time.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time.
  21. * - for astronomical applications: add a new function to get
  22. * non ambiguous timestamps even around leap seconds. This needs
  23. * a new timestamp format and a good name.
  24. *
  25. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  26. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  27. *
  28. * This program is free software; you can redistribute it and/or
  29. * modify it under the terms of the GNU General Public License
  30. * as published by the Free Software Foundation; either version
  31. * 2 of the License, or (at your option) any later version.
  32. */
  33. #include <linux/errno.h>
  34. #include <linux/export.h>
  35. #include <linux/sched.h>
  36. #include <linux/kernel.h>
  37. #include <linux/param.h>
  38. #include <linux/string.h>
  39. #include <linux/mm.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/timex.h>
  42. #include <linux/kernel_stat.h>
  43. #include <linux/time.h>
  44. #include <linux/clockchips.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <linux/delay.h>
  55. #include <linux/irq_work.h>
  56. #include <linux/clk-provider.h>
  57. #include <linux/suspend.h>
  58. #include <linux/rtc.h>
  59. #include <asm/trace.h>
  60. #include <asm/io.h>
  61. #include <asm/processor.h>
  62. #include <asm/nvram.h>
  63. #include <asm/cache.h>
  64. #include <asm/machdep.h>
  65. #include <asm/uaccess.h>
  66. #include <asm/time.h>
  67. #include <asm/prom.h>
  68. #include <asm/irq.h>
  69. #include <asm/div64.h>
  70. #include <asm/smp.h>
  71. #include <asm/vdso_datapage.h>
  72. #include <asm/firmware.h>
  73. #include <asm/cputime.h>
  74. /* powerpc clocksource/clockevent code */
  75. #include <linux/clockchips.h>
  76. #include <linux/timekeeper_internal.h>
  77. static cycle_t rtc_read(struct clocksource *);
  78. static struct clocksource clocksource_rtc = {
  79. .name = "rtc",
  80. .rating = 400,
  81. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  82. .mask = CLOCKSOURCE_MASK(64),
  83. .read = rtc_read,
  84. };
  85. static cycle_t timebase_read(struct clocksource *);
  86. static struct clocksource clocksource_timebase = {
  87. .name = "timebase",
  88. .rating = 400,
  89. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  90. .mask = CLOCKSOURCE_MASK(64),
  91. .read = timebase_read,
  92. };
  93. #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
  94. u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
  95. static int decrementer_set_next_event(unsigned long evt,
  96. struct clock_event_device *dev);
  97. static int decrementer_shutdown(struct clock_event_device *evt);
  98. struct clock_event_device decrementer_clockevent = {
  99. .name = "decrementer",
  100. .rating = 200,
  101. .irq = 0,
  102. .set_next_event = decrementer_set_next_event,
  103. .set_state_shutdown = decrementer_shutdown,
  104. .tick_resume = decrementer_shutdown,
  105. .features = CLOCK_EVT_FEAT_ONESHOT |
  106. CLOCK_EVT_FEAT_C3STOP,
  107. };
  108. EXPORT_SYMBOL(decrementer_clockevent);
  109. DEFINE_PER_CPU(u64, decrementers_next_tb);
  110. static DEFINE_PER_CPU(struct clock_event_device, decrementers);
  111. #define XSEC_PER_SEC (1024*1024)
  112. #ifdef CONFIG_PPC64
  113. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  114. #else
  115. /* compute ((xsec << 12) * max) >> 32 */
  116. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  117. #endif
  118. unsigned long tb_ticks_per_jiffy;
  119. unsigned long tb_ticks_per_usec = 100; /* sane default */
  120. EXPORT_SYMBOL(tb_ticks_per_usec);
  121. unsigned long tb_ticks_per_sec;
  122. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  123. DEFINE_SPINLOCK(rtc_lock);
  124. EXPORT_SYMBOL_GPL(rtc_lock);
  125. static u64 tb_to_ns_scale __read_mostly;
  126. static unsigned tb_to_ns_shift __read_mostly;
  127. static u64 boot_tb __read_mostly;
  128. extern struct timezone sys_tz;
  129. static long timezone_offset;
  130. unsigned long ppc_proc_freq;
  131. EXPORT_SYMBOL_GPL(ppc_proc_freq);
  132. unsigned long ppc_tb_freq;
  133. EXPORT_SYMBOL_GPL(ppc_tb_freq);
  134. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  135. /*
  136. * Factors for converting from cputime_t (timebase ticks) to
  137. * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
  138. * These are all stored as 0.64 fixed-point binary fractions.
