skbuff.h 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/compiler.h>
  17. #include <linux/time.h>
  18. #include <linux/cache.h>
  19. #include <asm/atomic.h>
  20. #include <asm/types.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/net.h>
  23. #include <linux/textsearch.h>
  24. #include <net/checksum.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/dmaengine.h>
  27. #include <linux/hrtimer.h>
  28. #define HAVE_ALLOC_SKB /* For the drivers to know */
  29. #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
  30. /* Don't change this without changing skb_csum_unnecessary! */
  31. #define CHECKSUM_NONE 0
  32. #define CHECKSUM_UNNECESSARY 1
  33. #define CHECKSUM_COMPLETE 2
  34. #define CHECKSUM_PARTIAL 3
  35. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  36. ~(SMP_CACHE_BYTES - 1))
  37. #define SKB_WITH_OVERHEAD(X) \
  38. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  39. #define SKB_MAX_ORDER(X, ORDER) \
  40. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  41. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  42. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  43. /* A. Checksumming of received packets by device.
  44. *
  45. * NONE: device failed to checksum this packet.
  46. * skb->csum is undefined.
  47. *
  48. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  49. * skb->csum is undefined.
  50. * It is bad option, but, unfortunately, many of vendors do this.
  51. * Apparently with secret goal to sell you new device, when you
  52. * will add new protocol to your host. F.e. IPv6. 8)
  53. *
  54. * COMPLETE: the most generic way. Device supplied checksum of _all_
  55. * the packet as seen by netif_rx in skb->csum.
  56. * NOTE: Even if device supports only some protocols, but
  57. * is able to produce some skb->csum, it MUST use COMPLETE,
  58. * not UNNECESSARY.
  59. *
  60. * PARTIAL: identical to the case for output below. This may occur
  61. * on a packet received directly from another Linux OS, e.g.,
  62. * a virtualised Linux kernel on the same host. The packet can
  63. * be treated in the same way as UNNECESSARY except that on
  64. * output (i.e., forwarding) the checksum must be filled in
  65. * by the OS or the hardware.
  66. *
  67. * B. Checksumming on output.
  68. *
  69. * NONE: skb is checksummed by protocol or csum is not required.
  70. *
  71. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  72. * from skb->csum_start to the end and to record the checksum
  73. * at skb->csum_start + skb->csum_offset.
  74. *
  75. * Device must show its capabilities in dev->features, set
  76. * at device setup time.
  77. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  78. * everything.
  79. * NETIF_F_NO_CSUM - loopback or reliable single hop media.
  80. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  81. * TCP/UDP over IPv4. Sigh. Vendors like this
  82. * way by an unknown reason. Though, see comment above
  83. * about CHECKSUM_UNNECESSARY. 8)
  84. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  85. *
  86. * Any questions? No questions, good. --ANK
  87. */
  88. struct net_device;
  89. struct scatterlist;
  90. struct pipe_inode_info;
  91. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  92. struct nf_conntrack {
  93. atomic_t use;
  94. };
  95. #endif
  96. #ifdef CONFIG_BRIDGE_NETFILTER
  97. struct nf_bridge_info {
  98. atomic_t use;
  99. struct net_device *physindev;
  100. struct net_device *physoutdev;
  101. unsigned int mask;
  102. unsigned long data[32 / sizeof(unsigned long)];
  103. };
  104. #endif
  105. struct sk_buff_head {
  106. /* These two members must be first. */
  107. struct sk_buff *next;
  108. struct sk_buff *prev;
  109. __u32 qlen;
  110. spinlock_t lock;
  111. };
  112. struct sk_buff;
  113. /* To allow 64K frame to be packed as single skb without frag_list */
  114. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
  115. typedef struct skb_frag_struct skb_frag_t;
  116. struct skb_frag_struct {
  117. struct page *page;
  118. __u32 page_offset;
  119. __u32 size;
  120. };
  121. /* This data is invariant across clones and lives at
  122. * the end of the header data, ie. at skb->end.
  123. */
  124. struct skb_shared_info {
  125. atomic_t dataref;
  126. unsigned short nr_frags;
  127. unsigned short gso_size;
  128. /* Warning: this field is not always filled in (UFO)! */
  129. unsigned short gso_segs;
  130. unsigned short gso_type;
  131. __be32 ip6_frag_id;
  132. struct sk_buff *frag_list;
  133. skb_frag_t frags[MAX_SKB_FRAGS];
  134. };
  135. /* We divide dataref into two halves. The higher 16 bits hold references
  136. * to the payload part of skb->data. The lower 16 bits hold references to
  137. * the entire skb->data. A clone of a headerless skb holds the length of
  138. * the header in skb->hdr_len.
  139. *
  140. * All users must obey the rule that the skb->data reference count must be
  141. * greater than or equal to the payload reference count.
  142. *
  143. * Holding a reference to the payload part means that the user does not
  144. * care about modifications to the header part of skb->data.
