core.c 71 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831
  1. /*
  2. * linux/drivers/mmc/core/core.c
  3. *
  4. * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
  5. * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
  6. * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
  7. * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. #include <linux/module.h>
  14. #include <linux/init.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/completion.h>
  17. #include <linux/device.h>
  18. #include <linux/delay.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/err.h>
  21. #include <linux/leds.h>
  22. #include <linux/scatterlist.h>
  23. #include <linux/log2.h>
  24. #include <linux/regulator/consumer.h>
  25. #include <linux/pm_runtime.h>
  26. #include <linux/pm_wakeup.h>
  27. #include <linux/suspend.h>
  28. #include <linux/fault-inject.h>
  29. #include <linux/random.h>
  30. #include <linux/slab.h>
  31. #include <linux/of.h>
  32. #include <linux/mmc/card.h>
  33. #include <linux/mmc/host.h>
  34. #include <linux/mmc/mmc.h>
  35. #include <linux/mmc/sd.h>
  36. #include <linux/mmc/slot-gpio.h>
  37. #define CREATE_TRACE_POINTS
  38. #include <trace/events/mmc.h>
  39. #include "core.h"
  40. #include "card.h"
  41. #include "bus.h"
  42. #include "host.h"
  43. #include "sdio_bus.h"
  44. #include "pwrseq.h"
  45. #include "mmc_ops.h"
  46. #include "sd_ops.h"
  47. #include "sdio_ops.h"
  48. /* If the device is not responding */
  49. #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
  50. /* The max erase timeout, used when host->max_busy_timeout isn't specified */
  51. #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
  52. static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  53. /*
  54. * Enabling software CRCs on the data blocks can be a significant (30%)
  55. * performance cost, and for other reasons may not always be desired.
  56. * So we allow it it to be disabled.
  57. */
  58. bool use_spi_crc = 1;
  59. module_param(use_spi_crc, bool, 0);
  60. static int mmc_schedule_delayed_work(struct delayed_work *work,
  61. unsigned long delay)
  62. {
  63. /*
  64. * We use the system_freezable_wq, because of two reasons.
  65. * First, it allows several works (not the same work item) to be
  66. * executed simultaneously. Second, the queue becomes frozen when
  67. * userspace becomes frozen during system PM.
  68. */
  69. return queue_delayed_work(system_freezable_wq, work, delay);
  70. }
  71. #ifdef CONFIG_FAIL_MMC_REQUEST
  72. /*
  73. * Internal function. Inject random data errors.
  74. * If mmc_data is NULL no errors are injected.
  75. */
  76. static void mmc_should_fail_request(struct mmc_host *host,
  77. struct mmc_request *mrq)
  78. {
  79. struct mmc_command *cmd = mrq->cmd;
  80. struct mmc_data *data = mrq->data;
  81. static const int data_errors[] = {
  82. -ETIMEDOUT,
  83. -EILSEQ,
  84. -EIO,
  85. };
  86. if (!data)
  87. return;
  88. if (cmd->error || data->error ||
  89. !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
  90. return;
  91. data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
  92. data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
  93. }
  94. #else /* CONFIG_FAIL_MMC_REQUEST */
  95. static inline void mmc_should_fail_request(struct mmc_host *host,
  96. struct mmc_request *mrq)
  97. {
  98. }
  99. #endif /* CONFIG_FAIL_MMC_REQUEST */
  100. static inline void mmc_complete_cmd(struct mmc_request *mrq)
  101. {
  102. if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
  103. complete_all(&mrq->cmd_completion);
  104. }
  105. void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
  106. {
  107. if (!mrq->cap_cmd_during_tfr)
  108. return;
  109. mmc_complete_cmd(mrq);
  110. pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
  111. mmc_hostname(host), mrq->cmd->opcode);
  112. }
  113. EXPORT_SYMBOL(mmc_command_done);
  114. /**
  115. * mmc_request_done - finish processing an MMC request
  116. * @host: MMC host which completed request
  117. * @mrq: MMC request which request
  118. *
  119. * MMC drivers should call this function when they have completed
  120. * their processing of a request.
  121. */
  122. void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
  123. {
  124. struct mmc_command *cmd = mrq->cmd;
  125. int err = cmd->error;
  126. /* Flag re-tuning needed on CRC errors */
  127. if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
  128. cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
  129. (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
  130. (mrq->data && mrq->data->error == -EILSEQ) ||
  131. (mrq->stop && mrq->stop->error == -EILSEQ)))
  132. mmc_retune_needed(host);
  133. if (err && cmd->retries && mmc_host_is_spi(host)) {
  134. if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
  135. cmd->retries = 0;
  136. }
  137. if (host->ongoing_mrq == mrq)
  138. host->ongoing_mrq = NULL;
  139. mmc_complete_cmd(mrq);
  140. trace_mmc_request_done(host, mrq);
  141. /*
  142. * We list various conditions for the command to be considered
  143. * properly done:
  144. *
  145. * - There was no error, OK fine then
  146. * - We are not doing some kind of retry
  147. * - The card was removed (...so just complete everything no matter
  148. * if there are errors or retries)
  149. */
  150. if (!err || !cmd->retries || mmc_card_removed(host->card)) {
  151. mmc_should_fail_request(host, mrq);
  152. if (!host->ongoing_mrq)
  153. led_trigger_event(host->led, LED_OFF);
  154. if (mrq->sbc) {
  155. pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
  156. mmc_hostname(host), mrq->sbc->opcode,
  157. mrq->sbc->error,
  158. mrq->sbc->resp[0], mrq->sbc->resp[1],
  159. mrq->sbc->resp[2], mrq->sbc->resp[3]);
  160. }
  161. pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
  162. mmc_hostname(host), cmd->opcode, err,
  163. cmd->resp[0], cmd->resp[1],
  164. cmd->resp[2], cmd->resp[3]);
  165. if (mrq->data) {
  166. pr_debug("%s: %d bytes transferred: %d\n",
  167. mmc_hostname(host),
  168. mrq->data->bytes_xfered, mrq->data->error);
  169. }
  170. if (mrq->stop) {
  171. pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
  172. mmc_hostname(host), mrq->stop->opcode,
  173. mrq->stop->error,
  174. mrq->stop->resp[0], mrq->stop->resp[1],
  175. mrq->stop->resp[2], mrq->stop->resp[3]);
  176. }
  177. }
  178. /*
  179. * Request starter must handle retries - see
  180. * mmc_wait_for_req_done().
  181. */
  182. if (mrq->done)
  183. mrq->done(mrq);
  184. }
  185. EXPORT_SYMBOL(mmc_request_done);
  186. static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
  187. {
  188. int err;
  189. /* Assumes host controller has been runtime resumed by mmc_claim_host */
  190. err = mmc_retune(host);
  191. if (err) {
  192. mrq->cmd->error = err;
  193. mmc_request_done(host, mrq);
  194. return;
  195. }
  196. /*
  197. * For sdio rw commands we must wait for card busy otherwise some
  198. * sdio devices won't work properly.
  199. * And bypass I/O abort, reset and bus suspend operations.
  200. */
  201. if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
  202. host->ops->card_busy) {
  203. int tries = 500; /* Wait aprox 500ms at maximum */
  204. while (host->ops->card_busy(host) && --tries)
  205. mmc_delay(1);
  206. if (tries == 0) {
  207. mrq->cmd->error = -EBUSY;
  208. mmc_request_done(host, mrq);
  209. return;
  210. }
  211. }
  212. if (mrq->cap_cmd_during_tfr) {
  213. host->ongoing_mrq = mrq;
  214. /*
  215. * Retry path could come through here without having waiting on
  216. * cmd_completion, so ensure it is reinitialised.
  217. */
  218. reinit_completion(&mrq->cmd_completion);
  219. }
  220. trace_mmc_request_start(host, mrq);
  221. host->ops->request(host, mrq);
  222. }
  223. static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq)
  224. {
  225. if (mrq->sbc) {
  226. pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
  227. mmc_hostname(host), mrq->sbc->opcode,
  228. mrq->sbc->arg, mrq->sbc->flags);
  229. }
  230. if (mrq->cmd) {
  231. pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
  232. mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->arg,
  233. mrq->cmd->flags);
  234. }
  235. if (mrq->data) {
  236. pr_debug("%s: blksz %d blocks %d flags %08x "
  237. "tsac %d ms nsac %d\n",
  238. mmc_hostname(host), mrq->data->blksz,
  239. mrq->data->blocks, mrq->data->flags,
  240. mrq->data->timeout_ns / 1000000,
  241. mrq->data->timeout_clks);
  242. }
  243. if (mrq->stop) {
  244. pr_debug("%s: CMD%u arg %08x flags %08x\n",
  245. mmc_hostname(host), mrq->stop->opcode,
  246. mrq->stop->arg, mrq->stop->flags);
  247. }
  248. }
  249. static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
  250. {
  251. unsigned int i, sz = 0;
  252. struct scatterlist *sg;
  253. if (mrq->cmd) {
  254. mrq->cmd->error = 0;
  255. mrq->cmd->mrq = mrq;
  256. mrq->cmd->data = mrq->data;
  257. }
  258. if (mrq->sbc) {
  259. mrq->sbc->error = 0;
  260. mrq->sbc->mrq = mrq;
  261. }
  262. if (mrq->data) {
  263. if (mrq->data->blksz > host->max_blk_size ||
  264. mrq->data->blocks > host->max_blk_count ||
  265. mrq->data->blocks * mrq->data->blksz > host->max_req_size)
  266. return -EINVAL;
  267. for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
  268. sz += sg->length;
  269. if (sz != mrq->data->blocks * mrq->data->blksz)
  270. return -EINVAL;
  271. mrq->data->error = 0;
  272. mrq->data->mrq = mrq;
  273. if (mrq->stop) {
  274. mrq->data->stop = mrq->stop;
  275. mrq->stop->error = 0;
  276. mrq->stop->mrq = mrq;
  277. }
  278. }
  279. return 0;
  280. }
  281. static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
  282. {
  283. int err;
  284. mmc_retune_hold(host);
  285. if (mmc_card_removed(host->card))
  286. return -ENOMEDIUM;
  287. mmc_mrq_pr_debug(host, mrq);
  288. WARN_ON(!host->claimed);
  289. err = mmc_mrq_prep(host, mrq);
  290. if (err)
  291. return err;
  292. led_trigger_event(host->led, LED_FULL);
  293. __mmc_start_request(host, mrq);
  294. return 0;
  295. }
  296. /*
  297. * mmc_wait_data_done() - done callback for data request
  298. * @mrq: done data request
  299. *
  300. * Wakes up mmc context, passed as a callback to host controller driver
  301. */
  302. static void mmc_wait_data_done(struct mmc_request *mrq)
  303. {
  304. struct mmc_context_info *context_info = &mrq->host->context_info;
  305. context_info->is_done_rcv = true;
  306. wake_up_interruptible(&context_info->wait);
  307. }
  308. static void mmc_wait_done(struct mmc_request *mrq)
  309. {
  310. complete(&mrq->completion);
  311. }
  312. static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
  313. {
  314. struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
  315. /*
  316. * If there is an ongoing transfer, wait for the command line to become
  317. * available.
