pgtable.h 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757
  1. /*
  2. * S390 version
  3. * Copyright IBM Corp. 1999, 2000
  4. * Author(s): Hartmut Penner (hp@de.ibm.com)
  5. * Ulrich Weigand (weigand@de.ibm.com)
  6. * Martin Schwidefsky (schwidefsky@de.ibm.com)
  7. *
  8. * Derived from "include/asm-i386/pgtable.h"
  9. */
  10. #ifndef _ASM_S390_PGTABLE_H
  11. #define _ASM_S390_PGTABLE_H
  12. /*
  13. * The Linux memory management assumes a three-level page table setup. For
  14. * s390 31 bit we "fold" the mid level into the top-level page table, so
  15. * that we physically have the same two-level page table as the s390 mmu
  16. * expects in 31 bit mode. For s390 64 bit we use three of the five levels
  17. * the hardware provides (region first and region second tables are not
  18. * used).
  19. *
  20. * The "pgd_xxx()" functions are trivial for a folded two-level
  21. * setup: the pgd is never bad, and a pmd always exists (as it's folded
  22. * into the pgd entry)
  23. *
  24. * This file contains the functions and defines necessary to modify and use
  25. * the S390 page table tree.
  26. */
  27. #ifndef __ASSEMBLY__
  28. #include <linux/sched.h>
  29. #include <linux/mm_types.h>
  30. #include <linux/page-flags.h>
  31. #include <asm/bug.h>
  32. #include <asm/page.h>
  33. extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
  34. extern void paging_init(void);
  35. extern void vmem_map_init(void);
  36. /*
  37. * The S390 doesn't have any external MMU info: the kernel page
  38. * tables contain all the necessary information.
  39. */
  40. #define update_mmu_cache(vma, address, ptep) do { } while (0)
  41. #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  42. /*
  43. * ZERO_PAGE is a global shared page that is always zero; used
  44. * for zero-mapped memory areas etc..
  45. */
  46. extern unsigned long empty_zero_page;
  47. extern unsigned long zero_page_mask;
  48. #define ZERO_PAGE(vaddr) \
  49. (virt_to_page((void *)(empty_zero_page + \
  50. (((unsigned long)(vaddr)) &zero_page_mask))))
  51. #define __HAVE_COLOR_ZERO_PAGE
  52. /* TODO: s390 cannot support io_remap_pfn_range... */
  53. #endif /* !__ASSEMBLY__ */
  54. /*
  55. * PMD_SHIFT determines the size of the area a second-level page
  56. * table can map
  57. * PGDIR_SHIFT determines what a third-level page table entry can map
  58. */
  59. #ifndef CONFIG_64BIT
  60. # define PMD_SHIFT 20
  61. # define PUD_SHIFT 20
  62. # define PGDIR_SHIFT 20
  63. #else /* CONFIG_64BIT */
  64. # define PMD_SHIFT 20
  65. # define PUD_SHIFT 31
  66. # define PGDIR_SHIFT 42
  67. #endif /* CONFIG_64BIT */
  68. #define PMD_SIZE (1UL << PMD_SHIFT)
  69. #define PMD_MASK (~(PMD_SIZE-1))
  70. #define PUD_SIZE (1UL << PUD_SHIFT)
  71. #define PUD_MASK (~(PUD_SIZE-1))
  72. #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  73. #define PGDIR_MASK (~(PGDIR_SIZE-1))
  74. /*
  75. * entries per page directory level: the S390 is two-level, so
  76. * we don't really have any PMD directory physically.
  77. * for S390 segment-table entries are combined to one PGD
  78. * that leads to 1024 pte per pgd
  79. */
  80. #define PTRS_PER_PTE 256
  81. #ifndef CONFIG_64BIT
  82. #define PTRS_PER_PMD 1
  83. #define PTRS_PER_PUD 1
  84. #else /* CONFIG_64BIT */
  85. #define PTRS_PER_PMD 2048
  86. #define PTRS_PER_PUD 2048
  87. #endif /* CONFIG_64BIT */
  88. #define PTRS_PER_PGD 2048
  89. #define FIRST_USER_ADDRESS 0
  90. #define pte_ERROR(e) \
  91. printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
  92. #define pmd_ERROR(e) \
  93. printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
  94. #define pud_ERROR(e) \
  95. printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
  96. #define pgd_ERROR(e) \
  97. printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
  98. #ifndef __ASSEMBLY__
  99. /*
  100. * The vmalloc and module area will always be on the topmost area of the kernel
  101. * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
  102. * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
  103. * modules will reside. That makes sure that inter module branches always
  104. * happen without trampolines and in addition the placement within a 2GB frame
  105. * is branch prediction unit friendly.
  106. */
  107. extern unsigned long VMALLOC_START;
  108. extern unsigned long VMALLOC_END;
  109. extern struct page *vmemmap;
  110. #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
  111. #ifdef CONFIG_64BIT
  112. extern unsigned long MODULES_VADDR;
  113. extern unsigned long MODULES_END;
  114. #define MODULES_VADDR MODULES_VADDR
  115. #define MODULES_END MODULES_END
  116. #define MODULES_LEN (1UL << 31)
  117. #endif
  118. /*
  119. * A 31 bit pagetable entry of S390 has following format:
  120. * | PFRA | | OS |
  121. * 0 0IP0
  122. * 00000000001111111111222222222233
  123. * 01234567890123456789012345678901
  124. *
  125. * I Page-Invalid Bit: Page is not available for address-translation
  126. * P Page-Protection Bit: Store access not possible for page
  127. *
  128. * A 31 bit segmenttable entry of S390 has following format:
  129. * | P-table origin | |PTL
  130. * 0 IC
  131. * 00000000001111111111222222222233
  132. * 01234567890123456789012345678901
  133. *
  134. * I Segment-Invalid Bit: Segment is not available for address-translation
  135. * C Common-Segment Bit: Segment is not private (PoP 3-30)
  136. * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
  137. *
  138. * The 31 bit segmenttable origin of S390 has following format:
  139. *
  140. * |S-table origin | | STL |
  141. * X **GPS
  142. * 00000000001111111111222222222233
  143. * 01234567890123456789012345678901
  144. *
  145. * X Space-Switch event:
  146. * G Segment-Invalid Bit: *
  147. * P Private-Space Bit: Segment is not private (PoP 3-30)
  148. * S Storage-Alteration:
  149. * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
  150. *
  151. * A 64 bit pagetable entry of S390 has following format:
  152. * | PFRA |0IPC| OS |
  153. * 0000000000111111111122222222223333333333444444444455555555556666
  154. * 0123456789012345678901234567890123456789012345678901234567890123
  155. *
  156. * I Page-Invalid Bit: Page is not available for address-translation
  157. * P Page-Protection Bit: Store access not possible for page
  158. * C Change-bit override: HW is not required to set change bit
  159. *
  160. * A 64 bit segmenttable entry of S390 has following format:
  161. * | P-table origin | TT
  162. * 0000000000111111111122222222223333333333444444444455555555556666
  163. * 0123456789012345678901234567890123456789012345678901234567890123
  164. *
  165. * I Segment-Invalid Bit: Segment is not available for address-translation
  166. * C Common-Segment Bit: Segment is not private (PoP 3-30)
  167. * P Page-Protection Bit: Store access not possible for page
  168. * TT Type 00
  169. *
  170. * A 64 bit region table entry of S390 has following format:
  171. * | S-table origin | TF TTTL
  172. * 0000000000111111111122222222223333333333444444444455555555556666
  173. * 0123456789012345678901234567890123456789012345678901234567890123
  174. *
  175. * I Segment-Invalid Bit: Segment is not available for address-translation
  176. * TT Type 01
  177. * TF
  178. * TL Table length
  179. *
  180. * The 64 bit regiontable origin of S390 has following format:
  181. * | region table origon | DTTL
  182. * 0000000000111111111122222222223333333333444444444455555555556666
  183. * 0123456789012345678901234567890123456789012345678901234567890123
  184. *
  185. * X Space-Switch event:
  186. * G Segment-Invalid Bit:
  187. * P Private-Space Bit:
  188. * S Storage-Alteration:
  189. * R Real space
  190. * TL Table-Length:
  191. *
  192. * A storage key has the following format:
  193. * | ACC |F|R|C|0|
  194. * 0 3 4 5 6 7
  195. * ACC: access key
  196. * F : fetch protection bit
  197. * R : referenced bit
  198. * C : changed bit
  199. */
  200. /* Hardware bits in the page table entry */
  201. #define _PAGE_PROTECT 0x200 /* HW read-only bit */
  202. #define _PAGE_INVALID 0x400 /* HW invalid bit */
  203. #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
  204. /* Software bits in the page table entry */
  205. #define _PAGE_PRESENT 0x001 /* SW pte present bit */
  206. #define _PAGE_TYPE 0x002 /* SW pte type bit */
  207. #define _PAGE_YOUNG 0x004 /* SW pte young bit */
  208. #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
  209. #define _PAGE_READ 0x010 /* SW pte read bit */
  210. #define _PAGE_WRITE 0x020 /* SW pte write bit */