  145. */
  146. #define SKB_DATAREF_SHIFT 16
  147. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  148. enum {
  149. SKB_FCLONE_UNAVAILABLE,
  150. SKB_FCLONE_ORIG,
  151. SKB_FCLONE_CLONE,
  152. };
  153. enum {
  154. SKB_GSO_TCPV4 = 1 << 0,
  155. SKB_GSO_UDP = 1 << 1,
  156. /* This indicates the skb is from an untrusted source. */
  157. SKB_GSO_DODGY = 1 << 2,
  158. /* This indicates the tcp segment has CWR set. */
  159. SKB_GSO_TCP_ECN = 1 << 3,
  160. SKB_GSO_TCPV6 = 1 << 4,
  161. };
  162. #if BITS_PER_LONG > 32
  163. #define NET_SKBUFF_DATA_USES_OFFSET 1
  164. #endif
  165. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  166. typedef unsigned int sk_buff_data_t;
  167. #else
  168. typedef unsigned char *sk_buff_data_t;
  169. #endif
  170. /**
  171. * struct sk_buff - socket buffer
  172. * @next: Next buffer in list
  173. * @prev: Previous buffer in list
  174. * @sk: Socket we are owned by
  175. * @tstamp: Time we arrived
  176. * @dev: Device we arrived on/are leaving by
  177. * @transport_header: Transport layer header
  178. * @network_header: Network layer header
  179. * @mac_header: Link layer header
  180. * @dst: destination entry
  181. * @sp: the security path, used for xfrm
  182. * @cb: Control buffer. Free for use by every layer. Put private vars here
  183. * @len: Length of actual data
  184. * @data_len: Data length
  185. * @mac_len: Length of link layer header
  186. * @hdr_len: writable header length of cloned skb
  187. * @csum: Checksum (must include start/offset pair)
  188. * @csum_start: Offset from skb->head where checksumming should start
  189. * @csum_offset: Offset from csum_start where checksum should be stored
  190. * @local_df: allow local fragmentation
  191. * @cloned: Head may be cloned (check refcnt to be sure)
  192. * @nohdr: Payload reference only, must not modify header
  193. * @pkt_type: Packet class
  194. * @fclone: skbuff clone status
  195. * @ip_summed: Driver fed us an IP checksum
  196. * @priority: Packet queueing priority
  197. * @users: User count - see {datagram,tcp}.c
  198. * @protocol: Packet protocol from driver
  199. * @truesize: Buffer size
  200. * @head: Head of buffer
  201. * @data: Data head pointer
  202. * @tail: Tail pointer
  203. * @end: End pointer
  204. * @destructor: Destruct function
  205. * @mark: Generic packet mark
  206. * @nfct: Associated connection, if any
  207. * @ipvs_property: skbuff is owned by ipvs
  208. * @peeked: this packet has been seen already, so stats have been
  209. * done for it, don't do them again
  210. * @nf_trace: netfilter packet trace flag
  211. * @nfctinfo: Relationship of this skb to the connection
  212. * @nfct_reasm: netfilter conntrack re-assembly pointer
  213. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  214. * @iif: ifindex of device we arrived on
  215. * @queue_mapping: Queue mapping for multiqueue devices
  216. * @tc_index: Traffic control index
  217. * @tc_verd: traffic control verdict
  218. * @ndisc_nodetype: router type (from link layer)
  219. * @dma_cookie: a cookie to one of several possible DMA operations
  220. * done by skb DMA functions
  221. * @secmark: security marking
  222. * @vlan_tci: vlan tag control information
  223. */
  224. struct sk_buff {
  225. /* These two members must be first. */
  226. struct sk_buff *next;
  227. struct sk_buff *prev;
  228. struct sock *sk;
  229. ktime_t tstamp;
  230. struct net_device *dev;
  231. union {
  232. struct dst_entry *dst;
  233. struct rtable *rtable;
  234. };
  235. struct sec_path *sp;
  236. /*
  237. * This is the control buffer. It is free to use for every
  238. * layer. Please put your private variables there. If you
  239. * want to keep them across layers you have to do a skb_clone()
  240. * first. This is owned by whoever has the skb queued ATM.
  241. */
  242. char cb[48];
  243. unsigned int len,
  244. data_len;
  245. __u16 mac_len,
  246. hdr_len;
  247. union {
  248. __wsum csum;
  249. struct {
  250. __u16 csum_start;
  251. __u16 csum_offset;
  252. };
  253. };
  254. __u32 priority;
  255. __u8 local_df:1,
  256. cloned:1,
  257. ip_summed:2,
  258. nohdr:1,
  259. nfctinfo:3;
  260. __u8 pkt_type:3,
  261. fclone:2,
  262. ipvs_property:1,
  263. peeked:1,
  264. nf_trace:1;
  265. __be16 protocol;
  266. void (*destructor)(struct sk_buff *skb);
  267. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  268. struct nf_conntrack *nfct;
  269. struct sk_buff *nfct_reasm;
  270. #endif
  271. #ifdef CONFIG_BRIDGE_NETFILTER
  272. struct nf_bridge_info *nf_bridge;
  273. #endif
  274. int iif;
  275. __u16 queue_mapping;
  276. #ifdef CONFIG_NET_SCHED
  277. __u16 tc_index; /* traffic control index */
  278. #ifdef CONFIG_NET_CLS_ACT
  279. __u16 tc_verd; /* traffic control verdict */
  280. #endif
  281. #endif
  282. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  283. __u8 ndisc_nodetype:2;
  284. #endif
  285. /* 14 bit hole */
  286. #ifdef CONFIG_NET_DMA
  287. dma_cookie_t dma_cookie;
  288. #endif
  289. #ifdef CONFIG_NETWORK_SECMARK
  290. __u32 secmark;
  291. #endif
  292. __u32 mark;
  293. __u16 vlan_tci;
  294. sk_buff_data_t transport_header;
  295. sk_buff_data_t network_header;
  296. sk_buff_data_t mac_header;
  297. /* These elements must be at the end, see alloc_skb() for details. */
  298. sk_buff_data_t tail;
  299. sk_buff_data_t end;
  300. unsigned char *head,
  301. *data;
  302. unsigned int truesize;
  303. atomic_t users;
  304. };
  305. #ifdef __KERNEL__
  306. /*
  307. * Handling routines are only of interest to the kernel
  308. */
  309. #include <linux/slab.h>
  310. #include <asm/system.h>
  311. extern void kfree_skb(struct sk_buff *skb);
  312. extern void __kfree_skb(struct sk_buff *skb);
  313. extern struct sk_buff *__alloc_skb(unsigned int size,
  314. gfp_t priority, int fclone, int node);
  315. static inline struct sk_buff *alloc_skb(unsigned int size,
  316. gfp_t priority)
  317. {
  318. return __alloc_skb(size, priority, 0, -1);
  319. }
  320. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  321. gfp_t priority)
  322. {
  323. return __alloc_skb(size, priority, 1, -1);
  324. }
  325. extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  326. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  327. gfp_t priority);
  328. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  329. gfp_t priority);
  330. extern struct sk_buff *pskb_copy(struct sk_buff *skb,
  331. gfp_t gfp_mask);
  332. extern int pskb_expand_head(struct sk_buff *skb,
  333. int nhead, int ntail,
  334. gfp_t gfp_mask);
  335. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  336. unsigned int headroom);
  337. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  338. int newheadroom, int newtailroom,
  339. gfp_t priority);
  340. extern int skb_to_sgvec(struct sk_buff *skb,
