util.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732
  1. #include <linux/mm.h>
  2. #include <linux/slab.h>
  3. #include <linux/string.h>
  4. #include <linux/compiler.h>
  5. #include <linux/export.h>
  6. #include <linux/err.h>
  7. #include <linux/sched.h>
  8. #include <linux/sched/mm.h>
  9. #include <linux/sched/task_stack.h>
  10. #include <linux/security.h>
  11. #include <linux/swap.h>
  12. #include <linux/swapops.h>
  13. #include <linux/mman.h>
  14. #include <linux/hugetlb.h>
  15. #include <linux/vmalloc.h>
  16. #include <linux/userfaultfd_k.h>
  17. #include <asm/sections.h>
  18. #include <linux/uaccess.h>
  19. #include "internal.h"
  20. static inline int is_kernel_rodata(unsigned long addr)
  21. {
  22. return addr >= (unsigned long)__start_rodata &&
  23. addr < (unsigned long)__end_rodata;
  24. }
  25. /**
  26. * kfree_const - conditionally free memory
  27. * @x: pointer to the memory
  28. *
  29. * Function calls kfree only if @x is not in .rodata section.
  30. */
  31. void kfree_const(const void *x)
  32. {
  33. if (!is_kernel_rodata((unsigned long)x))
  34. kfree(x);
  35. }
  36. EXPORT_SYMBOL(kfree_const);
  37. /**
  38. * kstrdup - allocate space for and copy an existing string
  39. * @s: the string to duplicate
  40. * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  41. */
  42. char *kstrdup(const char *s, gfp_t gfp)
  43. {
  44. size_t len;
  45. char *buf;
  46. if (!s)
  47. return NULL;
  48. len = strlen(s) + 1;
  49. buf = kmalloc_track_caller(len, gfp);
  50. if (buf)
  51. memcpy(buf, s, len);
  52. return buf;
  53. }
  54. EXPORT_SYMBOL(kstrdup);
  55. /**
  56. * kstrdup_const - conditionally duplicate an existing const string
  57. * @s: the string to duplicate
  58. * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  59. *
  60. * Function returns source string if it is in .rodata section otherwise it
  61. * fallbacks to kstrdup.
  62. * Strings allocated by kstrdup_const should be freed by kfree_const.
  63. */
  64. const char *kstrdup_const(const char *s, gfp_t gfp)
  65. {
  66. if (is_kernel_rodata((unsigned long)s))
  67. return s;
  68. return kstrdup(s, gfp);
  69. }
  70. EXPORT_SYMBOL(kstrdup_const);
  71. /**
  72. * kstrndup - allocate space for and copy an existing string
  73. * @s: the string to duplicate
  74. * @max: read at most @max chars from @s
  75. * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  76. *
  77. * Note: Use kmemdup_nul() instead if the size is known exactly.
  78. */
  79. char *kstrndup(const char *s, size_t max, gfp_t gfp)
  80. {
  81. size_t len;
  82. char *buf;
  83. if (!s)
  84. return NULL;
  85. len = strnlen(s, max);
  86. buf = kmalloc_track_caller(len+1, gfp);
  87. if (buf) {
  88. memcpy(buf, s, len);
  89. buf[len] = '\0';
  90. }
  91. return buf;
  92. }
  93. EXPORT_SYMBOL(kstrndup);
  94. /**
  95. * kmemdup - duplicate region of memory
  96. *
  97. * @src: memory region to duplicate
  98. * @len: memory region length
  99. * @gfp: GFP mask to use
  100. */
  101. void *kmemdup(const void *src, size_t len, gfp_t gfp)
  102. {
  103. void *p;
  104. p = kmalloc_track_caller(len, gfp);
  105. if (p)
  106. memcpy(p, src, len);
  107. return p;
  108. }
  109. EXPORT_SYMBOL(kmemdup);
  110. /**
  111. * kmemdup_nul - Create a NUL-terminated string from unterminated data
  112. * @s: The data to stringify
  113. * @len: The size of the data
  114. * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  115. */
  116. char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
  117. {
  118. char *buf;
  119. if (!s)
  120. return NULL;
  121. buf = kmalloc_track_caller(len + 1, gfp);
  122. if (buf) {
  123. memcpy(buf, s, len);
  124. buf[len] = '\0';
  125. }
  126. return buf;
  127. }
  128. EXPORT_SYMBOL(kmemdup_nul);
  129. /**
  130. * memdup_user - duplicate memory region from user space
  131. *
  132. * @src: source address in user space
  133. * @len: number of bytes to copy
  134. *
  135. * Returns an ERR_PTR() on failure.