  318. */
  319. if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
  320. wait_for_completion(&ongoing_mrq->cmd_completion);
  321. }
  322. /*
  323. *__mmc_start_data_req() - starts data request
  324. * @host: MMC host to start the request
  325. * @mrq: data request to start
  326. *
  327. * Sets the done callback to be called when request is completed by the card.
  328. * Starts data mmc request execution
  329. * If an ongoing transfer is already in progress, wait for the command line
  330. * to become available before sending another command.
  331. */
  332. static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
  333. {
  334. int err;
  335. mmc_wait_ongoing_tfr_cmd(host);
  336. mrq->done = mmc_wait_data_done;
  337. mrq->host = host;
  338. init_completion(&mrq->cmd_completion);
  339. err = mmc_start_request(host, mrq);
  340. if (err) {
  341. mrq->cmd->error = err;
  342. mmc_complete_cmd(mrq);
  343. mmc_wait_data_done(mrq);
  344. }
  345. return err;
  346. }
  347. static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
  348. {
  349. int err;
  350. mmc_wait_ongoing_tfr_cmd(host);
  351. init_completion(&mrq->completion);
  352. mrq->done = mmc_wait_done;
  353. init_completion(&mrq->cmd_completion);
  354. err = mmc_start_request(host, mrq);
  355. if (err) {
  356. mrq->cmd->error = err;
  357. mmc_complete_cmd(mrq);
  358. complete(&mrq->completion);
  359. }
  360. return err;
  361. }
  362. void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
  363. {
  364. struct mmc_command *cmd;
  365. while (1) {
  366. wait_for_completion(&mrq->completion);
  367. cmd = mrq->cmd;
  368. /*
  369. * If host has timed out waiting for the sanitize
  370. * to complete, card might be still in programming state
  371. * so let's try to bring the card out of programming
  372. * state.
  373. */
  374. if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
  375. if (!mmc_interrupt_hpi(host->card)) {
  376. pr_warn("%s: %s: Interrupted sanitize\n",
  377. mmc_hostname(host), __func__);
  378. cmd->error = 0;
  379. break;
  380. } else {
  381. pr_err("%s: %s: Failed to interrupt sanitize\n",
  382. mmc_hostname(host), __func__);
  383. }
  384. }
  385. if (!cmd->error || !cmd->retries ||
  386. mmc_card_removed(host->card))
  387. break;
  388. mmc_retune_recheck(host);
  389. pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
  390. mmc_hostname(host), cmd->opcode, cmd->error);
  391. cmd->retries--;
  392. cmd->error = 0;
  393. __mmc_start_request(host, mrq);
  394. }
  395. mmc_retune_release(host);
  396. }
  397. EXPORT_SYMBOL(mmc_wait_for_req_done);
  398. /**
  399. * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
  400. * @host: MMC host
  401. * @mrq: MMC request
  402. *
  403. * mmc_is_req_done() is used with requests that have
  404. * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
  405. * starting a request and before waiting for it to complete. That is,
  406. * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
  407. * and before mmc_wait_for_req_done(). If it is called at other times the
  408. * result is not meaningful.
  409. */
  410. bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
  411. {
  412. if (host->areq)
  413. return host->context_info.is_done_rcv;
  414. else
  415. return completion_done(&mrq->completion);
  416. }
  417. EXPORT_SYMBOL(mmc_is_req_done);
  418. /**
  419. * mmc_pre_req - Prepare for a new request
  420. * @host: MMC host to prepare command
  421. * @mrq: MMC request to prepare for
  422. *
  423. * mmc_pre_req() is called in prior to mmc_start_req() to let
  424. * host prepare for the new request. Preparation of a request may be
  425. * performed while another request is running on the host.
  426. */
  427. static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq)
  428. {
  429. if (host->ops->pre_req)
  430. host->ops->pre_req(host, mrq);
  431. }
  432. /**
  433. * mmc_post_req - Post process a completed request
  434. * @host: MMC host to post process command
  435. * @mrq: MMC request to post process for
  436. * @err: Error, if non zero, clean up any resources made in pre_req
  437. *
  438. * Let the host post process a completed request. Post processing of
  439. * a request may be performed while another reuqest is running.
  440. */
  441. static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
  442. int err)
  443. {
  444. if (host->ops->post_req)
  445. host->ops->post_req(host, mrq, err);
  446. }
  447. /**
  448. * mmc_finalize_areq() - finalize an asynchronous request
  449. * @host: MMC host to finalize any ongoing request on
  450. *
  451. * Returns the status of the ongoing asynchronous request, but
  452. * MMC_BLK_SUCCESS if no request was going on.
  453. */
  454. static enum mmc_blk_status mmc_finalize_areq(struct mmc_host *host)
  455. {
  456. struct mmc_context_info *context_info = &host->context_info;
  457. enum mmc_blk_status status;
  458. if (!host->areq)
  459. return MMC_BLK_SUCCESS;
  460. while (1) {
  461. wait_event_interruptible(context_info->wait,
  462. (context_info->is_done_rcv ||
  463. context_info->is_new_req));
  464. if (context_info->is_done_rcv) {
  465. struct mmc_command *cmd;
  466. context_info->is_done_rcv = false;
  467. cmd = host->areq->mrq->cmd;
  468. if (!cmd->error || !cmd->retries ||
  469. mmc_card_removed(host->card)) {
  470. status = host->areq->err_check(host->card,
  471. host->areq);
  472. break; /* return status */
  473. } else {
  474. mmc_retune_recheck(host);
  475. pr_info("%s: req failed (CMD%u): %d, retrying...\n",
  476. mmc_hostname(host),
  477. cmd->opcode, cmd->error);
  478. cmd->retries--;
  479. cmd->error = 0;
  480. __mmc_start_request(host, host->areq->mrq);
  481. continue; /* wait for done/new event again */
  482. }
  483. }
  484. return MMC_BLK_NEW_REQUEST;
  485. }
  486. mmc_retune_release(host);
  487. /*
  488. * Check BKOPS urgency for each R1 response
  489. */
  490. if (host->card && mmc_card_mmc(host->card) &&
  491. ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
  492. (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
  493. (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
  494. mmc_start_bkops(host->card, true);
  495. }
  496. return status;
  497. }
  498. /**
  499. * mmc_start_areq - start an asynchronous request
  500. * @host: MMC host to start command
  501. * @areq: asynchronous request to start
  502. * @ret_stat: out parameter for status
  503. *
  504. * Start a new MMC custom command request for a host.
  505. * If there is on ongoing async request wait for completion
  506. * of that request and start the new one and return.
  507. * Does not wait for the new request to complete.
  508. *
  509. * Returns the completed request, NULL in case of none completed.
  510. * Wait for the an ongoing request (previoulsy started) to complete and
  511. * return the completed request. If there is no ongoing request, NULL
  512. * is returned without waiting. NULL is not an error condition.
  513. */
  514. struct mmc_async_req *mmc_start_areq(struct mmc_host *host,
  515. struct mmc_async_req *areq,
  516. enum mmc_blk_status *ret_stat)
  517. {
  518. enum mmc_blk_status status;
  519. int start_err = 0;
  520. struct mmc_async_req *previous = host->areq;
  521. /* Prepare a new request */
  522. if (areq)
  523. mmc_pre_req(host, areq->mrq);
  524. /* Finalize previous request */
  525. status = mmc_finalize_areq(host);
  526. if (ret_stat)
  527. *ret_stat = status;
  528. /* The previous request is still going on... */
  529. if (status == MMC_BLK_NEW_REQUEST)
  530. return NULL;
  531. /* Fine so far, start the new request! */
  532. if (status == MMC_BLK_SUCCESS && areq)
  533. start_err = __mmc_start_data_req(host, areq->mrq);
  534. /* Postprocess the old request at this point */
  535. if (host->areq)
  536. mmc_post_req(host, host->areq->mrq, 0);
  537. /* Cancel a prepared request if it was not started. */
  538. if ((status != MMC_BLK_SUCCESS || start_err) && areq)
  539. mmc_post_req(host, areq->mrq, -EINVAL);
  540. if (status != MMC_BLK_SUCCESS)
  541. host->areq = NULL;
  542. else
  543. host->areq = areq;
  544. return previous;
  545. }
  546. EXPORT_SYMBOL(mmc_start_areq);
  547. /**
  548. * mmc_wait_for_req - start a request and wait for completion
  549. * @host: MMC host to start command
  550. * @mrq: MMC request to start
  551. *
  552. * Start a new MMC custom command request for a host, and wait
  553. * for the command to complete. In the case of 'cap_cmd_during_tfr'
  554. * requests, the transfer is ongoing and the caller can issue further
  555. * commands that do not use the data lines, and then wait by calling
  556. * mmc_wait_for_req_done().
  557. * Does not attempt to parse the response.
  558. */
  559. void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
  560. {
  561. __mmc_start_req(host, mrq);
  562. if (!mrq->cap_cmd_during_tfr)
  563. mmc_wait_for_req_done(host, mrq);
  564. }
  565. EXPORT_SYMBOL(mmc_wait_for_req);
  566. /**
  567. * mmc_wait_for_cmd - start a command and wait for completion
  568. * @host: MMC host to start command
  569. * @cmd: MMC command to start
  570. * @retries: maximum number of retries
  571. *
  572. * Start a new MMC command for a host, and wait for the command
  573. * to complete. Return any error that occurred while the command
  574. * was executing. Do not attempt to parse the response.
  575. */
  576. int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
  577. {
  578. struct mmc_request mrq = {};
  579. WARN_ON(!host->claimed);
  580. memset(cmd->resp, 0, sizeof(cmd->resp));
  581. cmd->retries = retries;
  582. mrq.cmd = cmd;
  583. cmd->data = NULL;
  584. mmc_wait_for_req(host, &mrq);
  585. return cmd->error;
  586. }
  587. EXPORT_SYMBOL(mmc_wait_for_cmd);
  588. /**
  589. * mmc_set_data_timeout - set the timeout for a data command
  590. * @data: data phase for command
  591. * @card: the MMC card associated with the data transfer
  592. *
  593. * Computes the data timeout parameters according to the
  594. * correct algorithm given the card type.
  595. */
  596. void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
  597. {
  598. unsigned int mult;
  599. /*
  600. * SDIO cards only define an upper 1 s limit on access.
  601. */
  602. if (mmc_card_sdio(card)) {
  603. data->timeout_ns = 1000000000;
  604. data->timeout_clks = 0;
  605. return;
  606. }
  607. /*
  608. * SD cards use a 100 multiplier rather than 10
  609. */
  610. mult = mmc_card_sd(card) ? 100 : 10;
  611. /*
  612. * Scale up the multiplier (and therefore the timeout) by
  613. * the r2w factor for writes.
  614. */
  615. if (data->flags & MMC_DATA_WRITE)
  616. mult <<= card->csd.r2w_factor;
  617. data->timeout_ns = card->csd.taac_ns * mult;
  618. data->timeout_clks = card->csd.taac_clks * mult;
  619. /*
  620. * SD cards also have an upper limit on the timeout.
  621. */
  622. if (mmc_card_sd(card)) {
  623. unsigned int timeout_us, limit_us;
  624. timeout_us = data->timeout_ns / 1000;
  625. if (card->host->ios.clock)
  626. timeout_us += data->timeout_clks * 1000 /
  627. (card->host->ios.clock / 1000);
  628. if (data->flags & MMC_DATA_WRITE)
  629. /*
  630. * The MMC spec "It is strongly recommended
  631. * for hosts to implement more than 500ms
  632. * timeout value even if the card indicates
  633. * the 250ms maximum busy length." Even the
  634. * previous value of 300ms is known to be
  635. * insufficient for some cards.
