dmaengine.h 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111
  1. /*
  2. * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 2 of the License, or (at your option)
  7. * any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc., 59
  16. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called COPYING.
  20. */
  21. #ifndef LINUX_DMAENGINE_H
  22. #define LINUX_DMAENGINE_H
  23. #include <linux/device.h>
  24. #include <linux/err.h>
  25. #include <linux/uio.h>
  26. #include <linux/bug.h>
  27. #include <linux/scatterlist.h>
  28. #include <linux/bitmap.h>
  29. #include <linux/types.h>
  30. #include <asm/page.h>
  31. /**
  32. * typedef dma_cookie_t - an opaque DMA cookie
  33. *
  34. * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
  35. */
  36. typedef s32 dma_cookie_t;
  37. #define DMA_MIN_COOKIE 1
  38. static inline int dma_submit_error(dma_cookie_t cookie)
  39. {
  40. return cookie < 0 ? cookie : 0;
  41. }
  42. /**
  43. * enum dma_status - DMA transaction status
  44. * @DMA_COMPLETE: transaction completed
  45. * @DMA_IN_PROGRESS: transaction not yet processed
  46. * @DMA_PAUSED: transaction is paused
  47. * @DMA_ERROR: transaction failed
  48. */
  49. enum dma_status {
  50. DMA_COMPLETE,
  51. DMA_IN_PROGRESS,
  52. DMA_PAUSED,
  53. DMA_ERROR,
  54. };
  55. /**
  56. * enum dma_transaction_type - DMA transaction types/indexes
  57. *
  58. * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
  59. * automatically set as dma devices are registered.
  60. */
  61. enum dma_transaction_type {
  62. DMA_MEMCPY,
  63. DMA_XOR,
  64. DMA_PQ,
  65. DMA_XOR_VAL,
  66. DMA_PQ_VAL,
  67. DMA_INTERRUPT,
  68. DMA_SG,
  69. DMA_PRIVATE,
  70. DMA_ASYNC_TX,
  71. DMA_SLAVE,
  72. DMA_CYCLIC,
  73. DMA_INTERLEAVE,
  74. /* last transaction type for creation of the capabilities mask */
  75. DMA_TX_TYPE_END,
  76. };
  77. /**
  78. * enum dma_transfer_direction - dma transfer mode and direction indicator
  79. * @DMA_MEM_TO_MEM: Async/Memcpy mode
  80. * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
  81. * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
  82. * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
  83. */
  84. enum dma_transfer_direction {
  85. DMA_MEM_TO_MEM,
  86. DMA_MEM_TO_DEV,
  87. DMA_DEV_TO_MEM,
  88. DMA_DEV_TO_DEV,
  89. DMA_TRANS_NONE,
  90. };
  91. /**
  92. * Interleaved Transfer Request
  93. * ----------------------------
  94. * A chunk is collection of contiguous bytes to be transfered.
  95. * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
  96. * ICGs may or maynot change between chunks.
  97. * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
  98. * that when repeated an integral number of times, specifies the transfer.
  99. * A transfer template is specification of a Frame, the number of times
  100. * it is to be repeated and other per-transfer attributes.
  101. *
  102. * Practically, a client driver would have ready a template for each
  103. * type of transfer it is going to need during its lifetime and
  104. * set only 'src_start' and 'dst_start' before submitting the requests.
  105. *
  106. *
  107. * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
  108. * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
  109. *
  110. * == Chunk size
  111. * ... ICG
  112. */
  113. /**
  114. * struct data_chunk - Element of scatter-gather list that makes a frame.
  115. * @size: Number of bytes to read from source.
  116. * size_dst := fn(op, size_src), so doesn't mean much for destination.
  117. * @icg: Number of bytes to jump after last src/dst address of this
  118. * chunk and before first src/dst address for next chunk.
  119. * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
  120. * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
  121. */
  122. struct data_chunk {
  123. size_t size;
  124. size_t icg;
  125. };
  126. /**
  127. * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
  128. * and attributes.
  129. * @src_start: Bus address of source for the first chunk.
  130. * @dst_start: Bus address of destination for the first chunk.
  131. * @dir: Specifies the type of Source and Destination.
  132. * @src_inc: If the source address increments after reading from it.
  133. * @dst_inc: If the destination address increments after writing to it.
  134. * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
  135. * Otherwise, source is read contiguously (icg ignored).
  136. * Ignored if src_inc is false.
