intel_ringbuffer.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. static inline int ring_space(struct intel_ring_buffer *ring)
  35. {
  36. int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
  37. if (space < 0)
  38. space += ring->size;
  39. return space;
  40. }
  41. void __intel_ring_advance(struct intel_ring_buffer *ring)
  42. {
  43. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  44. ring->tail &= ring->size - 1;
  45. if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
  46. return;
  47. ring->write_tail(ring, ring->tail);
  48. }
  49. static int
  50. gen2_render_ring_flush(struct intel_ring_buffer *ring,
  51. u32 invalidate_domains,
  52. u32 flush_domains)
  53. {
  54. u32 cmd;
  55. int ret;
  56. cmd = MI_FLUSH;
  57. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  58. cmd |= MI_NO_WRITE_FLUSH;
  59. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  60. cmd |= MI_READ_FLUSH;
  61. ret = intel_ring_begin(ring, 2);
  62. if (ret)
  63. return ret;
  64. intel_ring_emit(ring, cmd);
  65. intel_ring_emit(ring, MI_NOOP);
  66. intel_ring_advance(ring);
  67. return 0;
  68. }
  69. static int
  70. gen4_render_ring_flush(struct intel_ring_buffer *ring,
  71. u32 invalidate_domains,
  72. u32 flush_domains)
  73. {
  74. struct drm_device *dev = ring->dev;
  75. u32 cmd;
  76. int ret;
  77. /*
  78. * read/write caches:
  79. *
  80. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  81. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  82. * also flushed at 2d versus 3d pipeline switches.
  83. *
  84. * read-only caches:
  85. *
  86. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  87. * MI_READ_FLUSH is set, and is always flushed on 965.
  88. *
  89. * I915_GEM_DOMAIN_COMMAND may not exist?
  90. *
  91. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  92. * invalidated when MI_EXE_FLUSH is set.
  93. *
  94. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  95. * invalidated with every MI_FLUSH.
  96. *
  97. * TLBs:
  98. *
  99. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  100. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  101. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  102. * are flushed at any MI_FLUSH.
  103. */
  104. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  105. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  106. cmd &= ~MI_NO_WRITE_FLUSH;
  107. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  108. cmd |= MI_EXE_FLUSH;
  109. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  110. (IS_G4X(dev) || IS_GEN5(dev)))
  111. cmd |= MI_INVALIDATE_ISP;
  112. ret = intel_ring_begin(ring, 2);
  113. if (ret)
  114. return ret;
  115. intel_ring_emit(ring, cmd);
  116. intel_ring_emit(ring, MI_NOOP);
  117. intel_ring_advance(ring);
  118. return 0;
  119. }
  120. /**
  121. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  122. * implementing two workarounds on gen6. From section 1.4.7.1
  123. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  124. *
  125. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  126. * produced by non-pipelined state commands), software needs to first
  127. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  128. * 0.
  129. *
  130. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  131. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  132. *
  133. * And the workaround for these two requires this workaround first:
  134. *
  135. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  136. * BEFORE the pipe-control with a post-sync op and no write-cache
  137. * flushes.
  138. *
  139. * And this last workaround is tricky because of the requirements on
  140. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  141. * volume 2 part 1:
  142. *
  143. * "1 of the following must also be set:
  144. * - Render Target Cache Flush Enable ([12] of DW1)
  145. * - Depth Cache Flush Enable ([0] of DW1)
  146. * - Stall at Pixel Scoreboard ([1] of DW1)
  147. * - Depth Stall ([13] of DW1)
  148. * - Post-Sync Operation ([13] of DW1)
  149. * - Notify Enable ([8] of DW1)"
  150. *
  151. * The cache flushes require the workaround flush that triggered this
  152. * one, so we can't use it. Depth stall would trigger the same.
  153. * Post-sync nonzero is what triggered this second workaround, so we
  154. * can't use that one either. Notify enable is IRQs, which aren't
  155. * really our business. That leaves only stall at scoreboard.
  156. */
  157. static int
  158. intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
  159. {
  160. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  161. int ret;
  162. ret = intel_ring_begin(ring, 6);
  163. if (ret)
  164. return ret;
  165. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  166. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  167. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  168. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  169. intel_ring_emit(ring, 0); /* low dword */
  170. intel_ring_emit(ring, 0); /* high dword */
  171. intel_ring_emit(ring, MI_NOOP);
  172. intel_ring_advance(ring);
  173. ret = intel_ring_begin(ring, 6);
  174. if (ret)
  175. return ret;
  176. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  177. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  178. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  179. intel_ring_emit(ring, 0);
  180. intel_ring_emit(ring, 0);
  181. intel_ring_emit(ring, MI_NOOP);
  182. intel_ring_advance(ring);
  183. return 0;
  184. }
  185. static int
  186. gen6_render_ring_flush(struct intel_ring_buffer *ring,
  187. u32 invalidate_domains, u32 flush_domains)
  188. {
  189. u32 flags = 0;
  190. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  191. int ret;
  192. /* Force SNB workarounds for PIPE_CONTROL flushes */
  193. ret = intel_emit_post_sync_nonzero_flush(ring);
  194. if (ret)
  195. return ret;
  196. /* Just flush everything. Experiments have shown that reducing the
  197. * number of bits based on the write domains has little performance
  198. * impact.
  199. */
  200. if (flush_domains) {
  201. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  202. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  203. /*
  204. * Ensure that any following seqno writes only happen
  205. * when the render cache is indeed flushed.
  206. */
  207. flags |= PIPE_CONTROL_CS_STALL;
  208. }
  209. if (invalidate_domains) {
  210. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  211. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  212. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  213. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  214. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  215. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  216. /*
  217. * TLB invalidate requires a post-sync write.