  636. */
  637. limit_us = 3000000;
  638. else
  639. limit_us = 100000;
  640. /*
  641. * SDHC cards always use these fixed values.
  642. */
  643. if (timeout_us > limit_us) {
  644. data->timeout_ns = limit_us * 1000;
  645. data->timeout_clks = 0;
  646. }
  647. /* assign limit value if invalid */
  648. if (timeout_us == 0)
  649. data->timeout_ns = limit_us * 1000;
  650. }
  651. /*
  652. * Some cards require longer data read timeout than indicated in CSD.
  653. * Address this by setting the read timeout to a "reasonably high"
  654. * value. For the cards tested, 600ms has proven enough. If necessary,
  655. * this value can be increased if other problematic cards require this.
  656. */
  657. if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
  658. data->timeout_ns = 600000000;
  659. data->timeout_clks = 0;
  660. }
  661. /*
  662. * Some cards need very high timeouts if driven in SPI mode.
  663. * The worst observed timeout was 900ms after writing a
  664. * continuous stream of data until the internal logic
  665. * overflowed.
  666. */
  667. if (mmc_host_is_spi(card->host)) {
  668. if (data->flags & MMC_DATA_WRITE) {
  669. if (data->timeout_ns < 1000000000)
  670. data->timeout_ns = 1000000000; /* 1s */
  671. } else {
  672. if (data->timeout_ns < 100000000)
  673. data->timeout_ns = 100000000; /* 100ms */
  674. }
  675. }
  676. }
  677. EXPORT_SYMBOL(mmc_set_data_timeout);
  678. /**
  679. * mmc_align_data_size - pads a transfer size to a more optimal value
  680. * @card: the MMC card associated with the data transfer
  681. * @sz: original transfer size
  682. *
  683. * Pads the original data size with a number of extra bytes in
  684. * order to avoid controller bugs and/or performance hits
  685. * (e.g. some controllers revert to PIO for certain sizes).
  686. *
  687. * Returns the improved size, which might be unmodified.
  688. *
  689. * Note that this function is only relevant when issuing a
  690. * single scatter gather entry.
  691. */
  692. unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
  693. {
  694. /*
  695. * FIXME: We don't have a system for the controller to tell
  696. * the core about its problems yet, so for now we just 32-bit
  697. * align the size.
  698. */
  699. sz = ((sz + 3) / 4) * 4;
  700. return sz;
  701. }
  702. EXPORT_SYMBOL(mmc_align_data_size);
  703. /**
  704. * __mmc_claim_host - exclusively claim a host
  705. * @host: mmc host to claim
  706. * @abort: whether or not the operation should be aborted
  707. *
  708. * Claim a host for a set of operations. If @abort is non null and
  709. * dereference a non-zero value then this will return prematurely with
  710. * that non-zero value without acquiring the lock. Returns zero
  711. * with the lock held otherwise.
  712. */
  713. int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
  714. {
  715. DECLARE_WAITQUEUE(wait, current);
  716. unsigned long flags;
  717. int stop;
  718. bool pm = false;
  719. might_sleep();
  720. add_wait_queue(&host->wq, &wait);
  721. spin_lock_irqsave(&host->lock, flags);
  722. while (1) {
  723. set_current_state(TASK_UNINTERRUPTIBLE);
  724. stop = abort ? atomic_read(abort) : 0;
  725. if (stop || !host->claimed || host->claimer == current)
  726. break;
  727. spin_unlock_irqrestore(&host->lock, flags);
  728. schedule();
  729. spin_lock_irqsave(&host->lock, flags);
  730. }
  731. set_current_state(TASK_RUNNING);
  732. if (!stop) {
  733. host->claimed = 1;
  734. host->claimer = current;
  735. host->claim_cnt += 1;
  736. if (host->claim_cnt == 1)
  737. pm = true;
  738. } else
  739. wake_up(&host->wq);
  740. spin_unlock_irqrestore(&host->lock, flags);
  741. remove_wait_queue(&host->wq, &wait);
  742. if (pm)
  743. pm_runtime_get_sync(mmc_dev(host));
  744. return stop;
  745. }
  746. EXPORT_SYMBOL(__mmc_claim_host);
  747. /**
  748. * mmc_release_host - release a host
  749. * @host: mmc host to release
  750. *
  751. * Release a MMC host, allowing others to claim the host
  752. * for their operations.
  753. */
  754. void mmc_release_host(struct mmc_host *host)
  755. {
  756. unsigned long flags;
  757. WARN_ON(!host->claimed);
  758. spin_lock_irqsave(&host->lock, flags);
  759. if (--host->claim_cnt) {
  760. /* Release for nested claim */
  761. spin_unlock_irqrestore(&host->lock, flags);
  762. } else {
  763. host->claimed = 0;
  764. host->claimer = NULL;
  765. spin_unlock_irqrestore(&host->lock, flags);
  766. wake_up(&host->wq);
  767. pm_runtime_mark_last_busy(mmc_dev(host));
  768. pm_runtime_put_autosuspend(mmc_dev(host));
  769. }
  770. }
  771. EXPORT_SYMBOL(mmc_release_host);
  772. /*
  773. * This is a helper function, which fetches a runtime pm reference for the
  774. * card device and also claims the host.
  775. */
  776. void mmc_get_card(struct mmc_card *card)
  777. {
  778. pm_runtime_get_sync(&card->dev);
  779. mmc_claim_host(card->host);
  780. }
  781. EXPORT_SYMBOL(mmc_get_card);
  782. /*
  783. * This is a helper function, which releases the host and drops the runtime
  784. * pm reference for the card device.
  785. */
  786. void mmc_put_card(struct mmc_card *card)
  787. {
  788. mmc_release_host(card->host);
  789. pm_runtime_mark_last_busy(&card->dev);
  790. pm_runtime_put_autosuspend(&card->dev);
  791. }
  792. EXPORT_SYMBOL(mmc_put_card);
  793. /*
  794. * Internal function that does the actual ios call to the host driver,
  795. * optionally printing some debug output.
  796. */
  797. static inline void mmc_set_ios(struct mmc_host *host)
  798. {
  799. struct mmc_ios *ios = &host->ios;
  800. pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
  801. "width %u timing %u\n",
  802. mmc_hostname(host), ios->clock, ios->bus_mode,
  803. ios->power_mode, ios->chip_select, ios->vdd,
  804. 1 << ios->bus_width, ios->timing);
  805. host->ops->set_ios(host, ios);
  806. }
  807. /*
  808. * Control chip select pin on a host.
  809. */
  810. void mmc_set_chip_select(struct mmc_host *host, int mode)
  811. {
  812. host->ios.chip_select = mode;
  813. mmc_set_ios(host);
  814. }
  815. /*
  816. * Sets the host clock to the highest possible frequency that
  817. * is below "hz".
  818. */
  819. void mmc_set_clock(struct mmc_host *host, unsigned int hz)
  820. {
  821. WARN_ON(hz && hz < host->f_min);
  822. if (hz > host->f_max)
  823. hz = host->f_max;
  824. host->ios.clock = hz;
  825. mmc_set_ios(host);
  826. }
  827. int mmc_execute_tuning(struct mmc_card *card)
  828. {
  829. struct mmc_host *host = card->host;
  830. u32 opcode;
  831. int err;
  832. if (!host->ops->execute_tuning)
  833. return 0;
  834. if (mmc_card_mmc(card))
  835. opcode = MMC_SEND_TUNING_BLOCK_HS200;
  836. else
  837. opcode = MMC_SEND_TUNING_BLOCK;
  838. err = host->ops->execute_tuning(host, opcode);
  839. if (err)
  840. pr_err("%s: tuning execution failed: %d\n",
  841. mmc_hostname(host), err);
  842. else
  843. mmc_retune_enable(host);
  844. return err;
  845. }
  846. /*
  847. * Change the bus mode (open drain/push-pull) of a host.
  848. */
  849. void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
  850. {
  851. host->ios.bus_mode = mode;
  852. mmc_set_ios(host);
  853. }
  854. /*
  855. * Change data bus width of a host.
  856. */
  857. void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
  858. {
  859. host->ios.bus_width = width;
  860. mmc_set_ios(host);
  861. }
  862. /*
  863. * Set initial state after a power cycle or a hw_reset.
  864. */
  865. void mmc_set_initial_state(struct mmc_host *host)
  866. {
  867. mmc_retune_disable(host);
  868. if (mmc_host_is_spi(host))
  869. host->ios.chip_select = MMC_CS_HIGH;
  870. else
  871. host->ios.chip_select = MMC_CS_DONTCARE;
  872. host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
  873. host->ios.bus_width = MMC_BUS_WIDTH_1;
  874. host->ios.timing = MMC_TIMING_LEGACY;
  875. host->ios.drv_type = 0;
  876. host->ios.enhanced_strobe = false;
  877. /*
  878. * Make sure we are in non-enhanced strobe mode before we
  879. * actually enable it in ext_csd.
  880. */
  881. if ((host->caps2 & MMC_CAP2_HS400_ES) &&
  882. host->ops->hs400_enhanced_strobe)
  883. host->ops->hs400_enhanced_strobe(host, &host->ios);
  884. mmc_set_ios(host);
  885. }
  886. /**
  887. * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
  888. * @vdd: voltage (mV)
  889. * @low_bits: prefer low bits in boundary cases
  890. *
  891. * This function returns the OCR bit number according to the provided @vdd
  892. * value. If conversion is not possible a negative errno value returned.
  893. *
  894. * Depending on the @low_bits flag the function prefers low or high OCR bits
  895. * on boundary voltages. For example,
  896. * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
  897. * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
  898. *
  899. * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
  900. */
  901. static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
  902. {
  903. const int max_bit = ilog2(MMC_VDD_35_36);
  904. int bit;
  905. if (vdd < 1650 || vdd > 3600)
  906. return -EINVAL;
  907. if (vdd >= 1650 && vdd <= 1950)
  908. return ilog2(MMC_VDD_165_195);
  909. if (low_bits)
  910. vdd -= 1;
  911. /* Base 2000 mV, step 100 mV, bit's base 8. */
  912. bit = (vdd - 2000) / 100 + 8;
  913. if (bit > max_bit)
  914. return max_bit;
  915. return bit;
  916. }
  917. /**
  918. * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
  919. * @vdd_min: minimum voltage value (mV)
  920. * @vdd_max: maximum voltage value (mV)
  921. *
  922. * This function returns the OCR mask bits according to the provided @vdd_min
  923. * and @vdd_max values. If conversion is not possible the function returns 0.
  924. *
  925. * Notes wrt boundary cases:
  926. * This function sets the OCR bits for all boundary voltages, for example
  927. * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
  928. * MMC_VDD_34_35 mask.
