inline.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522
  1. /*
  2. * fs/f2fs/inline.c
  3. * Copyright (c) 2013, Intel Corporation
  4. * Authors: Huajun Li <huajun.li@intel.com>
  5. * Haicheng Li <haicheng.li@intel.com>
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/fs.h>
  11. #include <linux/f2fs_fs.h>
  12. #include "f2fs.h"
  13. bool f2fs_may_inline(struct inode *inode)
  14. {
  15. if (!test_opt(F2FS_I_SB(inode), INLINE_DATA))
  16. return false;
  17. if (f2fs_is_atomic_file(inode))
  18. return false;
  19. if (!S_ISREG(inode->i_mode))
  20. return false;
  21. if (i_size_read(inode) > MAX_INLINE_DATA)
  22. return false;
  23. return true;
  24. }
  25. void read_inline_data(struct page *page, struct page *ipage)
  26. {
  27. void *src_addr, *dst_addr;
  28. if (PageUptodate(page))
  29. return;
  30. f2fs_bug_on(F2FS_P_SB(page), page->index);
  31. zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
  32. /* Copy the whole inline data block */
  33. src_addr = inline_data_addr(ipage);
  34. dst_addr = kmap_atomic(page);
  35. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  36. flush_dcache_page(page);
  37. kunmap_atomic(dst_addr);
  38. SetPageUptodate(page);
  39. }
  40. int f2fs_read_inline_data(struct inode *inode, struct page *page)
  41. {
  42. struct page *ipage;
  43. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  44. if (IS_ERR(ipage)) {
  45. unlock_page(page);
  46. return PTR_ERR(ipage);
  47. }
  48. if (!f2fs_has_inline_data(inode)) {
  49. f2fs_put_page(ipage, 1);
  50. return -EAGAIN;
  51. }
  52. if (page->index)
  53. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  54. else
  55. read_inline_data(page, ipage);
  56. SetPageUptodate(page);
  57. f2fs_put_page(ipage, 1);
  58. unlock_page(page);
  59. return 0;
  60. }
  61. int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
  62. {
  63. void *src_addr, *dst_addr;
  64. block_t new_blk_addr;
  65. struct f2fs_io_info fio = {
  66. .type = DATA,
  67. .rw = WRITE_SYNC | REQ_PRIO,
  68. };
  69. int err;
  70. f2fs_bug_on(F2FS_I_SB(dn->inode), page->index);
  71. if (!f2fs_exist_data(dn->inode))
  72. goto clear_out;
  73. err = f2fs_reserve_block(dn, 0);
  74. if (err)
  75. return err;
  76. f2fs_wait_on_page_writeback(page, DATA);
  77. if (PageUptodate(page))
  78. goto no_update;
  79. zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
  80. /* Copy the whole inline data block */
  81. src_addr = inline_data_addr(dn->inode_page);
  82. dst_addr = kmap_atomic(page);
  83. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  84. kunmap_atomic(dst_addr);
  85. SetPageUptodate(page);
  86. no_update:
  87. /* write data page to try to make data consistent */
  88. set_page_writeback(page);
  89. write_data_page(page, dn, &new_blk_addr, &fio);
  90. update_extent_cache(new_blk_addr, dn);
  91. f2fs_wait_on_page_writeback(page, DATA);
  92. /* clear inline data and flag after data writeback */
  93. truncate_inline_data(dn->inode_page, 0);
  94. clear_out:
  95. stat_dec_inline_inode(dn->inode);
  96. f2fs_clear_inline_inode(dn->inode);
  97. sync_inode_page(dn);
  98. f2fs_put_dnode(dn);
  99. return 0;
  100. }
  101. int f2fs_convert_inline_inode(struct inode *inode)
  102. {
  103. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  104. struct dnode_of_data dn;
  105. struct page *ipage, *page;
  106. int err = 0;
  107. page = grab_cache_page(inode->i_mapping, 0);
  108. if (!page)
  109. return -ENOMEM;
  110. f2fs_lock_op(sbi);
  111. ipage = get_node_page(sbi, inode->i_ino);
  112. if (IS_ERR(ipage)) {
  113. err = PTR_ERR(ipage);
  114. goto out;
  115. }
  116. set_new_dnode(&dn, inode, ipage, ipage, 0);
  117. if (f2fs_has_inline_data(inode))
  118. err = f2fs_convert_inline_page(&dn, page);