  137. * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
  138. * Otherwise, destination is filled contiguously (icg ignored).
  139. * Ignored if dst_inc is false.
  140. * @numf: Number of frames in this template.
  141. * @frame_size: Number of chunks in a frame i.e, size of sgl[].
  142. * @sgl: Array of {chunk,icg} pairs that make up a frame.
  143. */
  144. struct dma_interleaved_template {
  145. dma_addr_t src_start;
  146. dma_addr_t dst_start;
  147. enum dma_transfer_direction dir;
  148. bool src_inc;
  149. bool dst_inc;
  150. bool src_sgl;
  151. bool dst_sgl;
  152. size_t numf;
  153. size_t frame_size;
  154. struct data_chunk sgl[0];
  155. };
  156. /**
  157. * enum dma_ctrl_flags - DMA flags to augment operation preparation,
  158. * control completion, and communicate status.
  159. * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
  160. * this transaction
  161. * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
  162. * acknowledges receipt, i.e. has has a chance to establish any dependency
  163. * chains
  164. * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
  165. * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
  166. * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
  167. * sources that were the result of a previous operation, in the case of a PQ
  168. * operation it continues the calculation with new sources
  169. * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
  170. * on the result of this operation
  171. */
  172. enum dma_ctrl_flags {
  173. DMA_PREP_INTERRUPT = (1 << 0),
  174. DMA_CTRL_ACK = (1 << 1),
  175. DMA_PREP_PQ_DISABLE_P = (1 << 2),
  176. DMA_PREP_PQ_DISABLE_Q = (1 << 3),
  177. DMA_PREP_CONTINUE = (1 << 4),
  178. DMA_PREP_FENCE = (1 << 5),
  179. };
  180. /**
  181. * enum sum_check_bits - bit position of pq_check_flags
  182. */
  183. enum sum_check_bits {
  184. SUM_CHECK_P = 0,
  185. SUM_CHECK_Q = 1,
  186. };
  187. /**
  188. * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
  189. * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
  190. * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
  191. */
  192. enum sum_check_flags {
  193. SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
  194. SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
  195. };
  196. /**
  197. * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
  198. * See linux/cpumask.h
  199. */
  200. typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
  201. /**
  202. * struct dma_chan_percpu - the per-CPU part of struct dma_chan
  203. * @memcpy_count: transaction counter
  204. * @bytes_transferred: byte counter
  205. */
  206. struct dma_chan_percpu {
  207. /* stats */
  208. unsigned long memcpy_count;
  209. unsigned long bytes_transferred;
  210. };
  211. /**
  212. * struct dma_chan - devices supply DMA channels, clients use them
  213. * @device: ptr to the dma device who supplies this channel, always !%NULL
  214. * @cookie: last cookie value returned to client
  215. * @completed_cookie: last completed cookie for this channel
  216. * @chan_id: channel ID for sysfs
  217. * @dev: class device for sysfs
  218. * @device_node: used to add this to the device chan list
  219. * @local: per-cpu pointer to a struct dma_chan_percpu
  220. * @client_count: how many clients are using this channel
  221. * @table_count: number of appearances in the mem-to-mem allocation table
  222. * @private: private data for certain client-channel associations
  223. */
  224. struct dma_chan {
  225. struct dma_device *device;
  226. dma_cookie_t cookie;
  227. dma_cookie_t completed_cookie;
  228. /* sysfs */
  229. int chan_id;
  230. struct dma_chan_dev *dev;
  231. struct list_head device_node;
  232. struct dma_chan_percpu __percpu *local;
  233. int client_count;
  234. int table_count;
  235. void *private;
  236. };
  237. /**
  238. * struct dma_chan_dev - relate sysfs device node to backing channel device
  239. * @chan: driver channel device
  240. * @device: sysfs device
  241. * @dev_id: parent dma_device dev_id
  242. * @idr_ref: reference count to gate release of dma_device dev_id
  243. */
  244. struct dma_chan_dev {
  245. struct dma_chan *chan;
  246. struct device device;
  247. int dev_id;
  248. atomic_t *idr_ref;
  249. };
  250. /**
  251. * enum dma_slave_buswidth - defines bus width of the DMA slave
  252. * device, source or target buses
  253. */
  254. enum dma_slave_buswidth {
  255. DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
  256. DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
  257. DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
  258. DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
  259. DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
  260. DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
  261. DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
  262. DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
  263. DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
  264. };
  265. /**
  266. * struct dma_slave_config - dma slave channel runtime config
  267. * @direction: whether the data shall go in or out on this slave
  268. * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
  269. * legal values. DEPRECATED, drivers should use the direction argument
  270. * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
  271. * the dir field in the dma_interleaved_template structure.