  211. #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
  212. #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
  213. #define __HAVE_ARCH_PTE_SPECIAL
  214. /* Set of bits not changed in pte_modify */
  215. #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
  216. _PAGE_YOUNG)
  217. /*
  218. * handle_pte_fault uses pte_present, pte_none and pte_file to find out the
  219. * pte type WITHOUT holding the page table lock. The _PAGE_PRESENT bit
  220. * is used to distinguish present from not-present ptes. It is changed only
  221. * with the page table lock held.
  222. *
  223. * The following table gives the different possible bit combinations for
  224. * the pte hardware and software bits in the last 12 bits of a pte:
  225. *
  226. * 842100000000
  227. * 000084210000
  228. * 000000008421
  229. * .IR...wrdytp
  230. * empty .10...000000
  231. * swap .10...xxxx10
  232. * file .11...xxxxx0
  233. * prot-none, clean, old .11...000001
  234. * prot-none, clean, young .11...000101
  235. * prot-none, dirty, old .10...001001
  236. * prot-none, dirty, young .10...001101
  237. * read-only, clean, old .11...010001
  238. * read-only, clean, young .01...010101
  239. * read-only, dirty, old .11...011001
  240. * read-only, dirty, young .01...011101
  241. * read-write, clean, old .11...110001
  242. * read-write, clean, young .01...110101
  243. * read-write, dirty, old .10...111001
  244. * read-write, dirty, young .00...111101
  245. *
  246. * pte_present is true for the bit pattern .xx...xxxxx1, (pte & 0x001) == 0x001
  247. * pte_none is true for the bit pattern .10...xxxx00, (pte & 0x603) == 0x400
  248. * pte_file is true for the bit pattern .11...xxxxx0, (pte & 0x601) == 0x600
  249. * pte_swap is true for the bit pattern .10...xxxx10, (pte & 0x603) == 0x402
  250. */
  251. #ifndef CONFIG_64BIT
  252. /* Bits in the segment table address-space-control-element */
  253. #define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
  254. #define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
  255. #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
  256. #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
  257. #define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
  258. /* Bits in the segment table entry */
  259. #define _SEGMENT_ENTRY_BITS 0x7fffffffUL /* Valid segment table bits */
  260. #define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
  261. #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
  262. #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
  263. #define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
  264. #define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
  265. #define _SEGMENT_ENTRY_DIRTY 0 /* No sw dirty bit for 31-bit */
  266. #define _SEGMENT_ENTRY_YOUNG 0 /* No sw young bit for 31-bit */
  267. #define _SEGMENT_ENTRY_READ 0 /* No sw read bit for 31-bit */
  268. #define _SEGMENT_ENTRY_WRITE 0 /* No sw write bit for 31-bit */
  269. #define _SEGMENT_ENTRY_LARGE 0 /* No large pages for 31-bit */
  270. #define _SEGMENT_ENTRY_BITS_LARGE 0
  271. #define _SEGMENT_ENTRY_ORIGIN_LARGE 0
  272. #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
  273. #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
  274. /*
  275. * Segment table entry encoding (I = invalid, R = read-only bit):
  276. * ..R...I.....
  277. * prot-none ..1...1.....
  278. * read-only ..1...0.....
  279. * read-write ..0...0.....
  280. * empty ..0...1.....
  281. */
  282. /* Page status table bits for virtualization */
  283. #define PGSTE_ACC_BITS 0xf0000000UL
  284. #define PGSTE_FP_BIT 0x08000000UL
  285. #define PGSTE_PCL_BIT 0x00800000UL
  286. #define PGSTE_HR_BIT 0x00400000UL
  287. #define PGSTE_HC_BIT 0x00200000UL
  288. #define PGSTE_GR_BIT 0x00040000UL
  289. #define PGSTE_GC_BIT 0x00020000UL
  290. #define PGSTE_UC_BIT 0x00008000UL /* user dirty (migration) */
  291. #define PGSTE_IN_BIT 0x00004000UL /* IPTE notify bit */
  292. #else /* CONFIG_64BIT */
  293. /* Bits in the segment/region table address-space-control-element */
  294. #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
  295. #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
  296. #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
  297. #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
  298. #define _ASCE_REAL_SPACE 0x20 /* real space control */
  299. #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
  300. #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
  301. #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
  302. #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
  303. #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
  304. #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
  305. /* Bits in the region table entry */
  306. #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
  307. #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
  308. #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
  309. #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
  310. #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
  311. #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
  312. #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
  313. #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
  314. #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
  315. #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
  316. #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
  317. #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
  318. #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
  319. #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
  320. #define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
  321. #define _REGION3_ENTRY_RO 0x200 /* page protection bit */
  322. /* Bits in the segment table entry */
  323. #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
  324. #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
  325. #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
  326. #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
  327. #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
  328. #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
  329. #define _SEGMENT_ENTRY (0)
  330. #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
  331. #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
  332. #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
  333. #define _SEGMENT_ENTRY_SPLIT 0x0800 /* THP splitting bit */
  334. #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
  335. #define _SEGMENT_ENTRY_READ 0x0002 /* SW segment read bit */
  336. #define _SEGMENT_ENTRY_WRITE 0x0001 /* SW segment write bit */
  337. /*
  338. * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
  339. * dy..R...I...wr
  340. * prot-none, clean, old 00..1...1...00
  341. * prot-none, clean, young 01..1...1...00
  342. * prot-none, dirty, old 10..1...1...00
  343. * prot-none, dirty, young 11..1...1...00
  344. * read-only, clean, old 00..1...1...01
  345. * read-only, clean, young 01..1...0...01
  346. * read-only, dirty, old 10..1...1...01
  347. * read-only, dirty, young 11..1...0...01
  348. * read-write, clean, old 00..1...1...11
  349. * read-write, clean, young 01..1...0...11
  350. * read-write, dirty, old 10..0...1...11
  351. * read-write, dirty, young 11..0...0...11
  352. * The segment table origin is used to distinguish empty (origin==0) from
  353. * read-write, old segment table entries (origin!=0)
  354. */
  355. #define _SEGMENT_ENTRY_SPLIT_BIT 11 /* THP splitting bit number */
  356. /* Page status table bits for virtualization */
  357. #define PGSTE_ACC_BITS 0xf000000000000000UL
  358. #define PGSTE_FP_BIT 0x0800000000000000UL
  359. #define PGSTE_PCL_BIT 0x0080000000000000UL
  360. #define PGSTE_HR_BIT 0x0040000000000000UL
  361. #define PGSTE_HC_BIT 0x0020000000000000UL
  362. #define PGSTE_GR_BIT 0x0004000000000000UL
  363. #define PGSTE_GC_BIT 0x0002000000000000UL
  364. #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
  365. #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
  366. #endif /* CONFIG_64BIT */
  367. /* Guest Page State used for virtualization */
  368. #define _PGSTE_GPS_ZERO 0x0000000080000000UL
  369. #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
  370. #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
  371. #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
  372. /*
  373. * A user page table pointer has the space-switch-event bit, the
  374. * private-space-control bit and the storage-alteration-event-control
  375. * bit set. A kernel page table pointer doesn't need them.