  139. */
  140. u64 __cputime_jiffies_factor;
  141. EXPORT_SYMBOL(__cputime_jiffies_factor);
  142. u64 __cputime_usec_factor;
  143. EXPORT_SYMBOL(__cputime_usec_factor);
  144. u64 __cputime_sec_factor;
  145. EXPORT_SYMBOL(__cputime_sec_factor);
  146. u64 __cputime_clockt_factor;
  147. EXPORT_SYMBOL(__cputime_clockt_factor);
  148. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  149. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  150. cputime_t cputime_one_jiffy;
  151. #ifdef CONFIG_PPC_SPLPAR
  152. void (*dtl_consumer)(struct dtl_entry *, u64);
  153. #endif
  154. #ifdef CONFIG_PPC64
  155. #define get_accounting(tsk) (&get_paca()->accounting)
  156. #else
  157. #define get_accounting(tsk) (&task_thread_info(tsk)->accounting)
  158. #endif
  159. static void calc_cputime_factors(void)
  160. {
  161. struct div_result res;
  162. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  163. __cputime_jiffies_factor = res.result_low;
  164. div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
  165. __cputime_usec_factor = res.result_low;
  166. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  167. __cputime_sec_factor = res.result_low;
  168. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  169. __cputime_clockt_factor = res.result_low;
  170. }
  171. /*
  172. * Read the SPURR on systems that have it, otherwise the PURR,
  173. * or if that doesn't exist return the timebase value passed in.
  174. */
  175. static unsigned long read_spurr(unsigned long tb)
  176. {
  177. if (cpu_has_feature(CPU_FTR_SPURR))
  178. return mfspr(SPRN_SPURR);
  179. if (cpu_has_feature(CPU_FTR_PURR))
  180. return mfspr(SPRN_PURR);
  181. return tb;
  182. }
  183. #ifdef CONFIG_PPC_SPLPAR
  184. /*
  185. * Scan the dispatch trace log and count up the stolen time.
  186. * Should be called with interrupts disabled.
  187. */
  188. static u64 scan_dispatch_log(u64 stop_tb)
  189. {
  190. u64 i = local_paca->dtl_ridx;
  191. struct dtl_entry *dtl = local_paca->dtl_curr;
  192. struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
  193. struct lppaca *vpa = local_paca->lppaca_ptr;
  194. u64 tb_delta;
  195. u64 stolen = 0;
  196. u64 dtb;
  197. if (!dtl)
  198. return 0;
  199. if (i == be64_to_cpu(vpa->dtl_idx))
  200. return 0;
  201. while (i < be64_to_cpu(vpa->dtl_idx)) {
  202. dtb = be64_to_cpu(dtl->timebase);
  203. tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
  204. be32_to_cpu(dtl->ready_to_enqueue_time);
  205. barrier();
  206. if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
  207. /* buffer has overflowed */
  208. i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
  209. dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
  210. continue;
  211. }
  212. if (dtb > stop_tb)
  213. break;
  214. if (dtl_consumer)
  215. dtl_consumer(dtl, i);
  216. stolen += tb_delta;
  217. ++i;
  218. ++dtl;
  219. if (dtl == dtl_end)
  220. dtl = local_paca->dispatch_log;
  221. }
  222. local_paca->dtl_ridx = i;
  223. local_paca->dtl_curr = dtl;
  224. return stolen;
  225. }
  226. /*
  227. * Accumulate stolen time by scanning the dispatch trace log.
  228. * Called on entry from user mode.
  229. */
  230. void accumulate_stolen_time(void)
  231. {
  232. u64 sst, ust;
  233. u8 save_soft_enabled = local_paca->soft_enabled;
  234. struct cpu_accounting_data *acct = &local_paca->accounting;
  235. /* We are called early in the exception entry, before
  236. * soft/hard_enabled are sync'ed to the expected state
  237. * for the exception. We are hard disabled but the PACA
  238. * needs to reflect that so various debug stuff doesn't
  239. * complain
  240. */
  241. local_paca->soft_enabled = 0;
  242. sst = scan_dispatch_log(acct->starttime_user);
  243. ust = scan_dispatch_log(acct->starttime);
  244. acct->system_time -= sst;
  245. acct->user_time -= ust;
  246. local_paca->stolen_time += ust + sst;
  247. local_paca->soft_enabled = save_soft_enabled;
  248. }
  249. static inline u64 calculate_stolen_time(u64 stop_tb)
  250. {
  251. u64 stolen = 0;
  252. if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
  253. stolen = scan_dispatch_log(stop_tb);
  254. get_paca()->accounting.system_time -= stolen;
  255. }
  256. stolen += get_paca()->stolen_time;
  257. get_paca()->stolen_time = 0;
  258. return stolen;
  259. }
  260. #else /* CONFIG_PPC_SPLPAR */
  261. static inline u64 calculate_stolen_time(u64 stop_tb)
  262. {
  263. return 0;
  264. }
  265. #endif /* CONFIG_PPC_SPLPAR */
  266. /*
  267. * Account time for a transition between system, hard irq
  268. * or soft irq state.