  272. * @src_addr: this is the physical address where DMA slave data
  273. * should be read (RX), if the source is memory this argument is
  274. * ignored.
  275. * @dst_addr: this is the physical address where DMA slave data
  276. * should be written (TX), if the source is memory this argument
  277. * is ignored.
  278. * @src_addr_width: this is the width in bytes of the source (RX)
  279. * register where DMA data shall be read. If the source
  280. * is memory this may be ignored depending on architecture.
  281. * Legal values: 1, 2, 4, 8.
  282. * @dst_addr_width: same as src_addr_width but for destination
  283. * target (TX) mutatis mutandis.
  284. * @src_maxburst: the maximum number of words (note: words, as in
  285. * units of the src_addr_width member, not bytes) that can be sent
  286. * in one burst to the device. Typically something like half the
  287. * FIFO depth on I/O peripherals so you don't overflow it. This
  288. * may or may not be applicable on memory sources.
  289. * @dst_maxburst: same as src_maxburst but for destination target
  290. * mutatis mutandis.
  291. * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
  292. * with 'true' if peripheral should be flow controller. Direction will be
  293. * selected at Runtime.
  294. * @slave_id: Slave requester id. Only valid for slave channels. The dma
  295. * slave peripheral will have unique id as dma requester which need to be
  296. * pass as slave config.
  297. *
  298. * This struct is passed in as configuration data to a DMA engine
  299. * in order to set up a certain channel for DMA transport at runtime.
  300. * The DMA device/engine has to provide support for an additional
  301. * callback in the dma_device structure, device_config and this struct
  302. * will then be passed in as an argument to the function.
  303. *
  304. * The rationale for adding configuration information to this struct is as
  305. * follows: if it is likely that more than one DMA slave controllers in
  306. * the world will support the configuration option, then make it generic.
  307. * If not: if it is fixed so that it be sent in static from the platform
  308. * data, then prefer to do that.
  309. */
  310. struct dma_slave_config {
  311. enum dma_transfer_direction direction;
  312. dma_addr_t src_addr;
  313. dma_addr_t dst_addr;
  314. enum dma_slave_buswidth src_addr_width;
  315. enum dma_slave_buswidth dst_addr_width;
  316. u32 src_maxburst;
  317. u32 dst_maxburst;
  318. bool device_fc;
  319. unsigned int slave_id;
  320. };
  321. /**
  322. * enum dma_residue_granularity - Granularity of the reported transfer residue
  323. * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
  324. * DMA channel is only able to tell whether a descriptor has been completed or
  325. * not, which means residue reporting is not supported by this channel. The
  326. * residue field of the dma_tx_state field will always be 0.
  327. * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
  328. * completed segment of the transfer (For cyclic transfers this is after each
  329. * period). This is typically implemented by having the hardware generate an
  330. * interrupt after each transferred segment and then the drivers updates the
  331. * outstanding residue by the size of the segment. Another possibility is if
  332. * the hardware supports scatter-gather and the segment descriptor has a field
  333. * which gets set after the segment has been completed. The driver then counts
  334. * the number of segments without the flag set to compute the residue.
  335. * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
  336. * burst. This is typically only supported if the hardware has a progress
  337. * register of some sort (E.g. a register with the current read/write address
  338. * or a register with the amount of bursts/beats/bytes that have been
  339. * transferred or still need to be transferred).