  376. */
  377. #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
  378. _ASCE_ALT_EVENT)
  379. /*
  380. * Page protection definitions.
  381. */
  382. #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
  383. #define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
  384. _PAGE_INVALID | _PAGE_PROTECT)
  385. #define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  386. _PAGE_INVALID | _PAGE_PROTECT)
  387. #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  388. _PAGE_YOUNG | _PAGE_DIRTY)
  389. #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
  390. _PAGE_YOUNG | _PAGE_DIRTY)
  391. #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
  392. _PAGE_PROTECT)
  393. /*
  394. * On s390 the page table entry has an invalid bit and a read-only bit.
  395. * Read permission implies execute permission and write permission
  396. * implies read permission.
  397. */
  398. /*xwr*/
  399. #define __P000 PAGE_NONE
  400. #define __P001 PAGE_READ
  401. #define __P010 PAGE_READ
  402. #define __P011 PAGE_READ
  403. #define __P100 PAGE_READ
  404. #define __P101 PAGE_READ
  405. #define __P110 PAGE_READ
  406. #define __P111 PAGE_READ
  407. #define __S000 PAGE_NONE
  408. #define __S001 PAGE_READ
  409. #define __S010 PAGE_WRITE
  410. #define __S011 PAGE_WRITE
  411. #define __S100 PAGE_READ
  412. #define __S101 PAGE_READ
  413. #define __S110 PAGE_WRITE
  414. #define __S111 PAGE_WRITE
  415. /*
  416. * Segment entry (large page) protection definitions.
  417. */
  418. #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
  419. _SEGMENT_ENTRY_PROTECT)
  420. #define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \
  421. _SEGMENT_ENTRY_READ)
  422. #define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \
  423. _SEGMENT_ENTRY_WRITE)
  424. static inline int mm_has_pgste(struct mm_struct *mm)
  425. {
  426. #ifdef CONFIG_PGSTE
  427. if (unlikely(mm->context.has_pgste))
  428. return 1;
  429. #endif
  430. return 0;
  431. }
  432. static inline int mm_use_skey(struct mm_struct *mm)
  433. {
  434. #ifdef CONFIG_PGSTE
  435. if (mm->context.use_skey)
  436. return 1;
  437. #endif
  438. return 0;
  439. }
  440. /*
  441. * pgd/pmd/pte query functions
  442. */
  443. #ifndef CONFIG_64BIT
  444. static inline int pgd_present(pgd_t pgd) { return 1; }
  445. static inline int pgd_none(pgd_t pgd) { return 0; }
  446. static inline int pgd_bad(pgd_t pgd) { return 0; }
  447. static inline int pud_present(pud_t pud) { return 1; }
  448. static inline int pud_none(pud_t pud) { return 0; }
  449. static inline int pud_large(pud_t pud) { return 0; }
  450. static inline int pud_bad(pud_t pud) { return 0; }
  451. #else /* CONFIG_64BIT */
  452. static inline int pgd_present(pgd_t pgd)
  453. {
  454. if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
  455. return 1;
  456. return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
  457. }
  458. static inline int pgd_none(pgd_t pgd)
  459. {
  460. if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
  461. return 0;
  462. return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
  463. }
  464. static inline int pgd_bad(pgd_t pgd)
  465. {
  466. /*
  467. * With dynamic page table levels the pgd can be a region table
  468. * entry or a segment table entry. Check for the bit that are
  469. * invalid for either table entry.
  470. */
  471. unsigned long mask =
  472. ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
  473. ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
  474. return (pgd_val(pgd) & mask) != 0;
  475. }
  476. static inline int pud_present(pud_t pud)
  477. {
  478. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
  479. return 1;
  480. return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
  481. }
  482. static inline int pud_none(pud_t pud)
  483. {
  484. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
  485. return 0;
  486. return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
  487. }
  488. static inline int pud_large(pud_t pud)
  489. {
  490. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
  491. return 0;
  492. return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
  493. }
  494. static inline int pud_bad(pud_t pud)
  495. {
  496. /*
  497. * With dynamic page table levels the pud can be a region table
  498. * entry or a segment table entry. Check for the bit that are
  499. * invalid for either table entry.