  341. struct scatterlist *sg, int offset,
  342. int len);
  343. extern int skb_cow_data(struct sk_buff *skb, int tailbits,
  344. struct sk_buff **trailer);
  345. extern int skb_pad(struct sk_buff *skb, int pad);
  346. #define dev_kfree_skb(a) kfree_skb(a)
  347. extern void skb_over_panic(struct sk_buff *skb, int len,
  348. void *here);
  349. extern void skb_under_panic(struct sk_buff *skb, int len,
  350. void *here);
  351. extern void skb_truesize_bug(struct sk_buff *skb);
  352. static inline void skb_truesize_check(struct sk_buff *skb)
  353. {
  354. int len = sizeof(struct sk_buff) + skb->len;
  355. if (unlikely((int)skb->truesize < len))
  356. skb_truesize_bug(skb);
  357. }
  358. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  359. int getfrag(void *from, char *to, int offset,
  360. int len,int odd, struct sk_buff *skb),
  361. void *from, int length);
  362. struct skb_seq_state
  363. {
  364. __u32 lower_offset;
  365. __u32 upper_offset;
  366. __u32 frag_idx;
  367. __u32 stepped_offset;
  368. struct sk_buff *root_skb;
  369. struct sk_buff *cur_skb;
  370. __u8 *frag_data;
  371. };
  372. extern void skb_prepare_seq_read(struct sk_buff *skb,
  373. unsigned int from, unsigned int to,
  374. struct skb_seq_state *st);
  375. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  376. struct skb_seq_state *st);
  377. extern void skb_abort_seq_read(struct skb_seq_state *st);
  378. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  379. unsigned int to, struct ts_config *config,
  380. struct ts_state *state);
  381. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  382. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  383. {
  384. return skb->head + skb->end;
  385. }
  386. #else
  387. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  388. {
  389. return skb->end;
  390. }
  391. #endif
  392. /* Internal */
  393. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  394. /**
  395. * skb_queue_empty - check if a queue is empty
  396. * @list: queue head
  397. *
  398. * Returns true if the queue is empty, false otherwise.
  399. */
  400. static inline int skb_queue_empty(const struct sk_buff_head *list)
  401. {
  402. return list->next == (struct sk_buff *)list;
  403. }
  404. /**
  405. * skb_get - reference buffer
  406. * @skb: buffer to reference
  407. *
  408. * Makes another reference to a socket buffer and returns a pointer
  409. * to the buffer.
  410. */
  411. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  412. {
  413. atomic_inc(&skb->users);
  414. return skb;
  415. }
  416. /*
  417. * If users == 1, we are the only owner and are can avoid redundant
  418. * atomic change.
  419. */
  420. /**
  421. * skb_cloned - is the buffer a clone
  422. * @skb: buffer to check
  423. *
  424. * Returns true if the buffer was generated with skb_clone() and is
  425. * one of multiple shared copies of the buffer. Cloned buffers are
  426. * shared data so must not be written to under normal circumstances.
  427. */
  428. static inline int skb_cloned(const struct sk_buff *skb)
  429. {
  430. return skb->cloned &&
  431. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  432. }
  433. /**
  434. * skb_header_cloned - is the header a clone
  435. * @skb: buffer to check
  436. *
  437. * Returns true if modifying the header part of the buffer requires
  438. * the data to be copied.
  439. */
  440. static inline int skb_header_cloned(const struct sk_buff *skb)
  441. {
  442. int dataref;
  443. if (!skb->cloned)
  444. return 0;
  445. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  446. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  447. return dataref != 1;
  448. }
  449. /**
  450. * skb_header_release - release reference to header
  451. * @skb: buffer to operate on
  452. *
  453. * Drop a reference to the header part of the buffer. This is done
  454. * by acquiring a payload reference. You must not read from the header
  455. * part of skb->data after this.
  456. */
  457. static inline void skb_header_release(struct sk_buff *skb)
  458. {
  459. BUG_ON(skb->nohdr);
  460. skb->nohdr = 1;
  461. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  462. }
  463. /**
  464. * skb_shared - is the buffer shared
  465. * @skb: buffer to check
  466. *
  467. * Returns true if more than one person has a reference to this
  468. * buffer.
  469. */
  470. static inline int skb_shared(const struct sk_buff *skb)
  471. {
  472. return atomic_read(&skb->users) != 1;
  473. }
  474. /**
  475. * skb_share_check - check if buffer is shared and if so clone it
  476. * @skb: buffer to check
  477. * @pri: priority for memory allocation
  478. *
  479. * If the buffer is shared the buffer is cloned and the old copy
  480. * drops a reference. A new clone with a single reference is returned.
  481. * If the buffer is not shared the original buffer is returned. When
  482. * being called from interrupt status or with spinlocks held pri must
  483. * be GFP_ATOMIC.
  484. *
  485. * NULL is returned on a memory allocation failure.
  486. */
  487. static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
  488. gfp_t pri)
  489. {
  490. might_sleep_if(pri & __GFP_WAIT);
  491. if (skb_shared(skb)) {
  492. struct sk_buff *nskb = skb_clone(skb, pri);
  493. kfree_skb(skb);
  494. skb = nskb;
  495. }
  496. return skb;
  497. }
  498. /*
  499. * Copy shared buffers into a new sk_buff. We effectively do COW on
  500. * packets to handle cases where we have a local reader and forward
  501. * and a couple of other messy ones. The normal one is tcpdumping
  502. * a packet thats being forwarded.
  503. */
  504. /**
  505. * skb_unshare - make a copy of a shared buffer
  506. * @skb: buffer to check
  507. * @pri: priority for memory allocation
  508. *
  509. * If the socket buffer is a clone then this function creates a new
  510. * copy of the data, drops a reference count on the old copy and returns
  511. * the new copy with the reference count at 1. If the buffer is not a clone
  512. * the original buffer is returned. When called with a spinlock held or
  513. * from interrupt state @pri must be %GFP_ATOMIC
  514. *
  515. * %NULL is returned on a memory allocation failure.
  516. */
  517. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  518. gfp_t pri)
  519. {
  520. might_sleep_if(pri & __GFP_WAIT);
  521. if (skb_cloned(skb)) {
  522. struct sk_buff *nskb = skb_copy(skb, pri);
  523. kfree_skb(skb); /* Free our shared copy */
  524. skb = nskb;
  525. }
  526. return skb;
  527. }
  528. /**
  529. * skb_peek
  530. * @list_: list to peek at
  531. *
  532. * Peek an &sk_buff. Unlike most other operations you _MUST_
  533. * be careful with this one. A peek leaves the buffer on the
  534. * list and someone else may run off with it. You must hold
  535. * the appropriate locks or have a private queue to do this.
