kasan_init_64.c 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372
  1. // SPDX-License-Identifier: GPL-2.0
  2. #define DISABLE_BRANCH_PROFILING
  3. #define pr_fmt(fmt) "kasan: " fmt
  4. #include <linux/bootmem.h>
  5. #include <linux/kasan.h>
  6. #include <linux/kdebug.h>
  7. #include <linux/memblock.h>
  8. #include <linux/mm.h>
  9. #include <linux/sched.h>
  10. #include <linux/sched/task.h>
  11. #include <linux/vmalloc.h>
  12. #include <asm/e820/types.h>
  13. #include <asm/pgalloc.h>
  14. #include <asm/tlbflush.h>
  15. #include <asm/sections.h>
  16. #include <asm/pgtable.h>
  17. #include <asm/cpu_entry_area.h>
  18. extern struct range pfn_mapped[E820_MAX_ENTRIES];
  19. static p4d_t tmp_p4d_table[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
  20. static __init void *early_alloc(size_t size, int nid)
  21. {
  22. return memblock_virt_alloc_try_nid_nopanic(size, size,
  23. __pa(MAX_DMA_ADDRESS), BOOTMEM_ALLOC_ACCESSIBLE, nid);
  24. }
  25. static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,
  26. unsigned long end, int nid)
  27. {
  28. pte_t *pte;
  29. if (pmd_none(*pmd)) {
  30. void *p;
  31. if (boot_cpu_has(X86_FEATURE_PSE) &&
  32. ((end - addr) == PMD_SIZE) &&
  33. IS_ALIGNED(addr, PMD_SIZE)) {
  34. p = early_alloc(PMD_SIZE, nid);
  35. if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL))
  36. return;
  37. else if (p)
  38. memblock_free(__pa(p), PMD_SIZE);
  39. }
  40. p = early_alloc(PAGE_SIZE, nid);
  41. pmd_populate_kernel(&init_mm, pmd, p);
  42. }
  43. pte = pte_offset_kernel(pmd, addr);
  44. do {
  45. pte_t entry;
  46. void *p;
  47. if (!pte_none(*pte))
  48. continue;
  49. p = early_alloc(PAGE_SIZE, nid);
  50. entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL);
  51. set_pte_at(&init_mm, addr, pte, entry);
  52. } while (pte++, addr += PAGE_SIZE, addr != end);
  53. }
  54. static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
  55. unsigned long end, int nid)
  56. {
  57. pmd_t *pmd;
  58. unsigned long next;
  59. if (pud_none(*pud)) {
  60. void *p;
  61. if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
  62. ((end - addr) == PUD_SIZE) &&
  63. IS_ALIGNED(addr, PUD_SIZE)) {
  64. p = early_alloc(PUD_SIZE, nid);
  65. if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
  66. return;
  67. else if (p)
  68. memblock_free(__pa(p), PUD_SIZE);
  69. }
  70. p = early_alloc(PAGE_SIZE, nid);
  71. pud_populate(&init_mm, pud, p);
  72. }
  73. pmd = pmd_offset(pud, addr);
  74. do {
  75. next = pmd_addr_end(addr, end);
  76. if (!pmd_large(*pmd))
  77. kasan_populate_pmd(pmd, addr, next, nid);
  78. } while (pmd++, addr = next, addr != end);
  79. }
  80. static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr,
  81. unsigned long end, int nid)
  82. {
  83. pud_t *pud;
  84. unsigned long next;
  85. if (p4d_none(*p4d)) {
  86. void *p = early_alloc(PAGE_SIZE, nid);
  87. p4d_populate(&init_mm, p4d, p);
  88. }
  89. pud = pud_offset(p4d, addr);
  90. do {
  91. next = pud_addr_end(addr, end);
  92. if (!pud_large(*pud))
  93. kasan_populate_pud(pud, addr, next, nid);
  94. } while (pud++, addr = next, addr != end);
  95. }
  96. static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr,
  97. unsigned long end, int nid)
  98. {
  99. void *p;
  100. p4d_t *p4d;
  101. unsigned long next;
  102. if (pgd_none(*pgd)) {
  103. p = early_alloc(PAGE_SIZE, nid);
  104. pgd_populate(&init_mm, pgd, p);
  105. }
  106. p4d = p4d_offset(pgd, addr);
  107. do {
  108. next = p4d_addr_end(addr, end);
  109. kasan_populate_p4d(p4d, addr, next, nid);
  110. } while (p4d++, addr = next, addr != end);
  111. }
  112. static void __init kasan_populate_shadow(unsigned long addr, unsigned long end,
  113. int nid)
  114. {
  115. pgd_t *pgd;
  116. unsigned long next;
  117. addr = addr & PAGE_MASK;
  118. end = round_up(end, PAGE_SIZE);
  119. pgd = pgd_offset_k(addr);
  120. do {
  121. next = pgd_addr_end(addr, end);
  122. kasan_populate_pgd(pgd, addr, next, nid);
  123. } while (pgd++, addr = next, addr != end);
  124. }
  125. static void __init map_range(struct range *range)
  126. {
  127. unsigned long start;
  128. unsigned long end;
  129. start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
  130. end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
  131. kasan_populate_shadow(start, end, early_pfn_to_nid(range->start));
  132. }
  133. static void __init clear_pgds(unsigned long start,
  134. unsigned long end)
  135. {
  136. pgd_t *pgd;
  137. /* See comment in kasan_init() */
  138. unsigned long pgd_end = end & PGDIR_MASK;
  139. for (; start < pgd_end; start += PGDIR_SIZE) {
  140. pgd = pgd_offset_k(start);
  141. /*
  142. * With folded p4d, pgd_clear() is nop, use p4d_clear()
  143. * instead.