  340. */
  341. enum dma_residue_granularity {
  342. DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
  343. DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
  344. DMA_RESIDUE_GRANULARITY_BURST = 2,
  345. };
  346. /* struct dma_slave_caps - expose capabilities of a slave channel only
  347. *
  348. * @src_addr_widths: bit mask of src addr widths the channel supports
  349. * @dst_addr_widths: bit mask of dstn addr widths the channel supports
  350. * @directions: bit mask of slave direction the channel supported
  351. * since the enum dma_transfer_direction is not defined as bits for each
  352. * type of direction, the dma controller should fill (1 << <TYPE>) and same
  353. * should be checked by controller as well
  354. * @cmd_pause: true, if pause and thereby resume is supported
  355. * @cmd_terminate: true, if terminate cmd is supported
  356. * @residue_granularity: granularity of the reported transfer residue
  357. */
  358. struct dma_slave_caps {
  359. u32 src_addr_widths;
  360. u32 dst_addr_widths;
  361. u32 directions;
  362. bool cmd_pause;
  363. bool cmd_terminate;
  364. enum dma_residue_granularity residue_granularity;
  365. };
  366. static inline const char *dma_chan_name(struct dma_chan *chan)
  367. {
  368. return dev_name(&chan->dev->device);
  369. }
  370. void dma_chan_cleanup(struct kref *kref);
  371. /**
  372. * typedef dma_filter_fn - callback filter for dma_request_channel
  373. * @chan: channel to be reviewed
  374. * @filter_param: opaque parameter passed through dma_request_channel
  375. *
  376. * When this optional parameter is specified in a call to dma_request_channel a
  377. * suitable channel is passed to this routine for further dispositioning before
  378. * being returned. Where 'suitable' indicates a non-busy channel that
  379. * satisfies the given capability mask. It returns 'true' to indicate that the
  380. * channel is suitable.
  381. */
  382. typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
  383. typedef void (*dma_async_tx_callback)(void *dma_async_param);
  384. struct dmaengine_unmap_data {
  385. u8 map_cnt;
  386. u8 to_cnt;
  387. u8 from_cnt;
  388. u8 bidi_cnt;
  389. struct device *dev;
  390. struct kref kref;
  391. size_t len;
  392. dma_addr_t addr[0];
  393. };
  394. /**
  395. * struct dma_async_tx_descriptor - async transaction descriptor
  396. * ---dma generic offload fields---
  397. * @cookie: tracking cookie for this transaction, set to -EBUSY if
  398. * this tx is sitting on a dependency list
  399. * @flags: flags to augment operation preparation, control completion, and
  400. * communicate status
  401. * @phys: physical address of the descriptor
  402. * @chan: target channel for this operation
  403. * @tx_submit: accept the descriptor, assign ordered cookie and mark the
  404. * descriptor pending. To be pushed on .issue_pending() call
  405. * @callback: routine to call after this operation is complete
  406. * @callback_param: general parameter to pass to the callback routine
  407. * ---async_tx api specific fields---
  408. * @next: at completion submit this descriptor
  409. * @parent: pointer to the next level up in the dependency chain
  410. * @lock: protect the parent and next pointers
  411. */
  412. struct dma_async_tx_descriptor {
  413. dma_cookie_t cookie;
  414. enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
  415. dma_addr_t phys;
  416. struct dma_chan *chan;
  417. dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
  418. dma_async_tx_callback callback;
  419. void *callback_param;
  420. struct dmaengine_unmap_data *unmap;
  421. #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  422. struct dma_async_tx_descriptor *next;
  423. struct dma_async_tx_descriptor *parent;
  424. spinlock_t lock;
  425. #endif
  426. };
  427. #ifdef CONFIG_DMA_ENGINE
  428. static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
  429. struct dmaengine_unmap_data *unmap)
  430. {
  431. kref_get(&unmap->kref);
  432. tx->unmap = unmap;
  433. }
  434. struct dmaengine_unmap_data *
  435. dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
  436. void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
  437. #else
  438. static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
  439. struct dmaengine_unmap_data *unmap)
  440. {
  441. }
  442. static inline struct dmaengine_unmap_data *
  443. dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
  444. {
  445. return NULL;
  446. }
  447. static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
  448. {
  449. }
  450. #endif
  451. static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
  452. {
  453. if (tx->unmap) {
  454. dmaengine_unmap_put(tx->unmap);
  455. tx->unmap = NULL;
  456. }
  457. }
  458. #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  459. static inline void txd_lock(struct dma_async_tx_descriptor *txd)
  460. {
  461. }
  462. static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
  463. {
  464. }
  465. static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
  466. {
  467. BUG();
  468. }
  469. static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
  470. {
  471. }
  472. static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
  473. {
  474. }
  475. static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
  476. {
  477. return NULL;
  478. }
  479. static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
  480. {
  481. return NULL;
  482. }
  483. #else
  484. static inline void txd_lock(struct dma_async_tx_descriptor *txd)
  485. {
  486. spin_lock_bh(&txd->lock);
  487. }
  488. static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
  489. {
  490. spin_unlock_bh(&txd->lock);
  491. }
  492. static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
  493. {
  494. txd->next = next;
  495. next->parent = txd;
  496. }
  497. static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
  498. {
  499. txd->parent = NULL;
  500. }
  501. static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
  502. {
  503. txd->next = NULL;
  504. }
  505. static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
  506. {
  507. return txd->parent;
  508. }
  509. static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
  510. {
  511. return txd->next;
  512. }
  513. #endif
  514. /**
  515. * struct dma_tx_state - filled in to report the status of
  516. * a transfer.