  536. *
  537. * Returns %NULL for an empty list or a pointer to the head element.
  538. * The reference count is not incremented and the reference is therefore
  539. * volatile. Use with caution.
  540. */
  541. static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
  542. {
  543. struct sk_buff *list = ((struct sk_buff *)list_)->next;
  544. if (list == (struct sk_buff *)list_)
  545. list = NULL;
  546. return list;
  547. }
  548. /**
  549. * skb_peek_tail
  550. * @list_: list to peek at
  551. *
  552. * Peek an &sk_buff. Unlike most other operations you _MUST_
  553. * be careful with this one. A peek leaves the buffer on the
  554. * list and someone else may run off with it. You must hold
  555. * the appropriate locks or have a private queue to do this.
  556. *
  557. * Returns %NULL for an empty list or a pointer to the tail element.
  558. * The reference count is not incremented and the reference is therefore
  559. * volatile. Use with caution.
  560. */
  561. static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
  562. {
  563. struct sk_buff *list = ((struct sk_buff *)list_)->prev;
  564. if (list == (struct sk_buff *)list_)
  565. list = NULL;
  566. return list;
  567. }
  568. /**
  569. * skb_queue_len - get queue length
  570. * @list_: list to measure
  571. *
  572. * Return the length of an &sk_buff queue.
  573. */
  574. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  575. {
  576. return list_->qlen;
  577. }
  578. /*
  579. * This function creates a split out lock class for each invocation;
  580. * this is needed for now since a whole lot of users of the skb-queue
  581. * infrastructure in drivers have different locking usage (in hardirq)
  582. * than the networking core (in softirq only). In the long run either the
  583. * network layer or drivers should need annotation to consolidate the
  584. * main types of usage into 3 classes.
  585. */
  586. static inline void skb_queue_head_init(struct sk_buff_head *list)
  587. {
  588. spin_lock_init(&list->lock);
  589. list->prev = list->next = (struct sk_buff *)list;
  590. list->qlen = 0;
  591. }
  592. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  593. struct lock_class_key *class)
  594. {
  595. skb_queue_head_init(list);
  596. lockdep_set_class(&list->lock, class);
  597. }
  598. /*
  599. * Insert an sk_buff on a list.
  600. *
  601. * The "__skb_xxxx()" functions are the non-atomic ones that
  602. * can only be called with interrupts disabled.
  603. */
  604. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  605. static inline void __skb_insert(struct sk_buff *newsk,
  606. struct sk_buff *prev, struct sk_buff *next,
  607. struct sk_buff_head *list)
  608. {
  609. newsk->next = next;
  610. newsk->prev = prev;
  611. next->prev = prev->next = newsk;
  612. list->qlen++;
  613. }
  614. /**
  615. * __skb_queue_after - queue a buffer at the list head
  616. * @list: list to use
  617. * @prev: place after this buffer
  618. * @newsk: buffer to queue
  619. *
  620. * Queue a buffer int the middle of a list. This function takes no locks
  621. * and you must therefore hold required locks before calling it.
  622. *
  623. * A buffer cannot be placed on two lists at the same time.
  624. */
  625. static inline void __skb_queue_after(struct sk_buff_head *list,
  626. struct sk_buff *prev,
  627. struct sk_buff *newsk)
  628. {
  629. __skb_insert(newsk, prev, prev->next, list);
  630. }
  631. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  632. struct sk_buff_head *list);
  633. static inline void __skb_queue_before(struct sk_buff_head *list,
  634. struct sk_buff *next,
  635. struct sk_buff *newsk)
  636. {
  637. __skb_insert(newsk, next->prev, next, list);
  638. }
  639. /**
  640. * __skb_queue_head - queue a buffer at the list head
  641. * @list: list to use
  642. * @newsk: buffer to queue
  643. *
  644. * Queue a buffer at the start of a list. This function takes no locks
  645. * and you must therefore hold required locks before calling it.
  646. *
  647. * A buffer cannot be placed on two lists at the same time.
  648. */
  649. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  650. static inline void __skb_queue_head(struct sk_buff_head *list,
  651. struct sk_buff *newsk)
  652. {
  653. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  654. }
  655. /**
  656. * __skb_queue_tail - queue a buffer at the list tail
  657. * @list: list to use
  658. * @newsk: buffer to queue
  659. *
  660. * Queue a buffer at the end of a list. This function takes no locks
  661. * and you must therefore hold required locks before calling it.
  662. *
  663. * A buffer cannot be placed on two lists at the same time.
  664. */
  665. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  666. static inline void __skb_queue_tail(struct sk_buff_head *list,
  667. struct sk_buff *newsk)
  668. {
  669. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  670. }
  671. /*
  672. * remove sk_buff from list. _Must_ be called atomically, and with
  673. * the list known..
  674. */
  675. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  676. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  677. {
  678. struct sk_buff *next, *prev;
  679. list->qlen--;
  680. next = skb->next;
  681. prev = skb->prev;
  682. skb->next = skb->prev = NULL;
  683. next->prev = prev;
  684. prev->next = next;
  685. }
  686. /**
  687. * __skb_dequeue - remove from the head of the queue
  688. * @list: list to dequeue from
  689. *
  690. * Remove the head of the list. This function does not take any locks
  691. * so must be used with appropriate locks held only. The head item is
  692. * returned or %NULL if the list is empty.
  693. */
  694. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  695. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  696. {
  697. struct sk_buff *skb = skb_peek(list);
  698. if (skb)
  699. __skb_unlink(skb, list);
  700. return skb;
  701. }
  702. /**
  703. * __skb_dequeue_tail - remove from the tail of the queue
  704. * @list: list to dequeue from
  705. *
  706. * Remove the tail of the list. This function does not take any locks
  707. * so must be used with appropriate locks held only. The tail item is
  708. * returned or %NULL if the list is empty.