  500. */
  501. unsigned long mask =
  502. ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
  503. ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
  504. return (pud_val(pud) & mask) != 0;
  505. }
  506. #endif /* CONFIG_64BIT */
  507. static inline int pmd_present(pmd_t pmd)
  508. {
  509. return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
  510. }
  511. static inline int pmd_none(pmd_t pmd)
  512. {
  513. return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
  514. }
  515. static inline int pmd_large(pmd_t pmd)
  516. {
  517. return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
  518. }
  519. static inline int pmd_pfn(pmd_t pmd)
  520. {
  521. unsigned long origin_mask;
  522. origin_mask = _SEGMENT_ENTRY_ORIGIN;
  523. if (pmd_large(pmd))
  524. origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
  525. return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
  526. }
  527. static inline int pmd_bad(pmd_t pmd)
  528. {
  529. if (pmd_large(pmd))
  530. return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
  531. return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
  532. }
  533. #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
  534. extern void pmdp_splitting_flush(struct vm_area_struct *vma,
  535. unsigned long addr, pmd_t *pmdp);
  536. #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
  537. extern int pmdp_set_access_flags(struct vm_area_struct *vma,
  538. unsigned long address, pmd_t *pmdp,
  539. pmd_t entry, int dirty);
  540. #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
  541. extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
  542. unsigned long address, pmd_t *pmdp);
  543. #define __HAVE_ARCH_PMD_WRITE
  544. static inline int pmd_write(pmd_t pmd)
  545. {
  546. return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
  547. }
  548. static inline int pmd_dirty(pmd_t pmd)
  549. {
  550. int dirty = 1;
  551. if (pmd_large(pmd))
  552. dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
  553. return dirty;
  554. }
  555. static inline int pmd_young(pmd_t pmd)
  556. {
  557. int young = 1;
  558. if (pmd_large(pmd))
  559. young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
  560. return young;
  561. }
  562. static inline int pte_present(pte_t pte)
  563. {
  564. /* Bit pattern: (pte & 0x001) == 0x001 */
  565. return (pte_val(pte) & _PAGE_PRESENT) != 0;
  566. }
  567. static inline int pte_none(pte_t pte)
  568. {
  569. /* Bit pattern: pte == 0x400 */
  570. return pte_val(pte) == _PAGE_INVALID;
  571. }
  572. static inline int pte_swap(pte_t pte)
  573. {
  574. /* Bit pattern: (pte & 0x603) == 0x402 */
  575. return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT |
  576. _PAGE_TYPE | _PAGE_PRESENT))
  577. == (_PAGE_INVALID | _PAGE_TYPE);
  578. }
  579. static inline int pte_file(pte_t pte)
  580. {
  581. /* Bit pattern: (pte & 0x601) == 0x600 */
  582. return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT | _PAGE_PRESENT))
  583. == (_PAGE_INVALID | _PAGE_PROTECT);
  584. }
  585. static inline int pte_special(pte_t pte)
  586. {
  587. return (pte_val(pte) & _PAGE_SPECIAL);
  588. }
  589. #define __HAVE_ARCH_PTE_SAME
  590. static inline int pte_same(pte_t a, pte_t b)
  591. {
  592. return pte_val(a) == pte_val(b);
  593. }
  594. static inline pgste_t pgste_get_lock(pte_t *ptep)
  595. {
  596. unsigned long new = 0;
  597. #ifdef CONFIG_PGSTE
  598. unsigned long old;
  599. preempt_disable();
  600. asm(
  601. " lg %0,%2\n"
  602. "0: lgr %1,%0\n"
  603. " nihh %0,0xff7f\n" /* clear PCL bit in old */
  604. " oihh %1,0x0080\n" /* set PCL bit in new */
  605. " csg %0,%1,%2\n"
  606. " jl 0b\n"
  607. : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
  608. : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
  609. #endif
  610. return __pgste(new);
  611. }
  612. static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
  613. {
  614. #ifdef CONFIG_PGSTE
  615. asm(
  616. " nihh %1,0xff7f\n" /* clear PCL bit */
  617. " stg %1,%0\n"
  618. : "=Q" (ptep[PTRS_PER_PTE])
  619. : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
  620. : "cc", "memory");
  621. preempt_enable();
  622. #endif
  623. }
  624. static inline pgste_t pgste_get(pte_t *ptep)
  625. {
  626. unsigned long pgste = 0;
  627. #ifdef CONFIG_PGSTE
  628. pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
  629. #endif
  630. return __pgste(pgste);
  631. }
  632. static inline void pgste_set(pte_t *ptep, pgste_t pgste)
  633. {
  634. #ifdef CONFIG_PGSTE
  635. *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
  636. #endif
  637. }
  638. static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste,
  639. struct mm_struct *mm)
  640. {
  641. #ifdef CONFIG_PGSTE
  642. unsigned long address, bits, skey;
  643. if (!mm_use_skey(mm) || pte_val(*ptep) & _PAGE_INVALID)
  644. return pgste;
  645. address = pte_val(*ptep) & PAGE_MASK;
  646. skey = (unsigned long) page_get_storage_key(address);
  647. bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
  648. /* Transfer page changed & referenced bit to guest bits in pgste */
  649. pgste_val(pgste) |= bits << 48; /* GR bit & GC bit */
  650. /* Copy page access key and fetch protection bit to pgste */
  651. pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
  652. pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
  653. #endif
  654. return pgste;
  655. }
  656. static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry,
  657. struct mm_struct *mm)
  658. {
  659. #ifdef CONFIG_PGSTE
  660. unsigned long address;
  661. unsigned long nkey;
  662. if (!mm_use_skey(mm) || pte_val(entry) & _PAGE_INVALID)
  663. return;
  664. VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
  665. address = pte_val(entry) & PAGE_MASK;
  666. /*
  667. * Set page access key and fetch protection bit from pgste.
  668. * The guest C/R information is still in the PGSTE, set real
  669. * key C/R to 0.
  670. */
  671. nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
  672. nkey |= (pgste_val(pgste) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 48;
  673. page_set_storage_key(address, nkey, 0);
  674. #endif
  675. }
  676. static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
  677. {
  678. if ((pte_val(entry) & _PAGE_PRESENT) &&
  679. (pte_val(entry) & _PAGE_WRITE) &&
  680. !(pte_val(entry) & _PAGE_INVALID)) {
  681. if (!MACHINE_HAS_ESOP) {
  682. /*
  683. * Without enhanced suppression-on-protection force
  684. * the dirty bit on for all writable ptes.
  685. */
  686. pte_val(entry) |= _PAGE_DIRTY;
  687. pte_val(entry) &= ~_PAGE_PROTECT;
  688. }
  689. if (!(pte_val(entry) & _PAGE_PROTECT))
  690. /* This pte allows write access, set user-dirty */
  691. pgste_val(pgste) |= PGSTE_UC_BIT;
  692. }
  693. *ptep = entry;
  694. return pgste;
  695. }
  696. /**
  697. * struct gmap_struct - guest address space
  698. * @mm: pointer to the parent mm_struct
  699. * @table: pointer to the page directory
  700. * @asce: address space control element for gmap page table
  701. * @crst_list: list of all crst tables used in the guest address space
  702. * @pfault_enabled: defines if pfaults are applicable for the guest
  703. */
  704. struct gmap {
  705. struct list_head list;
  706. struct mm_struct *mm;
  707. unsigned long *table;
  708. unsigned long asce;
  709. void *private;
  710. struct list_head crst_list;
  711. bool pfault_enabled;
  712. };
  713. /**
  714. * struct gmap_rmap - reverse mapping for segment table entries
  715. * @gmap: pointer to the gmap_struct
  716. * @entry: pointer to a segment table entry
  717. * @vmaddr: virtual address in the guest address space
  718. */
  719. struct gmap_rmap {
  720. struct list_head list;
  721. struct gmap *gmap;
  722. unsigned long *entry;
  723. unsigned long vmaddr;
  724. };
  725. /**
  726. * struct gmap_pgtable - gmap information attached to a page table
  727. * @vmaddr: address of the 1MB segment in the process virtual memory
  728. * @mapper: list of segment table entries mapping a page table
  729. */
  730. struct gmap_pgtable {
  731. unsigned long vmaddr;
  732. struct list_head mapper;
  733. };
  734. /**
  735. * struct gmap_notifier - notify function block for page invalidation
  736. * @notifier_call: address of callback function
  737. */
  738. struct gmap_notifier {
  739. struct list_head list;
  740. void (*notifier_call)(struct gmap *gmap, unsigned long address);
  741. };
  742. struct gmap *gmap_alloc(struct mm_struct *mm);
  743. void gmap_free(struct gmap *gmap);
  744. void gmap_enable(struct gmap *gmap);
  745. void gmap_disable(struct gmap *gmap);
  746. int gmap_map_segment(struct gmap *gmap, unsigned long from,
  747. unsigned long to, unsigned long len);
  748. int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
  749. unsigned long __gmap_translate(unsigned long address, struct gmap *);
  750. unsigned long gmap_translate(unsigned long address, struct gmap *);
  751. unsigned long __gmap_fault(unsigned long address, struct gmap *);
  752. unsigned long gmap_fault(unsigned long address, struct gmap *);
  753. void gmap_discard(unsigned long from, unsigned long to, struct gmap *);
  754. void __gmap_zap(unsigned long address, struct gmap *);
  755. bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *);
  756. void gmap_register_ipte_notifier(struct gmap_notifier *);
  757. void gmap_unregister_ipte_notifier(struct gmap_notifier *);
  758. int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
  759. void gmap_do_ipte_notify(struct mm_struct *, pte_t *);
  760. static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
  761. pte_t *ptep, pgste_t pgste)
  762. {
  763. #ifdef CONFIG_PGSTE
  764. if (pgste_val(pgste) & PGSTE_IN_BIT) {
  765. pgste_val(pgste) &= ~PGSTE_IN_BIT;
  766. gmap_do_ipte_notify(mm, ptep);
  767. }
  768. #endif
  769. return pgste;
  770. }
  771. /*
  772. * Certain architectures need to do special things when PTEs
  773. * within a page table are directly modified. Thus, the following
  774. * hook is made available.