  136. */
  137. void *memdup_user(const void __user *src, size_t len)
  138. {
  139. void *p;
  140. p = kmalloc_track_caller(len, GFP_USER);
  141. if (!p)
  142. return ERR_PTR(-ENOMEM);
  143. if (copy_from_user(p, src, len)) {
  144. kfree(p);
  145. return ERR_PTR(-EFAULT);
  146. }
  147. return p;
  148. }
  149. EXPORT_SYMBOL(memdup_user);
  150. /*
  151. * strndup_user - duplicate an existing string from user space
  152. * @s: The string to duplicate
  153. * @n: Maximum number of bytes to copy, including the trailing NUL.
  154. */
  155. char *strndup_user(const char __user *s, long n)
  156. {
  157. char *p;
  158. long length;
  159. length = strnlen_user(s, n);
  160. if (!length)
  161. return ERR_PTR(-EFAULT);
  162. if (length > n)
  163. return ERR_PTR(-EINVAL);
  164. p = memdup_user(s, length);
  165. if (IS_ERR(p))
  166. return p;
  167. p[length - 1] = '\0';
  168. return p;
  169. }
  170. EXPORT_SYMBOL(strndup_user);
  171. /**
  172. * memdup_user_nul - duplicate memory region from user space and NUL-terminate
  173. *
  174. * @src: source address in user space
  175. * @len: number of bytes to copy
  176. *
  177. * Returns an ERR_PTR() on failure.
  178. */
  179. void *memdup_user_nul(const void __user *src, size_t len)
  180. {
  181. char *p;
  182. /*
  183. * Always use GFP_KERNEL, since copy_from_user() can sleep and
  184. * cause pagefault, which makes it pointless to use GFP_NOFS
  185. * or GFP_ATOMIC.
  186. */
  187. p = kmalloc_track_caller(len + 1, GFP_KERNEL);
  188. if (!p)
  189. return ERR_PTR(-ENOMEM);
  190. if (copy_from_user(p, src, len)) {
  191. kfree(p);
  192. return ERR_PTR(-EFAULT);
  193. }
  194. p[len] = '\0';
  195. return p;
  196. }
  197. EXPORT_SYMBOL(memdup_user_nul);
  198. void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
  199. struct vm_area_struct *prev, struct rb_node *rb_parent)
  200. {
  201. struct vm_area_struct *next;
  202. vma->vm_prev = prev;
  203. if (prev) {
  204. next = prev->vm_next;
  205. prev->vm_next = vma;
  206. } else {
  207. mm->mmap = vma;
  208. if (rb_parent)
  209. next = rb_entry(rb_parent,
  210. struct vm_area_struct, vm_rb);
  211. else
  212. next = NULL;
  213. }
  214. vma->vm_next = next;
  215. if (next)
  216. next->vm_prev = vma;
  217. }
  218. /* Check if the vma is being used as a stack by this task */
  219. int vma_is_stack_for_current(struct vm_area_struct *vma)
  220. {
  221. struct task_struct * __maybe_unused t = current;
  222. return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
  223. }
  224. #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
  225. void arch_pick_mmap_layout(struct mm_struct *mm)
  226. {
  227. mm->mmap_base = TASK_UNMAPPED_BASE;
  228. mm->get_unmapped_area = arch_get_unmapped_area;
  229. }
  230. #endif
  231. /*
  232. * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
  233. * back to the regular GUP.
  234. * If the architecture not support this function, simply return with no
  235. * page pinned
  236. */
  237. int __weak __get_user_pages_fast(unsigned long start,
  238. int nr_pages, int write, struct page **pages)
  239. {
  240. return 0;
  241. }
  242. EXPORT_SYMBOL_GPL(__get_user_pages_fast);
  243. /**
  244. * get_user_pages_fast() - pin user pages in memory
  245. * @start: starting user address
  246. * @nr_pages: number of pages from start to pin
  247. * @write: whether pages will be written to
  248. * @pages: array that receives pointers to the pages pinned.
  249. * Should be at least nr_pages long.
  250. *
  251. * Returns number of pages pinned. This may be fewer than the number
  252. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  253. * were pinned, returns -errno.
  254. *
  255. * get_user_pages_fast provides equivalent functionality to get_user_pages,
  256. * operating on current and current->mm, with force=0 and vma=NULL. However
  257. * unlike get_user_pages, it must be called without mmap_sem held.