  709. */
  710. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  711. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  712. {
  713. struct sk_buff *skb = skb_peek_tail(list);
  714. if (skb)
  715. __skb_unlink(skb, list);
  716. return skb;
  717. }
  718. static inline int skb_is_nonlinear(const struct sk_buff *skb)
  719. {
  720. return skb->data_len;
  721. }
  722. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  723. {
  724. return skb->len - skb->data_len;
  725. }
  726. static inline int skb_pagelen(const struct sk_buff *skb)
  727. {
  728. int i, len = 0;
  729. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  730. len += skb_shinfo(skb)->frags[i].size;
  731. return len + skb_headlen(skb);
  732. }
  733. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  734. struct page *page, int off, int size)
  735. {
  736. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  737. frag->page = page;
  738. frag->page_offset = off;
  739. frag->size = size;
  740. skb_shinfo(skb)->nr_frags = i + 1;
  741. }
  742. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  743. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
  744. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  745. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  746. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  747. {
  748. return skb->head + skb->tail;
  749. }
  750. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  751. {
  752. skb->tail = skb->data - skb->head;
  753. }
  754. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  755. {
  756. skb_reset_tail_pointer(skb);
  757. skb->tail += offset;
  758. }
  759. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  760. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  761. {
  762. return skb->tail;
  763. }
  764. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  765. {
  766. skb->tail = skb->data;
  767. }
  768. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  769. {
  770. skb->tail = skb->data + offset;
  771. }
  772. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  773. /*
  774. * Add data to an sk_buff
  775. */
  776. extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  777. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  778. {
  779. unsigned char *tmp = skb_tail_pointer(skb);
  780. SKB_LINEAR_ASSERT(skb);
  781. skb->tail += len;
  782. skb->len += len;
  783. return tmp;
  784. }
  785. extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  786. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  787. {
  788. skb->data -= len;
  789. skb->len += len;
  790. return skb->data;
  791. }
  792. extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  793. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  794. {
  795. skb->len -= len;
  796. BUG_ON(skb->len < skb->data_len);
  797. return skb->data += len;
  798. }
  799. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  800. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  801. {
  802. if (len > skb_headlen(skb) &&
  803. !__pskb_pull_tail(skb, len-skb_headlen(skb)))
  804. return NULL;
  805. skb->len -= len;
  806. return skb->data += len;
  807. }
  808. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  809. {
  810. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  811. }
  812. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  813. {
  814. if (likely(len <= skb_headlen(skb)))
  815. return 1;
  816. if (unlikely(len > skb->len))
  817. return 0;
  818. return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
  819. }
  820. /**
  821. * skb_headroom - bytes at buffer head
  822. * @skb: buffer to check
  823. *
  824. * Return the number of bytes of free space at the head of an &sk_buff.
  825. */
  826. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  827. {
  828. return skb->data - skb->head;
  829. }
  830. /**
  831. * skb_tailroom - bytes at buffer end
  832. * @skb: buffer to check
  833. *
  834. * Return the number of bytes of free space at the tail of an sk_buff
  835. */
  836. static inline int skb_tailroom(const struct sk_buff *skb)
  837. {
  838. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  839. }
  840. /**
  841. * skb_reserve - adjust headroom
  842. * @skb: buffer to alter
  843. * @len: bytes to move
  844. *
  845. * Increase the headroom of an empty &sk_buff by reducing the tail
  846. * room. This is only allowed for an empty buffer.
  847. */
  848. static inline void skb_reserve(struct sk_buff *skb, int len)
  849. {
  850. skb->data += len;
  851. skb->tail += len;
  852. }
  853. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  854. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  855. {
  856. return skb->head + skb->transport_header;
  857. }
  858. static inline void skb_reset_transport_header(struct sk_buff *skb)
  859. {
  860. skb->transport_header = skb->data - skb->head;
  861. }
  862. static inline void skb_set_transport_header(struct sk_buff *skb,
  863. const int offset)
  864. {
  865. skb_reset_transport_header(skb);
  866. skb->transport_header += offset;
  867. }
  868. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  869. {
  870. return skb->head + skb->network_header;
  871. }
  872. static inline void skb_reset_network_header(struct sk_buff *skb)
  873. {
  874. skb->network_header = skb->data - skb->head;
  875. }
  876. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  877. {
  878. skb_reset_network_header(skb);
  879. skb->network_header += offset;
  880. }
  881. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  882. {
  883. return skb->head + skb->mac_header;
  884. }
  885. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  886. {
  887. return skb->mac_header != ~0U;
  888. }
  889. static inline void skb_reset_mac_header(struct sk_buff *skb)
  890. {
  891. skb->mac_header = skb->data - skb->head;
  892. }
  893. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  894. {
  895. skb_reset_mac_header(skb);
  896. skb->mac_header += offset;
  897. }
  898. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  899. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  900. {
  901. return skb->transport_header;
  902. }
  903. static inline void skb_reset_transport_header(struct sk_buff *skb)
  904. {
  905. skb->transport_header = skb->data;
  906. }
  907. static inline void skb_set_transport_header(struct sk_buff *skb,
  908. const int offset)
  909. {
  910. skb->transport_header = skb->data + offset;
  911. }
  912. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  913. {
  914. return skb->network_header;
  915. }
  916. static inline void skb_reset_network_header(struct sk_buff *skb)
  917. {
  918. skb->network_header = skb->data;
  919. }
  920. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  921. {
  922. skb->network_header = skb->data + offset;
  923. }
  924. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  925. {
  926. return skb->mac_header;
  927. }
  928. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  929. {
  930. return skb->mac_header != NULL;
  931. }
  932. static inline void skb_reset_mac_header(struct sk_buff *skb)
  933. {
  934. skb->mac_header = skb->data;
  935. }
  936. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  937. {
  938. skb->mac_header = skb->data + offset;
  939. }
  940. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  941. static inline int skb_transport_offset(const struct sk_buff *skb)
  942. {
  943. return skb_transport_header(skb) - skb->data;
  944. }
  945. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  946. {
  947. return skb->transport_header - skb->network_header;
  948. }
  949. static inline int skb_network_offset(const struct sk_buff *skb)
  950. {
  951. return skb_network_header(skb) - skb->data;
  952. }
  953. /*
  954. * CPUs often take a performance hit when accessing unaligned memory
  955. * locations. The actual performance hit varies, it can be small if the
  956. * hardware handles it or large if we have to take an exception and fix it
  957. * in software.