  218. */
  219. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  220. }
  221. ret = intel_ring_begin(ring, 4);
  222. if (ret)
  223. return ret;
  224. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  225. intel_ring_emit(ring, flags);
  226. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  227. intel_ring_emit(ring, 0);
  228. intel_ring_advance(ring);
  229. return 0;
  230. }
  231. static int
  232. gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
  233. {
  234. int ret;
  235. ret = intel_ring_begin(ring, 4);
  236. if (ret)
  237. return ret;
  238. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  239. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  240. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  241. intel_ring_emit(ring, 0);
  242. intel_ring_emit(ring, 0);
  243. intel_ring_advance(ring);
  244. return 0;
  245. }
  246. static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
  247. {
  248. int ret;
  249. if (!ring->fbc_dirty)
  250. return 0;
  251. ret = intel_ring_begin(ring, 6);
  252. if (ret)
  253. return ret;
  254. /* WaFbcNukeOn3DBlt:ivb/hsw */
  255. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  256. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  257. intel_ring_emit(ring, value);
  258. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  259. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  260. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  261. intel_ring_advance(ring);
  262. ring->fbc_dirty = false;
  263. return 0;
  264. }
  265. static int
  266. gen7_render_ring_flush(struct intel_ring_buffer *ring,
  267. u32 invalidate_domains, u32 flush_domains)
  268. {
  269. u32 flags = 0;
  270. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  271. int ret;
  272. /*
  273. * Ensure that any following seqno writes only happen when the render
  274. * cache is indeed flushed.
  275. *
  276. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  277. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  278. * don't try to be clever and just set it unconditionally.
  279. */
  280. flags |= PIPE_CONTROL_CS_STALL;
  281. /* Just flush everything. Experiments have shown that reducing the
  282. * number of bits based on the write domains has little performance
  283. * impact.
  284. */
  285. if (flush_domains) {
  286. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  287. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  288. }
  289. if (invalidate_domains) {
  290. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  291. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  292. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  293. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  294. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  295. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  296. /*
  297. * TLB invalidate requires a post-sync write.
  298. */
  299. flags |= PIPE_CONTROL_QW_WRITE;
  300. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  301. /* Workaround: we must issue a pipe_control with CS-stall bit
  302. * set before a pipe_control command that has the state cache
  303. * invalidate bit set. */
  304. gen7_render_ring_cs_stall_wa(ring);
  305. }
  306. ret = intel_ring_begin(ring, 4);
  307. if (ret)
  308. return ret;
  309. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  310. intel_ring_emit(ring, flags);
  311. intel_ring_emit(ring, scratch_addr);
  312. intel_ring_emit(ring, 0);
  313. intel_ring_advance(ring);
  314. if (!invalidate_domains && flush_domains)
  315. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  316. return 0;
  317. }
  318. static int
  319. gen8_render_ring_flush(struct intel_ring_buffer *ring,
  320. u32 invalidate_domains, u32 flush_domains)
  321. {
  322. u32 flags = 0;
  323. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  324. int ret;
  325. flags |= PIPE_CONTROL_CS_STALL;
  326. if (flush_domains) {
  327. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  328. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  329. }
  330. if (invalidate_domains) {
  331. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  332. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  333. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  334. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  335. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  336. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  337. flags |= PIPE_CONTROL_QW_WRITE;
  338. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  339. }
  340. ret = intel_ring_begin(ring, 6);
  341. if (ret)
  342. return ret;
  343. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  344. intel_ring_emit(ring, flags);
  345. intel_ring_emit(ring, scratch_addr);
  346. intel_ring_emit(ring, 0);
  347. intel_ring_emit(ring, 0);
  348. intel_ring_emit(ring, 0);
  349. intel_ring_advance(ring);
  350. return 0;
  351. }
  352. static void ring_write_tail(struct intel_ring_buffer *ring,
  353. u32 value)
  354. {
  355. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  356. I915_WRITE_TAIL(ring, value);
  357. }
  358. u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
  359. {
  360. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  361. u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
  362. RING_ACTHD(ring->mmio_base) : ACTHD;
  363. return I915_READ(acthd_reg);
  364. }
  365. static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
  366. {
  367. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  368. u32 addr;
  369. addr = dev_priv->status_page_dmah->busaddr;
  370. if (INTEL_INFO(ring->dev)->gen >= 4)
  371. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  372. I915_WRITE(HWS_PGA, addr);
  373. }
  374. static int init_ring_common(struct intel_ring_buffer *ring)
  375. {
  376. struct drm_device *dev = ring->dev;
  377. drm_i915_private_t *dev_priv = dev->dev_private;
  378. struct drm_i915_gem_object *obj = ring->obj;
  379. int ret = 0;
  380. u32 head;
  381. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  382. /* Stop the ring if it's running. */
  383. I915_WRITE_CTL(ring, 0);
  384. I915_WRITE_HEAD(ring, 0);
  385. ring->write_tail(ring, 0);
  386. if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000))
  387. DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
  388. if (I915_NEED_GFX_HWS(dev))
  389. intel_ring_setup_status_page(ring);
  390. else
  391. ring_setup_phys_status_page(ring);
  392. head = I915_READ_HEAD(ring) & HEAD_ADDR;
  393. /* G45 ring initialization fails to reset head to zero */
  394. if (head != 0) {
  395. DRM_DEBUG_KMS("%s head not reset to zero "
  396. "ctl %08x head %08x tail %08x start %08x\n",
  397. ring->name,
  398. I915_READ_CTL(ring),
  399. I915_READ_HEAD(ring),
  400. I915_READ_TAIL(ring),
  401. I915_READ_START(ring));
  402. I915_WRITE_HEAD(ring, 0);
  403. if (I915_READ_HEAD(ring) & HEAD_ADDR) {
  404. DRM_ERROR("failed to set %s head to zero "
  405. "ctl %08x head %08x tail %08x start %08x\n",
  406. ring->name,
  407. I915_READ_CTL(ring),
  408. I915_READ_HEAD(ring),
  409. I915_READ_TAIL(ring),
  410. I915_READ_START(ring));
  411. }
  412. }
  413. /* Initialize the ring. This must happen _after_ we've cleared the ring
  414. * registers with the above sequence (the readback of the HEAD registers
  415. * also enforces ordering), otherwise the hw might lose the new ring
  416. * register values. */
  417. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  418. I915_WRITE_CTL(ring,
  419. ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
  420. | RING_VALID);
  421. /* If the head is still not zero, the ring is dead */
  422. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  423. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  424. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  425. DRM_ERROR("%s initialization failed "
  426. "ctl %08x head %08x tail %08x start %08x\n",
  427. ring->name,
  428. I915_READ_CTL(ring),
  429. I915_READ_HEAD(ring),
  430. I915_READ_TAIL(ring),
  431. I915_READ_START(ring));
  432. ret = -EIO;
  433. goto out;
  434. }
  435. if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
  436. i915_kernel_lost_context(ring->dev);
  437. else {
  438. ring->head = I915_READ_HEAD(ring);
  439. ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  440. ring->space = ring_space(ring);
  441. ring->last_retired_head = -1;
  442. }
  443. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  444. out:
  445. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  446. return ret;
  447. }
  448. static int
  449. init_pipe_control(struct intel_ring_buffer *ring)
  450. {
  451. int ret;
  452. if (ring->scratch.obj)
  453. return 0;
  454. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  455. if (ring->scratch.obj == NULL) {
  456. DRM_ERROR("Failed to allocate seqno page\n");
  457. ret = -ENOMEM;
  458. goto err;
  459. }
  460. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  461. if (ret)
  462. goto err_unref;
  463. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  464. if (ret)
  465. goto err_unref;
  466. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  467. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  468. if (ring->scratch.cpu_page == NULL) {
  469. ret = -ENOMEM;
  470. goto err_unpin;
  471. }
  472. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  473. ring->name, ring->scratch.gtt_offset);
  474. return 0;
  475. err_unpin:
  476. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  477. err_unref:
  478. drm_gem_object_unreference(&ring->scratch.obj->base);
  479. err:
  480. return ret;
  481. }
  482. static int init_render_ring(struct intel_ring_buffer *ring)
  483. {
  484. struct drm_device *dev = ring->dev;
  485. struct drm_i915_private *dev_priv = dev->dev_private;
  486. int ret = init_ring_common(ring);
  487. if (INTEL_INFO(dev)->gen > 3)
  488. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  489. /* We need to disable the AsyncFlip performance optimisations in order
  490. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  491. * programmed to '1' on all products.
