  483. static inline bool intel_engine_wakeup(const struct intel_engine_cs *engine)
  484. {
  485. bool wakeup = false;
  486. /* Note that for this not to dangerously chase a dangling pointer,
  487. * we must hold the rcu_read_lock here.
  488. *
  489. * Also note that tsk is likely to be in !TASK_RUNNING state so an
  490. * early test for tsk->state != TASK_RUNNING before wake_up_process()
  491. * is unlikely to be beneficial.
  492. */
  493. if (intel_engine_has_waiter(engine)) {
  494. struct task_struct *tsk;
  495. rcu_read_lock();
  496. tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
  497. if (tsk)
  498. wakeup = wake_up_process(tsk);
  499. rcu_read_unlock();
  500. }
  501. return wakeup;
  502. }
  503. void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
  504. void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
  505. unsigned int intel_breadcrumbs_busy(struct drm_i915_private *i915);
  506. #endif /* _INTEL_RINGBUFFER_H_ */