  119. f2fs_put_dnode(&dn);
  120. out:
  121. f2fs_unlock_op(sbi);
  122. f2fs_put_page(page, 1);
  123. return err;
  124. }
  125. int f2fs_write_inline_data(struct inode *inode, struct page *page)
  126. {
  127. void *src_addr, *dst_addr;
  128. struct dnode_of_data dn;
  129. int err;
  130. set_new_dnode(&dn, inode, NULL, NULL, 0);
  131. err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
  132. if (err)
  133. return err;
  134. if (!f2fs_has_inline_data(inode)) {
  135. f2fs_put_dnode(&dn);
  136. return -EAGAIN;
  137. }
  138. f2fs_bug_on(F2FS_I_SB(inode), page->index);
  139. f2fs_wait_on_page_writeback(dn.inode_page, NODE);
  140. src_addr = kmap_atomic(page);
  141. dst_addr = inline_data_addr(dn.inode_page);
  142. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  143. kunmap_atomic(src_addr);
  144. set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
  145. set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
  146. sync_inode_page(&dn);
  147. f2fs_put_dnode(&dn);
  148. return 0;
  149. }
  150. void truncate_inline_data(struct page *ipage, u64 from)
  151. {
  152. void *addr;
  153. if (from >= MAX_INLINE_DATA)
  154. return;
  155. f2fs_wait_on_page_writeback(ipage, NODE);
  156. addr = inline_data_addr(ipage);
  157. memset(addr + from, 0, MAX_INLINE_DATA - from);
  158. }
  159. bool recover_inline_data(struct inode *inode, struct page *npage)
  160. {
  161. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  162. struct f2fs_inode *ri = NULL;
  163. void *src_addr, *dst_addr;
  164. struct page *ipage;
  165. /*
  166. * The inline_data recovery policy is as follows.
  167. * [prev.] [next] of inline_data flag
  168. * o o -> recover inline_data
  169. * o x -> remove inline_data, and then recover data blocks
  170. * x o -> remove inline_data, and then recover inline_data
  171. * x x -> recover data blocks
  172. */
  173. if (IS_INODE(npage))
  174. ri = F2FS_INODE(npage);
  175. if (f2fs_has_inline_data(inode) &&
  176. ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  177. process_inline:
  178. ipage = get_node_page(sbi, inode->i_ino);
  179. f2fs_bug_on(sbi, IS_ERR(ipage));
  180. f2fs_wait_on_page_writeback(ipage, NODE);
  181. src_addr = inline_data_addr(npage);
  182. dst_addr = inline_data_addr(ipage);
  183. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  184. set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
  185. set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
  186. update_inode(inode, ipage);
  187. f2fs_put_page(ipage, 1);
  188. return true;
  189. }
  190. if (f2fs_has_inline_data(inode)) {
  191. ipage = get_node_page(sbi, inode->i_ino);
  192. f2fs_bug_on(sbi, IS_ERR(ipage));
  193. truncate_inline_data(ipage, 0);
  194. f2fs_clear_inline_inode(inode);
  195. update_inode(inode, ipage);
  196. f2fs_put_page(ipage, 1);
  197. } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  198. truncate_blocks(inode, 0, false);
  199. goto process_inline;
  200. }
  201. return false;
  202. }
  203. struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
  204. struct qstr *name, struct page **res_page)
  205. {
  206. struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
  207. struct f2fs_inline_dentry *inline_dentry;
  208. struct f2fs_dir_entry *de;
  209. struct f2fs_dentry_ptr d;
  210. struct page *ipage;
  211. ipage = get_node_page(sbi, dir->i_ino);
  212. if (IS_ERR(ipage))
  213. return NULL;
  214. inline_dentry = inline_data_addr(ipage);
  215. make_dentry_ptr(&d, (void *)inline_dentry, 2);
  216. de = find_target_dentry(name, NULL, &d);
  217. unlock_page(ipage);
  218. if (de)
  219. *res_page = ipage;
  220. else
  221. f2fs_put_page(ipage, 0);
  222. /*
  223. * For the most part, it should be a bug when name_len is zero.