  958. *
  959. * Since an ethernet header is 14 bytes network drivers often end up with
  960. * the IP header at an unaligned offset. The IP header can be aligned by
  961. * shifting the start of the packet by 2 bytes. Drivers should do this
  962. * with:
  963. *
  964. * skb_reserve(NET_IP_ALIGN);
  965. *
  966. * The downside to this alignment of the IP header is that the DMA is now
  967. * unaligned. On some architectures the cost of an unaligned DMA is high
  968. * and this cost outweighs the gains made by aligning the IP header.
  969. *
  970. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  971. * to be overridden.
  972. */
  973. #ifndef NET_IP_ALIGN
  974. #define NET_IP_ALIGN 2
  975. #endif
  976. /*
  977. * The networking layer reserves some headroom in skb data (via
  978. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  979. * the header has to grow. In the default case, if the header has to grow
  980. * 16 bytes or less we avoid the reallocation.
  981. *
  982. * Unfortunately this headroom changes the DMA alignment of the resulting
  983. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  984. * on some architectures. An architecture can override this value,
  985. * perhaps setting it to a cacheline in size (since that will maintain
  986. * cacheline alignment of the DMA). It must be a power of 2.
  987. *
  988. * Various parts of the networking layer expect at least 16 bytes of
  989. * headroom, you should not reduce this.
  990. */
  991. #ifndef NET_SKB_PAD
  992. #define NET_SKB_PAD 16
  993. #endif
  994. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  995. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  996. {
  997. if (unlikely(skb->data_len)) {
  998. WARN_ON(1);
  999. return;
  1000. }
  1001. skb->len = len;
  1002. skb_set_tail_pointer(skb, len);
  1003. }
  1004. extern void skb_trim(struct sk_buff *skb, unsigned int len);
  1005. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1006. {
  1007. if (skb->data_len)
  1008. return ___pskb_trim(skb, len);
  1009. __skb_trim(skb, len);
  1010. return 0;
  1011. }
  1012. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1013. {
  1014. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1015. }
  1016. /**
  1017. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1018. * @skb: buffer to alter
  1019. * @len: new length
  1020. *
  1021. * This is identical to pskb_trim except that the caller knows that
  1022. * the skb is not cloned so we should never get an error due to out-
  1023. * of-memory.
  1024. */
  1025. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1026. {
  1027. int err = pskb_trim(skb, len);
  1028. BUG_ON(err);
  1029. }
  1030. /**
  1031. * skb_orphan - orphan a buffer
  1032. * @skb: buffer to orphan
  1033. *
  1034. * If a buffer currently has an owner then we call the owner's
  1035. * destructor function and make the @skb unowned. The buffer continues
  1036. * to exist but is no longer charged to its former owner.
  1037. */
  1038. static inline void skb_orphan(struct sk_buff *skb)
  1039. {
  1040. if (skb->destructor)
  1041. skb->destructor(skb);
  1042. skb->destructor = NULL;
  1043. skb->sk = NULL;
  1044. }
  1045. /**
  1046. * __skb_queue_purge - empty a list
  1047. * @list: list to empty
  1048. *
  1049. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1050. * the list and one reference dropped. This function does not take the
  1051. * list lock and the caller must hold the relevant locks to use it.
  1052. */
  1053. extern void skb_queue_purge(struct sk_buff_head *list);
  1054. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1055. {
  1056. struct sk_buff *skb;
  1057. while ((skb = __skb_dequeue(list)) != NULL)
  1058. kfree_skb(skb);
  1059. }
  1060. /**
  1061. * __dev_alloc_skb - allocate an skbuff for receiving
  1062. * @length: length to allocate
  1063. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  1064. *
  1065. * Allocate a new &sk_buff and assign it a usage count of one. The
  1066. * buffer has unspecified headroom built in. Users should allocate
  1067. * the headroom they think they need without accounting for the
  1068. * built in space. The built in space is used for optimisations.
  1069. *
  1070. * %NULL is returned if there is no free memory.
  1071. */
  1072. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1073. gfp_t gfp_mask)
  1074. {
  1075. struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
  1076. if (likely(skb))
  1077. skb_reserve(skb, NET_SKB_PAD);
  1078. return skb;
  1079. }
  1080. extern struct sk_buff *dev_alloc_skb(unsigned int length);
  1081. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1082. unsigned int length, gfp_t gfp_mask);
  1083. /**
  1084. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1085. * @dev: network device to receive on
  1086. * @length: length to allocate
  1087. *
  1088. * Allocate a new &sk_buff and assign it a usage count of one. The
  1089. * buffer has unspecified headroom built in. Users should allocate
  1090. * the headroom they think they need without accounting for the
  1091. * built in space. The built in space is used for optimisations.
  1092. *
  1093. * %NULL is returned if there is no free memory. Although this function
  1094. * allocates memory it can be called from an interrupt.
  1095. */
  1096. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1097. unsigned int length)
  1098. {
  1099. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1100. }
  1101. /**
  1102. * skb_clone_writable - is the header of a clone writable
  1103. * @skb: buffer to check
  1104. * @len: length up to which to write
  1105. *
  1106. * Returns true if modifying the header part of the cloned buffer
  1107. * does not requires the data to be copied.
  1108. */
  1109. static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
  1110. {
  1111. return !skb_header_cloned(skb) &&
  1112. skb_headroom(skb) + len <= skb->hdr_len;
  1113. }
  1114. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1115. int cloned)
  1116. {
  1117. int delta = 0;
  1118. if (headroom < NET_SKB_PAD)
  1119. headroom = NET_SKB_PAD;
  1120. if (headroom > skb_headroom(skb))
  1121. delta = headroom - skb_headroom(skb);
  1122. if (delta || cloned)
  1123. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1124. GFP_ATOMIC);
  1125. return 0;
  1126. }
  1127. /**
  1128. * skb_cow - copy header of skb when it is required
  1129. * @skb: buffer to cow
  1130. * @headroom: needed headroom
  1131. *
  1132. * If the skb passed lacks sufficient headroom or its data part
  1133. * is shared, data is reallocated. If reallocation fails, an error
  1134. * is returned and original skb is not changed.
  1135. *
  1136. * The result is skb with writable area skb->head...skb->tail
  1137. * and at least @headroom of space at head.