  269. */
  270. static unsigned long vtime_delta(struct task_struct *tsk,
  271. unsigned long *sys_scaled,
  272. unsigned long *stolen)
  273. {
  274. unsigned long now, nowscaled, deltascaled;
  275. unsigned long udelta, delta, user_scaled;
  276. struct cpu_accounting_data *acct = get_accounting(tsk);
  277. WARN_ON_ONCE(!irqs_disabled());
  278. now = mftb();
  279. nowscaled = read_spurr(now);
  280. acct->system_time += now - acct->starttime;
  281. acct->starttime = now;
  282. deltascaled = nowscaled - acct->startspurr;
  283. acct->startspurr = nowscaled;
  284. *stolen = calculate_stolen_time(now);
  285. delta = acct->system_time;
  286. acct->system_time = 0;
  287. udelta = acct->user_time - acct->utime_sspurr;
  288. acct->utime_sspurr = acct->user_time;
  289. /*
  290. * Because we don't read the SPURR on every kernel entry/exit,
  291. * deltascaled includes both user and system SPURR ticks.
  292. * Apportion these ticks to system SPURR ticks and user
  293. * SPURR ticks in the same ratio as the system time (delta)
  294. * and user time (udelta) values obtained from the timebase
  295. * over the same interval. The system ticks get accounted here;
  296. * the user ticks get saved up in paca->user_time_scaled to be
  297. * used by account_process_tick.
  298. */
  299. *sys_scaled = delta;
  300. user_scaled = udelta;
  301. if (deltascaled != delta + udelta) {
  302. if (udelta) {
  303. *sys_scaled = deltascaled * delta / (delta + udelta);
  304. user_scaled = deltascaled - *sys_scaled;
  305. } else {
  306. *sys_scaled = deltascaled;
  307. }
  308. }
  309. acct->user_time_scaled += user_scaled;
  310. return delta;
  311. }
  312. void vtime_account_system(struct task_struct *tsk)
  313. {
  314. unsigned long delta, sys_scaled, stolen;
  315. delta = vtime_delta(tsk, &sys_scaled, &stolen);
  316. account_system_time(tsk, 0, delta, sys_scaled);
  317. if (stolen)
  318. account_steal_time(stolen);
  319. }
  320. EXPORT_SYMBOL_GPL(vtime_account_system);
  321. void vtime_account_idle(struct task_struct *tsk)
  322. {
  323. unsigned long delta, sys_scaled, stolen;
  324. delta = vtime_delta(tsk, &sys_scaled, &stolen);
  325. account_idle_time(delta + stolen);
  326. }
  327. /*
  328. * Transfer the user time accumulated in the paca
  329. * by the exception entry and exit code to the generic
  330. * process user time records.
  331. * Must be called with interrupts disabled.
  332. * Assumes that vtime_account_system/idle() has been called
  333. * recently (i.e. since the last entry from usermode) so that
  334. * get_paca()->user_time_scaled is up to date.
  335. */
  336. void vtime_account_user(struct task_struct *tsk)
  337. {
  338. cputime_t utime, utimescaled;
  339. struct cpu_accounting_data *acct = get_accounting(tsk);
  340. utime = acct->user_time;
  341. utimescaled = acct->user_time_scaled;
  342. acct->user_time = 0;
  343. acct->user_time_scaled = 0;
  344. acct->utime_sspurr = 0;
  345. account_user_time(tsk, utime, utimescaled);
  346. }
  347. #ifdef CONFIG_PPC32
  348. /*
  349. * Called from the context switch with interrupts disabled, to charge all
  350. * accumulated times to the current process, and to prepare accounting on
  351. * the next process.