  492. *
  493. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw
  494. */
  495. if (INTEL_INFO(dev)->gen >= 6)
  496. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  497. /* Required for the hardware to program scanline values for waiting */
  498. if (INTEL_INFO(dev)->gen == 6)
  499. I915_WRITE(GFX_MODE,
  500. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
  501. if (IS_GEN7(dev))
  502. I915_WRITE(GFX_MODE_GEN7,
  503. _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
  504. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  505. if (INTEL_INFO(dev)->gen >= 5) {
  506. ret = init_pipe_control(ring);
  507. if (ret)
  508. return ret;
  509. }
  510. if (IS_GEN6(dev)) {
  511. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  512. * "If this bit is set, STCunit will have LRA as replacement
  513. * policy. [...] This bit must be reset. LRA replacement
  514. * policy is not supported."
  515. */
  516. I915_WRITE(CACHE_MODE_0,
  517. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  518. /* This is not explicitly set for GEN6, so read the register.
  519. * see intel_ring_mi_set_context() for why we care.
  520. * TODO: consider explicitly setting the bit for GEN5
  521. */
  522. ring->itlb_before_ctx_switch =
  523. !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
  524. }
  525. if (INTEL_INFO(dev)->gen >= 6)
  526. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  527. if (HAS_L3_DPF(dev))
  528. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  529. return ret;
  530. }
  531. static void render_ring_cleanup(struct intel_ring_buffer *ring)
  532. {
  533. struct drm_device *dev = ring->dev;
  534. if (ring->scratch.obj == NULL)
  535. return;
  536. if (INTEL_INFO(dev)->gen >= 5) {
  537. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  538. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  539. }
  540. drm_gem_object_unreference(&ring->scratch.obj->base);
  541. ring->scratch.obj = NULL;
  542. }
  543. static void
  544. update_mboxes(struct intel_ring_buffer *ring,
  545. u32 mmio_offset)
  546. {
  547. /* NB: In order to be able to do semaphore MBOX updates for varying number
  548. * of rings, it's easiest if we round up each individual update to a
  549. * multiple of 2 (since ring updates must always be a multiple of 2)
  550. * even though the actual update only requires 3 dwords.
  551. */
  552. #define MBOX_UPDATE_DWORDS 4
  553. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  554. intel_ring_emit(ring, mmio_offset);
  555. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  556. intel_ring_emit(ring, MI_NOOP);
  557. }
  558. /**
  559. * gen6_add_request - Update the semaphore mailbox registers
  560. *
  561. * @ring - ring that is adding a request
  562. * @seqno - return seqno stuck into the ring
  563. *
  564. * Update the mailbox registers in the *other* rings with the current seqno.
  565. * This acts like a signal in the canonical semaphore.
  566. */
  567. static int
  568. gen6_add_request(struct intel_ring_buffer *ring)
  569. {
  570. struct drm_device *dev = ring->dev;
  571. struct drm_i915_private *dev_priv = dev->dev_private;
  572. struct intel_ring_buffer *useless;
  573. int i, ret, num_dwords = 4;
  574. if (i915_semaphore_is_enabled(dev))
  575. num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
  576. #undef MBOX_UPDATE_DWORDS
  577. ret = intel_ring_begin(ring, num_dwords);
  578. if (ret)
  579. return ret;
  580. if (i915_semaphore_is_enabled(dev)) {
  581. for_each_ring(useless, dev_priv, i) {
  582. u32 mbox_reg = ring->signal_mbox[i];
  583. if (mbox_reg != GEN6_NOSYNC)
  584. update_mboxes(ring, mbox_reg);
  585. }
  586. }
  587. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  588. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  589. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  590. intel_ring_emit(ring, MI_USER_INTERRUPT);
  591. __intel_ring_advance(ring);
  592. return 0;
  593. }
  594. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  595. u32 seqno)
  596. {
  597. struct drm_i915_private *dev_priv = dev->dev_private;
  598. return dev_priv->last_seqno < seqno;
  599. }
  600. /**
  601. * intel_ring_sync - sync the waiter to the signaller on seqno
  602. *
  603. * @waiter - ring that is waiting
  604. * @signaller - ring which has, or will signal
  605. * @seqno - seqno which the waiter will block on
  606. */
  607. static int
  608. gen6_ring_sync(struct intel_ring_buffer *waiter,
  609. struct intel_ring_buffer *signaller,
  610. u32 seqno)
  611. {
  612. int ret;
  613. u32 dw1 = MI_SEMAPHORE_MBOX |
  614. MI_SEMAPHORE_COMPARE |
  615. MI_SEMAPHORE_REGISTER;
  616. /* Throughout all of the GEM code, seqno passed implies our current
  617. * seqno is >= the last seqno executed. However for hardware the
  618. * comparison is strictly greater than.