  1138. */
  1139. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1140. {
  1141. return __skb_cow(skb, headroom, skb_cloned(skb));
  1142. }
  1143. /**
  1144. * skb_cow_head - skb_cow but only making the head writable
  1145. * @skb: buffer to cow
  1146. * @headroom: needed headroom
  1147. *
  1148. * This function is identical to skb_cow except that we replace the
  1149. * skb_cloned check by skb_header_cloned. It should be used when
  1150. * you only need to push on some header and do not need to modify
  1151. * the data.
  1152. */
  1153. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1154. {
  1155. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1156. }
  1157. /**
  1158. * skb_padto - pad an skbuff up to a minimal size
  1159. * @skb: buffer to pad
  1160. * @len: minimal length
  1161. *
  1162. * Pads up a buffer to ensure the trailing bytes exist and are
  1163. * blanked. If the buffer already contains sufficient data it
  1164. * is untouched. Otherwise it is extended. Returns zero on
  1165. * success. The skb is freed on error.
  1166. */
  1167. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1168. {
  1169. unsigned int size = skb->len;
  1170. if (likely(size >= len))
  1171. return 0;
  1172. return skb_pad(skb, len-size);
  1173. }
  1174. static inline int skb_add_data(struct sk_buff *skb,
  1175. char __user *from, int copy)
  1176. {
  1177. const int off = skb->len;
  1178. if (skb->ip_summed == CHECKSUM_NONE) {
  1179. int err = 0;
  1180. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1181. copy, 0, &err);
  1182. if (!err) {
  1183. skb->csum = csum_block_add(skb->csum, csum, off);
  1184. return 0;
  1185. }
  1186. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1187. return 0;
  1188. __skb_trim(skb, off);
  1189. return -EFAULT;
  1190. }
  1191. static inline int skb_can_coalesce(struct sk_buff *skb, int i,
  1192. struct page *page, int off)
  1193. {
  1194. if (i) {
  1195. struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1196. return page == frag->page &&
  1197. off == frag->page_offset + frag->size;
  1198. }
  1199. return 0;
  1200. }
  1201. static inline int __skb_linearize(struct sk_buff *skb)
  1202. {
  1203. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1204. }
  1205. /**
  1206. * skb_linearize - convert paged skb to linear one
  1207. * @skb: buffer to linarize
  1208. *
  1209. * If there is no free memory -ENOMEM is returned, otherwise zero
  1210. * is returned and the old skb data released.
  1211. */
  1212. static inline int skb_linearize(struct sk_buff *skb)
  1213. {
  1214. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1215. }
  1216. /**
  1217. * skb_linearize_cow - make sure skb is linear and writable
  1218. * @skb: buffer to process
  1219. *
  1220. * If there is no free memory -ENOMEM is returned, otherwise zero
  1221. * is returned and the old skb data released.
  1222. */
  1223. static inline int skb_linearize_cow(struct sk_buff *skb)
  1224. {
  1225. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1226. __skb_linearize(skb) : 0;
  1227. }
  1228. /**
  1229. * skb_postpull_rcsum - update checksum for received skb after pull
  1230. * @skb: buffer to update
  1231. * @start: start of data before pull
  1232. * @len: length of data pulled
  1233. *
  1234. * After doing a pull on a received packet, you need to call this to
  1235. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1236. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1237. */
  1238. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1239. const void *start, unsigned int len)
  1240. {
  1241. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1242. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1243. }
  1244. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1245. /**
  1246. * pskb_trim_rcsum - trim received skb and update checksum
  1247. * @skb: buffer to trim
  1248. * @len: new length
  1249. *
  1250. * This is exactly the same as pskb_trim except that it ensures the
  1251. * checksum of received packets are still valid after the operation.
  1252. */
  1253. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  1254. {
  1255. if (likely(len >= skb->len))
  1256. return 0;
  1257. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1258. skb->ip_summed = CHECKSUM_NONE;
  1259. return __pskb_trim(skb, len);
  1260. }
  1261. #define skb_queue_walk(queue, skb) \
  1262. for (skb = (queue)->next; \
  1263. prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
  1264. skb = skb->next)
  1265. #define skb_queue_walk_safe(queue, skb, tmp) \
  1266. for (skb = (queue)->next, tmp = skb->next; \
  1267. skb != (struct sk_buff *)(queue); \
  1268. skb = tmp, tmp = skb->next)
  1269. #define skb_queue_reverse_walk(queue, skb) \
  1270. for (skb = (queue)->prev; \
  1271. prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
  1272. skb = skb->prev)
  1273. extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  1274. int *peeked, int *err);
  1275. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  1276. int noblock, int *err);
  1277. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  1278. struct poll_table_struct *wait);
  1279. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  1280. int offset, struct iovec *to,
  1281. int size);
  1282. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  1283. int hlen,
  1284. struct iovec *iov);
  1285. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  1286. extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  1287. unsigned int flags);
  1288. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1289. int len, __wsum csum);
  1290. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  1291. void *to, int len);
  1292. extern int skb_store_bits(struct sk_buff *skb, int offset,
  1293. const void *from, int len);
  1294. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  1295. int offset, u8 *to, int len,
  1296. __wsum csum);
  1297. extern int skb_splice_bits(struct sk_buff *skb,
  1298. unsigned int offset,
  1299. struct pipe_inode_info *pipe,
  1300. unsigned int len,
  1301. unsigned int flags);
  1302. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  1303. extern void skb_split(struct sk_buff *skb,
  1304. struct sk_buff *skb1, const u32 len);
  1305. extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
  1306. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  1307. int len, void *buffer)
  1308. {
  1309. int hlen = skb_headlen(skb);
  1310. if (hlen - offset >= len)
  1311. return skb->data + offset;
  1312. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  1313. return NULL;
  1314. return buffer;
  1315. }
  1316. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  1317. void *to,
  1318. const unsigned int len)
  1319. {
  1320. memcpy(to, skb->data, len);
  1321. }
  1322. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  1323. const int offset, void *to,
  1324. const unsigned int len)
  1325. {
  1326. memcpy(to, skb->data + offset, len);
  1327. }
  1328. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  1329. const void *from,
  1330. const unsigned int len)
  1331. {
  1332. memcpy(skb->data, from, len);
  1333. }
  1334. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  1335. const int offset,
  1336. const void *from,
  1337. const unsigned int len)
  1338. {
  1339. memcpy(skb->data + offset, from, len);
  1340. }
  1341. extern void skb_init(void);
  1342. /**
  1343. * skb_get_timestamp - get timestamp from a skb
  1344. * @skb: skb to get stamp from
  1345. * @stamp: pointer to struct timeval to store stamp in
  1346. *
  1347. * Timestamps are stored in the skb as offsets to a base timestamp.