  352. */
  353. void arch_vtime_task_switch(struct task_struct *prev)
  354. {
  355. struct cpu_accounting_data *acct = get_accounting(current);
  356. acct->starttime = get_accounting(prev)->starttime;
  357. acct->system_time = 0;
  358. acct->user_time = 0;
  359. }
  360. #endif /* CONFIG_PPC32 */
  361. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
  362. #define calc_cputime_factors()
  363. #endif
  364. void __delay(unsigned long loops)
  365. {
  366. unsigned long start;
  367. int diff;
  368. if (__USE_RTC()) {
  369. start = get_rtcl();
  370. do {
  371. /* the RTCL register wraps at 1000000000 */
  372. diff = get_rtcl() - start;
  373. if (diff < 0)
  374. diff += 1000000000;
  375. } while (diff < loops);
  376. } else {
  377. start = get_tbl();
  378. while (get_tbl() - start < loops)
  379. HMT_low();
  380. HMT_medium();
  381. }
  382. }
  383. EXPORT_SYMBOL(__delay);
  384. void udelay(unsigned long usecs)
  385. {
  386. __delay(tb_ticks_per_usec * usecs);
  387. }
  388. EXPORT_SYMBOL(udelay);
  389. #ifdef CONFIG_SMP
  390. unsigned long profile_pc(struct pt_regs *regs)
  391. {
  392. unsigned long pc = instruction_pointer(regs);
  393. if (in_lock_functions(pc))
  394. return regs->link;
  395. return pc;
  396. }
  397. EXPORT_SYMBOL(profile_pc);
  398. #endif
  399. #ifdef CONFIG_IRQ_WORK
  400. /*
  401. * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
  402. */
  403. #ifdef CONFIG_PPC64
  404. static inline unsigned long test_irq_work_pending(void)
  405. {
  406. unsigned long x;
  407. asm volatile("lbz %0,%1(13)"
  408. : "=r" (x)
  409. : "i" (offsetof(struct paca_struct, irq_work_pending)));
  410. return x;
  411. }
  412. static inline void set_irq_work_pending_flag(void)
  413. {
  414. asm volatile("stb %0,%1(13)" : :
  415. "r" (1),
  416. "i" (offsetof(struct paca_struct, irq_work_pending)));
  417. }
  418. static inline void clear_irq_work_pending(void)
  419. {
  420. asm volatile("stb %0,%1(13)" : :
  421. "r" (0),
  422. "i" (offsetof(struct paca_struct, irq_work_pending)));
  423. }
  424. #else /* 32-bit */
  425. DEFINE_PER_CPU(u8, irq_work_pending);
  426. #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
  427. #define test_irq_work_pending() __this_cpu_read(irq_work_pending)
  428. #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
  429. #endif /* 32 vs 64 bit */
  430. void arch_irq_work_raise(void)
  431. {
  432. preempt_disable();
  433. set_irq_work_pending_flag();
  434. set_dec(1);
  435. preempt_enable();
  436. }
  437. #else /* CONFIG_IRQ_WORK */
  438. #define test_irq_work_pending() 0
  439. #define clear_irq_work_pending()
  440. #endif /* CONFIG_IRQ_WORK */
  441. static void __timer_interrupt(void)
  442. {
  443. struct pt_regs *regs = get_irq_regs();
  444. u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
  445. struct clock_event_device *evt = this_cpu_ptr(&decrementers);
  446. u64 now;
  447. trace_timer_interrupt_entry(regs);
  448. if (test_irq_work_pending()) {
  449. clear_irq_work_pending();
  450. irq_work_run();
  451. }
  452. now = get_tb_or_rtc();
  453. if (now >= *next_tb) {
  454. *next_tb = ~(u64)0;
  455. if (evt->event_handler)
  456. evt->event_handler(evt);
  457. __this_cpu_inc(irq_stat.timer_irqs_event);
  458. } else {
  459. now = *next_tb - now;
  460. if (now <= decrementer_max)
  461. set_dec(now);
  462. /* We may have raced with new irq work */
  463. if (test_irq_work_pending())
  464. set_dec(1);
  465. __this_cpu_inc(irq_stat.timer_irqs_others);
  466. }
  467. #ifdef CONFIG_PPC64
  468. /* collect purr register values often, for accurate calculations */
  469. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  470. struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
  471. cu->current_tb = mfspr(SPRN_PURR);
  472. }
  473. #endif
  474. trace_timer_interrupt_exit(regs);
  475. }
  476. /*
  477. * timer_interrupt - gets called when the decrementer overflows,
  478. * with interrupts disabled.
  479. */
  480. void timer_interrupt(struct pt_regs * regs)
  481. {
  482. struct pt_regs *old_regs;
  483. u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
  484. /* Ensure a positive value is written to the decrementer, or else
  485. * some CPUs will continue to take decrementer exceptions.