  619. */
  620. seqno -= 1;
  621. WARN_ON(signaller->semaphore_register[waiter->id] ==
  622. MI_SEMAPHORE_SYNC_INVALID);
  623. ret = intel_ring_begin(waiter, 4);
  624. if (ret)
  625. return ret;
  626. /* If seqno wrap happened, omit the wait with no-ops */
  627. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  628. intel_ring_emit(waiter,
  629. dw1 |
  630. signaller->semaphore_register[waiter->id]);
  631. intel_ring_emit(waiter, seqno);
  632. intel_ring_emit(waiter, 0);
  633. intel_ring_emit(waiter, MI_NOOP);
  634. } else {
  635. intel_ring_emit(waiter, MI_NOOP);
  636. intel_ring_emit(waiter, MI_NOOP);
  637. intel_ring_emit(waiter, MI_NOOP);
  638. intel_ring_emit(waiter, MI_NOOP);
  639. }
  640. intel_ring_advance(waiter);
  641. return 0;
  642. }
  643. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  644. do { \
  645. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  646. PIPE_CONTROL_DEPTH_STALL); \
  647. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  648. intel_ring_emit(ring__, 0); \
  649. intel_ring_emit(ring__, 0); \
  650. } while (0)
  651. static int
  652. pc_render_add_request(struct intel_ring_buffer *ring)
  653. {
  654. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  655. int ret;
  656. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  657. * incoherent with writes to memory, i.e. completely fubar,
  658. * so we need to use PIPE_NOTIFY instead.
  659. *
  660. * However, we also need to workaround the qword write
  661. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  662. * memory before requesting an interrupt.
  663. */
  664. ret = intel_ring_begin(ring, 32);
  665. if (ret)
  666. return ret;
  667. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  668. PIPE_CONTROL_WRITE_FLUSH |
  669. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  670. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  671. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  672. intel_ring_emit(ring, 0);
  673. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  674. scratch_addr += 128; /* write to separate cachelines */
  675. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  676. scratch_addr += 128;
  677. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  678. scratch_addr += 128;
  679. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  680. scratch_addr += 128;
  681. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  682. scratch_addr += 128;
  683. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  684. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  685. PIPE_CONTROL_WRITE_FLUSH |
  686. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  687. PIPE_CONTROL_NOTIFY);
  688. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  689. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  690. intel_ring_emit(ring, 0);
  691. __intel_ring_advance(ring);
  692. return 0;
  693. }
  694. static u32
  695. gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  696. {
  697. /* Workaround to force correct ordering between irq and seqno writes on
  698. * ivb (and maybe also on snb) by reading from a CS register (like
  699. * ACTHD) before reading the status page. */
  700. if (!lazy_coherency)
  701. intel_ring_get_active_head(ring);
  702. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  703. }
  704. static u32
  705. ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  706. {
  707. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  708. }
  709. static void
  710. ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
  711. {
  712. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  713. }
  714. static u32
  715. pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  716. {
  717. return ring->scratch.cpu_page[0];
  718. }
  719. static void
  720. pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
  721. {
  722. ring->scratch.cpu_page[0] = seqno;
  723. }
  724. static bool
  725. gen5_ring_get_irq(struct intel_ring_buffer *ring)
  726. {
  727. struct drm_device *dev = ring->dev;
  728. drm_i915_private_t *dev_priv = dev->dev_private;
  729. unsigned long flags;
  730. if (!dev->irq_enabled)
  731. return false;
  732. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  733. if (ring->irq_refcount++ == 0)
  734. ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  735. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  736. return true;
  737. }
  738. static void
  739. gen5_ring_put_irq(struct intel_ring_buffer *ring)
  740. {
  741. struct drm_device *dev = ring->dev;
  742. drm_i915_private_t *dev_priv = dev->dev_private;
  743. unsigned long flags;
  744. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  745. if (--ring->irq_refcount == 0)
  746. ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  747. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  748. }
  749. static bool
  750. i9xx_ring_get_irq(struct intel_ring_buffer *ring)
  751. {
  752. struct drm_device *dev = ring->dev;
  753. drm_i915_private_t *dev_priv = dev->dev_private;
  754. unsigned long flags;
  755. if (!dev->irq_enabled)
  756. return false;
  757. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  758. if (ring->irq_refcount++ == 0) {
  759. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  760. I915_WRITE(IMR, dev_priv->irq_mask);
  761. POSTING_READ(IMR);
  762. }
  763. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  764. return true;
  765. }
  766. static void
  767. i9xx_ring_put_irq(struct intel_ring_buffer *ring)
  768. {
  769. struct drm_device *dev = ring->dev;
  770. drm_i915_private_t *dev_priv = dev->dev_private;
  771. unsigned long flags;
  772. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  773. if (--ring->irq_refcount == 0) {
  774. dev_priv->irq_mask |= ring->irq_enable_mask;
  775. I915_WRITE(IMR, dev_priv->irq_mask);
  776. POSTING_READ(IMR);
  777. }
  778. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  779. }
  780. static bool
  781. i8xx_ring_get_irq(struct intel_ring_buffer *ring)
  782. {
  783. struct drm_device *dev = ring->dev;
  784. drm_i915_private_t *dev_priv = dev->dev_private;
  785. unsigned long flags;
  786. if (!dev->irq_enabled)
  787. return false;
  788. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  789. if (ring->irq_refcount++ == 0) {
  790. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  791. I915_WRITE16(IMR, dev_priv->irq_mask);
  792. POSTING_READ16(IMR);
  793. }
  794. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  795. return true;
  796. }
  797. static void
  798. i8xx_ring_put_irq(struct intel_ring_buffer *ring)
  799. {
  800. struct drm_device *dev = ring->dev;
  801. drm_i915_private_t *dev_priv = dev->dev_private;
  802. unsigned long flags;
  803. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  804. if (--ring->irq_refcount == 0) {
  805. dev_priv->irq_mask |= ring->irq_enable_mask;
  806. I915_WRITE16(IMR, dev_priv->irq_mask);
  807. POSTING_READ16(IMR);
  808. }
  809. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  810. }
  811. void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
  812. {
  813. struct drm_device *dev = ring->dev;
  814. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  815. u32 mmio = 0;
  816. /* The ring status page addresses are no longer next to the rest of
  817. * the ring registers as of gen7.