  258. *
  259. * get_user_pages_fast may take mmap_sem and page table locks, so no
  260. * assumptions can be made about lack of locking. get_user_pages_fast is to be
  261. * implemented in a way that is advantageous (vs get_user_pages()) when the
  262. * user memory area is already faulted in and present in ptes. However if the
  263. * pages have to be faulted in, it may turn out to be slightly slower so
  264. * callers need to carefully consider what to use. On many architectures,
  265. * get_user_pages_fast simply falls back to get_user_pages.
  266. */
  267. int __weak get_user_pages_fast(unsigned long start,
  268. int nr_pages, int write, struct page **pages)
  269. {
  270. return get_user_pages_unlocked(start, nr_pages, pages,
  271. write ? FOLL_WRITE : 0);
  272. }
  273. EXPORT_SYMBOL_GPL(get_user_pages_fast);
  274. unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
  275. unsigned long len, unsigned long prot,
  276. unsigned long flag, unsigned long pgoff)
  277. {
  278. unsigned long ret;
  279. struct mm_struct *mm = current->mm;
  280. unsigned long populate;
  281. LIST_HEAD(uf);
  282. ret = security_mmap_file(file, prot, flag);
  283. if (!ret) {
  284. if (down_write_killable(&mm->mmap_sem))
  285. return -EINTR;
  286. ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
  287. &populate, &uf);
  288. up_write(&mm->mmap_sem);
  289. userfaultfd_unmap_complete(mm, &uf);
  290. if (populate)
  291. mm_populate(ret, populate);
  292. }
  293. return ret;
  294. }
  295. unsigned long vm_mmap(struct file *file, unsigned long addr,
  296. unsigned long len, unsigned long prot,
  297. unsigned long flag, unsigned long offset)
  298. {
  299. if (unlikely(offset + PAGE_ALIGN(len) < offset))
  300. return -EINVAL;
  301. if (unlikely(offset_in_page(offset)))
  302. return -EINVAL;
  303. return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
  304. }
  305. EXPORT_SYMBOL(vm_mmap);
  306. /**
  307. * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
  308. * failure, fall back to non-contiguous (vmalloc) allocation.
  309. * @size: size of the request.
  310. * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
  311. * @node: numa node to allocate from
  312. *
  313. * Uses kmalloc to get the memory but if the allocation fails then falls back
  314. * to the vmalloc allocator. Use kvfree for freeing the memory.
  315. *
  316. * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
  317. * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
  318. * preferable to the vmalloc fallback, due to visible performance drawbacks.
  319. *
  320. * Any use of gfp flags outside of GFP_KERNEL should be consulted with mm people.
  321. */
  322. void *kvmalloc_node(size_t size, gfp_t flags, int node)
  323. {
  324. gfp_t kmalloc_flags = flags;
  325. void *ret;
  326. /*
  327. * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
  328. * so the given set of flags has to be compatible.
  329. */
  330. WARN_ON_ONCE((flags & GFP_KERNEL) != GFP_KERNEL);
  331. /*
  332. * We want to attempt a large physically contiguous block first because
  333. * it is less likely to fragment multiple larger blocks and therefore
  334. * contribute to a long term fragmentation less than vmalloc fallback.
  335. * However make sure that larger requests are not too disruptive - no
  336. * OOM killer and no allocation failure warnings as we have a fallback.
  337. */
  338. if (size > PAGE_SIZE) {
  339. kmalloc_flags |= __GFP_NOWARN;
  340. if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
  341. kmalloc_flags |= __GFP_NORETRY;
  342. }
  343. ret = kmalloc_node(size, kmalloc_flags, node);
  344. /*
  345. * It doesn't really make sense to fallback to vmalloc for sub page
  346. * requests
  347. */
  348. if (ret || size <= PAGE_SIZE)
  349. return ret;
  350. return __vmalloc_node_flags_caller(size, node, flags,
  351. __builtin_return_address(0));
  352. }
  353. EXPORT_SYMBOL(kvmalloc_node);
  354. void kvfree(const void *addr)
  355. {
  356. if (is_vmalloc_addr(addr))
  357. vfree(addr);
  358. else
  359. kfree(addr);
  360. }
  361. EXPORT_SYMBOL(kvfree);
  362. static inline void *__page_rmapping(struct page *page)
  363. {
  364. unsigned long mapping;
  365. mapping = (unsigned long)page->mapping;
  366. mapping &= ~PAGE_MAPPING_FLAGS;
  367. return (void *)mapping;
  368. }
  369. /* Neutral page->mapping pointer to address_space or anon_vma or other */
  370. void *page_rmapping(struct page *page)
  371. {
  372. page = compound_head(page);
  373. return __page_rmapping(page);
  374. }
  375. /*
  376. * Return true if this page is mapped into pagetables.