  486. */
  487. set_dec(decrementer_max);
  488. /* Some implementations of hotplug will get timer interrupts while
  489. * offline, just ignore these and we also need to set
  490. * decrementers_next_tb as MAX to make sure __check_irq_replay
  491. * don't replay timer interrupt when return, otherwise we'll trap
  492. * here infinitely :(
  493. */
  494. if (!cpu_online(smp_processor_id())) {
  495. *next_tb = ~(u64)0;
  496. return;
  497. }
  498. /* Conditionally hard-enable interrupts now that the DEC has been
  499. * bumped to its maximum value
  500. */
  501. may_hard_irq_enable();
  502. #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
  503. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  504. do_IRQ(regs);
  505. #endif
  506. old_regs = set_irq_regs(regs);
  507. irq_enter();
  508. __timer_interrupt();
  509. irq_exit();
  510. set_irq_regs(old_regs);
  511. }
  512. /*
  513. * Hypervisor decrementer interrupts shouldn't occur but are sometimes
  514. * left pending on exit from a KVM guest. We don't need to do anything
  515. * to clear them, as they are edge-triggered.
  516. */
  517. void hdec_interrupt(struct pt_regs *regs)
  518. {
  519. }
  520. #ifdef CONFIG_SUSPEND
  521. static void generic_suspend_disable_irqs(void)
  522. {
  523. /* Disable the decrementer, so that it doesn't interfere
  524. * with suspending.
  525. */
  526. set_dec(decrementer_max);
  527. local_irq_disable();
  528. set_dec(decrementer_max);
  529. }
  530. static void generic_suspend_enable_irqs(void)
  531. {
  532. local_irq_enable();
  533. }
  534. /* Overrides the weak version in kernel/power/main.c */
  535. void arch_suspend_disable_irqs(void)
  536. {
  537. if (ppc_md.suspend_disable_irqs)
  538. ppc_md.suspend_disable_irqs();
  539. generic_suspend_disable_irqs();
  540. }
  541. /* Overrides the weak version in kernel/power/main.c */
  542. void arch_suspend_enable_irqs(void)
  543. {
  544. generic_suspend_enable_irqs();
  545. if (ppc_md.suspend_enable_irqs)
  546. ppc_md.suspend_enable_irqs();
  547. }
  548. #endif
  549. unsigned long long tb_to_ns(unsigned long long ticks)
  550. {
  551. return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
  552. }
  553. EXPORT_SYMBOL_GPL(tb_to_ns);
  554. /*
  555. * Scheduler clock - returns current time in nanosec units.
  556. *
  557. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  558. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  559. * are 64-bit unsigned numbers.
  560. */
  561. unsigned long long sched_clock(void)
  562. {
  563. if (__USE_RTC())
  564. return get_rtc();
  565. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  566. }
  567. #ifdef CONFIG_PPC_PSERIES
  568. /*
  569. * Running clock - attempts to give a view of time passing for a virtualised
  570. * kernels.
  571. * Uses the VTB register if available otherwise a next best guess.
  572. */
  573. unsigned long long running_clock(void)
  574. {
  575. /*
  576. * Don't read the VTB as a host since KVM does not switch in host
  577. * timebase into the VTB when it takes a guest off the CPU, reading the
  578. * VTB would result in reading 'last switched out' guest VTB.
  579. *
  580. * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
  581. * would be unsafe to rely only on the #ifdef above.
  582. */
  583. if (firmware_has_feature(FW_FEATURE_LPAR) &&
  584. cpu_has_feature(CPU_FTR_ARCH_207S))
  585. return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  586. /*
  587. * This is a next best approximation without a VTB.
  588. * On a host which is running bare metal there should never be any stolen
  589. * time and on a host which doesn't do any virtualisation TB *should* equal
  590. * VTB so it makes no difference anyway.