  775. */
  776. static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
  777. pte_t *ptep, pte_t entry)
  778. {
  779. pgste_t pgste;
  780. if (mm_has_pgste(mm)) {
  781. pgste = pgste_get_lock(ptep);
  782. pgste_val(pgste) &= ~_PGSTE_GPS_ZERO;
  783. pgste_set_key(ptep, pgste, entry, mm);
  784. pgste = pgste_set_pte(ptep, pgste, entry);
  785. pgste_set_unlock(ptep, pgste);
  786. } else {
  787. *ptep = entry;
  788. }
  789. }
  790. /*
  791. * query functions pte_write/pte_dirty/pte_young only work if
  792. * pte_present() is true. Undefined behaviour if not..
  793. */
  794. static inline int pte_write(pte_t pte)
  795. {
  796. return (pte_val(pte) & _PAGE_WRITE) != 0;
  797. }
  798. static inline int pte_dirty(pte_t pte)
  799. {
  800. return (pte_val(pte) & _PAGE_DIRTY) != 0;
  801. }
  802. static inline int pte_young(pte_t pte)
  803. {
  804. return (pte_val(pte) & _PAGE_YOUNG) != 0;
  805. }
  806. #define __HAVE_ARCH_PTE_UNUSED
  807. static inline int pte_unused(pte_t pte)
  808. {
  809. return pte_val(pte) & _PAGE_UNUSED;
  810. }
  811. /*
  812. * pgd/pmd/pte modification functions
  813. */
  814. static inline void pgd_clear(pgd_t *pgd)
  815. {
  816. #ifdef CONFIG_64BIT
  817. if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
  818. pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
  819. #endif
  820. }
  821. static inline void pud_clear(pud_t *pud)
  822. {
  823. #ifdef CONFIG_64BIT
  824. if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
  825. pud_val(*pud) = _REGION3_ENTRY_EMPTY;
  826. #endif
  827. }
  828. static inline void pmd_clear(pmd_t *pmdp)
  829. {
  830. pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
  831. }
  832. static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  833. {
  834. pte_val(*ptep) = _PAGE_INVALID;
  835. }
  836. /*
  837. * The following pte modification functions only work if
  838. * pte_present() is true. Undefined behaviour if not..
  839. */
  840. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  841. {
  842. pte_val(pte) &= _PAGE_CHG_MASK;
  843. pte_val(pte) |= pgprot_val(newprot);
  844. /*
  845. * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
  846. * invalid bit set, clear it again for readable, young pages
  847. */
  848. if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
  849. pte_val(pte) &= ~_PAGE_INVALID;
  850. /*
  851. * newprot for PAGE_READ and PAGE_WRITE has the page protection
  852. * bit set, clear it again for writable, dirty pages
  853. */
  854. if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
  855. pte_val(pte) &= ~_PAGE_PROTECT;
  856. return pte;
  857. }
  858. static inline pte_t pte_wrprotect(pte_t pte)
  859. {
  860. pte_val(pte) &= ~_PAGE_WRITE;
  861. pte_val(pte) |= _PAGE_PROTECT;
  862. return pte;
  863. }
  864. static inline pte_t pte_mkwrite(pte_t pte)
  865. {
  866. pte_val(pte) |= _PAGE_WRITE;
  867. if (pte_val(pte) & _PAGE_DIRTY)
  868. pte_val(pte) &= ~_PAGE_PROTECT;
  869. return pte;
  870. }
  871. static inline pte_t pte_mkclean(pte_t pte)
  872. {
  873. pte_val(pte) &= ~_PAGE_DIRTY;
  874. pte_val(pte) |= _PAGE_PROTECT;
  875. return pte;
  876. }
  877. static inline pte_t pte_mkdirty(pte_t pte)
  878. {
  879. pte_val(pte) |= _PAGE_DIRTY;
  880. if (pte_val(pte) & _PAGE_WRITE)
  881. pte_val(pte) &= ~_PAGE_PROTECT;
  882. return pte;
  883. }
  884. static inline pte_t pte_mkold(pte_t pte)
  885. {
  886. pte_val(pte) &= ~_PAGE_YOUNG;
  887. pte_val(pte) |= _PAGE_INVALID;
  888. return pte;
  889. }
  890. static inline pte_t pte_mkyoung(pte_t pte)
  891. {
  892. pte_val(pte) |= _PAGE_YOUNG;
  893. if (pte_val(pte) & _PAGE_READ)
  894. pte_val(pte) &= ~_PAGE_INVALID;
  895. return pte;
  896. }
  897. static inline pte_t pte_mkspecial(pte_t pte)
  898. {
  899. pte_val(pte) |= _PAGE_SPECIAL;
  900. return pte;
  901. }
  902. #ifdef CONFIG_HUGETLB_PAGE
  903. static inline pte_t pte_mkhuge(pte_t pte)
  904. {
  905. pte_val(pte) |= _PAGE_LARGE;
  906. return pte;
  907. }
  908. #endif
  909. static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
  910. {
  911. unsigned long pto = (unsigned long) ptep;
  912. #ifndef CONFIG_64BIT
  913. /* pto in ESA mode must point to the start of the segment table */
  914. pto &= 0x7ffffc00;
  915. #endif
  916. /* Invalidation + global TLB flush for the pte */
  917. asm volatile(
  918. " ipte %2,%3"
  919. : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
  920. }
  921. static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
  922. {
  923. unsigned long pto = (unsigned long) ptep;
  924. #ifndef CONFIG_64BIT
  925. /* pto in ESA mode must point to the start of the segment table */
  926. pto &= 0x7ffffc00;
  927. #endif
  928. /* Invalidation + local TLB flush for the pte */
  929. asm volatile(
  930. " .insn rrf,0xb2210000,%2,%3,0,1"
  931. : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
  932. }
  933. static inline void ptep_flush_direct(struct mm_struct *mm,
  934. unsigned long address, pte_t *ptep)
  935. {
  936. int active, count;
  937. if (pte_val(*ptep) & _PAGE_INVALID)
  938. return;
  939. active = (mm == current->active_mm) ? 1 : 0;
  940. count = atomic_add_return(0x10000, &mm->context.attach_count);
  941. if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
  942. cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
  943. __ptep_ipte_local(address, ptep);
  944. else
  945. __ptep_ipte(address, ptep);
  946. atomic_sub(0x10000, &mm->context.attach_count);
  947. }
  948. static inline void ptep_flush_lazy(struct mm_struct *mm,
  949. unsigned long address, pte_t *ptep)
  950. {
  951. int active, count;
  952. if (pte_val(*ptep) & _PAGE_INVALID)
  953. return;
  954. active = (mm == current->active_mm) ? 1 : 0;
  955. count = atomic_add_return(0x10000, &mm->context.attach_count);
  956. if ((count & 0xffff) <= active) {
  957. pte_val(*ptep) |= _PAGE_INVALID;
  958. mm->context.flush_mm = 1;
  959. } else
  960. __ptep_ipte(address, ptep);
  961. atomic_sub(0x10000, &mm->context.attach_count);
  962. }
  963. /*
  964. * Get (and clear) the user dirty bit for a pte.