  929. */
  930. u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
  931. {
  932. u32 mask = 0;
  933. if (vdd_max < vdd_min)
  934. return 0;
  935. /* Prefer high bits for the boundary vdd_max values. */
  936. vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
  937. if (vdd_max < 0)
  938. return 0;
  939. /* Prefer low bits for the boundary vdd_min values. */
  940. vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
  941. if (vdd_min < 0)
  942. return 0;
  943. /* Fill the mask, from max bit to min bit. */
  944. while (vdd_max >= vdd_min)
  945. mask |= 1 << vdd_max--;
  946. return mask;
  947. }
  948. EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
  949. #ifdef CONFIG_OF
  950. /**
  951. * mmc_of_parse_voltage - return mask of supported voltages
  952. * @np: The device node need to be parsed.
  953. * @mask: mask of voltages available for MMC/SD/SDIO
  954. *
  955. * Parse the "voltage-ranges" DT property, returning zero if it is not
  956. * found, negative errno if the voltage-range specification is invalid,
  957. * or one if the voltage-range is specified and successfully parsed.
  958. */
  959. int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
  960. {
  961. const u32 *voltage_ranges;
  962. int num_ranges, i;
  963. voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
  964. num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
  965. if (!voltage_ranges) {
  966. pr_debug("%pOF: voltage-ranges unspecified\n", np);
  967. return 0;
  968. }
  969. if (!num_ranges) {
  970. pr_err("%pOF: voltage-ranges empty\n", np);
  971. return -EINVAL;
  972. }
  973. for (i = 0; i < num_ranges; i++) {
  974. const int j = i * 2;
  975. u32 ocr_mask;
  976. ocr_mask = mmc_vddrange_to_ocrmask(
  977. be32_to_cpu(voltage_ranges[j]),
  978. be32_to_cpu(voltage_ranges[j + 1]));
  979. if (!ocr_mask) {
  980. pr_err("%pOF: voltage-range #%d is invalid\n",
  981. np, i);
  982. return -EINVAL;
  983. }
  984. *mask |= ocr_mask;
  985. }
  986. return 1;
  987. }
  988. EXPORT_SYMBOL(mmc_of_parse_voltage);
  989. #endif /* CONFIG_OF */
  990. static int mmc_of_get_func_num(struct device_node *node)
  991. {
  992. u32 reg;
  993. int ret;
  994. ret = of_property_read_u32(node, "reg", &reg);
  995. if (ret < 0)
  996. return ret;
  997. return reg;
  998. }
  999. struct device_node *mmc_of_find_child_device(struct mmc_host *host,
  1000. unsigned func_num)
  1001. {
  1002. struct device_node *node;
  1003. if (!host->parent || !host->parent->of_node)
  1004. return NULL;
  1005. for_each_child_of_node(host->parent->of_node, node) {
  1006. if (mmc_of_get_func_num(node) == func_num)
  1007. return node;
  1008. }
  1009. return NULL;
  1010. }
  1011. #ifdef CONFIG_REGULATOR
  1012. /**
  1013. * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
  1014. * @vdd_bit: OCR bit number
  1015. * @min_uV: minimum voltage value (mV)
  1016. * @max_uV: maximum voltage value (mV)
  1017. *
  1018. * This function returns the voltage range according to the provided OCR
  1019. * bit number. If conversion is not possible a negative errno value returned.
  1020. */
  1021. static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
  1022. {
  1023. int tmp;
  1024. if (!vdd_bit)
  1025. return -EINVAL;
  1026. /*
  1027. * REVISIT mmc_vddrange_to_ocrmask() may have set some
  1028. * bits this regulator doesn't quite support ... don't
  1029. * be too picky, most cards and regulators are OK with
  1030. * a 0.1V range goof (it's a small error percentage).
  1031. */
  1032. tmp = vdd_bit - ilog2(MMC_VDD_165_195);
  1033. if (tmp == 0) {
  1034. *min_uV = 1650 * 1000;
  1035. *max_uV = 1950 * 1000;
  1036. } else {
  1037. *min_uV = 1900 * 1000 + tmp * 100 * 1000;
  1038. *max_uV = *min_uV + 100 * 1000;
  1039. }
  1040. return 0;
  1041. }
  1042. /**
  1043. * mmc_regulator_get_ocrmask - return mask of supported voltages
  1044. * @supply: regulator to use
  1045. *
  1046. * This returns either a negative errno, or a mask of voltages that
  1047. * can be provided to MMC/SD/SDIO devices using the specified voltage
  1048. * regulator. This would normally be called before registering the
  1049. * MMC host adapter.
  1050. */
  1051. int mmc_regulator_get_ocrmask(struct regulator *supply)
  1052. {
  1053. int result = 0;
  1054. int count;
  1055. int i;
  1056. int vdd_uV;
  1057. int vdd_mV;
  1058. count = regulator_count_voltages(supply);
  1059. if (count < 0)
  1060. return count;
  1061. for (i = 0; i < count; i++) {
  1062. vdd_uV = regulator_list_voltage(supply, i);
  1063. if (vdd_uV <= 0)
  1064. continue;
  1065. vdd_mV = vdd_uV / 1000;
  1066. result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
  1067. }
  1068. if (!result) {
  1069. vdd_uV = regulator_get_voltage(supply);
  1070. if (vdd_uV <= 0)
  1071. return vdd_uV;
  1072. vdd_mV = vdd_uV / 1000;
  1073. result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
  1074. }
  1075. return result;
  1076. }
  1077. EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
  1078. /**
  1079. * mmc_regulator_set_ocr - set regulator to match host->ios voltage
  1080. * @mmc: the host to regulate
  1081. * @supply: regulator to use
  1082. * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
  1083. *
  1084. * Returns zero on success, else negative errno.
  1085. *
  1086. * MMC host drivers may use this to enable or disable a regulator using
  1087. * a particular supply voltage. This would normally be called from the
  1088. * set_ios() method.
  1089. */
  1090. int mmc_regulator_set_ocr(struct mmc_host *mmc,
  1091. struct regulator *supply,
  1092. unsigned short vdd_bit)
  1093. {
  1094. int result = 0;
  1095. int min_uV, max_uV;
  1096. if (vdd_bit) {
  1097. mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
  1098. result = regulator_set_voltage(supply, min_uV, max_uV);
  1099. if (result == 0 && !mmc->regulator_enabled) {
  1100. result = regulator_enable(supply);
  1101. if (!result)
  1102. mmc->regulator_enabled = true;
  1103. }
  1104. } else if (mmc->regulator_enabled) {
  1105. result = regulator_disable(supply);
  1106. if (result == 0)
  1107. mmc->regulator_enabled = false;
  1108. }
  1109. if (result)
  1110. dev_err(mmc_dev(mmc),
  1111. "could not set regulator OCR (%d)\n", result);
  1112. return result;
  1113. }
  1114. EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
  1115. static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
  1116. int min_uV, int target_uV,
  1117. int max_uV)
  1118. {
  1119. /*
  1120. * Check if supported first to avoid errors since we may try several
  1121. * signal levels during power up and don't want to show errors.
  1122. */
  1123. if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
  1124. return -EINVAL;
  1125. return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
  1126. max_uV);
  1127. }
  1128. /**
  1129. * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
  1130. *
  1131. * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
  1132. * That will match the behavior of old boards where VQMMC and VMMC were supplied
  1133. * by the same supply. The Bus Operating conditions for 3.3V signaling in the
  1134. * SD card spec also define VQMMC in terms of VMMC.
  1135. * If this is not possible we'll try the full 2.7-3.6V of the spec.
  1136. *
  1137. * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
  1138. * requested voltage. This is definitely a good idea for UHS where there's a
  1139. * separate regulator on the card that's trying to make 1.8V and it's best if
  1140. * we match.
  1141. *
  1142. * This function is expected to be used by a controller's
  1143. * start_signal_voltage_switch() function.
  1144. */
  1145. int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
  1146. {
  1147. struct device *dev = mmc_dev(mmc);
  1148. int ret, volt, min_uV, max_uV;
  1149. /* If no vqmmc supply then we can't change the voltage */
  1150. if (IS_ERR(mmc->supply.vqmmc))
  1151. return -EINVAL;
  1152. switch (ios->signal_voltage) {
  1153. case MMC_SIGNAL_VOLTAGE_120:
  1154. return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
  1155. 1100000, 1200000, 1300000);
  1156. case MMC_SIGNAL_VOLTAGE_180:
  1157. return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
  1158. 1700000, 1800000, 1950000);
  1159. case MMC_SIGNAL_VOLTAGE_330:
  1160. ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
  1161. if (ret < 0)
  1162. return ret;
  1163. dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
  1164. __func__, volt, max_uV);
  1165. min_uV = max(volt - 300000, 2700000);
  1166. max_uV = min(max_uV + 200000, 3600000);
  1167. /*
  1168. * Due to a limitation in the current implementation of
  1169. * regulator_set_voltage_triplet() which is taking the lowest
  1170. * voltage possible if below the target, search for a suitable
  1171. * voltage in two steps and try to stay close to vmmc
  1172. * with a 0.3V tolerance at first.
  1173. */
  1174. if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
  1175. min_uV, volt, max_uV))
  1176. return 0;
  1177. return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
  1178. 2700000, volt, 3600000);
  1179. default:
  1180. return -EINVAL;
  1181. }
  1182. }
  1183. EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
  1184. #endif /* CONFIG_REGULATOR */
  1185. int mmc_regulator_get_supply(struct mmc_host *mmc)
  1186. {
  1187. struct device *dev = mmc_dev(mmc);
  1188. int ret;
  1189. mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
  1190. mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
  1191. if (IS_ERR(mmc->supply.vmmc)) {
  1192. if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
  1193. return -EPROBE_DEFER;
  1194. dev_dbg(dev, "No vmmc regulator found\n");
  1195. } else {
  1196. ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
  1197. if (ret > 0)
  1198. mmc->ocr_avail = ret;
  1199. else
  1200. dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
  1201. }
  1202. if (IS_ERR(mmc->supply.vqmmc)) {
  1203. if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
  1204. return -EPROBE_DEFER;
  1205. dev_dbg(dev, "No vqmmc regulator found\n");
  1206. }
  1207. return 0;
  1208. }
  1209. EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
  1210. /*
  1211. * Mask off any voltages we don't support and select
  1212. * the lowest voltage
  1213. */
  1214. u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
  1215. {
  1216. int bit;
  1217. /*
  1218. * Sanity check the voltages that the card claims to
  1219. * support.