  591. */
  592. return local_clock() - cputime_to_nsecs(kcpustat_this_cpu->cpustat[CPUTIME_STEAL]);
  593. }
  594. #endif
  595. static int __init get_freq(char *name, int cells, unsigned long *val)
  596. {
  597. struct device_node *cpu;
  598. const __be32 *fp;
  599. int found = 0;
  600. /* The cpu node should have timebase and clock frequency properties */
  601. cpu = of_find_node_by_type(NULL, "cpu");
  602. if (cpu) {
  603. fp = of_get_property(cpu, name, NULL);
  604. if (fp) {
  605. found = 1;
  606. *val = of_read_ulong(fp, cells);
  607. }
  608. of_node_put(cpu);
  609. }
  610. return found;
  611. }
  612. static void start_cpu_decrementer(void)
  613. {
  614. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  615. /* Clear any pending timer interrupts */
  616. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  617. /* Enable decrementer interrupt */
  618. mtspr(SPRN_TCR, TCR_DIE);
  619. #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
  620. }
  621. void __init generic_calibrate_decr(void)
  622. {
  623. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  624. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  625. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  626. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  627. "(not found)\n");
  628. }
  629. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  630. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  631. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  632. printk(KERN_ERR "WARNING: Estimating processor frequency "
  633. "(not found)\n");
  634. }
  635. }
  636. int update_persistent_clock(struct timespec now)
  637. {
  638. struct rtc_time tm;
  639. if (!ppc_md.set_rtc_time)
  640. return -ENODEV;
  641. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  642. tm.tm_year -= 1900;
  643. tm.tm_mon -= 1;
  644. return ppc_md.set_rtc_time(&tm);
  645. }
  646. static void __read_persistent_clock(struct timespec *ts)
  647. {
  648. struct rtc_time tm;
  649. static int first = 1;
  650. ts->tv_nsec = 0;
  651. /* XXX this is a litle fragile but will work okay in the short term */
  652. if (first) {
  653. first = 0;
  654. if (ppc_md.time_init)
  655. timezone_offset = ppc_md.time_init();
  656. /* get_boot_time() isn't guaranteed to be safe to call late */
  657. if (ppc_md.get_boot_time) {
  658. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  659. return;
  660. }
  661. }
  662. if (!ppc_md.get_rtc_time) {
  663. ts->tv_sec = 0;
  664. return;
  665. }
  666. ppc_md.get_rtc_time(&tm);
  667. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  668. tm.tm_hour, tm.tm_min, tm.tm_sec);
  669. }
  670. void read_persistent_clock(struct timespec *ts)
  671. {
  672. __read_persistent_clock(ts);
  673. /* Sanitize it in case real time clock is set below EPOCH */
  674. if (ts->tv_sec < 0) {
  675. ts->tv_sec = 0;
  676. ts->tv_nsec = 0;
  677. }
  678. }
  679. /* clocksource code */
  680. static cycle_t rtc_read(struct clocksource *cs)
  681. {
  682. return (cycle_t)get_rtc();
  683. }
  684. static cycle_t timebase_read(struct clocksource *cs)
  685. {
  686. return (cycle_t)get_tb();
  687. }
  688. void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
  689. struct clocksource *clock, u32 mult, cycle_t cycle_last)
  690. {
  691. u64 new_tb_to_xs, new_stamp_xsec;
  692. u32 frac_sec;
  693. if (clock != &clocksource_timebase)
  694. return;
  695. /* Make userspace gettimeofday spin until we're done. */
  696. ++vdso_data->tb_update_count;
  697. smp_mb();
  698. /* 19342813113834067 ~= 2^(20+64) / 1e9 */
  699. new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
  700. new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
  701. do_div(new_stamp_xsec, 1000000000);
  702. new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
  703. BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
  704. /* this is tv_nsec / 1e9 as a 0.32 fraction */
  705. frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
  706. /*
  707. * tb_update_count is used to allow the userspace gettimeofday code
  708. * to assure itself that it sees a consistent view of the tb_to_xs and
  709. * stamp_xsec variables. It reads the tb_update_count, then reads
  710. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  711. * the two values of tb_update_count match and are even then the
  712. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  713. * loops back and reads them again until this criteria is met.
  714. * We expect the caller to have done the first increment of
  715. * vdso_data->tb_update_count already.
  716. */
  717. vdso_data->tb_orig_stamp = cycle_last;
  718. vdso_data->stamp_xsec = new_stamp_xsec;
  719. vdso_data->tb_to_xs = new_tb_to_xs;
  720. vdso_data->wtom_clock_sec = wtm->tv_sec;
  721. vdso_data->wtom_clock_nsec = wtm->tv_nsec;
  722. vdso_data->stamp_xtime = *wall_time;
  723. vdso_data->stamp_sec_fraction = frac_sec;
  724. smp_wmb();
  725. ++(vdso_data->tb_update_count);
  726. }
  727. void update_vsyscall_tz(void)
  728. {
  729. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  730. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  731. }
  732. static void __init clocksource_init(void)
  733. {
  734. struct clocksource *clock;
  735. if (__USE_RTC())
  736. clock = &clocksource_rtc;
  737. else
  738. clock = &clocksource_timebase;
  739. if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
  740. printk(KERN_ERR "clocksource: %s is already registered\n",
  741. clock->name);
  742. return;
  743. }
  744. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  745. clock->name, clock->mult, clock->shift);
  746. }
  747. static int decrementer_set_next_event(unsigned long evt,
  748. struct clock_event_device *dev)
  749. {
  750. __this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
  751. set_dec(evt);
  752. /* We may have raced with new irq work */
  753. if (test_irq_work_pending())
  754. set_dec(1);
  755. return 0;
  756. }
  757. static int decrementer_shutdown(struct clock_event_device *dev)
  758. {
  759. decrementer_set_next_event(decrementer_max, dev);
  760. return 0;
  761. }
  762. /* Interrupt handler for the timer broadcast IPI */
  763. void tick_broadcast_ipi_handler(void)
  764. {
  765. u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
  766. *next_tb = get_tb_or_rtc();
  767. __timer_interrupt();
  768. }
  769. static void register_decrementer_clockevent(int cpu)
  770. {
  771. struct clock_event_device *dec = &per_cpu(decrementers, cpu);
  772. *dec = decrementer_clockevent;
  773. dec->cpumask = cpumask_of(cpu);
  774. printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
  775. dec->name, dec->mult, dec->shift, cpu);
  776. clockevents_register_device(dec);
  777. }
  778. static void enable_large_decrementer(void)
  779. {
  780. if (!cpu_has_feature(CPU_FTR_ARCH_300))
  781. return;
  782. if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
  783. return;
  784. /*
  785. * If we're running as the hypervisor we need to enable the LD manually
  786. * otherwise firmware should have done it for us.