  965. */
  966. static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
  967. unsigned long addr,
  968. pte_t *ptep)
  969. {
  970. pgste_t pgste;
  971. pte_t pte;
  972. int dirty;
  973. if (!mm_has_pgste(mm))
  974. return 0;
  975. pgste = pgste_get_lock(ptep);
  976. dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT);
  977. pgste_val(pgste) &= ~PGSTE_UC_BIT;
  978. pte = *ptep;
  979. if (dirty && (pte_val(pte) & _PAGE_PRESENT)) {
  980. pgste = pgste_ipte_notify(mm, ptep, pgste);
  981. __ptep_ipte(addr, ptep);
  982. if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE))
  983. pte_val(pte) |= _PAGE_PROTECT;
  984. else
  985. pte_val(pte) |= _PAGE_INVALID;
  986. *ptep = pte;
  987. }
  988. pgste_set_unlock(ptep, pgste);
  989. return dirty;
  990. }
  991. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  992. static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
  993. unsigned long addr, pte_t *ptep)
  994. {
  995. pgste_t pgste;
  996. pte_t pte, oldpte;
  997. int young;
  998. if (mm_has_pgste(vma->vm_mm)) {
  999. pgste = pgste_get_lock(ptep);
  1000. pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
  1001. }
  1002. oldpte = pte = *ptep;
  1003. ptep_flush_direct(vma->vm_mm, addr, ptep);
  1004. young = pte_young(pte);
  1005. pte = pte_mkold(pte);
  1006. if (mm_has_pgste(vma->vm_mm)) {
  1007. pgste = pgste_update_all(&oldpte, pgste, vma->vm_mm);
  1008. pgste = pgste_set_pte(ptep, pgste, pte);
  1009. pgste_set_unlock(ptep, pgste);
  1010. } else
  1011. *ptep = pte;
  1012. return young;
  1013. }
  1014. #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
  1015. static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
  1016. unsigned long address, pte_t *ptep)
  1017. {
  1018. return ptep_test_and_clear_young(vma, address, ptep);
  1019. }
  1020. /*
  1021. * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
  1022. * both clear the TLB for the unmapped pte. The reason is that
  1023. * ptep_get_and_clear is used in common code (e.g. change_pte_range)
  1024. * to modify an active pte. The sequence is
  1025. * 1) ptep_get_and_clear
  1026. * 2) set_pte_at
  1027. * 3) flush_tlb_range
  1028. * On s390 the tlb needs to get flushed with the modification of the pte
  1029. * if the pte is active. The only way how this can be implemented is to
  1030. * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
  1031. * is a nop.
  1032. */
  1033. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
  1034. static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
  1035. unsigned long address, pte_t *ptep)
  1036. {
  1037. pgste_t pgste;
  1038. pte_t pte;
  1039. if (mm_has_pgste(mm)) {
  1040. pgste = pgste_get_lock(ptep);
  1041. pgste = pgste_ipte_notify(mm, ptep, pgste);
  1042. }
  1043. pte = *ptep;
  1044. ptep_flush_lazy(mm, address, ptep);
  1045. pte_val(*ptep) = _PAGE_INVALID;
  1046. if (mm_has_pgste(mm)) {
  1047. pgste = pgste_update_all(&pte, pgste, mm);
  1048. pgste_set_unlock(ptep, pgste);
  1049. }
  1050. return pte;
  1051. }
  1052. #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
  1053. static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
  1054. unsigned long address,
  1055. pte_t *ptep)
  1056. {
  1057. pgste_t pgste;
  1058. pte_t pte;
  1059. if (mm_has_pgste(mm)) {
  1060. pgste = pgste_get_lock(ptep);
  1061. pgste_ipte_notify(mm, ptep, pgste);
  1062. }
  1063. pte = *ptep;
  1064. ptep_flush_lazy(mm, address, ptep);
  1065. if (mm_has_pgste(mm)) {
  1066. pgste = pgste_update_all(&pte, pgste, mm);
  1067. pgste_set(ptep, pgste);
  1068. }
  1069. return pte;
  1070. }
  1071. static inline void ptep_modify_prot_commit(struct mm_struct *mm,
  1072. unsigned long address,
  1073. pte_t *ptep, pte_t pte)
  1074. {
  1075. pgste_t pgste;
  1076. if (mm_has_pgste(mm)) {
  1077. pgste = pgste_get(ptep);
  1078. pgste_set_key(ptep, pgste, pte, mm);
  1079. pgste = pgste_set_pte(ptep, pgste, pte);
  1080. pgste_set_unlock(ptep, pgste);
  1081. } else
  1082. *ptep = pte;
  1083. }
  1084. #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
  1085. static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
  1086. unsigned long address, pte_t *ptep)
  1087. {
  1088. pgste_t pgste;
  1089. pte_t pte;
  1090. if (mm_has_pgste(vma->vm_mm)) {
  1091. pgste = pgste_get_lock(ptep);
  1092. pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
  1093. }
  1094. pte = *ptep;
  1095. ptep_flush_direct(vma->vm_mm, address, ptep);
  1096. pte_val(*ptep) = _PAGE_INVALID;
  1097. if (mm_has_pgste(vma->vm_mm)) {
  1098. if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) ==
  1099. _PGSTE_GPS_USAGE_UNUSED)
  1100. pte_val(pte) |= _PAGE_UNUSED;
  1101. pgste = pgste_update_all(&pte, pgste, vma->vm_mm);
  1102. pgste_set_unlock(ptep, pgste);
  1103. }
  1104. return pte;
  1105. }
  1106. /*
  1107. * The batched pte unmap code uses ptep_get_and_clear_full to clear the
  1108. * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
  1109. * tlbs of an mm if it can guarantee that the ptes of the mm_struct
  1110. * cannot be accessed while the batched unmap is running. In this case
  1111. * full==1 and a simple pte_clear is enough. See tlb.h.