  144. */
  145. if (CONFIG_PGTABLE_LEVELS < 5)
  146. p4d_clear(p4d_offset(pgd, start));
  147. else
  148. pgd_clear(pgd);
  149. }
  150. pgd = pgd_offset_k(start);
  151. for (; start < end; start += P4D_SIZE)
  152. p4d_clear(p4d_offset(pgd, start));
  153. }
  154. static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr)
  155. {
  156. unsigned long p4d;
  157. if (!IS_ENABLED(CONFIG_X86_5LEVEL))
  158. return (p4d_t *)pgd;
  159. p4d = __pa_nodebug(pgd_val(*pgd)) & PTE_PFN_MASK;
  160. p4d += __START_KERNEL_map - phys_base;
  161. return (p4d_t *)p4d + p4d_index(addr);
  162. }
  163. static void __init kasan_early_p4d_populate(pgd_t *pgd,
  164. unsigned long addr,
  165. unsigned long end)
  166. {
  167. pgd_t pgd_entry;
  168. p4d_t *p4d, p4d_entry;
  169. unsigned long next;
  170. if (pgd_none(*pgd)) {
  171. pgd_entry = __pgd(_KERNPG_TABLE | __pa_nodebug(kasan_zero_p4d));
  172. set_pgd(pgd, pgd_entry);
  173. }
  174. p4d = early_p4d_offset(pgd, addr);
  175. do {
  176. next = p4d_addr_end(addr, end);
  177. if (!p4d_none(*p4d))
  178. continue;
  179. p4d_entry = __p4d(_KERNPG_TABLE | __pa_nodebug(kasan_zero_pud));
  180. set_p4d(p4d, p4d_entry);
  181. } while (p4d++, addr = next, addr != end && p4d_none(*p4d));
  182. }
  183. static void __init kasan_map_early_shadow(pgd_t *pgd)
  184. {
  185. /* See comment in kasan_init() */
  186. unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK;
  187. unsigned long end = KASAN_SHADOW_END;
  188. unsigned long next;
  189. pgd += pgd_index(addr);
  190. do {
  191. next = pgd_addr_end(addr, end);
  192. kasan_early_p4d_populate(pgd, addr, next);
  193. } while (pgd++, addr = next, addr != end);
  194. }
  195. #ifdef CONFIG_KASAN_INLINE
  196. static int kasan_die_handler(struct notifier_block *self,
  197. unsigned long val,
  198. void *data)
  199. {
  200. if (val == DIE_GPF) {
  201. pr_emerg("CONFIG_KASAN_INLINE enabled\n");
  202. pr_emerg("GPF could be caused by NULL-ptr deref or user memory access\n");
  203. }
  204. return NOTIFY_OK;
  205. }
  206. static struct notifier_block kasan_die_notifier = {
  207. .notifier_call = kasan_die_handler,
  208. };
  209. #endif
  210. void __init kasan_early_init(void)
  211. {
  212. int i;
  213. pteval_t pte_val = __pa_nodebug(kasan_zero_page) | __PAGE_KERNEL | _PAGE_ENC;
  214. pmdval_t pmd_val = __pa_nodebug(kasan_zero_pte) | _KERNPG_TABLE;
  215. pudval_t pud_val = __pa_nodebug(kasan_zero_pmd) | _KERNPG_TABLE;
  216. p4dval_t p4d_val = __pa_nodebug(kasan_zero_pud) | _KERNPG_TABLE;
  217. for (i = 0; i < PTRS_PER_PTE; i++)
  218. kasan_zero_pte[i] = __pte(pte_val);
  219. for (i = 0; i < PTRS_PER_PMD; i++)
  220. kasan_zero_pmd[i] = __pmd(pmd_val);
  221. for (i = 0; i < PTRS_PER_PUD; i++)
  222. kasan_zero_pud[i] = __pud(pud_val);
  223. for (i = 0; IS_ENABLED(CONFIG_X86_5LEVEL) && i < PTRS_PER_P4D; i++)
  224. kasan_zero_p4d[i] = __p4d(p4d_val);
  225. kasan_map_early_shadow(early_top_pgt);
  226. kasan_map_early_shadow(init_top_pgt);
  227. }
  228. void __init kasan_init(void)
  229. {
  230. int i;
  231. void *shadow_cpu_entry_begin, *shadow_cpu_entry_end;
  232. #ifdef CONFIG_KASAN_INLINE
  233. register_die_notifier(&kasan_die_notifier);
  234. #endif
  235. memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
  236. /*
  237. * We use the same shadow offset for 4- and 5-level paging to
  238. * facilitate boot-time switching between paging modes.