  787. */
  788. if (cpu_has_feature(CPU_FTR_HVMODE))
  789. mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
  790. }
  791. static void __init set_decrementer_max(void)
  792. {
  793. struct device_node *cpu;
  794. u32 bits = 32;
  795. /* Prior to ISAv3 the decrementer is always 32 bit */
  796. if (!cpu_has_feature(CPU_FTR_ARCH_300))
  797. return;
  798. cpu = of_find_node_by_type(NULL, "cpu");
  799. if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
  800. if (bits > 64 || bits < 32) {
  801. pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
  802. bits = 32;
  803. }
  804. /* calculate the signed maximum given this many bits */
  805. decrementer_max = (1ul << (bits - 1)) - 1;
  806. }
  807. of_node_put(cpu);
  808. pr_info("time_init: %u bit decrementer (max: %llx)\n",
  809. bits, decrementer_max);
  810. }
  811. static void __init init_decrementer_clockevent(void)
  812. {
  813. int cpu = smp_processor_id();
  814. clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
  815. decrementer_clockevent.max_delta_ns =
  816. clockevent_delta2ns(decrementer_max, &decrementer_clockevent);
  817. decrementer_clockevent.min_delta_ns =
  818. clockevent_delta2ns(2, &decrementer_clockevent);
  819. register_decrementer_clockevent(cpu);
  820. }
  821. void secondary_cpu_time_init(void)
  822. {
  823. /* Enable and test the large decrementer for this cpu */
  824. enable_large_decrementer();
  825. /* Start the decrementer on CPUs that have manual control
  826. * such as BookE
  827. */
  828. start_cpu_decrementer();
  829. /* FIME: Should make unrelatred change to move snapshot_timebase
  830. * call here ! */
  831. register_decrementer_clockevent(smp_processor_id());
  832. }
  833. /* This function is only called on the boot processor */
  834. void __init time_init(void)
  835. {
  836. struct div_result res;
  837. u64 scale;
  838. unsigned shift;
  839. if (__USE_RTC()) {
  840. /* 601 processor: dec counts down by 128 every 128ns */
  841. ppc_tb_freq = 1000000000;
  842. } else {
  843. /* Normal PowerPC with timebase register */
  844. ppc_md.calibrate_decr();
  845. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  846. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  847. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  848. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  849. }
  850. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  851. tb_ticks_per_sec = ppc_tb_freq;
  852. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  853. calc_cputime_factors();
  854. setup_cputime_one_jiffy();
  855. /*
  856. * Compute scale factor for sched_clock.
  857. * The calibrate_decr() function has set tb_ticks_per_sec,
  858. * which is the timebase frequency.
  859. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  860. * the 128-bit result as a 64.64 fixed-point number.
  861. * We then shift that number right until it is less than 1.0,
  862. * giving us the scale factor and shift count to use in
  863. * sched_clock().