  517. * @last: last completed DMA cookie
  518. * @used: last issued DMA cookie (i.e. the one in progress)
  519. * @residue: the remaining number of bytes left to transmit
  520. * on the selected transfer for states DMA_IN_PROGRESS and
  521. * DMA_PAUSED if this is implemented in the driver, else 0
  522. */
  523. struct dma_tx_state {
  524. dma_cookie_t last;
  525. dma_cookie_t used;
  526. u32 residue;
  527. };
  528. /**
  529. * struct dma_device - info on the entity supplying DMA services
  530. * @chancnt: how many DMA channels are supported
  531. * @privatecnt: how many DMA channels are requested by dma_request_channel
  532. * @channels: the list of struct dma_chan
  533. * @global_node: list_head for global dma_device_list
  534. * @cap_mask: one or more dma_capability flags
  535. * @max_xor: maximum number of xor sources, 0 if no capability
  536. * @max_pq: maximum number of PQ sources and PQ-continue capability
  537. * @copy_align: alignment shift for memcpy operations
  538. * @xor_align: alignment shift for xor operations
  539. * @pq_align: alignment shift for pq operations
  540. * @dev_id: unique device ID
  541. * @dev: struct device reference for dma mapping api
  542. * @src_addr_widths: bit mask of src addr widths the device supports
  543. * @dst_addr_widths: bit mask of dst addr widths the device supports
  544. * @directions: bit mask of slave direction the device supports since
  545. * the enum dma_transfer_direction is not defined as bits for
  546. * each type of direction, the dma controller should fill (1 <<
  547. * <TYPE>) and same should be checked by controller as well
  548. * @residue_granularity: granularity of the transfer residue reported
  549. * by tx_status
  550. * @device_alloc_chan_resources: allocate resources and return the
  551. * number of allocated descriptors
  552. * @device_free_chan_resources: release DMA channel's resources
  553. * @device_prep_dma_memcpy: prepares a memcpy operation
  554. * @device_prep_dma_xor: prepares a xor operation
  555. * @device_prep_dma_xor_val: prepares a xor validation operation
  556. * @device_prep_dma_pq: prepares a pq operation
  557. * @device_prep_dma_pq_val: prepares a pqzero_sum operation
  558. * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
  559. * @device_prep_slave_sg: prepares a slave dma operation
  560. * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
  561. * The function takes a buffer of size buf_len. The callback function will
  562. * be called after period_len bytes have been transferred.
  563. * @device_prep_interleaved_dma: Transfer expression in a generic way.
  564. * @device_config: Pushes a new configuration to a channel, return 0 or an error
  565. * code
  566. * @device_pause: Pauses any transfer happening on a channel. Returns
  567. * 0 or an error code
  568. * @device_resume: Resumes any transfer on a channel previously
  569. * paused. Returns 0 or an error code
  570. * @device_terminate_all: Aborts all transfers on a channel. Returns 0
  571. * or an error code
  572. * @device_tx_status: poll for transaction completion, the optional
  573. * txstate parameter can be supplied with a pointer to get a
  574. * struct with auxiliary transfer status information, otherwise the call
  575. * will just return a simple status code
  576. * @device_issue_pending: push pending transactions to hardware
  577. */
  578. struct dma_device {
  579. unsigned int chancnt;
  580. unsigned int privatecnt;
  581. struct list_head channels;
  582. struct list_head global_node;
  583. dma_cap_mask_t cap_mask;
  584. unsigned short max_xor;
  585. unsigned short max_pq;
  586. u8 copy_align;
  587. u8 xor_align;
  588. u8 pq_align;
  589. #define DMA_HAS_PQ_CONTINUE (1 << 15)
  590. int dev_id;
  591. struct device *dev;
  592. u32 src_addr_widths;
  593. u32 dst_addr_widths;
  594. u32 directions;
  595. enum dma_residue_granularity residue_granularity;
  596. int (*device_alloc_chan_resources)(struct dma_chan *chan);
  597. void (*device_free_chan_resources)(struct dma_chan *chan);
  598. struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
  599. struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
  600. size_t len, unsigned long flags);
  601. struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
  602. struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
  603. unsigned int src_cnt, size_t len, unsigned long flags);
  604. struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
  605. struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
  606. size_t len, enum sum_check_flags *result, unsigned long flags);
  607. struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
  608. struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
  609. unsigned int src_cnt, const unsigned char *scf,
  610. size_t len, unsigned long flags);
  611. struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
  612. struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
  613. unsigned int src_cnt, const unsigned char *scf, size_t len,
  614. enum sum_check_flags *pqres, unsigned long flags);