  224. * We stop here for figuring out where the bugs has occurred.
  225. */
  226. f2fs_bug_on(sbi, d.max < 0);
  227. return de;
  228. }
  229. struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *dir,
  230. struct page **p)
  231. {
  232. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  233. struct page *ipage;
  234. struct f2fs_dir_entry *de;
  235. struct f2fs_inline_dentry *dentry_blk;
  236. ipage = get_node_page(sbi, dir->i_ino);
  237. if (IS_ERR(ipage))
  238. return NULL;
  239. dentry_blk = inline_data_addr(ipage);
  240. de = &dentry_blk->dentry[1];
  241. *p = ipage;
  242. unlock_page(ipage);
  243. return de;
  244. }
  245. int make_empty_inline_dir(struct inode *inode, struct inode *parent,
  246. struct page *ipage)
  247. {
  248. struct f2fs_inline_dentry *dentry_blk;
  249. struct f2fs_dentry_ptr d;
  250. dentry_blk = inline_data_addr(ipage);
  251. make_dentry_ptr(&d, (void *)dentry_blk, 2);
  252. do_make_empty_dir(inode, parent, &d);
  253. set_page_dirty(ipage);
  254. /* update i_size to MAX_INLINE_DATA */
  255. if (i_size_read(inode) < MAX_INLINE_DATA) {
  256. i_size_write(inode, MAX_INLINE_DATA);
  257. set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
  258. }
  259. return 0;
  260. }
  261. static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
  262. struct f2fs_inline_dentry *inline_dentry)
  263. {
  264. struct page *page;
  265. struct dnode_of_data dn;
  266. struct f2fs_dentry_block *dentry_blk;
  267. int err;
  268. page = grab_cache_page(dir->i_mapping, 0);
  269. if (!page)
  270. return -ENOMEM;
  271. set_new_dnode(&dn, dir, ipage, NULL, 0);
  272. err = f2fs_reserve_block(&dn, 0);
  273. if (err)
  274. goto out;
  275. f2fs_wait_on_page_writeback(page, DATA);
  276. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  277. dentry_blk = kmap_atomic(page);
  278. /* copy data from inline dentry block to new dentry block */
  279. memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
  280. INLINE_DENTRY_BITMAP_SIZE);
  281. memcpy(dentry_blk->dentry, inline_dentry->dentry,
  282. sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
  283. memcpy(dentry_blk->filename, inline_dentry->filename,
  284. NR_INLINE_DENTRY * F2FS_SLOT_LEN);
  285. kunmap_atomic(dentry_blk);
  286. SetPageUptodate(page);
  287. set_page_dirty(page);
  288. /* clear inline dir and flag after data writeback */
  289. truncate_inline_data(ipage, 0);
  290. stat_dec_inline_dir(dir);
  291. clear_inode_flag(F2FS_I(dir), FI_INLINE_DENTRY);
  292. if (i_size_read(dir) < PAGE_CACHE_SIZE) {
  293. i_size_write(dir, PAGE_CACHE_SIZE);
  294. set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
  295. }
  296. sync_inode_page(&dn);
  297. out:
  298. f2fs_put_page(page, 1);
  299. return err;
  300. }
  301. int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name,
  302. struct inode *inode)
  303. {
  304. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  305. struct page *ipage;
  306. unsigned int bit_pos;
  307. f2fs_hash_t name_hash;
  308. struct f2fs_dir_entry *de;
  309. size_t namelen = name->len;
  310. struct f2fs_inline_dentry *dentry_blk = NULL;
  311. int slots = GET_DENTRY_SLOTS(namelen);
  312. struct page *page;
  313. int err = 0;
  314. int i;
  315. name_hash = f2fs_dentry_hash(name);
  316. ipage = get_node_page(sbi, dir->i_ino);
  317. if (IS_ERR(ipage))
  318. return PTR_ERR(ipage);