  864. */
  865. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  866. scale = res.result_low;
  867. for (shift = 0; res.result_high != 0; ++shift) {
  868. scale = (scale >> 1) | (res.result_high << 63);
  869. res.result_high >>= 1;
  870. }
  871. tb_to_ns_scale = scale;
  872. tb_to_ns_shift = shift;
  873. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  874. boot_tb = get_tb_or_rtc();
  875. /* If platform provided a timezone (pmac), we correct the time */
  876. if (timezone_offset) {
  877. sys_tz.tz_minuteswest = -timezone_offset / 60;
  878. sys_tz.tz_dsttime = 0;
  879. }
  880. vdso_data->tb_update_count = 0;
  881. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  882. /* initialise and enable the large decrementer (if we have one) */
  883. set_decrementer_max();
  884. enable_large_decrementer();
  885. /* Start the decrementer on CPUs that have manual control
  886. * such as BookE
  887. */
  888. start_cpu_decrementer();
  889. /* Register the clocksource */
  890. clocksource_init();
  891. init_decrementer_clockevent();
  892. tick_setup_hrtimer_broadcast();
  893. #ifdef CONFIG_COMMON_CLK
  894. of_clk_init(NULL);
  895. #endif
  896. }
  897. #define FEBRUARY 2
  898. #define STARTOFTIME 1970
  899. #define SECDAY 86400L
  900. #define SECYR (SECDAY * 365)
  901. #define leapyear(year) ((year) % 4 == 0 && \
  902. ((year) % 100 != 0 || (year) % 400 == 0))
  903. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  904. #define days_in_month(a) (month_days[(a) - 1])
  905. static int month_days[12] = {
  906. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  907. };
  908. void to_tm(int tim, struct rtc_time * tm)
  909. {
  910. register int i;
  911. register long hms, day;
  912. day = tim / SECDAY;
  913. hms = tim % SECDAY;
  914. /* Hours, minutes, seconds are easy */
  915. tm->tm_hour = hms / 3600;
  916. tm->tm_min = (hms % 3600) / 60;
  917. tm->tm_sec = (hms % 3600) % 60;
  918. /* Number of years in days */
  919. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  920. day -= days_in_year(i);
  921. tm->tm_year = i;
  922. /* Number of months in days left */
  923. if (leapyear(tm->tm_year))
  924. days_in_month(FEBRUARY) = 29;
  925. for (i = 1; day >= days_in_month(i); i++)
  926. day -= days_in_month(i);
  927. days_in_month(FEBRUARY) = 28;
  928. tm->tm_mon = i;
  929. /* Days are what is left over (+1) from all that. */
  930. tm->tm_mday = day + 1;
  931. /*
  932. * No-one uses the day of the week.
  933. */
  934. tm->tm_wday = -1;
  935. }
  936. EXPORT_SYMBOL(to_tm);
  937. /*
  938. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  939. * result.
  940. */
  941. void div128_by_32(u64 dividend_high, u64 dividend_low,
  942. unsigned divisor, struct div_result *dr)
  943. {
  944. unsigned long a, b, c, d;
  945. unsigned long w, x, y, z;
  946. u64 ra, rb, rc;
  947. a = dividend_high >> 32;
  948. b = dividend_high & 0xffffffff;
  949. c = dividend_low >> 32;
  950. d = dividend_low & 0xffffffff;
  951. w = a / divisor;
  952. ra = ((u64)(a - (w * divisor)) << 32) + b;
  953. rb = ((u64) do_div(ra, divisor) << 32) + c;
  954. x = ra;
  955. rc = ((u64) do_div(rb, divisor) << 32) + d;
  956. y = rb;
  957. do_div(rc, divisor);
  958. z = rc;
  959. dr->result_high = ((u64)w << 32) + x;
  960. dr->result_low = ((u64)y << 32) + z;
  961. }
  962. /* We don't need to calibrate delay, we use the CPU timebase for that */
  963. void calibrate_delay(void)
  964. {
  965. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  966. * as the number of __delay(1) in a jiffy, so make it so
  967. */
  968. loops_per_jiffy = tb_ticks_per_jiffy;
  969. }
  970. #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
  971. static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
  972. {
  973. ppc_md.get_rtc_time(tm);
  974. return rtc_valid_tm(tm);
  975. }
  976. static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
  977. {
  978. if (!ppc_md.set_rtc_time)
  979. return -EOPNOTSUPP;
  980. if (ppc_md.set_rtc_time(tm) < 0)
  981. return -EOPNOTSUPP;
  982. return 0;
  983. }
  984. static const struct rtc_class_ops rtc_generic_ops = {
  985. .read_time = rtc_generic_get_time,
  986. .set_time = rtc_generic_set_time,
  987. };
  988. static int __init rtc_init(void)
  989. {
  990. struct platform_device *pdev;
  991. if (!ppc_md.get_rtc_time)
  992. return -ENODEV;
  993. pdev = platform_device_register_data(NULL, "rtc-generic", -1,
  994. &rtc_generic_ops,
  995. sizeof(rtc_generic_ops));
  996. return PTR_ERR_OR_ZERO(pdev);
  997. }
  998. device_initcall(rtc_init);
  999. #endif