  615. struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
  616. struct dma_chan *chan, unsigned long flags);
  617. struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
  618. struct dma_chan *chan,
  619. struct scatterlist *dst_sg, unsigned int dst_nents,
  620. struct scatterlist *src_sg, unsigned int src_nents,
  621. unsigned long flags);
  622. struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
  623. struct dma_chan *chan, struct scatterlist *sgl,
  624. unsigned int sg_len, enum dma_transfer_direction direction,
  625. unsigned long flags, void *context);
  626. struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
  627. struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  628. size_t period_len, enum dma_transfer_direction direction,
  629. unsigned long flags);
  630. struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
  631. struct dma_chan *chan, struct dma_interleaved_template *xt,
  632. unsigned long flags);
  633. int (*device_config)(struct dma_chan *chan,
  634. struct dma_slave_config *config);
  635. int (*device_pause)(struct dma_chan *chan);
  636. int (*device_resume)(struct dma_chan *chan);
  637. int (*device_terminate_all)(struct dma_chan *chan);
  638. enum dma_status (*device_tx_status)(struct dma_chan *chan,
  639. dma_cookie_t cookie,
  640. struct dma_tx_state *txstate);
  641. void (*device_issue_pending)(struct dma_chan *chan);
  642. };
  643. static inline int dmaengine_slave_config(struct dma_chan *chan,
  644. struct dma_slave_config *config)
  645. {
  646. if (chan->device->device_config)
  647. return chan->device->device_config(chan, config);
  648. return -ENOSYS;
  649. }
  650. static inline bool is_slave_direction(enum dma_transfer_direction direction)
  651. {
  652. return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
  653. }
  654. static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
  655. struct dma_chan *chan, dma_addr_t buf, size_t len,
  656. enum dma_transfer_direction dir, unsigned long flags)
  657. {
  658. struct scatterlist sg;
  659. sg_init_table(&sg, 1);
  660. sg_dma_address(&sg) = buf;
  661. sg_dma_len(&sg) = len;
  662. return chan->device->device_prep_slave_sg(chan, &sg, 1,
  663. dir, flags, NULL);
  664. }
  665. static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
  666. struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
  667. enum dma_transfer_direction dir, unsigned long flags)
  668. {
  669. return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
  670. dir, flags, NULL);
  671. }
  672. #ifdef CONFIG_RAPIDIO_DMA_ENGINE
  673. struct rio_dma_ext;
  674. static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
  675. struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
  676. enum dma_transfer_direction dir, unsigned long flags,
  677. struct rio_dma_ext *rio_ext)
  678. {
  679. return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
  680. dir, flags, rio_ext);
  681. }
  682. #endif
  683. static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
  684. struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  685. size_t period_len, enum dma_transfer_direction dir,
  686. unsigned long flags)
  687. {
  688. return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
  689. period_len, dir, flags);
  690. }
  691. static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
  692. struct dma_chan *chan, struct dma_interleaved_template *xt,
  693. unsigned long flags)
  694. {
  695. return chan->device->device_prep_interleaved_dma(chan, xt, flags);
  696. }
  697. static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
  698. struct dma_chan *chan,
  699. struct scatterlist *dst_sg, unsigned int dst_nents,
  700. struct scatterlist *src_sg, unsigned int src_nents,
  701. unsigned long flags)
  702. {
  703. return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
  704. src_sg, src_nents, flags);
  705. }
  706. static inline int dmaengine_terminate_all(struct dma_chan *chan)
  707. {
  708. if (chan->device->device_terminate_all)
  709. return chan->device->device_terminate_all(chan);
  710. return -ENOSYS;
  711. }
  712. static inline int dmaengine_pause(struct dma_chan *chan)
  713. {
  714. if (chan->device->device_pause)
  715. return chan->device->device_pause(chan);
  716. return -ENOSYS;
  717. }
  718. static inline int dmaengine_resume(struct dma_chan *chan)
  719. {
  720. if (chan->device->device_resume)
  721. return chan->device->device_resume(chan);
  722. return -ENOSYS;
  723. }
  724. static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
  725. dma_cookie_t cookie, struct dma_tx_state *state)
  726. {
  727. return chan->device->device_tx_status(chan, cookie, state);
  728. }
  729. static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
  730. {
  731. return desc->tx_submit(desc);
  732. }
  733. static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
  734. {
  735. size_t mask;
  736. if (!align)
  737. return true;
  738. mask = (1 << align) - 1;
  739. if (mask & (off1 | off2 | len))
  740. return false;
  741. return true;
  742. }