  319. dentry_blk = inline_data_addr(ipage);
  320. bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
  321. slots, NR_INLINE_DENTRY);
  322. if (bit_pos >= NR_INLINE_DENTRY) {
  323. err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
  324. if (!err)
  325. err = -EAGAIN;
  326. goto out;
  327. }
  328. down_write(&F2FS_I(inode)->i_sem);
  329. page = init_inode_metadata(inode, dir, name, ipage);
  330. if (IS_ERR(page)) {
  331. err = PTR_ERR(page);
  332. goto fail;
  333. }
  334. f2fs_wait_on_page_writeback(ipage, NODE);
  335. de = &dentry_blk->dentry[bit_pos];
  336. de->hash_code = name_hash;
  337. de->name_len = cpu_to_le16(namelen);
  338. memcpy(dentry_blk->filename[bit_pos], name->name, name->len);
  339. de->ino = cpu_to_le32(inode->i_ino);
  340. set_de_type(de, inode);
  341. for (i = 0; i < slots; i++)
  342. test_and_set_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
  343. set_page_dirty(ipage);
  344. /* we don't need to mark_inode_dirty now */
  345. F2FS_I(inode)->i_pino = dir->i_ino;
  346. update_inode(inode, page);
  347. f2fs_put_page(page, 1);
  348. update_parent_metadata(dir, inode, 0);
  349. fail:
  350. up_write(&F2FS_I(inode)->i_sem);
  351. if (is_inode_flag_set(F2FS_I(dir), FI_UPDATE_DIR)) {
  352. update_inode(dir, ipage);
  353. clear_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
  354. }
  355. out:
  356. f2fs_put_page(ipage, 1);
  357. return err;
  358. }
  359. void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
  360. struct inode *dir, struct inode *inode)
  361. {
  362. struct f2fs_inline_dentry *inline_dentry;
  363. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  364. unsigned int bit_pos;
  365. int i;
  366. lock_page(page);
  367. f2fs_wait_on_page_writeback(page, NODE);
  368. inline_dentry = inline_data_addr(page);
  369. bit_pos = dentry - inline_dentry->dentry;
  370. for (i = 0; i < slots; i++)
  371. test_and_clear_bit_le(bit_pos + i,
  372. &inline_dentry->dentry_bitmap);
  373. set_page_dirty(page);
  374. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  375. if (inode)
  376. f2fs_drop_nlink(dir, inode, page);
  377. f2fs_put_page(page, 1);
  378. }
  379. bool f2fs_empty_inline_dir(struct inode *dir)
  380. {
  381. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  382. struct page *ipage;
  383. unsigned int bit_pos = 2;
  384. struct f2fs_inline_dentry *dentry_blk;
  385. ipage = get_node_page(sbi, dir->i_ino);
  386. if (IS_ERR(ipage))
  387. return false;
  388. dentry_blk = inline_data_addr(ipage);
  389. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  390. NR_INLINE_DENTRY,
  391. bit_pos);
  392. f2fs_put_page(ipage, 1);
  393. if (bit_pos < NR_INLINE_DENTRY)
  394. return false;
  395. return true;
  396. }
  397. int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx)
  398. {
  399. struct inode *inode = file_inode(file);
  400. struct f2fs_inline_dentry *inline_dentry = NULL;
  401. struct page *ipage = NULL;
  402. struct f2fs_dentry_ptr d;
  403. if (ctx->pos == NR_INLINE_DENTRY)
  404. return 0;
  405. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  406. if (IS_ERR(ipage))
  407. return PTR_ERR(ipage);
  408. inline_dentry = inline_data_addr(ipage);
  409. make_dentry_ptr(&d, (void *)inline_dentry, 2);
  410. if (!f2fs_fill_dentries(ctx, &d, 0))
  411. ctx->pos = NR_INLINE_DENTRY;
  412. f2fs_put_page(ipage, 1);
  413. return 0;
  414. }