  239. * As result in 5-level paging mode KASAN_SHADOW_START and
  240. * KASAN_SHADOW_END are not aligned to PGD boundary.
  241. *
  242. * KASAN_SHADOW_START doesn't share PGD with anything else.
  243. * We claim whole PGD entry to make things easier.
  244. *
  245. * KASAN_SHADOW_END lands in the last PGD entry and it collides with
  246. * bunch of things like kernel code, modules, EFI mapping, etc.
  247. * We need to take extra steps to not overwrite them.
  248. */
  249. if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
  250. void *ptr;
  251. ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END));
  252. memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table));
  253. set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)],
  254. __pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE));
  255. }
  256. load_cr3(early_top_pgt);
  257. __flush_tlb_all();
  258. clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END);
  259. kasan_populate_zero_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
  260. kasan_mem_to_shadow((void *)PAGE_OFFSET));
  261. for (i = 0; i < E820_MAX_ENTRIES; i++) {
  262. if (pfn_mapped[i].end == 0)
  263. break;
  264. map_range(&pfn_mapped[i]);
  265. }
  266. shadow_cpu_entry_begin = (void *)CPU_ENTRY_AREA_BASE;
  267. shadow_cpu_entry_begin = kasan_mem_to_shadow(shadow_cpu_entry_begin);
  268. shadow_cpu_entry_begin = (void *)round_down((unsigned long)shadow_cpu_entry_begin,
  269. PAGE_SIZE);
  270. shadow_cpu_entry_end = (void *)(CPU_ENTRY_AREA_BASE +
  271. CPU_ENTRY_AREA_MAP_SIZE);
  272. shadow_cpu_entry_end = kasan_mem_to_shadow(shadow_cpu_entry_end);
  273. shadow_cpu_entry_end = (void *)round_up((unsigned long)shadow_cpu_entry_end,
  274. PAGE_SIZE);
  275. kasan_populate_zero_shadow(
  276. kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
  277. shadow_cpu_entry_begin);
  278. kasan_populate_shadow((unsigned long)shadow_cpu_entry_begin,
  279. (unsigned long)shadow_cpu_entry_end, 0);
  280. kasan_populate_zero_shadow(shadow_cpu_entry_end,
  281. kasan_mem_to_shadow((void *)__START_KERNEL_map));
  282. kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext),
  283. (unsigned long)kasan_mem_to_shadow(_end),
  284. early_pfn_to_nid(__pa(_stext)));
  285. kasan_populate_zero_shadow(kasan_mem_to_shadow((void *)MODULES_END),
  286. (void *)KASAN_SHADOW_END);
  287. load_cr3(init_top_pgt);
  288. __flush_tlb_all();
  289. /*
  290. * kasan_zero_page has been used as early shadow memory, thus it may
  291. * contain some garbage. Now we can clear and write protect it, since
  292. * after the TLB flush no one should write to it.
  293. */
  294. memset(kasan_zero_page, 0, PAGE_SIZE);
  295. for (i = 0; i < PTRS_PER_PTE; i++) {
  296. pte_t pte = __pte(__pa(kasan_zero_page) | __PAGE_KERNEL_RO | _PAGE_ENC);
  297. set_pte(&kasan_zero_pte[i], pte);
  298. }
  299. /* Flush TLBs again to be sure that write protection applied. */
  300. __flush_tlb_all();
  301. init_task.kasan_depth = 0;
  302. pr_info("KernelAddressSanitizer initialized\n");
  303. }