  1112. */
  1113. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
  1114. static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
  1115. unsigned long address,
  1116. pte_t *ptep, int full)
  1117. {
  1118. pgste_t pgste;
  1119. pte_t pte;
  1120. if (!full && mm_has_pgste(mm)) {
  1121. pgste = pgste_get_lock(ptep);
  1122. pgste = pgste_ipte_notify(mm, ptep, pgste);
  1123. }
  1124. pte = *ptep;
  1125. if (!full)
  1126. ptep_flush_lazy(mm, address, ptep);
  1127. pte_val(*ptep) = _PAGE_INVALID;
  1128. if (!full && mm_has_pgste(mm)) {
  1129. pgste = pgste_update_all(&pte, pgste, mm);
  1130. pgste_set_unlock(ptep, pgste);
  1131. }
  1132. return pte;
  1133. }
  1134. #define __HAVE_ARCH_PTEP_SET_WRPROTECT
  1135. static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
  1136. unsigned long address, pte_t *ptep)
  1137. {
  1138. pgste_t pgste;
  1139. pte_t pte = *ptep;
  1140. if (pte_write(pte)) {
  1141. if (mm_has_pgste(mm)) {
  1142. pgste = pgste_get_lock(ptep);
  1143. pgste = pgste_ipte_notify(mm, ptep, pgste);
  1144. }
  1145. ptep_flush_lazy(mm, address, ptep);
  1146. pte = pte_wrprotect(pte);
  1147. if (mm_has_pgste(mm)) {
  1148. pgste = pgste_set_pte(ptep, pgste, pte);
  1149. pgste_set_unlock(ptep, pgste);
  1150. } else
  1151. *ptep = pte;
  1152. }
  1153. return pte;
  1154. }
  1155. #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  1156. static inline int ptep_set_access_flags(struct vm_area_struct *vma,
  1157. unsigned long address, pte_t *ptep,
  1158. pte_t entry, int dirty)
  1159. {
  1160. pgste_t pgste;
  1161. if (pte_same(*ptep, entry))
  1162. return 0;
  1163. if (mm_has_pgste(vma->vm_mm)) {
  1164. pgste = pgste_get_lock(ptep);
  1165. pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
  1166. }
  1167. ptep_flush_direct(vma->vm_mm, address, ptep);
  1168. if (mm_has_pgste(vma->vm_mm)) {
  1169. pgste_set_key(ptep, pgste, entry, vma->vm_mm);
  1170. pgste = pgste_set_pte(ptep, pgste, entry);
  1171. pgste_set_unlock(ptep, pgste);
  1172. } else
  1173. *ptep = entry;
  1174. return 1;
  1175. }
  1176. /*
  1177. * Conversion functions: convert a page and protection to a page entry,
  1178. * and a page entry and page directory to the page they refer to.
  1179. */
  1180. static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
  1181. {
  1182. pte_t __pte;
  1183. pte_val(__pte) = physpage + pgprot_val(pgprot);
  1184. return pte_mkyoung(__pte);
  1185. }
  1186. static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
  1187. {
  1188. unsigned long physpage = page_to_phys(page);
  1189. pte_t __pte = mk_pte_phys(physpage, pgprot);
  1190. if (pte_write(__pte) && PageDirty(page))
  1191. __pte = pte_mkdirty(__pte);
  1192. return __pte;
  1193. }
  1194. #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
  1195. #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
  1196. #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
  1197. #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
  1198. #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
  1199. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  1200. #ifndef CONFIG_64BIT
  1201. #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
  1202. #define pud_deref(pmd) ({ BUG(); 0UL; })
  1203. #define pgd_deref(pmd) ({ BUG(); 0UL; })
  1204. #define pud_offset(pgd, address) ((pud_t *) pgd)
  1205. #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
  1206. #else /* CONFIG_64BIT */
  1207. #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
  1208. #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
  1209. #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
  1210. static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
  1211. {
  1212. pud_t *pud = (pud_t *) pgd;
  1213. if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
  1214. pud = (pud_t *) pgd_deref(*pgd);
  1215. return pud + pud_index(address);
  1216. }
  1217. static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
  1218. {
  1219. pmd_t *pmd = (pmd_t *) pud;
  1220. if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
  1221. pmd = (pmd_t *) pud_deref(*pud);
  1222. return pmd + pmd_index(address);
  1223. }
  1224. #endif /* CONFIG_64BIT */
  1225. #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
  1226. #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
  1227. #define pte_page(x) pfn_to_page(pte_pfn(x))
  1228. #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
  1229. /* Find an entry in the lowest level page table.. */
  1230. #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
  1231. #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
  1232. #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
  1233. #define pte_unmap(pte) do { } while (0)
  1234. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
  1235. static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
  1236. {
  1237. /*
  1238. * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
  1239. * Convert to segment table entry format.
  1240. */
  1241. if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
  1242. return pgprot_val(SEGMENT_NONE);
  1243. if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
  1244. return pgprot_val(SEGMENT_READ);
  1245. return pgprot_val(SEGMENT_WRITE);
  1246. }
  1247. static inline pmd_t pmd_wrprotect(pmd_t pmd)
  1248. {
  1249. pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
  1250. pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
  1251. return pmd;
  1252. }
  1253. static inline pmd_t pmd_mkwrite(pmd_t pmd)
  1254. {
  1255. pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
  1256. if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
  1257. return pmd;
  1258. pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
  1259. return pmd;
  1260. }
  1261. static inline pmd_t pmd_mkclean(pmd_t pmd)
  1262. {
  1263. if (pmd_large(pmd)) {
  1264. pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
  1265. pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
  1266. }
  1267. return pmd;
  1268. }
  1269. static inline pmd_t pmd_mkdirty(pmd_t pmd)
  1270. {
  1271. if (pmd_large(pmd)) {
  1272. pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY;
  1273. if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
  1274. pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
  1275. }
  1276. return pmd;
  1277. }
  1278. static inline pmd_t pmd_mkyoung(pmd_t pmd)
  1279. {
  1280. if (pmd_large(pmd)) {
  1281. pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
  1282. if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
  1283. pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
  1284. }
  1285. return pmd;
  1286. }
  1287. static inline pmd_t pmd_mkold(pmd_t pmd)
  1288. {
  1289. if (pmd_large(pmd)) {
  1290. pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
  1291. pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
  1292. }
  1293. return pmd;
  1294. }
  1295. static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
  1296. {
  1297. if (pmd_large(pmd)) {
  1298. pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
  1299. _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
  1300. _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SPLIT;
  1301. pmd_val(pmd) |= massage_pgprot_pmd(newprot);
  1302. if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
  1303. pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
  1304. if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
  1305. pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
  1306. return pmd;
  1307. }
  1308. pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
  1309. pmd_val(pmd) |= massage_pgprot_pmd(newprot);
  1310. return pmd;
  1311. }
  1312. static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
  1313. {
  1314. pmd_t __pmd;
  1315. pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
  1316. return __pmd;
  1317. }
  1318. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
  1319. static inline void __pmdp_csp(pmd_t *pmdp)
  1320. {
  1321. register unsigned long reg2 asm("2") = pmd_val(*pmdp);
  1322. register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
  1323. _SEGMENT_ENTRY_INVALID;
  1324. register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
  1325. asm volatile(
  1326. " csp %1,%3"
  1327. : "=m" (*pmdp)
  1328. : "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