  1220. */
  1221. if (ocr & 0x7F) {
  1222. dev_warn(mmc_dev(host),
  1223. "card claims to support voltages below defined range\n");
  1224. ocr &= ~0x7F;
  1225. }
  1226. ocr &= host->ocr_avail;
  1227. if (!ocr) {
  1228. dev_warn(mmc_dev(host), "no support for card's volts\n");
  1229. return 0;
  1230. }
  1231. if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
  1232. bit = ffs(ocr) - 1;
  1233. ocr &= 3 << bit;
  1234. mmc_power_cycle(host, ocr);
  1235. } else {
  1236. bit = fls(ocr) - 1;
  1237. ocr &= 3 << bit;
  1238. if (bit != host->ios.vdd)
  1239. dev_warn(mmc_dev(host), "exceeding card's volts\n");
  1240. }
  1241. return ocr;
  1242. }
  1243. int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
  1244. {
  1245. int err = 0;
  1246. int old_signal_voltage = host->ios.signal_voltage;
  1247. host->ios.signal_voltage = signal_voltage;
  1248. if (host->ops->start_signal_voltage_switch)
  1249. err = host->ops->start_signal_voltage_switch(host, &host->ios);
  1250. if (err)
  1251. host->ios.signal_voltage = old_signal_voltage;
  1252. return err;
  1253. }
  1254. int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
  1255. {
  1256. struct mmc_command cmd = {};
  1257. int err = 0;
  1258. u32 clock;
  1259. /*
  1260. * If we cannot switch voltages, return failure so the caller
  1261. * can continue without UHS mode
  1262. */
  1263. if (!host->ops->start_signal_voltage_switch)
  1264. return -EPERM;
  1265. if (!host->ops->card_busy)
  1266. pr_warn("%s: cannot verify signal voltage switch\n",
  1267. mmc_hostname(host));
  1268. cmd.opcode = SD_SWITCH_VOLTAGE;
  1269. cmd.arg = 0;
  1270. cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
  1271. err = mmc_wait_for_cmd(host, &cmd, 0);
  1272. if (err)
  1273. return err;
  1274. if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
  1275. return -EIO;
  1276. /*
  1277. * The card should drive cmd and dat[0:3] low immediately
  1278. * after the response of cmd11, but wait 1 ms to be sure
  1279. */
  1280. mmc_delay(1);
  1281. if (host->ops->card_busy && !host->ops->card_busy(host)) {
  1282. err = -EAGAIN;
  1283. goto power_cycle;
  1284. }
  1285. /*
  1286. * During a signal voltage level switch, the clock must be gated
  1287. * for 5 ms according to the SD spec
  1288. */
  1289. clock = host->ios.clock;
  1290. host->ios.clock = 0;
  1291. mmc_set_ios(host);
  1292. if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) {
  1293. /*
  1294. * Voltages may not have been switched, but we've already
  1295. * sent CMD11, so a power cycle is required anyway
  1296. */
  1297. err = -EAGAIN;
  1298. goto power_cycle;
  1299. }
  1300. /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
  1301. mmc_delay(10);
  1302. host->ios.clock = clock;
  1303. mmc_set_ios(host);
  1304. /* Wait for at least 1 ms according to spec */
  1305. mmc_delay(1);
  1306. /*
  1307. * Failure to switch is indicated by the card holding
  1308. * dat[0:3] low
  1309. */
  1310. if (host->ops->card_busy && host->ops->card_busy(host))
  1311. err = -EAGAIN;
  1312. power_cycle:
  1313. if (err) {
  1314. pr_debug("%s: Signal voltage switch failed, "
  1315. "power cycling card\n", mmc_hostname(host));
  1316. mmc_power_cycle(host, ocr);
  1317. }
  1318. return err;
  1319. }
  1320. /*
  1321. * Select timing parameters for host.
  1322. */
  1323. void mmc_set_timing(struct mmc_host *host, unsigned int timing)
  1324. {
  1325. host->ios.timing = timing;
  1326. mmc_set_ios(host);
  1327. }
  1328. /*
  1329. * Select appropriate driver type for host.
  1330. */
  1331. void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
  1332. {
  1333. host->ios.drv_type = drv_type;
  1334. mmc_set_ios(host);
  1335. }
  1336. int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
  1337. int card_drv_type, int *drv_type)
  1338. {
  1339. struct mmc_host *host = card->host;
  1340. int host_drv_type = SD_DRIVER_TYPE_B;
  1341. *drv_type = 0;
  1342. if (!host->ops->select_drive_strength)
  1343. return 0;
  1344. /* Use SD definition of driver strength for hosts */
  1345. if (host->caps & MMC_CAP_DRIVER_TYPE_A)
  1346. host_drv_type |= SD_DRIVER_TYPE_A;
  1347. if (host->caps & MMC_CAP_DRIVER_TYPE_C)
  1348. host_drv_type |= SD_DRIVER_TYPE_C;
  1349. if (host->caps & MMC_CAP_DRIVER_TYPE_D)
  1350. host_drv_type |= SD_DRIVER_TYPE_D;
  1351. /*
  1352. * The drive strength that the hardware can support
  1353. * depends on the board design. Pass the appropriate
  1354. * information and let the hardware specific code
  1355. * return what is possible given the options
  1356. */
  1357. return host->ops->select_drive_strength(card, max_dtr,
  1358. host_drv_type,
  1359. card_drv_type,
  1360. drv_type);
  1361. }
  1362. /*
  1363. * Apply power to the MMC stack. This is a two-stage process.
  1364. * First, we enable power to the card without the clock running.
  1365. * We then wait a bit for the power to stabilise. Finally,
  1366. * enable the bus drivers and clock to the card.
  1367. *
  1368. * We must _NOT_ enable the clock prior to power stablising.
  1369. *
  1370. * If a host does all the power sequencing itself, ignore the
  1371. * initial MMC_POWER_UP stage.
  1372. */
  1373. void mmc_power_up(struct mmc_host *host, u32 ocr)
  1374. {
  1375. if (host->ios.power_mode == MMC_POWER_ON)
  1376. return;
  1377. mmc_pwrseq_pre_power_on(host);
  1378. host->ios.vdd = fls(ocr) - 1;
  1379. host->ios.power_mode = MMC_POWER_UP;
  1380. /* Set initial state and call mmc_set_ios */
  1381. mmc_set_initial_state(host);
  1382. /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
  1383. if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
  1384. dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
  1385. else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
  1386. dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
  1387. else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
  1388. dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
  1389. /*
  1390. * This delay should be sufficient to allow the power supply
  1391. * to reach the minimum voltage.
  1392. */
  1393. mmc_delay(10);
  1394. mmc_pwrseq_post_power_on(host);
  1395. host->ios.clock = host->f_init;
  1396. host->ios.power_mode = MMC_POWER_ON;
  1397. mmc_set_ios(host);
  1398. /*
  1399. * This delay must be at least 74 clock sizes, or 1 ms, or the
  1400. * time required to reach a stable voltage.
  1401. */
  1402. mmc_delay(10);
  1403. }
  1404. void mmc_power_off(struct mmc_host *host)
  1405. {
  1406. if (host->ios.power_mode == MMC_POWER_OFF)
  1407. return;
  1408. mmc_pwrseq_power_off(host);
  1409. host->ios.clock = 0;
  1410. host->ios.vdd = 0;
  1411. host->ios.power_mode = MMC_POWER_OFF;
  1412. /* Set initial state and call mmc_set_ios */
  1413. mmc_set_initial_state(host);
  1414. /*
  1415. * Some configurations, such as the 802.11 SDIO card in the OLPC
  1416. * XO-1.5, require a short delay after poweroff before the card
  1417. * can be successfully turned on again.
  1418. */
  1419. mmc_delay(1);
  1420. }
  1421. void mmc_power_cycle(struct mmc_host *host, u32 ocr)
  1422. {
  1423. mmc_power_off(host);
  1424. /* Wait at least 1 ms according to SD spec */
  1425. mmc_delay(1);
  1426. mmc_power_up(host, ocr);
  1427. }
  1428. /*
  1429. * Cleanup when the last reference to the bus operator is dropped.
  1430. */
  1431. static void __mmc_release_bus(struct mmc_host *host)
  1432. {
  1433. WARN_ON(!host->bus_dead);
  1434. host->bus_ops = NULL;
  1435. }
  1436. /*
  1437. * Increase reference count of bus operator
  1438. */
  1439. static inline void mmc_bus_get(struct mmc_host *host)
  1440. {
  1441. unsigned long flags;
  1442. spin_lock_irqsave(&host->lock, flags);
  1443. host->bus_refs++;
  1444. spin_unlock_irqrestore(&host->lock, flags);
  1445. }
  1446. /*
  1447. * Decrease reference count of bus operator and free it if
  1448. * it is the last reference.
  1449. */
  1450. static inline void mmc_bus_put(struct mmc_host *host)
  1451. {
  1452. unsigned long flags;
  1453. spin_lock_irqsave(&host->lock, flags);
  1454. host->bus_refs--;
  1455. if ((host->bus_refs == 0) && host->bus_ops)
  1456. __mmc_release_bus(host);
  1457. spin_unlock_irqrestore(&host->lock, flags);
  1458. }
  1459. /*
  1460. * Assign a mmc bus handler to a host. Only one bus handler may control a
  1461. * host at any given time.
  1462. */
  1463. void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
  1464. {
  1465. unsigned long flags;
  1466. WARN_ON(!host->claimed);
  1467. spin_lock_irqsave(&host->lock, flags);
  1468. WARN_ON(host->bus_ops);
  1469. WARN_ON(host->bus_refs);
  1470. host->bus_ops = ops;
  1471. host->bus_refs = 1;
  1472. host->bus_dead = 0;
  1473. spin_unlock_irqrestore(&host->lock, flags);
  1474. }
  1475. /*
  1476. * Remove the current bus handler from a host.
  1477. */
  1478. void mmc_detach_bus(struct mmc_host *host)
  1479. {
  1480. unsigned long flags;
  1481. WARN_ON(!host->claimed);
  1482. WARN_ON(!host->bus_ops);
  1483. spin_lock_irqsave(&host->lock, flags);
  1484. host->bus_dead = 1;
  1485. spin_unlock_irqrestore(&host->lock, flags);
  1486. mmc_bus_put(host);
  1487. }
  1488. static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
  1489. bool cd_irq)
  1490. {
  1491. /*
  1492. * If the device is configured as wakeup, we prevent a new sleep for
  1493. * 5 s to give provision for user space to consume the event.
  1494. */
  1495. if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
  1496. device_can_wakeup(mmc_dev(host)))
  1497. pm_wakeup_event(mmc_dev(host), 5000);
  1498. host->detect_change = 1;
  1499. mmc_schedule_delayed_work(&host->detect, delay);
  1500. }
  1501. /**
  1502. * mmc_detect_change - process change of state on a MMC socket
  1503. * @host: host which changed state.
  1504. * @delay: optional delay to wait before detection (jiffies)
  1505. *
  1506. * MMC drivers should call this when they detect a card has been
  1507. * inserted or removed. The MMC layer will confirm that any
  1508. * present card is still functional, and initialize any newly
  1509. * inserted.
  1510. */
  1511. void mmc_detect_change(struct mmc_host *host, unsigned long delay)
  1512. {
  1513. _mmc_detect_change(host, delay, true);
  1514. }
  1515. EXPORT_SYMBOL(mmc_detect_change);
  1516. void mmc_init_erase(struct mmc_card *card)
  1517. {
  1518. unsigned int sz;
  1519. if (is_power_of_2(card->erase_size))
  1520. card->erase_shift = ffs(card->erase_size) - 1;
  1521. else
  1522. card->erase_shift = 0;
  1523. /*
  1524. * It is possible to erase an arbitrarily large area of an SD or MMC
  1525. * card. That is not desirable because it can take a long time
  1526. * (minutes) potentially delaying more important I/O, and also the
  1527. * timeout calculations become increasingly hugely over-estimated.
  1528. * Consequently, 'pref_erase' is defined as a guide to limit erases
  1529. * to that size and alignment.
  1530. *
  1531. * For SD cards that define Allocation Unit size, limit erases to one
  1532. * Allocation Unit at a time.
  1533. * For MMC, have a stab at ai good value and for modern cards it will
  1534. * end up being 4MiB. Note that if the value is too small, it can end
  1535. * up taking longer to erase. Also note, erase_size is already set to
  1536. * High Capacity Erase Size if available when this function is called.