  818. */
  819. if (IS_GEN7(dev)) {
  820. switch (ring->id) {
  821. case RCS:
  822. mmio = RENDER_HWS_PGA_GEN7;
  823. break;
  824. case BCS:
  825. mmio = BLT_HWS_PGA_GEN7;
  826. break;
  827. case VCS:
  828. mmio = BSD_HWS_PGA_GEN7;
  829. break;
  830. case VECS:
  831. mmio = VEBOX_HWS_PGA_GEN7;
  832. break;
  833. }
  834. } else if (IS_GEN6(ring->dev)) {
  835. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  836. } else {
  837. /* XXX: gen8 returns to sanity */
  838. mmio = RING_HWS_PGA(ring->mmio_base);
  839. }
  840. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  841. POSTING_READ(mmio);
  842. /*
  843. * Flush the TLB for this page
  844. *
  845. * FIXME: These two bits have disappeared on gen8, so a question
  846. * arises: do we still need this and if so how should we go about
  847. * invalidating the TLB?
  848. */
  849. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  850. u32 reg = RING_INSTPM(ring->mmio_base);
  851. /* ring should be idle before issuing a sync flush*/
  852. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  853. I915_WRITE(reg,
  854. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  855. INSTPM_SYNC_FLUSH));
  856. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  857. 1000))
  858. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  859. ring->name);
  860. }
  861. }
  862. static int
  863. bsd_ring_flush(struct intel_ring_buffer *ring,
  864. u32 invalidate_domains,
  865. u32 flush_domains)
  866. {
  867. int ret;
  868. ret = intel_ring_begin(ring, 2);
  869. if (ret)
  870. return ret;
  871. intel_ring_emit(ring, MI_FLUSH);
  872. intel_ring_emit(ring, MI_NOOP);
  873. intel_ring_advance(ring);
  874. return 0;
  875. }
  876. static int
  877. i9xx_add_request(struct intel_ring_buffer *ring)
  878. {
  879. int ret;
  880. ret = intel_ring_begin(ring, 4);
  881. if (ret)
  882. return ret;
  883. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  884. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  885. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  886. intel_ring_emit(ring, MI_USER_INTERRUPT);
  887. __intel_ring_advance(ring);
  888. return 0;
  889. }
  890. static bool
  891. gen6_ring_get_irq(struct intel_ring_buffer *ring)
  892. {
  893. struct drm_device *dev = ring->dev;
  894. drm_i915_private_t *dev_priv = dev->dev_private;
  895. unsigned long flags;
  896. if (!dev->irq_enabled)
  897. return false;
  898. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  899. if (ring->irq_refcount++ == 0) {
  900. if (HAS_L3_DPF(dev) && ring->id == RCS)
  901. I915_WRITE_IMR(ring,
  902. ~(ring->irq_enable_mask |
  903. GT_PARITY_ERROR(dev)));
  904. else
  905. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  906. ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  907. }
  908. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  909. return true;
  910. }
  911. static void
  912. gen6_ring_put_irq(struct intel_ring_buffer *ring)
  913. {
  914. struct drm_device *dev = ring->dev;
  915. drm_i915_private_t *dev_priv = dev->dev_private;
  916. unsigned long flags;
  917. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  918. if (--ring->irq_refcount == 0) {
  919. if (HAS_L3_DPF(dev) && ring->id == RCS)
  920. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  921. else
  922. I915_WRITE_IMR(ring, ~0);
  923. ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  924. }
  925. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  926. }
  927. static bool
  928. hsw_vebox_get_irq(struct intel_ring_buffer *ring)
  929. {
  930. struct drm_device *dev = ring->dev;
  931. struct drm_i915_private *dev_priv = dev->dev_private;
  932. unsigned long flags;
  933. if (!dev->irq_enabled)
  934. return false;
  935. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  936. if (ring->irq_refcount++ == 0) {
  937. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  938. snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  939. }
  940. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  941. return true;
  942. }
  943. static void
  944. hsw_vebox_put_irq(struct intel_ring_buffer *ring)
  945. {
  946. struct drm_device *dev = ring->dev;
  947. struct drm_i915_private *dev_priv = dev->dev_private;
  948. unsigned long flags;
  949. if (!dev->irq_enabled)
  950. return;
  951. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  952. if (--ring->irq_refcount == 0) {
  953. I915_WRITE_IMR(ring, ~0);
  954. snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  955. }
  956. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  957. }
  958. static bool
  959. gen8_ring_get_irq(struct intel_ring_buffer *ring)
  960. {
  961. struct drm_device *dev = ring->dev;
  962. struct drm_i915_private *dev_priv = dev->dev_private;
  963. unsigned long flags;
  964. if (!dev->irq_enabled)
  965. return false;
  966. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  967. if (ring->irq_refcount++ == 0) {
  968. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  969. I915_WRITE_IMR(ring,
  970. ~(ring->irq_enable_mask |
  971. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  972. } else {
  973. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  974. }
  975. POSTING_READ(RING_IMR(ring->mmio_base));
  976. }
  977. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  978. return true;
  979. }
  980. static void
  981. gen8_ring_put_irq(struct intel_ring_buffer *ring)
  982. {
  983. struct drm_device *dev = ring->dev;
  984. struct drm_i915_private *dev_priv = dev->dev_private;
  985. unsigned long flags;
  986. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  987. if (--ring->irq_refcount == 0) {
  988. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  989. I915_WRITE_IMR(ring,
  990. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  991. } else {
  992. I915_WRITE_IMR(ring, ~0);
  993. }
  994. POSTING_READ(RING_IMR(ring->mmio_base));
  995. }
  996. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  997. }
  998. static int
  999. i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1000. u32 offset, u32 length,
  1001. unsigned flags)
  1002. {
  1003. int ret;
  1004. ret = intel_ring_begin(ring, 2);
  1005. if (ret)
  1006. return ret;