  1329. }
  1330. static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
  1331. {
  1332. unsigned long sto;
  1333. sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
  1334. asm volatile(
  1335. " .insn rrf,0xb98e0000,%2,%3,0,0"
  1336. : "=m" (*pmdp)
  1337. : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
  1338. : "cc" );
  1339. }
  1340. static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
  1341. {
  1342. unsigned long sto;
  1343. sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
  1344. asm volatile(
  1345. " .insn rrf,0xb98e0000,%2,%3,0,1"
  1346. : "=m" (*pmdp)
  1347. : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
  1348. : "cc" );
  1349. }
  1350. static inline void pmdp_flush_direct(struct mm_struct *mm,
  1351. unsigned long address, pmd_t *pmdp)
  1352. {
  1353. int active, count;
  1354. if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
  1355. return;
  1356. if (!MACHINE_HAS_IDTE) {
  1357. __pmdp_csp(pmdp);
  1358. return;
  1359. }
  1360. active = (mm == current->active_mm) ? 1 : 0;
  1361. count = atomic_add_return(0x10000, &mm->context.attach_count);
  1362. if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
  1363. cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
  1364. __pmdp_idte_local(address, pmdp);
  1365. else
  1366. __pmdp_idte(address, pmdp);
  1367. atomic_sub(0x10000, &mm->context.attach_count);
  1368. }
  1369. static inline void pmdp_flush_lazy(struct mm_struct *mm,
  1370. unsigned long address, pmd_t *pmdp)
  1371. {
  1372. int active, count;
  1373. if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
  1374. return;
  1375. active = (mm == current->active_mm) ? 1 : 0;
  1376. count = atomic_add_return(0x10000, &mm->context.attach_count);
  1377. if ((count & 0xffff) <= active) {
  1378. pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID;
  1379. mm->context.flush_mm = 1;
  1380. } else if (MACHINE_HAS_IDTE)
  1381. __pmdp_idte(address, pmdp);
  1382. else
  1383. __pmdp_csp(pmdp);
  1384. atomic_sub(0x10000, &mm->context.attach_count);
  1385. }
  1386. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1387. #define __HAVE_ARCH_PGTABLE_DEPOSIT
  1388. extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
  1389. pgtable_t pgtable);
  1390. #define __HAVE_ARCH_PGTABLE_WITHDRAW
  1391. extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
  1392. static inline int pmd_trans_splitting(pmd_t pmd)
  1393. {
  1394. return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) &&
  1395. (pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT);
  1396. }
  1397. static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
  1398. pmd_t *pmdp, pmd_t entry)
  1399. {
  1400. *pmdp = entry;
  1401. }
  1402. static inline pmd_t pmd_mkhuge(pmd_t pmd)
  1403. {
  1404. pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
  1405. pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
  1406. pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
  1407. return pmd;
  1408. }
  1409. #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
  1410. static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  1411. unsigned long address, pmd_t *pmdp)
  1412. {
  1413. pmd_t pmd;
  1414. pmd = *pmdp;
  1415. pmdp_flush_direct(vma->vm_mm, address, pmdp);
  1416. *pmdp = pmd_mkold(pmd);
  1417. return pmd_young(pmd);
  1418. }
  1419. #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
  1420. static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
  1421. unsigned long address, pmd_t *pmdp)
  1422. {
  1423. pmd_t pmd = *pmdp;
  1424. pmdp_flush_direct(mm, address, pmdp);
  1425. pmd_clear(pmdp);
  1426. return pmd;
  1427. }
  1428. #define __HAVE_ARCH_PMDP_CLEAR_FLUSH
  1429. static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
  1430. unsigned long address, pmd_t *pmdp)
  1431. {
  1432. return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
  1433. }
  1434. #define __HAVE_ARCH_PMDP_INVALIDATE
  1435. static inline void pmdp_invalidate(struct vm_area_struct *vma,
  1436. unsigned long address, pmd_t *pmdp)
  1437. {
  1438. pmdp_flush_direct(vma->vm_mm, address, pmdp);
  1439. }
  1440. #define __HAVE_ARCH_PMDP_SET_WRPROTECT
  1441. static inline void pmdp_set_wrprotect(struct mm_struct *mm,
  1442. unsigned long address, pmd_t *pmdp)
  1443. {
  1444. pmd_t pmd = *pmdp;
  1445. if (pmd_write(pmd)) {
  1446. pmdp_flush_direct(mm, address, pmdp);
  1447. set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
  1448. }
  1449. }
  1450. #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
  1451. #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
  1452. static inline int pmd_trans_huge(pmd_t pmd)
  1453. {
  1454. return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
  1455. }
  1456. static inline int has_transparent_hugepage(void)
  1457. {
  1458. return MACHINE_HAS_HPAGE ? 1 : 0;
  1459. }
  1460. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  1461. /*
  1462. * 31 bit swap entry format:
  1463. * A page-table entry has some bits we have to treat in a special way.
  1464. * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
  1465. * exception will occur instead of a page translation exception. The
  1466. * specifiation exception has the bad habit not to store necessary
  1467. * information in the lowcore.
  1468. * Bits 21, 22, 30 and 31 are used to indicate the page type.
  1469. * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
  1470. * This leaves the bits 1-19 and bits 24-29 to store type and offset.
  1471. * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
  1472. * plus 24 for the offset.
  1473. * 0| offset |0110|o|type |00|
  1474. * 0 0000000001111111111 2222 2 22222 33
  1475. * 0 1234567890123456789 0123 4 56789 01
  1476. *
  1477. * 64 bit swap entry format:
  1478. * A page-table entry has some bits we have to treat in a special way.
  1479. * Bits 52 and bit 55 have to be zero, otherwise an specification
  1480. * exception will occur instead of a page translation exception. The
  1481. * specifiation exception has the bad habit not to store necessary
  1482. * information in the lowcore.
  1483. * Bits 53, 54, 62 and 63 are used to indicate the page type.
  1484. * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
  1485. * This leaves the bits 0-51 and bits 56-61 to store type and offset.
  1486. * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
  1487. * plus 56 for the offset.
  1488. * | offset |0110|o|type |00|
  1489. * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
  1490. * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
  1491. */
  1492. #ifndef CONFIG_64BIT
  1493. #define __SWP_OFFSET_MASK (~0UL >> 12)
  1494. #else
  1495. #define __SWP_OFFSET_MASK (~0UL >> 11)
  1496. #endif
  1497. static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
  1498. {
  1499. pte_t pte;
  1500. offset &= __SWP_OFFSET_MASK;
  1501. pte_val(pte) = _PAGE_INVALID | _PAGE_TYPE | ((type & 0x1f) << 2) |
  1502. ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
  1503. return pte;
  1504. }
  1505. #define __swp_type(entry) (((entry).val >> 2) & 0x1f)
  1506. #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
  1507. #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
  1508. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  1509. #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
  1510. #ifndef CONFIG_64BIT
  1511. # define PTE_FILE_MAX_BITS 26
  1512. #else /* CONFIG_64BIT */
  1513. # define PTE_FILE_MAX_BITS 59
  1514. #endif /* CONFIG_64BIT */
  1515. #define pte_to_pgoff(__pte) \
  1516. ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
  1517. #define pgoff_to_pte(__off) \
  1518. ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
  1519. | _PAGE_INVALID | _PAGE_PROTECT })
  1520. #endif /* !__ASSEMBLY__ */
  1521. #define kern_addr_valid(addr) (1)
  1522. extern int vmem_add_mapping(unsigned long start, unsigned long size);
  1523. extern int vmem_remove_mapping(unsigned long start, unsigned long size);
  1524. extern int s390_enable_sie(void);
  1525. extern void s390_enable_skey(void);
  1526. /*
  1527. * No page table caches to initialise
  1528. */
  1529. static inline void pgtable_cache_init(void) { }
  1530. static inline void check_pgt_cache(void) { }
  1531. #include <asm-generic/pgtable.h>
  1532. #endif /* _S390_PAGE_H */