  743. static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
  744. size_t off2, size_t len)
  745. {
  746. return dmaengine_check_align(dev->copy_align, off1, off2, len);
  747. }
  748. static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
  749. size_t off2, size_t len)
  750. {
  751. return dmaengine_check_align(dev->xor_align, off1, off2, len);
  752. }
  753. static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
  754. size_t off2, size_t len)
  755. {
  756. return dmaengine_check_align(dev->pq_align, off1, off2, len);
  757. }
  758. static inline void
  759. dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
  760. {
  761. dma->max_pq = maxpq;
  762. if (has_pq_continue)
  763. dma->max_pq |= DMA_HAS_PQ_CONTINUE;
  764. }
  765. static inline bool dmaf_continue(enum dma_ctrl_flags flags)
  766. {
  767. return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
  768. }
  769. static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
  770. {
  771. enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
  772. return (flags & mask) == mask;
  773. }
  774. static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
  775. {
  776. return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
  777. }
  778. static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
  779. {
  780. return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
  781. }
  782. /* dma_maxpq - reduce maxpq in the face of continued operations
  783. * @dma - dma device with PQ capability
  784. * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
  785. *
  786. * When an engine does not support native continuation we need 3 extra
  787. * source slots to reuse P and Q with the following coefficients:
  788. * 1/ {00} * P : remove P from Q', but use it as a source for P'
  789. * 2/ {01} * Q : use Q to continue Q' calculation
  790. * 3/ {00} * Q : subtract Q from P' to cancel (2)
  791. *
  792. * In the case where P is disabled we only need 1 extra source:
  793. * 1/ {01} * Q : use Q to continue Q' calculation
  794. */
  795. static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
  796. {
  797. if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
  798. return dma_dev_to_maxpq(dma);
  799. else if (dmaf_p_disabled_continue(flags))
  800. return dma_dev_to_maxpq(dma) - 1;
  801. else if (dmaf_continue(flags))
  802. return dma_dev_to_maxpq(dma) - 3;
  803. BUG();
  804. }
  805. /* --- public DMA engine API --- */
  806. #ifdef CONFIG_DMA_ENGINE
  807. void dmaengine_get(void);
  808. void dmaengine_put(void);
  809. #else
  810. static inline void dmaengine_get(void)
  811. {
  812. }
  813. static inline void dmaengine_put(void)
  814. {
  815. }
  816. #endif
  817. #ifdef CONFIG_ASYNC_TX_DMA
  818. #define async_dmaengine_get() dmaengine_get()
  819. #define async_dmaengine_put() dmaengine_put()
  820. #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  821. #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
  822. #else
  823. #define async_dma_find_channel(type) dma_find_channel(type)
  824. #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
  825. #else
  826. static inline void async_dmaengine_get(void)
  827. {
  828. }
  829. static inline void async_dmaengine_put(void)
  830. {
  831. }
  832. static inline struct dma_chan *
  833. async_dma_find_channel(enum dma_transaction_type type)
  834. {
  835. return NULL;
  836. }
  837. #endif /* CONFIG_ASYNC_TX_DMA */
  838. void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
  839. struct dma_chan *chan);
  840. static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
  841. {
  842. tx->flags |= DMA_CTRL_ACK;
  843. }
  844. static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
  845. {
  846. tx->flags &= ~DMA_CTRL_ACK;
  847. }
  848. static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
  849. {
  850. return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
  851. }
  852. #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
  853. static inline void
  854. __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
  855. {
  856. set_bit(tx_type, dstp->bits);
  857. }
  858. #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
  859. static inline void
  860. __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
  861. {
  862. clear_bit(tx_type, dstp->bits);
  863. }
  864. #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
  865. static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
  866. {
  867. bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
  868. }
  869. #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
  870. static inline int
  871. __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
  872. {
  873. return test_bit(tx_type, srcp->bits);
  874. }
  875. #define for_each_dma_cap_mask(cap, mask) \
  876. for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
  877. /**
  878. * dma_async_issue_pending - flush pending transactions to HW
  879. * @chan: target DMA channel
  880. *
  881. * This allows drivers to push copies to HW in batches,
  882. * reducing MMIO writes where possible.
