pgtable.c 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309
  1. #include <linux/mm.h>
  2. #include <asm/pgalloc.h>
  3. #include <asm/pgtable.h>
  4. #include <asm/tlb.h>
  5. pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
  6. {
  7. return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
  8. }
  9. pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
  10. {
  11. struct page *pte;
  12. #ifdef CONFIG_HIGHPTE
  13. pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
  14. #else
  15. pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
  16. #endif
  17. if (pte)
  18. pgtable_page_ctor(pte);
  19. return pte;
  20. }
  21. void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
  22. {
  23. pgtable_page_dtor(pte);
  24. paravirt_release_pte(page_to_pfn(pte));
  25. tlb_remove_page(tlb, pte);
  26. }
  27. #if PAGETABLE_LEVELS > 2
  28. void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
  29. {
  30. paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
  31. tlb_remove_page(tlb, virt_to_page(pmd));
  32. }
  33. #if PAGETABLE_LEVELS > 3
  34. void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
  35. {
  36. paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
  37. tlb_remove_page(tlb, virt_to_page(pud));
  38. }
  39. #endif /* PAGETABLE_LEVELS > 3 */
  40. #endif /* PAGETABLE_LEVELS > 2 */
  41. static inline void pgd_list_add(pgd_t *pgd)
  42. {
  43. struct page *page = virt_to_page(pgd);
  44. list_add(&page->lru, &pgd_list);
  45. }
  46. static inline void pgd_list_del(pgd_t *pgd)
  47. {
  48. struct page *page = virt_to_page(pgd);
  49. list_del(&page->lru);
  50. }
  51. #ifdef CONFIG_X86_64
  52. pgd_t *pgd_alloc(struct mm_struct *mm)
  53. {
  54. unsigned boundary;
  55. pgd_t *pgd = (pgd_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT);
  56. unsigned long flags;
  57. if (!pgd)
  58. return NULL;
  59. spin_lock_irqsave(&pgd_lock, flags);
  60. pgd_list_add(pgd);
  61. spin_unlock_irqrestore(&pgd_lock, flags);
  62. /*
  63. * Copy kernel pointers in from init.
  64. * Could keep a freelist or slab cache of those because the kernel
  65. * part never changes.
  66. */
  67. boundary = pgd_index(__PAGE_OFFSET);
  68. memset(pgd, 0, boundary * sizeof(pgd_t));
  69. memcpy(pgd + boundary,
  70. init_level4_pgt + boundary,
  71. (PTRS_PER_PGD - boundary) * sizeof(pgd_t));
  72. return pgd;
  73. }
  74. void pgd_free(struct mm_struct *mm, pgd_t *pgd)
  75. {
  76. unsigned long flags;
  77. BUG_ON((unsigned long)pgd & (PAGE_SIZE-1));
  78. spin_lock_irqsave(&pgd_lock, flags);
  79. pgd_list_del(pgd);
  80. spin_unlock_irqrestore(&pgd_lock, flags);
  81. free_page((unsigned long)pgd);
  82. }
  83. #else
  84. /*
  85. * List of all pgd's needed for non-PAE so it can invalidate entries
  86. * in both cached and uncached pgd's; not needed for PAE since the
  87. * kernel pmd is shared. If PAE were not to share the pmd a similar
  88. * tactic would be needed. This is essentially codepath-based locking
  89. * against pageattr.c; it is the unique case in which a valid change
  90. * of kernel pagetables can't be lazily synchronized by vmalloc faults.
  91. * vmalloc faults work because attached pagetables are never freed.
  92. * -- wli
  93. */
  94. #define UNSHARED_PTRS_PER_PGD \
  95. (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
  96. static void pgd_ctor(void *p)
  97. {
  98. pgd_t *pgd = p;
  99. unsigned long flags;
  100. /* Clear usermode parts of PGD */
  101. memset(pgd, 0, KERNEL_PGD_BOUNDARY*sizeof(pgd_t));
  102. spin_lock_irqsave(&pgd_lock, flags);
  103. /* If the pgd points to a shared pagetable level (either the
  104. ptes in non-PAE, or shared PMD in PAE), then just copy the
  105. references from swapper_pg_dir. */
  106. if (PAGETABLE_LEVELS == 2 ||
  107. (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD)) {
  108. clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
  109. swapper_pg_dir + KERNEL_PGD_BOUNDARY,
  110. KERNEL_PGD_PTRS);
  111. paravirt_alloc_pmd_clone(__pa(pgd) >> PAGE_SHIFT,
  112. __pa(swapper_pg_dir) >> PAGE_SHIFT,
  113. KERNEL_PGD_BOUNDARY,
  114. KERNEL_PGD_PTRS);
  115. }
  116. /* list required to sync kernel mapping updates */
  117. if (!SHARED_KERNEL_PMD)
  118. pgd_list_add(pgd);
  119. spin_unlock_irqrestore(&pgd_lock, flags);
  120. }
  121. static void pgd_dtor(void *pgd)
  122. {
  123. unsigned long flags; /* can be called from interrupt context */
  124. if (SHARED_KERNEL_PMD)
  125. return;
  126. spin_lock_irqsave(&pgd_lock, flags);
  127. pgd_list_del(pgd);
  128. spin_unlock_irqrestore(&pgd_lock, flags);
  129. }
  130. #ifdef CONFIG_X86_PAE
  131. /*
  132. * Mop up any pmd pages which may still be attached to the pgd.