  1348. * This function converts the offset back to a struct timeval and stores
  1349. * it in stamp.
  1350. */
  1351. static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
  1352. {
  1353. *stamp = ktime_to_timeval(skb->tstamp);
  1354. }
  1355. static inline void __net_timestamp(struct sk_buff *skb)
  1356. {
  1357. skb->tstamp = ktime_get_real();
  1358. }
  1359. static inline ktime_t net_timedelta(ktime_t t)
  1360. {
  1361. return ktime_sub(ktime_get_real(), t);
  1362. }
  1363. static inline ktime_t net_invalid_timestamp(void)
  1364. {
  1365. return ktime_set(0, 0);
  1366. }
  1367. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  1368. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  1369. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  1370. {
  1371. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  1372. }
  1373. /**
  1374. * skb_checksum_complete - Calculate checksum of an entire packet
  1375. * @skb: packet to process
  1376. *
  1377. * This function calculates the checksum over the entire packet plus
  1378. * the value of skb->csum. The latter can be used to supply the
  1379. * checksum of a pseudo header as used by TCP/UDP. It returns the
  1380. * checksum.
  1381. *
  1382. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  1383. * this function can be used to verify that checksum on received
  1384. * packets. In that case the function should return zero if the
  1385. * checksum is correct. In particular, this function will return zero
  1386. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  1387. * hardware has already verified the correctness of the checksum.
  1388. */
  1389. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  1390. {
  1391. return skb_csum_unnecessary(skb) ?
  1392. 0 : __skb_checksum_complete(skb);
  1393. }
  1394. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1395. extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
  1396. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  1397. {
  1398. if (nfct && atomic_dec_and_test(&nfct->use))
  1399. nf_conntrack_destroy(nfct);
  1400. }
  1401. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  1402. {
  1403. if (nfct)
  1404. atomic_inc(&nfct->use);
  1405. }
  1406. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  1407. {
  1408. if (skb)
  1409. atomic_inc(&skb->users);
  1410. }
  1411. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  1412. {
  1413. if (skb)
  1414. kfree_skb(skb);
  1415. }
  1416. #endif
  1417. #ifdef CONFIG_BRIDGE_NETFILTER
  1418. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  1419. {
  1420. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  1421. kfree(nf_bridge);
  1422. }
  1423. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  1424. {
  1425. if (nf_bridge)
  1426. atomic_inc(&nf_bridge->use);
  1427. }
  1428. #endif /* CONFIG_BRIDGE_NETFILTER */
  1429. static inline void nf_reset(struct sk_buff *skb)
  1430. {
  1431. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1432. nf_conntrack_put(skb->nfct);
  1433. skb->nfct = NULL;
  1434. nf_conntrack_put_reasm(skb->nfct_reasm);
  1435. skb->nfct_reasm = NULL;
  1436. #endif
  1437. #ifdef CONFIG_BRIDGE_NETFILTER
  1438. nf_bridge_put(skb->nf_bridge);
  1439. skb->nf_bridge = NULL;
  1440. #endif
  1441. }
  1442. /* Note: This doesn't put any conntrack and bridge info in dst. */
  1443. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  1444. {
  1445. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1446. dst->nfct = src->nfct;
  1447. nf_conntrack_get(src->nfct);
  1448. dst->nfctinfo = src->nfctinfo;
  1449. dst->nfct_reasm = src->nfct_reasm;
  1450. nf_conntrack_get_reasm(src->nfct_reasm);
  1451. #endif
  1452. #ifdef CONFIG_BRIDGE_NETFILTER
  1453. dst->nf_bridge = src->nf_bridge;
  1454. nf_bridge_get(src->nf_bridge);
  1455. #endif
  1456. }
  1457. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  1458. {
  1459. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1460. nf_conntrack_put(dst->nfct);
  1461. nf_conntrack_put_reasm(dst->nfct_reasm);
  1462. #endif
  1463. #ifdef CONFIG_BRIDGE_NETFILTER
  1464. nf_bridge_put(dst->nf_bridge);
  1465. #endif
  1466. __nf_copy(dst, src);
  1467. }
  1468. #ifdef CONFIG_NETWORK_SECMARK
  1469. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1470. {
  1471. to->secmark = from->secmark;
  1472. }
  1473. static inline void skb_init_secmark(struct sk_buff *skb)
  1474. {
  1475. skb->secmark = 0;
  1476. }
  1477. #else
  1478. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1479. { }
  1480. static inline void skb_init_secmark(struct sk_buff *skb)
  1481. { }
  1482. #endif
  1483. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  1484. {
  1485. skb->queue_mapping = queue_mapping;
  1486. }
  1487. static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
  1488. {
  1489. return skb->queue_mapping;
  1490. }
  1491. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  1492. {
  1493. to->queue_mapping = from->queue_mapping;
  1494. }
  1495. static inline int skb_is_gso(const struct sk_buff *skb)
  1496. {
  1497. return skb_shinfo(skb)->gso_size;
  1498. }
  1499. static inline int skb_is_gso_v6(const struct sk_buff *skb)
  1500. {
  1501. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  1502. }
  1503. extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  1504. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  1505. {
  1506. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  1507. * wanted then gso_type will be set. */
  1508. struct skb_shared_info *shinfo = skb_shinfo(skb);
  1509. if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
  1510. __skb_warn_lro_forwarding(skb);
  1511. return true;
  1512. }
  1513. return false;
  1514. }
  1515. static inline void skb_forward_csum(struct sk_buff *skb)
  1516. {
  1517. /* Unfortunately we don't support this one. Any brave souls? */
  1518. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1519. skb->ip_summed = CHECKSUM_NONE;
  1520. }
  1521. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  1522. #endif /* __KERNEL__ */
  1523. #endif /* _LINUX_SKBUFF_H */