  883. */
  884. static inline void dma_async_issue_pending(struct dma_chan *chan)
  885. {
  886. chan->device->device_issue_pending(chan);
  887. }
  888. /**
  889. * dma_async_is_tx_complete - poll for transaction completion
  890. * @chan: DMA channel
  891. * @cookie: transaction identifier to check status of
  892. * @last: returns last completed cookie, can be NULL
  893. * @used: returns last issued cookie, can be NULL
  894. *
  895. * If @last and @used are passed in, upon return they reflect the driver
  896. * internal state and can be used with dma_async_is_complete() to check
  897. * the status of multiple cookies without re-checking hardware state.
  898. */
  899. static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
  900. dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
  901. {
  902. struct dma_tx_state state;
  903. enum dma_status status;
  904. status = chan->device->device_tx_status(chan, cookie, &state);
  905. if (last)
  906. *last = state.last;
  907. if (used)
  908. *used = state.used;
  909. return status;
  910. }
  911. /**
  912. * dma_async_is_complete - test a cookie against chan state
  913. * @cookie: transaction identifier to test status of
  914. * @last_complete: last know completed transaction
  915. * @last_used: last cookie value handed out
  916. *
  917. * dma_async_is_complete() is used in dma_async_is_tx_complete()
  918. * the test logic is separated for lightweight testing of multiple cookies
  919. */
  920. static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
  921. dma_cookie_t last_complete, dma_cookie_t last_used)
  922. {
  923. if (last_complete <= last_used) {
  924. if ((cookie <= last_complete) || (cookie > last_used))
  925. return DMA_COMPLETE;
  926. } else {
  927. if ((cookie <= last_complete) && (cookie > last_used))
  928. return DMA_COMPLETE;
  929. }
  930. return DMA_IN_PROGRESS;
  931. }
  932. static inline void
  933. dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
  934. {
  935. if (st) {
  936. st->last = last;
  937. st->used = used;
  938. st->residue = residue;
  939. }
  940. }
  941. #ifdef CONFIG_DMA_ENGINE
  942. struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
  943. enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
  944. enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
  945. void dma_issue_pending_all(void);
  946. struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
  947. dma_filter_fn fn, void *fn_param);
  948. struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
  949. const char *name);
  950. struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
  951. void dma_release_channel(struct dma_chan *chan);
  952. int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
  953. #else
  954. static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
  955. {
  956. return NULL;
  957. }
  958. static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
  959. {
  960. return DMA_COMPLETE;
  961. }
  962. static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
  963. {
  964. return DMA_COMPLETE;
  965. }
  966. static inline void dma_issue_pending_all(void)
  967. {
  968. }
  969. static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
  970. dma_filter_fn fn, void *fn_param)
  971. {
  972. return NULL;
  973. }
  974. static inline struct dma_chan *dma_request_slave_channel_reason(
  975. struct device *dev, const char *name)
  976. {
  977. return ERR_PTR(-ENODEV);
  978. }
  979. static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
  980. const char *name)
  981. {
  982. return NULL;
  983. }
  984. static inline void dma_release_channel(struct dma_chan *chan)
  985. {
  986. }
  987. static inline int dma_get_slave_caps(struct dma_chan *chan,
  988. struct dma_slave_caps *caps)
  989. {
  990. return -ENXIO;
  991. }
  992. #endif
  993. /* --- DMA device --- */
  994. int dma_async_device_register(struct dma_device *device);
  995. void dma_async_device_unregister(struct dma_device *device);
  996. void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
  997. struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
  998. struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
  999. struct dma_chan *net_dma_find_channel(void);
  1000. #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
  1001. #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
  1002. __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
  1003. static inline struct dma_chan
  1004. *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
  1005. dma_filter_fn fn, void *fn_param,
  1006. struct device *dev, char *name)
  1007. {
  1008. struct dma_chan *chan;
  1009. chan = dma_request_slave_channel(dev, name);
  1010. if (chan)
  1011. return chan;
  1012. return __dma_request_channel(mask, fn, fn_param);
  1013. }
  1014. #endif /* DMAENGINE_H */