  1537. */
  1538. if (mmc_card_sd(card) && card->ssr.au) {
  1539. card->pref_erase = card->ssr.au;
  1540. card->erase_shift = ffs(card->ssr.au) - 1;
  1541. } else if (card->erase_size) {
  1542. sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
  1543. if (sz < 128)
  1544. card->pref_erase = 512 * 1024 / 512;
  1545. else if (sz < 512)
  1546. card->pref_erase = 1024 * 1024 / 512;
  1547. else if (sz < 1024)
  1548. card->pref_erase = 2 * 1024 * 1024 / 512;
  1549. else
  1550. card->pref_erase = 4 * 1024 * 1024 / 512;
  1551. if (card->pref_erase < card->erase_size)
  1552. card->pref_erase = card->erase_size;
  1553. else {
  1554. sz = card->pref_erase % card->erase_size;
  1555. if (sz)
  1556. card->pref_erase += card->erase_size - sz;
  1557. }
  1558. } else
  1559. card->pref_erase = 0;
  1560. }
  1561. static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
  1562. unsigned int arg, unsigned int qty)
  1563. {
  1564. unsigned int erase_timeout;
  1565. if (arg == MMC_DISCARD_ARG ||
  1566. (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
  1567. erase_timeout = card->ext_csd.trim_timeout;
  1568. } else if (card->ext_csd.erase_group_def & 1) {
  1569. /* High Capacity Erase Group Size uses HC timeouts */
  1570. if (arg == MMC_TRIM_ARG)
  1571. erase_timeout = card->ext_csd.trim_timeout;
  1572. else
  1573. erase_timeout = card->ext_csd.hc_erase_timeout;
  1574. } else {
  1575. /* CSD Erase Group Size uses write timeout */
  1576. unsigned int mult = (10 << card->csd.r2w_factor);
  1577. unsigned int timeout_clks = card->csd.taac_clks * mult;
  1578. unsigned int timeout_us;
  1579. /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
  1580. if (card->csd.taac_ns < 1000000)
  1581. timeout_us = (card->csd.taac_ns * mult) / 1000;
  1582. else
  1583. timeout_us = (card->csd.taac_ns / 1000) * mult;
  1584. /*
  1585. * ios.clock is only a target. The real clock rate might be
  1586. * less but not that much less, so fudge it by multiplying by 2.
  1587. */
  1588. timeout_clks <<= 1;
  1589. timeout_us += (timeout_clks * 1000) /
  1590. (card->host->ios.clock / 1000);
  1591. erase_timeout = timeout_us / 1000;
  1592. /*
  1593. * Theoretically, the calculation could underflow so round up
  1594. * to 1ms in that case.
  1595. */
  1596. if (!erase_timeout)
  1597. erase_timeout = 1;
  1598. }
  1599. /* Multiplier for secure operations */
  1600. if (arg & MMC_SECURE_ARGS) {
  1601. if (arg == MMC_SECURE_ERASE_ARG)
  1602. erase_timeout *= card->ext_csd.sec_erase_mult;
  1603. else
  1604. erase_timeout *= card->ext_csd.sec_trim_mult;
  1605. }
  1606. erase_timeout *= qty;
  1607. /*
  1608. * Ensure at least a 1 second timeout for SPI as per
  1609. * 'mmc_set_data_timeout()'
  1610. */
  1611. if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
  1612. erase_timeout = 1000;
  1613. return erase_timeout;
  1614. }
  1615. static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
  1616. unsigned int arg,
  1617. unsigned int qty)
  1618. {
  1619. unsigned int erase_timeout;
  1620. if (card->ssr.erase_timeout) {
  1621. /* Erase timeout specified in SD Status Register (SSR) */
  1622. erase_timeout = card->ssr.erase_timeout * qty +
  1623. card->ssr.erase_offset;
  1624. } else {
  1625. /*
  1626. * Erase timeout not specified in SD Status Register (SSR) so
  1627. * use 250ms per write block.
  1628. */
  1629. erase_timeout = 250 * qty;
  1630. }
  1631. /* Must not be less than 1 second */
  1632. if (erase_timeout < 1000)
  1633. erase_timeout = 1000;
  1634. return erase_timeout;
  1635. }
  1636. static unsigned int mmc_erase_timeout(struct mmc_card *card,
  1637. unsigned int arg,
  1638. unsigned int qty)
  1639. {
  1640. if (mmc_card_sd(card))
  1641. return mmc_sd_erase_timeout(card, arg, qty);
  1642. else
  1643. return mmc_mmc_erase_timeout(card, arg, qty);
  1644. }
  1645. static int mmc_do_erase(struct mmc_card *card, unsigned int from,
  1646. unsigned int to, unsigned int arg)
  1647. {
  1648. struct mmc_command cmd = {};
  1649. unsigned int qty = 0, busy_timeout = 0;
  1650. bool use_r1b_resp = false;
  1651. unsigned long timeout;
  1652. int err;
  1653. mmc_retune_hold(card->host);
  1654. /*
  1655. * qty is used to calculate the erase timeout which depends on how many
  1656. * erase groups (or allocation units in SD terminology) are affected.
  1657. * We count erasing part of an erase group as one erase group.
  1658. * For SD, the allocation units are always a power of 2. For MMC, the
  1659. * erase group size is almost certainly also power of 2, but it does not
  1660. * seem to insist on that in the JEDEC standard, so we fall back to
  1661. * division in that case. SD may not specify an allocation unit size,
  1662. * in which case the timeout is based on the number of write blocks.
  1663. *
  1664. * Note that the timeout for secure trim 2 will only be correct if the
  1665. * number of erase groups specified is the same as the total of all
  1666. * preceding secure trim 1 commands. Since the power may have been
  1667. * lost since the secure trim 1 commands occurred, it is generally
  1668. * impossible to calculate the secure trim 2 timeout correctly.
  1669. */
  1670. if (card->erase_shift)
  1671. qty += ((to >> card->erase_shift) -
  1672. (from >> card->erase_shift)) + 1;
  1673. else if (mmc_card_sd(card))
  1674. qty += to - from + 1;
  1675. else
  1676. qty += ((to / card->erase_size) -
  1677. (from / card->erase_size)) + 1;
  1678. if (!mmc_card_blockaddr(card)) {
  1679. from <<= 9;
  1680. to <<= 9;
  1681. }
  1682. if (mmc_card_sd(card))
  1683. cmd.opcode = SD_ERASE_WR_BLK_START;
  1684. else
  1685. cmd.opcode = MMC_ERASE_GROUP_START;
  1686. cmd.arg = from;
  1687. cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
  1688. err = mmc_wait_for_cmd(card->host, &cmd, 0);
  1689. if (err) {
  1690. pr_err("mmc_erase: group start error %d, "
  1691. "status %#x\n", err, cmd.resp[0]);
  1692. err = -EIO;
  1693. goto out;
  1694. }
  1695. memset(&cmd, 0, sizeof(struct mmc_command));
  1696. if (mmc_card_sd(card))
  1697. cmd.opcode = SD_ERASE_WR_BLK_END;
  1698. else
  1699. cmd.opcode = MMC_ERASE_GROUP_END;
  1700. cmd.arg = to;
  1701. cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
  1702. err = mmc_wait_for_cmd(card->host, &cmd, 0);
  1703. if (err) {
  1704. pr_err("mmc_erase: group end error %d, status %#x\n",
  1705. err, cmd.resp[0]);
  1706. err = -EIO;
  1707. goto out;
  1708. }
  1709. memset(&cmd, 0, sizeof(struct mmc_command));
  1710. cmd.opcode = MMC_ERASE;
  1711. cmd.arg = arg;
  1712. busy_timeout = mmc_erase_timeout(card, arg, qty);
  1713. /*
  1714. * If the host controller supports busy signalling and the timeout for
  1715. * the erase operation does not exceed the max_busy_timeout, we should
  1716. * use R1B response. Or we need to prevent the host from doing hw busy
  1717. * detection, which is done by converting to a R1 response instead.
  1718. */
  1719. if (card->host->max_busy_timeout &&
  1720. busy_timeout > card->host->max_busy_timeout) {
  1721. cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
  1722. } else {
  1723. cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
  1724. cmd.busy_timeout = busy_timeout;
  1725. use_r1b_resp = true;
  1726. }
  1727. err = mmc_wait_for_cmd(card->host, &cmd, 0);
  1728. if (err) {
  1729. pr_err("mmc_erase: erase error %d, status %#x\n",
  1730. err, cmd.resp[0]);
  1731. err = -EIO;
  1732. goto out;
  1733. }
  1734. if (mmc_host_is_spi(card->host))
  1735. goto out;
  1736. /*
  1737. * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
  1738. * shall be avoided.
  1739. */
  1740. if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
  1741. goto out;
  1742. timeout = jiffies + msecs_to_jiffies(busy_timeout);
  1743. do {
  1744. memset(&cmd, 0, sizeof(struct mmc_command));
  1745. cmd.opcode = MMC_SEND_STATUS;
  1746. cmd.arg = card->rca << 16;
  1747. cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
  1748. /* Do not retry else we can't see errors */
  1749. err = mmc_wait_for_cmd(card->host, &cmd, 0);
  1750. if (err || (cmd.resp[0] & 0xFDF92000)) {
  1751. pr_err("error %d requesting status %#x\n",
  1752. err, cmd.resp[0]);
  1753. err = -EIO;
  1754. goto out;
  1755. }
  1756. /* Timeout if the device never becomes ready for data and
  1757. * never leaves the program state.
  1758. */
  1759. if (time_after(jiffies, timeout)) {
  1760. pr_err("%s: Card stuck in programming state! %s\n",
  1761. mmc_hostname(card->host), __func__);
  1762. err = -EIO;
  1763. goto out;
  1764. }
  1765. } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
  1766. (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
  1767. out:
  1768. mmc_retune_release(card->host);
  1769. return err;
  1770. }
  1771. static unsigned int mmc_align_erase_size(struct mmc_card *card,
  1772. unsigned int *from,
  1773. unsigned int *to,
  1774. unsigned int nr)
  1775. {
  1776. unsigned int from_new = *from, nr_new = nr, rem;
  1777. /*
  1778. * When the 'card->erase_size' is power of 2, we can use round_up/down()
  1779. * to align the erase size efficiently.
  1780. */
  1781. if (is_power_of_2(card->erase_size)) {
  1782. unsigned int temp = from_new;
  1783. from_new = round_up(temp, card->erase_size);
  1784. rem = from_new - temp;
  1785. if (nr_new > rem)
  1786. nr_new -= rem;
  1787. else
  1788. return 0;
  1789. nr_new = round_down(nr_new, card->erase_size);
  1790. } else {
  1791. rem = from_new % card->erase_size;
  1792. if (rem) {
  1793. rem = card->erase_size - rem;
  1794. from_new += rem;
  1795. if (nr_new > rem)
  1796. nr_new -= rem;
  1797. else
  1798. return 0;
  1799. }
  1800. rem = nr_new % card->erase_size;
  1801. if (rem)
  1802. nr_new -= rem;
  1803. }
  1804. if (nr_new == 0)
  1805. return 0;
  1806. *to = from_new + nr_new;
  1807. *from = from_new;
  1808. return nr_new;
  1809. }
  1810. /**
  1811. * mmc_erase - erase sectors.