  1007. intel_ring_emit(ring,
  1008. MI_BATCH_BUFFER_START |
  1009. MI_BATCH_GTT |
  1010. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1011. intel_ring_emit(ring, offset);
  1012. intel_ring_advance(ring);
  1013. return 0;
  1014. }
  1015. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1016. #define I830_BATCH_LIMIT (256*1024)
  1017. static int
  1018. i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1019. u32 offset, u32 len,
  1020. unsigned flags)
  1021. {
  1022. int ret;
  1023. if (flags & I915_DISPATCH_PINNED) {
  1024. ret = intel_ring_begin(ring, 4);
  1025. if (ret)
  1026. return ret;
  1027. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1028. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1029. intel_ring_emit(ring, offset + len - 8);
  1030. intel_ring_emit(ring, MI_NOOP);
  1031. intel_ring_advance(ring);
  1032. } else {
  1033. u32 cs_offset = ring->scratch.gtt_offset;
  1034. if (len > I830_BATCH_LIMIT)
  1035. return -ENOSPC;
  1036. ret = intel_ring_begin(ring, 9+3);
  1037. if (ret)
  1038. return ret;
  1039. /* Blit the batch (which has now all relocs applied) to the stable batch
  1040. * scratch bo area (so that the CS never stumbles over its tlb
  1041. * invalidation bug) ... */
  1042. intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
  1043. XY_SRC_COPY_BLT_WRITE_ALPHA |
  1044. XY_SRC_COPY_BLT_WRITE_RGB);
  1045. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
  1046. intel_ring_emit(ring, 0);
  1047. intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
  1048. intel_ring_emit(ring, cs_offset);
  1049. intel_ring_emit(ring, 0);
  1050. intel_ring_emit(ring, 4096);
  1051. intel_ring_emit(ring, offset);
  1052. intel_ring_emit(ring, MI_FLUSH);
  1053. /* ... and execute it. */
  1054. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1055. intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1056. intel_ring_emit(ring, cs_offset + len - 8);
  1057. intel_ring_advance(ring);
  1058. }
  1059. return 0;
  1060. }
  1061. static int
  1062. i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1063. u32 offset, u32 len,
  1064. unsigned flags)
  1065. {
  1066. int ret;
  1067. ret = intel_ring_begin(ring, 2);
  1068. if (ret)
  1069. return ret;
  1070. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1071. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1072. intel_ring_advance(ring);
  1073. return 0;
  1074. }
  1075. static void cleanup_status_page(struct intel_ring_buffer *ring)
  1076. {
  1077. struct drm_i915_gem_object *obj;
  1078. obj = ring->status_page.obj;
  1079. if (obj == NULL)
  1080. return;
  1081. kunmap(sg_page(obj->pages->sgl));
  1082. i915_gem_object_ggtt_unpin(obj);
  1083. drm_gem_object_unreference(&obj->base);
  1084. ring->status_page.obj = NULL;
  1085. }
  1086. static int init_status_page(struct intel_ring_buffer *ring)
  1087. {
  1088. struct drm_device *dev = ring->dev;
  1089. struct drm_i915_gem_object *obj;
  1090. int ret;
  1091. obj = i915_gem_alloc_object(dev, 4096);
  1092. if (obj == NULL) {
  1093. DRM_ERROR("Failed to allocate status page\n");
  1094. ret = -ENOMEM;
  1095. goto err;
  1096. }
  1097. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1098. if (ret)
  1099. goto err_unref;
  1100. ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
  1101. if (ret)
  1102. goto err_unref;
  1103. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1104. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1105. if (ring->status_page.page_addr == NULL) {
  1106. ret = -ENOMEM;
  1107. goto err_unpin;
  1108. }
  1109. ring->status_page.obj = obj;
  1110. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1111. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1112. ring->name, ring->status_page.gfx_addr);
  1113. return 0;
  1114. err_unpin:
  1115. i915_gem_object_ggtt_unpin(obj);
  1116. err_unref:
  1117. drm_gem_object_unreference(&obj->base);
  1118. err:
  1119. return ret;
  1120. }
  1121. static int init_phys_status_page(struct intel_ring_buffer *ring)
  1122. {
  1123. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1124. if (!dev_priv->status_page_dmah) {
  1125. dev_priv->status_page_dmah =
  1126. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1127. if (!dev_priv->status_page_dmah)
  1128. return -ENOMEM;
  1129. }
  1130. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1131. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1132. return 0;
  1133. }
  1134. static int intel_init_ring_buffer(struct drm_device *dev,
  1135. struct intel_ring_buffer *ring)
  1136. {
  1137. struct drm_i915_gem_object *obj;
  1138. struct drm_i915_private *dev_priv = dev->dev_private;
  1139. int ret;
  1140. ring->dev = dev;
  1141. INIT_LIST_HEAD(&ring->active_list);
  1142. INIT_LIST_HEAD(&ring->request_list);
  1143. ring->size = 32 * PAGE_SIZE;
  1144. memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
  1145. init_waitqueue_head(&ring->irq_queue);
  1146. if (I915_NEED_GFX_HWS(dev)) {
  1147. ret = init_status_page(ring);
  1148. if (ret)
  1149. return ret;
  1150. } else {
  1151. BUG_ON(ring->id != RCS);
  1152. ret = init_phys_status_page(ring);
  1153. if (ret)
  1154. return ret;
  1155. }
  1156. obj = NULL;
  1157. if (!HAS_LLC(dev))
  1158. obj = i915_gem_object_create_stolen(dev, ring->size);
  1159. if (obj == NULL)
  1160. obj = i915_gem_alloc_object(dev, ring->size);
  1161. if (obj == NULL) {
  1162. DRM_ERROR("Failed to allocate ringbuffer\n");
  1163. ret = -ENOMEM;
  1164. goto err_hws;
  1165. }
  1166. ring->obj = obj;
  1167. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1168. if (ret)
  1169. goto err_unref;
  1170. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1171. if (ret)
  1172. goto err_unpin;
  1173. ring->virtual_start =
  1174. ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
  1175. ring->size);
  1176. if (ring->virtual_start == NULL) {
  1177. DRM_ERROR("Failed to map ringbuffer.\n");
  1178. ret = -EINVAL;
  1179. goto err_unpin;
  1180. }
  1181. ret = ring->init(ring);
  1182. if (ret)
  1183. goto err_unmap;
  1184. /* Workaround an erratum on the i830 which causes a hang if
  1185. * the TAIL pointer points to within the last 2 cachelines
  1186. * of the buffer.