  133. * Normally they will be freed by munmap/exit_mmap, but any pmd we
  134. * preallocate which never got a corresponding vma will need to be
  135. * freed manually.
  136. */
  137. static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
  138. {
  139. int i;
  140. for(i = 0; i < UNSHARED_PTRS_PER_PGD; i++) {
  141. pgd_t pgd = pgdp[i];
  142. if (pgd_val(pgd) != 0) {
  143. pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
  144. pgdp[i] = native_make_pgd(0);
  145. paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
  146. pmd_free(mm, pmd);
  147. }
  148. }
  149. }
  150. /*
  151. * In PAE mode, we need to do a cr3 reload (=tlb flush) when
  152. * updating the top-level pagetable entries to guarantee the
  153. * processor notices the update. Since this is expensive, and
  154. * all 4 top-level entries are used almost immediately in a
  155. * new process's life, we just pre-populate them here.
  156. *
  157. * Also, if we're in a paravirt environment where the kernel pmd is
  158. * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
  159. * and initialize the kernel pmds here.
  160. */
  161. static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd)
  162. {
  163. pud_t *pud;
  164. unsigned long addr;
  165. int i;
  166. pud = pud_offset(pgd, 0);
  167. for (addr = i = 0; i < UNSHARED_PTRS_PER_PGD;
  168. i++, pud++, addr += PUD_SIZE) {
  169. pmd_t *pmd = pmd_alloc_one(mm, addr);
  170. if (!pmd) {
  171. pgd_mop_up_pmds(mm, pgd);
  172. return 0;
  173. }
  174. if (i >= KERNEL_PGD_BOUNDARY)
  175. memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
  176. sizeof(pmd_t) * PTRS_PER_PMD);
  177. pud_populate(mm, pud, pmd);
  178. }
  179. return 1;
  180. }
  181. void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
  182. {
  183. paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
  184. /* Note: almost everything apart from _PAGE_PRESENT is
  185. reserved at the pmd (PDPT) level. */
  186. set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
  187. /*
  188. * According to Intel App note "TLBs, Paging-Structure Caches,
  189. * and Their Invalidation", April 2007, document 317080-001,
  190. * section 8.1: in PAE mode we explicitly have to flush the
  191. * TLB via cr3 if the top-level pgd is changed...
  192. */
  193. if (mm == current->active_mm)
  194. write_cr3(read_cr3());
  195. }
  196. #else /* !CONFIG_X86_PAE */
  197. /* No need to prepopulate any pagetable entries in non-PAE modes. */
  198. static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd)
  199. {
  200. return 1;
  201. }
  202. static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgd)
  203. {
  204. }
  205. #endif /* CONFIG_X86_PAE */
  206. pgd_t *pgd_alloc(struct mm_struct *mm)
  207. {
  208. pgd_t *pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
  209. /* so that alloc_pmd can use it */
  210. mm->pgd = pgd;
  211. if (pgd)
  212. pgd_ctor(pgd);
  213. if (pgd && !pgd_prepopulate_pmd(mm, pgd)) {
  214. pgd_dtor(pgd);
  215. free_page((unsigned long)pgd);
  216. pgd = NULL;
  217. }
  218. return pgd;
  219. }
  220. void pgd_free(struct mm_struct *mm, pgd_t *pgd)
  221. {
  222. pgd_mop_up_pmds(mm, pgd);
  223. pgd_dtor(pgd);
  224. free_page((unsigned long)pgd);
  225. }
  226. #endif
  227. int ptep_set_access_flags(struct vm_area_struct *vma,
  228. unsigned long address, pte_t *ptep,
  229. pte_t entry, int dirty)
  230. {
  231. int changed = !pte_same(*ptep, entry);
  232. if (changed && dirty) {
  233. *ptep = entry;
  234. pte_update_defer(vma->vm_mm, address, ptep);
  235. flush_tlb_page(vma, address);
  236. }
  237. return changed;
  238. }
  239. int ptep_test_and_clear_young(struct vm_area_struct *vma,
  240. unsigned long addr, pte_t *ptep)
  241. {
  242. int ret = 0;
  243. if (pte_young(*ptep))
  244. ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
  245. &ptep->pte);
  246. if (ret)
  247. pte_update(vma->vm_mm, addr, ptep);
  248. return ret;
  249. }
  250. int ptep_clear_flush_young(struct vm_area_struct *vma,
  251. unsigned long address, pte_t *ptep)
  252. {
  253. int young;
  254. young = ptep_test_and_clear_young(vma, address, ptep);
  255. if (young)
  256. flush_tlb_page(vma, address);
  257. return young;
  258. }