  1812. * @card: card to erase
  1813. * @from: first sector to erase
  1814. * @nr: number of sectors to erase
  1815. * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
  1816. *
  1817. * Caller must claim host before calling this function.
  1818. */
  1819. int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
  1820. unsigned int arg)
  1821. {
  1822. unsigned int rem, to = from + nr;
  1823. int err;
  1824. if (!(card->host->caps & MMC_CAP_ERASE) ||
  1825. !(card->csd.cmdclass & CCC_ERASE))
  1826. return -EOPNOTSUPP;
  1827. if (!card->erase_size)
  1828. return -EOPNOTSUPP;
  1829. if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
  1830. return -EOPNOTSUPP;
  1831. if ((arg & MMC_SECURE_ARGS) &&
  1832. !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
  1833. return -EOPNOTSUPP;
  1834. if ((arg & MMC_TRIM_ARGS) &&
  1835. !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
  1836. return -EOPNOTSUPP;
  1837. if (arg == MMC_SECURE_ERASE_ARG) {
  1838. if (from % card->erase_size || nr % card->erase_size)
  1839. return -EINVAL;
  1840. }
  1841. if (arg == MMC_ERASE_ARG)
  1842. nr = mmc_align_erase_size(card, &from, &to, nr);
  1843. if (nr == 0)
  1844. return 0;
  1845. if (to <= from)
  1846. return -EINVAL;
  1847. /* 'from' and 'to' are inclusive */
  1848. to -= 1;
  1849. /*
  1850. * Special case where only one erase-group fits in the timeout budget:
  1851. * If the region crosses an erase-group boundary on this particular
  1852. * case, we will be trimming more than one erase-group which, does not
  1853. * fit in the timeout budget of the controller, so we need to split it
  1854. * and call mmc_do_erase() twice if necessary. This special case is
  1855. * identified by the card->eg_boundary flag.
  1856. */
  1857. rem = card->erase_size - (from % card->erase_size);
  1858. if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
  1859. err = mmc_do_erase(card, from, from + rem - 1, arg);
  1860. from += rem;
  1861. if ((err) || (to <= from))
  1862. return err;
  1863. }
  1864. return mmc_do_erase(card, from, to, arg);
  1865. }
  1866. EXPORT_SYMBOL(mmc_erase);
  1867. int mmc_can_erase(struct mmc_card *card)
  1868. {
  1869. if ((card->host->caps & MMC_CAP_ERASE) &&
  1870. (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
  1871. return 1;
  1872. return 0;
  1873. }
  1874. EXPORT_SYMBOL(mmc_can_erase);
  1875. int mmc_can_trim(struct mmc_card *card)
  1876. {
  1877. if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
  1878. (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
  1879. return 1;
  1880. return 0;
  1881. }
  1882. EXPORT_SYMBOL(mmc_can_trim);
  1883. int mmc_can_discard(struct mmc_card *card)
  1884. {
  1885. /*
  1886. * As there's no way to detect the discard support bit at v4.5
  1887. * use the s/w feature support filed.
  1888. */
  1889. if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
  1890. return 1;
  1891. return 0;
  1892. }
  1893. EXPORT_SYMBOL(mmc_can_discard);
  1894. int mmc_can_sanitize(struct mmc_card *card)
  1895. {
  1896. if (!mmc_can_trim(card) && !mmc_can_erase(card))
  1897. return 0;
  1898. if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
  1899. return 1;
  1900. return 0;
  1901. }
  1902. EXPORT_SYMBOL(mmc_can_sanitize);
  1903. int mmc_can_secure_erase_trim(struct mmc_card *card)
  1904. {
  1905. if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
  1906. !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
  1907. return 1;
  1908. return 0;
  1909. }
  1910. EXPORT_SYMBOL(mmc_can_secure_erase_trim);
  1911. int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
  1912. unsigned int nr)
  1913. {
  1914. if (!card->erase_size)
  1915. return 0;
  1916. if (from % card->erase_size || nr % card->erase_size)
  1917. return 0;
  1918. return 1;
  1919. }
  1920. EXPORT_SYMBOL(mmc_erase_group_aligned);
  1921. static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
  1922. unsigned int arg)
  1923. {
  1924. struct mmc_host *host = card->host;
  1925. unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
  1926. unsigned int last_timeout = 0;
  1927. unsigned int max_busy_timeout = host->max_busy_timeout ?
  1928. host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
  1929. if (card->erase_shift) {
  1930. max_qty = UINT_MAX >> card->erase_shift;
  1931. min_qty = card->pref_erase >> card->erase_shift;
  1932. } else if (mmc_card_sd(card)) {
  1933. max_qty = UINT_MAX;
  1934. min_qty = card->pref_erase;
  1935. } else {
  1936. max_qty = UINT_MAX / card->erase_size;
  1937. min_qty = card->pref_erase / card->erase_size;
  1938. }
  1939. /*
  1940. * We should not only use 'host->max_busy_timeout' as the limitation
  1941. * when deciding the max discard sectors. We should set a balance value
  1942. * to improve the erase speed, and it can not get too long timeout at
  1943. * the same time.
  1944. *
  1945. * Here we set 'card->pref_erase' as the minimal discard sectors no
  1946. * matter what size of 'host->max_busy_timeout', but if the
  1947. * 'host->max_busy_timeout' is large enough for more discard sectors,
  1948. * then we can continue to increase the max discard sectors until we
  1949. * get a balance value. In cases when the 'host->max_busy_timeout'
  1950. * isn't specified, use the default max erase timeout.
  1951. */
  1952. do {
  1953. y = 0;
  1954. for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
  1955. timeout = mmc_erase_timeout(card, arg, qty + x);
  1956. if (qty + x > min_qty && timeout > max_busy_timeout)
  1957. break;
  1958. if (timeout < last_timeout)
  1959. break;
  1960. last_timeout = timeout;
  1961. y = x;
  1962. }
  1963. qty += y;
  1964. } while (y);
  1965. if (!qty)
  1966. return 0;
  1967. /*
  1968. * When specifying a sector range to trim, chances are we might cross
  1969. * an erase-group boundary even if the amount of sectors is less than
  1970. * one erase-group.
  1971. * If we can only fit one erase-group in the controller timeout budget,
  1972. * we have to care that erase-group boundaries are not crossed by a
  1973. * single trim operation. We flag that special case with "eg_boundary".
  1974. * In all other cases we can just decrement qty and pretend that we
  1975. * always touch (qty + 1) erase-groups as a simple optimization.
  1976. */
  1977. if (qty == 1)
  1978. card->eg_boundary = 1;
  1979. else
  1980. qty--;
  1981. /* Convert qty to sectors */
  1982. if (card->erase_shift)
  1983. max_discard = qty << card->erase_shift;
  1984. else if (mmc_card_sd(card))
  1985. max_discard = qty + 1;
  1986. else
  1987. max_discard = qty * card->erase_size;
  1988. return max_discard;
  1989. }
  1990. unsigned int mmc_calc_max_discard(struct mmc_card *card)
  1991. {
  1992. struct mmc_host *host = card->host;
  1993. unsigned int max_discard, max_trim;
  1994. /*
  1995. * Without erase_group_def set, MMC erase timeout depends on clock
  1996. * frequence which can change. In that case, the best choice is
  1997. * just the preferred erase size.
  1998. */
  1999. if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
  2000. return card->pref_erase;
  2001. max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
  2002. if (mmc_can_trim(card)) {
  2003. max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
  2004. if (max_trim < max_discard)
  2005. max_discard = max_trim;
  2006. } else if (max_discard < card->erase_size) {
  2007. max_discard = 0;
  2008. }
  2009. pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
  2010. mmc_hostname(host), max_discard, host->max_busy_timeout ?
  2011. host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
  2012. return max_discard;
  2013. }
  2014. EXPORT_SYMBOL(mmc_calc_max_discard);
  2015. bool mmc_card_is_blockaddr(struct mmc_card *card)
  2016. {
  2017. return card ? mmc_card_blockaddr(card) : false;
  2018. }
  2019. EXPORT_SYMBOL(mmc_card_is_blockaddr);
  2020. int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
  2021. {
  2022. struct mmc_command cmd = {};
  2023. if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
  2024. mmc_card_hs400(card) || mmc_card_hs400es(card))
  2025. return 0;
  2026. cmd.opcode = MMC_SET_BLOCKLEN;
  2027. cmd.arg = blocklen;
  2028. cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
  2029. return mmc_wait_for_cmd(card->host, &cmd, 5);
  2030. }
  2031. EXPORT_SYMBOL(mmc_set_blocklen);
  2032. int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
  2033. bool is_rel_write)
  2034. {
  2035. struct mmc_command cmd = {};
  2036. cmd.opcode = MMC_SET_BLOCK_COUNT;
  2037. cmd.arg = blockcount & 0x0000FFFF;
  2038. if (is_rel_write)
  2039. cmd.arg |= 1 << 31;
  2040. cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
  2041. return mmc_wait_for_cmd(card->host, &cmd, 5);
  2042. }
  2043. EXPORT_SYMBOL(mmc_set_blockcount);
  2044. static void mmc_hw_reset_for_init(struct mmc_host *host)
  2045. {
  2046. mmc_pwrseq_reset(host);
  2047. if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
  2048. return;
  2049. host->ops->hw_reset(host);
  2050. }
  2051. int mmc_hw_reset(struct mmc_host *host)
  2052. {
  2053. int ret;
  2054. if (!host->card)
  2055. return -EINVAL;
  2056. mmc_bus_get(host);
  2057. if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
  2058. mmc_bus_put(host);
  2059. return -EOPNOTSUPP;
  2060. }
  2061. ret = host->bus_ops->reset(host);
  2062. mmc_bus_put(host);
  2063. if (ret)
  2064. pr_warn("%s: tried to reset card, got error %d\n",
  2065. mmc_hostname(host), ret);
  2066. return ret;
  2067. }
  2068. EXPORT_SYMBOL(mmc_hw_reset);
  2069. static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
  2070. {
  2071. host->f_init = freq;
  2072. pr_debug("%s: %s: trying to init card at %u Hz\n",
  2073. mmc_hostname(host), __func__, host->f_init);
  2074. mmc_power_up(host, host->ocr_avail);
  2075. /*
  2076. * Some eMMCs (with VCCQ always on) may not be reset after power up, so
  2077. * do a hardware reset if possible.
  2078. */
  2079. mmc_hw_reset_for_init(host);
  2080. /*
  2081. * sdio_reset sends CMD52 to reset card. Since we do not know
  2082. * if the card is being re-initialized, just send it. CMD52
  2083. * should be ignored by SD/eMMC cards.