  1187. */
  1188. ring->effective_size = ring->size;
  1189. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  1190. ring->effective_size -= 128;
  1191. i915_cmd_parser_init_ring(ring);
  1192. return 0;
  1193. err_unmap:
  1194. iounmap(ring->virtual_start);
  1195. err_unpin:
  1196. i915_gem_object_ggtt_unpin(obj);
  1197. err_unref:
  1198. drm_gem_object_unreference(&obj->base);
  1199. ring->obj = NULL;
  1200. err_hws:
  1201. cleanup_status_page(ring);
  1202. return ret;
  1203. }
  1204. void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
  1205. {
  1206. struct drm_i915_private *dev_priv;
  1207. int ret;
  1208. if (ring->obj == NULL)
  1209. return;
  1210. /* Disable the ring buffer. The ring must be idle at this point */
  1211. dev_priv = ring->dev->dev_private;
  1212. ret = intel_ring_idle(ring);
  1213. if (ret && !i915_reset_in_progress(&dev_priv->gpu_error))
  1214. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  1215. ring->name, ret);
  1216. I915_WRITE_CTL(ring, 0);
  1217. iounmap(ring->virtual_start);
  1218. i915_gem_object_ggtt_unpin(ring->obj);
  1219. drm_gem_object_unreference(&ring->obj->base);
  1220. ring->obj = NULL;
  1221. ring->preallocated_lazy_request = NULL;
  1222. ring->outstanding_lazy_seqno = 0;
  1223. if (ring->cleanup)
  1224. ring->cleanup(ring);
  1225. cleanup_status_page(ring);
  1226. }
  1227. static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
  1228. {
  1229. struct drm_i915_gem_request *request;
  1230. u32 seqno = 0, tail;
  1231. int ret;
  1232. if (ring->last_retired_head != -1) {
  1233. ring->head = ring->last_retired_head;
  1234. ring->last_retired_head = -1;
  1235. ring->space = ring_space(ring);
  1236. if (ring->space >= n)
  1237. return 0;
  1238. }
  1239. list_for_each_entry(request, &ring->request_list, list) {
  1240. int space;
  1241. if (request->tail == -1)
  1242. continue;
  1243. space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
  1244. if (space < 0)
  1245. space += ring->size;
  1246. if (space >= n) {
  1247. seqno = request->seqno;
  1248. tail = request->tail;
  1249. break;
  1250. }
  1251. /* Consume this request in case we need more space than
  1252. * is available and so need to prevent a race between
  1253. * updating last_retired_head and direct reads of
  1254. * I915_RING_HEAD. It also provides a nice sanity check.
  1255. */
  1256. request->tail = -1;
  1257. }
  1258. if (seqno == 0)
  1259. return -ENOSPC;
  1260. ret = i915_wait_seqno(ring, seqno);
  1261. if (ret)
  1262. return ret;
  1263. ring->head = tail;
  1264. ring->space = ring_space(ring);
  1265. if (WARN_ON(ring->space < n))
  1266. return -ENOSPC;
  1267. return 0;
  1268. }
  1269. static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
  1270. {
  1271. struct drm_device *dev = ring->dev;
  1272. struct drm_i915_private *dev_priv = dev->dev_private;
  1273. unsigned long end;
  1274. int ret;
  1275. ret = intel_ring_wait_request(ring, n);
  1276. if (ret != -ENOSPC)
  1277. return ret;
  1278. /* force the tail write in case we have been skipping them */
  1279. __intel_ring_advance(ring);
  1280. trace_i915_ring_wait_begin(ring);
  1281. /* With GEM the hangcheck timer should kick us out of the loop,
  1282. * leaving it early runs the risk of corrupting GEM state (due
  1283. * to running on almost untested codepaths). But on resume
  1284. * timers don't work yet, so prevent a complete hang in that
  1285. * case by choosing an insanely large timeout. */
  1286. end = jiffies + 60 * HZ;
  1287. do {
  1288. ring->head = I915_READ_HEAD(ring);
  1289. ring->space = ring_space(ring);
  1290. if (ring->space >= n) {
  1291. trace_i915_ring_wait_end(ring);
  1292. return 0;
  1293. }
  1294. if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
  1295. dev->primary->master) {
  1296. struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
  1297. if (master_priv->sarea_priv)
  1298. master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
  1299. }
  1300. msleep(1);
  1301. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1302. dev_priv->mm.interruptible);
  1303. if (ret)
  1304. return ret;
  1305. } while (!time_after(jiffies, end));
  1306. trace_i915_ring_wait_end(ring);
  1307. return -EBUSY;
  1308. }
  1309. static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
  1310. {
  1311. uint32_t __iomem *virt;
  1312. int rem = ring->size - ring->tail;
  1313. if (ring->space < rem) {
  1314. int ret = ring_wait_for_space(ring, rem);
  1315. if (ret)
  1316. return ret;
  1317. }
  1318. virt = ring->virtual_start + ring->tail;
  1319. rem /= 4;
  1320. while (rem--)
  1321. iowrite32(MI_NOOP, virt++);
  1322. ring->tail = 0;
  1323. ring->space = ring_space(ring);
  1324. return 0;
  1325. }
  1326. int intel_ring_idle(struct intel_ring_buffer *ring)
  1327. {
  1328. u32 seqno;
  1329. int ret;
  1330. /* We need to add any requests required to flush the objects and ring */
  1331. if (ring->outstanding_lazy_seqno) {
  1332. ret = i915_add_request(ring, NULL);
  1333. if (ret)
  1334. return ret;
  1335. }
  1336. /* Wait upon the last request to be completed */
  1337. if (list_empty(&ring->request_list))
  1338. return 0;
  1339. seqno = list_entry(ring->request_list.prev,
  1340. struct drm_i915_gem_request,
  1341. list)->seqno;
  1342. return i915_wait_seqno(ring, seqno);
  1343. }
  1344. static int
  1345. intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
  1346. {
  1347. if (ring->outstanding_lazy_seqno)
  1348. return 0;
  1349. if (ring->preallocated_lazy_request == NULL) {
  1350. struct drm_i915_gem_request *request;
  1351. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1352. if (request == NULL)
  1353. return -ENOMEM;
  1354. ring->preallocated_lazy_request = request;
  1355. }
  1356. return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
  1357. }
  1358. static int __intel_ring_prepare(struct intel_ring_buffer *ring,
  1359. int bytes)
  1360. {
  1361. int ret;
  1362. if (unlikely(ring->tail + bytes > ring->effective_size)) {
  1363. ret = intel_wrap_ring_buffer(ring);
  1364. if (unlikely(ret))
  1365. return ret;
  1366. }
  1367. if (unlikely(ring->space < bytes)) {