  377. * For compound page it returns true if any subpage of compound page is mapped.
  378. */
  379. bool page_mapped(struct page *page)
  380. {
  381. int i;
  382. if (likely(!PageCompound(page)))
  383. return atomic_read(&page->_mapcount) >= 0;
  384. page = compound_head(page);
  385. if (atomic_read(compound_mapcount_ptr(page)) >= 0)
  386. return true;
  387. if (PageHuge(page))
  388. return false;
  389. for (i = 0; i < hpage_nr_pages(page); i++) {
  390. if (atomic_read(&page[i]._mapcount) >= 0)
  391. return true;
  392. }
  393. return false;
  394. }
  395. EXPORT_SYMBOL(page_mapped);
  396. struct anon_vma *page_anon_vma(struct page *page)
  397. {
  398. unsigned long mapping;
  399. page = compound_head(page);
  400. mapping = (unsigned long)page->mapping;
  401. if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  402. return NULL;
  403. return __page_rmapping(page);
  404. }
  405. struct address_space *page_mapping(struct page *page)
  406. {
  407. struct address_space *mapping;
  408. page = compound_head(page);
  409. /* This happens if someone calls flush_dcache_page on slab page */
  410. if (unlikely(PageSlab(page)))
  411. return NULL;
  412. if (unlikely(PageSwapCache(page))) {
  413. swp_entry_t entry;
  414. entry.val = page_private(page);
  415. return swap_address_space(entry);
  416. }
  417. mapping = page->mapping;
  418. if ((unsigned long)mapping & PAGE_MAPPING_ANON)
  419. return NULL;
  420. return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
  421. }
  422. EXPORT_SYMBOL(page_mapping);
  423. /* Slow path of page_mapcount() for compound pages */
  424. int __page_mapcount(struct page *page)
  425. {
  426. int ret;
  427. ret = atomic_read(&page->_mapcount) + 1;
  428. /*
  429. * For file THP page->_mapcount contains total number of mapping
  430. * of the page: no need to look into compound_mapcount.
  431. */
  432. if (!PageAnon(page) && !PageHuge(page))
  433. return ret;
  434. page = compound_head(page);
  435. ret += atomic_read(compound_mapcount_ptr(page)) + 1;
  436. if (PageDoubleMap(page))
  437. ret--;
  438. return ret;
  439. }
  440. EXPORT_SYMBOL_GPL(__page_mapcount);
  441. int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
  442. int sysctl_overcommit_ratio __read_mostly = 50;
  443. unsigned long sysctl_overcommit_kbytes __read_mostly;
  444. int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
  445. unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
  446. unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
  447. int overcommit_ratio_handler(struct ctl_table *table, int write,
  448. void __user *buffer, size_t *lenp,
  449. loff_t *ppos)
  450. {
  451. int ret;
  452. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  453. if (ret == 0 && write)
  454. sysctl_overcommit_kbytes = 0;
  455. return ret;
  456. }
  457. int overcommit_kbytes_handler(struct ctl_table *table, int write,
  458. void __user *buffer, size_t *lenp,
  459. loff_t *ppos)
  460. {
  461. int ret;
  462. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  463. if (ret == 0 && write)
  464. sysctl_overcommit_ratio = 0;
  465. return ret;
  466. }
  467. /*
  468. * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
  469. */
  470. unsigned long vm_commit_limit(void)
  471. {
  472. unsigned long allowed;
  473. if (sysctl_overcommit_kbytes)
  474. allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
  475. else
  476. allowed = ((totalram_pages - hugetlb_total_pages())
  477. * sysctl_overcommit_ratio / 100);
  478. allowed += total_swap_pages;
  479. return allowed;
  480. }
  481. /*
  482. * Make sure vm_committed_as in one cacheline and not cacheline shared with
  483. * other variables. It can be updated by several CPUs frequently.
  484. */
  485. struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
  486. /*
  487. * The global memory commitment made in the system can be a metric
  488. * that can be used to drive ballooning decisions when Linux is hosted
  489. * as a guest. On Hyper-V, the host implements a policy engine for dynamically
  490. * balancing memory across competing virtual machines that are hosted.
  491. * Several metrics drive this policy engine including the guest reported
  492. * memory commitment.