  2084. * Skip it if we already know that we do not support SDIO commands
  2085. */
  2086. if (!(host->caps2 & MMC_CAP2_NO_SDIO))
  2087. sdio_reset(host);
  2088. mmc_go_idle(host);
  2089. if (!(host->caps2 & MMC_CAP2_NO_SD))
  2090. mmc_send_if_cond(host, host->ocr_avail);
  2091. /* Order's important: probe SDIO, then SD, then MMC */
  2092. if (!(host->caps2 & MMC_CAP2_NO_SDIO))
  2093. if (!mmc_attach_sdio(host))
  2094. return 0;
  2095. if (!(host->caps2 & MMC_CAP2_NO_SD))
  2096. if (!mmc_attach_sd(host))
  2097. return 0;
  2098. if (!(host->caps2 & MMC_CAP2_NO_MMC))
  2099. if (!mmc_attach_mmc(host))
  2100. return 0;
  2101. mmc_power_off(host);
  2102. return -EIO;
  2103. }
  2104. int _mmc_detect_card_removed(struct mmc_host *host)
  2105. {
  2106. int ret;
  2107. if (!host->card || mmc_card_removed(host->card))
  2108. return 1;
  2109. ret = host->bus_ops->alive(host);
  2110. /*
  2111. * Card detect status and alive check may be out of sync if card is
  2112. * removed slowly, when card detect switch changes while card/slot
  2113. * pads are still contacted in hardware (refer to "SD Card Mechanical
  2114. * Addendum, Appendix C: Card Detection Switch"). So reschedule a
  2115. * detect work 200ms later for this case.
  2116. */
  2117. if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
  2118. mmc_detect_change(host, msecs_to_jiffies(200));
  2119. pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
  2120. }
  2121. if (ret) {
  2122. mmc_card_set_removed(host->card);
  2123. pr_debug("%s: card remove detected\n", mmc_hostname(host));
  2124. }
  2125. return ret;
  2126. }
  2127. int mmc_detect_card_removed(struct mmc_host *host)
  2128. {
  2129. struct mmc_card *card = host->card;
  2130. int ret;
  2131. WARN_ON(!host->claimed);
  2132. if (!card)
  2133. return 1;
  2134. if (!mmc_card_is_removable(host))
  2135. return 0;
  2136. ret = mmc_card_removed(card);
  2137. /*
  2138. * The card will be considered unchanged unless we have been asked to
  2139. * detect a change or host requires polling to provide card detection.
  2140. */
  2141. if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
  2142. return ret;
  2143. host->detect_change = 0;
  2144. if (!ret) {
  2145. ret = _mmc_detect_card_removed(host);
  2146. if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
  2147. /*
  2148. * Schedule a detect work as soon as possible to let a
  2149. * rescan handle the card removal.
  2150. */
  2151. cancel_delayed_work(&host->detect);
  2152. _mmc_detect_change(host, 0, false);
  2153. }
  2154. }
  2155. return ret;
  2156. }
  2157. EXPORT_SYMBOL(mmc_detect_card_removed);
  2158. void mmc_rescan(struct work_struct *work)
  2159. {
  2160. struct mmc_host *host =
  2161. container_of(work, struct mmc_host, detect.work);
  2162. int i;
  2163. if (host->rescan_disable)
  2164. return;
  2165. /* If there is a non-removable card registered, only scan once */
  2166. if (!mmc_card_is_removable(host) && host->rescan_entered)
  2167. return;
  2168. host->rescan_entered = 1;
  2169. if (host->trigger_card_event && host->ops->card_event) {
  2170. mmc_claim_host(host);
  2171. host->ops->card_event(host);
  2172. mmc_release_host(host);
  2173. host->trigger_card_event = false;
  2174. }
  2175. mmc_bus_get(host);
  2176. /*
  2177. * if there is a _removable_ card registered, check whether it is
  2178. * still present
  2179. */
  2180. if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
  2181. host->bus_ops->detect(host);
  2182. host->detect_change = 0;
  2183. /*
  2184. * Let mmc_bus_put() free the bus/bus_ops if we've found that
  2185. * the card is no longer present.
  2186. */
  2187. mmc_bus_put(host);
  2188. mmc_bus_get(host);
  2189. /* if there still is a card present, stop here */
  2190. if (host->bus_ops != NULL) {
  2191. mmc_bus_put(host);
  2192. goto out;
  2193. }
  2194. /*
  2195. * Only we can add a new handler, so it's safe to
  2196. * release the lock here.
  2197. */
  2198. mmc_bus_put(host);
  2199. mmc_claim_host(host);
  2200. if (mmc_card_is_removable(host) && host->ops->get_cd &&
  2201. host->ops->get_cd(host) == 0) {
  2202. mmc_power_off(host);
  2203. mmc_release_host(host);
  2204. goto out;
  2205. }
  2206. for (i = 0; i < ARRAY_SIZE(freqs); i++) {
  2207. if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
  2208. break;
  2209. if (freqs[i] <= host->f_min)
  2210. break;
  2211. }
  2212. mmc_release_host(host);
  2213. out:
  2214. if (host->caps & MMC_CAP_NEEDS_POLL)
  2215. mmc_schedule_delayed_work(&host->detect, HZ);
  2216. }
  2217. void mmc_start_host(struct mmc_host *host)
  2218. {
  2219. host->f_init = max(freqs[0], host->f_min);
  2220. host->rescan_disable = 0;
  2221. host->ios.power_mode = MMC_POWER_UNDEFINED;
  2222. if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
  2223. mmc_claim_host(host);
  2224. mmc_power_up(host, host->ocr_avail);
  2225. mmc_release_host(host);
  2226. }
  2227. mmc_gpiod_request_cd_irq(host);
  2228. _mmc_detect_change(host, 0, false);
  2229. }
  2230. void mmc_stop_host(struct mmc_host *host)
  2231. {
  2232. if (host->slot.cd_irq >= 0) {
  2233. if (host->slot.cd_wake_enabled)
  2234. disable_irq_wake(host->slot.cd_irq);
  2235. disable_irq(host->slot.cd_irq);
  2236. }
  2237. host->rescan_disable = 1;
  2238. cancel_delayed_work_sync(&host->detect);
  2239. /* clear pm flags now and let card drivers set them as needed */
  2240. host->pm_flags = 0;
  2241. mmc_bus_get(host);
  2242. if (host->bus_ops && !host->bus_dead) {
  2243. /* Calling bus_ops->remove() with a claimed host can deadlock */
  2244. host->bus_ops->remove(host);
  2245. mmc_claim_host(host);
  2246. mmc_detach_bus(host);
  2247. mmc_power_off(host);
  2248. mmc_release_host(host);
  2249. mmc_bus_put(host);
  2250. return;
  2251. }
  2252. mmc_bus_put(host);
  2253. mmc_claim_host(host);
  2254. mmc_power_off(host);
  2255. mmc_release_host(host);
  2256. }
  2257. int mmc_power_save_host(struct mmc_host *host)
  2258. {
  2259. int ret = 0;
  2260. pr_debug("%s: %s: powering down\n", mmc_hostname(host), __func__);
  2261. mmc_bus_get(host);
  2262. if (!host->bus_ops || host->bus_dead) {
  2263. mmc_bus_put(host);
  2264. return -EINVAL;
  2265. }
  2266. if (host->bus_ops->power_save)
  2267. ret = host->bus_ops->power_save(host);
  2268. mmc_bus_put(host);
  2269. mmc_power_off(host);
  2270. return ret;
  2271. }
  2272. EXPORT_SYMBOL(mmc_power_save_host);
  2273. int mmc_power_restore_host(struct mmc_host *host)
  2274. {
  2275. int ret;
  2276. pr_debug("%s: %s: powering up\n", mmc_hostname(host), __func__);
  2277. mmc_bus_get(host);
  2278. if (!host->bus_ops || host->bus_dead) {
  2279. mmc_bus_put(host);
  2280. return -EINVAL;
  2281. }
  2282. mmc_power_up(host, host->card->ocr);
  2283. ret = host->bus_ops->power_restore(host);
  2284. mmc_bus_put(host);
  2285. return ret;
  2286. }
  2287. EXPORT_SYMBOL(mmc_power_restore_host);
  2288. #ifdef CONFIG_PM_SLEEP
  2289. /* Do the card removal on suspend if card is assumed removeable
  2290. * Do that in pm notifier while userspace isn't yet frozen, so we will be able
  2291. to sync the card.
  2292. */
  2293. static int mmc_pm_notify(struct notifier_block *notify_block,
  2294. unsigned long mode, void *unused)
  2295. {
  2296. struct mmc_host *host = container_of(
  2297. notify_block, struct mmc_host, pm_notify);
  2298. unsigned long flags;
  2299. int err = 0;
  2300. switch (mode) {
  2301. case PM_HIBERNATION_PREPARE:
  2302. case PM_SUSPEND_PREPARE:
  2303. case PM_RESTORE_PREPARE:
  2304. spin_lock_irqsave(&host->lock, flags);
  2305. host->rescan_disable = 1;
  2306. spin_unlock_irqrestore(&host->lock, flags);
  2307. cancel_delayed_work_sync(&host->detect);
  2308. if (!host->bus_ops)
  2309. break;
  2310. /* Validate prerequisites for suspend */
  2311. if (host->bus_ops->pre_suspend)
  2312. err = host->bus_ops->pre_suspend(host);
  2313. if (!err)
  2314. break;
  2315. /* Calling bus_ops->remove() with a claimed host can deadlock */
  2316. host->bus_ops->remove(host);
  2317. mmc_claim_host(host);
  2318. mmc_detach_bus(host);
  2319. mmc_power_off(host);
  2320. mmc_release_host(host);
  2321. host->pm_flags = 0;
  2322. break;
  2323. case PM_POST_SUSPEND:
  2324. case PM_POST_HIBERNATION:
  2325. case PM_POST_RESTORE:
  2326. spin_lock_irqsave(&host->lock, flags);
  2327. host->rescan_disable = 0;
  2328. spin_unlock_irqrestore(&host->lock, flags);
  2329. _mmc_detect_change(host, 0, false);
  2330. }
  2331. return 0;
  2332. }
  2333. void mmc_register_pm_notifier(struct mmc_host *host)
  2334. {
  2335. host->pm_notify.notifier_call = mmc_pm_notify;
  2336. register_pm_notifier(&host->pm_notify);
  2337. }
  2338. void mmc_unregister_pm_notifier(struct mmc_host *host)
  2339. {
  2340. unregister_pm_notifier(&host->pm_notify);
  2341. }
  2342. #endif
  2343. /**
  2344. * mmc_init_context_info() - init synchronization context
  2345. * @host: mmc host
  2346. *
  2347. * Init struct context_info needed to implement asynchronous
  2348. * request mechanism, used by mmc core, host driver and mmc requests
  2349. * supplier.
  2350. */
  2351. void mmc_init_context_info(struct mmc_host *host)
  2352. {
  2353. host->context_info.is_new_req = false;
  2354. host->context_info.is_done_rcv = false;
  2355. host->context_info.is_waiting_last_req = false;
  2356. init_waitqueue_head(&host->context_info.wait);
  2357. }
  2358. static int __init mmc_init(void)
  2359. {
  2360. int ret;
  2361. ret = mmc_register_bus();
  2362. if (ret)
  2363. return ret;
  2364. ret = mmc_register_host_class();
  2365. if (ret)
  2366. goto unregister_bus;
  2367. ret = sdio_register_bus();
  2368. if (ret)
  2369. goto unregister_host_class;
  2370. return 0;
  2371. unregister_host_class:
  2372. mmc_unregister_host_class();
  2373. unregister_bus:
  2374. mmc_unregister_bus();
  2375. return ret;
  2376. }
  2377. static void __exit mmc_exit(void)
  2378. {
  2379. sdio_unregister_bus();
  2380. mmc_unregister_host_class();
  2381. mmc_unregister_bus();
  2382. }
  2383. subsys_initcall(mmc_init);
  2384. module_exit(mmc_exit);
  2385. MODULE_LICENSE("GPL");