  493. */
  494. unsigned long vm_memory_committed(void)
  495. {
  496. return percpu_counter_read_positive(&vm_committed_as);
  497. }
  498. EXPORT_SYMBOL_GPL(vm_memory_committed);
  499. /*
  500. * Check that a process has enough memory to allocate a new virtual
  501. * mapping. 0 means there is enough memory for the allocation to
  502. * succeed and -ENOMEM implies there is not.
  503. *
  504. * We currently support three overcommit policies, which are set via the
  505. * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
  506. *
  507. * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
  508. * Additional code 2002 Jul 20 by Robert Love.
  509. *
  510. * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
  511. *
  512. * Note this is a helper function intended to be used by LSMs which
  513. * wish to use this logic.
  514. */
  515. int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
  516. {
  517. long free, allowed, reserve;
  518. VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
  519. -(s64)vm_committed_as_batch * num_online_cpus(),
  520. "memory commitment underflow");
  521. vm_acct_memory(pages);
  522. /*
  523. * Sometimes we want to use more memory than we have
  524. */
  525. if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
  526. return 0;
  527. if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
  528. free = global_zone_page_state(NR_FREE_PAGES);
  529. free += global_node_page_state(NR_FILE_PAGES);
  530. /*
  531. * shmem pages shouldn't be counted as free in this
  532. * case, they can't be purged, only swapped out, and
  533. * that won't affect the overall amount of available
  534. * memory in the system.
  535. */
  536. free -= global_node_page_state(NR_SHMEM);
  537. free += get_nr_swap_pages();
  538. /*
  539. * Any slabs which are created with the
  540. * SLAB_RECLAIM_ACCOUNT flag claim to have contents
  541. * which are reclaimable, under pressure. The dentry
  542. * cache and most inode caches should fall into this
  543. */
  544. free += global_node_page_state(NR_SLAB_RECLAIMABLE);
  545. /*
  546. * Leave reserved pages. The pages are not for anonymous pages.
  547. */
  548. if (free <= totalreserve_pages)
  549. goto error;
  550. else
  551. free -= totalreserve_pages;
  552. /*
  553. * Reserve some for root
  554. */
  555. if (!cap_sys_admin)
  556. free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
  557. if (free > pages)
  558. return 0;
  559. goto error;
  560. }
  561. allowed = vm_commit_limit();
  562. /*
  563. * Reserve some for root
  564. */
  565. if (!cap_sys_admin)
  566. allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
  567. /*
  568. * Don't let a single process grow so big a user can't recover
  569. */
  570. if (mm) {
  571. reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
  572. allowed -= min_t(long, mm->total_vm / 32, reserve);
  573. }
  574. if (percpu_counter_read_positive(&vm_committed_as) < allowed)
  575. return 0;
  576. error:
  577. vm_unacct_memory(pages);
  578. return -ENOMEM;
  579. }
  580. /**
  581. * get_cmdline() - copy the cmdline value to a buffer.
  582. * @task: the task whose cmdline value to copy.
  583. * @buffer: the buffer to copy to.
  584. * @buflen: the length of the buffer. Larger cmdline values are truncated
  585. * to this length.
  586. * Returns the size of the cmdline field copied. Note that the copy does
  587. * not guarantee an ending NULL byte.
  588. */
  589. int get_cmdline(struct task_struct *task, char *buffer, int buflen)
  590. {
  591. int res = 0;
  592. unsigned int len;
  593. struct mm_struct *mm = get_task_mm(task);
  594. unsigned long arg_start, arg_end, env_start, env_end;
  595. if (!mm)
  596. goto out;
  597. if (!mm->arg_end)
  598. goto out_mm; /* Shh! No looking before we're done */
  599. down_read(&mm->mmap_sem);
  600. arg_start = mm->arg_start;
  601. arg_end = mm->arg_end;
  602. env_start = mm->env_start;
  603. env_end = mm->env_end;
  604. up_read(&mm->mmap_sem);
  605. len = arg_end - arg_start;
  606. if (len > buflen)
  607. len = buflen;
  608. res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
  609. /*
  610. * If the nul at the end of args has been overwritten, then
  611. * assume application is using setproctitle(3).
  612. */
  613. if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
  614. len = strnlen(buffer, res);
  615. if (len < res) {
  616. res = len;
  617. } else {
  618. len = env_end - env_start;
  619. if (len > buflen - res)
  620. len = buflen - res;
  621. res += access_process_vm(task, env_start,
  622. buffer+res, len,
  623. FOLL_FORCE);
  624. res = strnlen(buffer, res);
  625. }
  626. }
  627. out_mm:
  628. mmput(mm);
  629. out:
  630. return res;
  631. }