  1368. ret = ring_wait_for_space(ring, bytes);
  1369. if (unlikely(ret))
  1370. return ret;
  1371. }
  1372. return 0;
  1373. }
  1374. int intel_ring_begin(struct intel_ring_buffer *ring,
  1375. int num_dwords)
  1376. {
  1377. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1378. int ret;
  1379. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1380. dev_priv->mm.interruptible);
  1381. if (ret)
  1382. return ret;
  1383. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1384. if (ret)
  1385. return ret;
  1386. /* Preallocate the olr before touching the ring */
  1387. ret = intel_ring_alloc_seqno(ring);
  1388. if (ret)
  1389. return ret;
  1390. ring->space -= num_dwords * sizeof(uint32_t);
  1391. return 0;
  1392. }
  1393. /* Align the ring tail to a cacheline boundary */
  1394. int intel_ring_cacheline_align(struct intel_ring_buffer *ring)
  1395. {
  1396. int num_dwords = (64 - (ring->tail & 63)) / sizeof(uint32_t);
  1397. int ret;
  1398. if (num_dwords == 0)
  1399. return 0;
  1400. ret = intel_ring_begin(ring, num_dwords);
  1401. if (ret)
  1402. return ret;
  1403. while (num_dwords--)
  1404. intel_ring_emit(ring, MI_NOOP);
  1405. intel_ring_advance(ring);
  1406. return 0;
  1407. }
  1408. void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1409. {
  1410. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1411. BUG_ON(ring->outstanding_lazy_seqno);
  1412. if (INTEL_INFO(ring->dev)->gen >= 6) {
  1413. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1414. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1415. if (HAS_VEBOX(ring->dev))
  1416. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1417. }
  1418. ring->set_seqno(ring, seqno);
  1419. ring->hangcheck.seqno = seqno;
  1420. }
  1421. static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
  1422. u32 value)
  1423. {
  1424. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1425. /* Every tail move must follow the sequence below */
  1426. /* Disable notification that the ring is IDLE. The GT
  1427. * will then assume that it is busy and bring it out of rc6.
  1428. */
  1429. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1430. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1431. /* Clear the context id. Here be magic! */
  1432. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1433. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1434. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1435. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1436. 50))
  1437. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1438. /* Now that the ring is fully powered up, update the tail */
  1439. I915_WRITE_TAIL(ring, value);
  1440. POSTING_READ(RING_TAIL(ring->mmio_base));
  1441. /* Let the ring send IDLE messages to the GT again,
  1442. * and so let it sleep to conserve power when idle.
  1443. */
  1444. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1445. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1446. }
  1447. static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
  1448. u32 invalidate, u32 flush)
  1449. {
  1450. uint32_t cmd;
  1451. int ret;
  1452. ret = intel_ring_begin(ring, 4);
  1453. if (ret)
  1454. return ret;
  1455. cmd = MI_FLUSH_DW;
  1456. if (INTEL_INFO(ring->dev)->gen >= 8)
  1457. cmd += 1;
  1458. /*
  1459. * Bspec vol 1c.5 - video engine command streamer:
  1460. * "If ENABLED, all TLBs will be invalidated once the flush
  1461. * operation is complete. This bit is only valid when the
  1462. * Post-Sync Operation field is a value of 1h or 3h."
  1463. */
  1464. if (invalidate & I915_GEM_GPU_DOMAINS)
  1465. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1466. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1467. intel_ring_emit(ring, cmd);
  1468. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1469. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1470. intel_ring_emit(ring, 0); /* upper addr */
  1471. intel_ring_emit(ring, 0); /* value */
  1472. } else {
  1473. intel_ring_emit(ring, 0);
  1474. intel_ring_emit(ring, MI_NOOP);
  1475. }
  1476. intel_ring_advance(ring);
  1477. return 0;
  1478. }
  1479. static int
  1480. gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1481. u32 offset, u32 len,
  1482. unsigned flags)
  1483. {
  1484. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1485. bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
  1486. !(flags & I915_DISPATCH_SECURE);
  1487. int ret;
  1488. ret = intel_ring_begin(ring, 4);
  1489. if (ret)
  1490. return ret;
  1491. /* FIXME(BDW): Address space and security selectors. */
  1492. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1493. intel_ring_emit(ring, offset);
  1494. intel_ring_emit(ring, 0);
  1495. intel_ring_emit(ring, MI_NOOP);
  1496. intel_ring_advance(ring);
  1497. return 0;
  1498. }
  1499. static int
  1500. hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1501. u32 offset, u32 len,
  1502. unsigned flags)
  1503. {
  1504. int ret;
  1505. ret = intel_ring_begin(ring, 2);
  1506. if (ret)
  1507. return ret;
  1508. intel_ring_emit(ring,
  1509. MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
  1510. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
  1511. /* bit0-7 is the length on GEN6+ */
  1512. intel_ring_emit(ring, offset);
  1513. intel_ring_advance(ring);
  1514. return 0;
  1515. }
  1516. static int
  1517. gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1518. u32 offset, u32 len,
  1519. unsigned flags)
  1520. {
  1521. int ret;
  1522. ret = intel_ring_begin(ring, 2);
  1523. if (ret)
  1524. return ret;
  1525. intel_ring_emit(ring,
  1526. MI_BATCH_BUFFER_START |
  1527. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1528. /* bit0-7 is the length on GEN6+ */
  1529. intel_ring_emit(ring, offset);
  1530. intel_ring_advance(ring);
  1531. return 0;
  1532. }
  1533. /* Blitter support (SandyBridge+) */
  1534. static int gen6_ring_flush(struct intel_ring_buffer *ring,
  1535. u32 invalidate, u32 flush)
  1536. {
  1537. struct drm_device *dev = ring->dev;
  1538. uint32_t cmd;
  1539. int ret;
  1540. ret = intel_ring_begin(ring, 4);
  1541. if (ret)
  1542. return ret;
  1543. cmd = MI_FLUSH_DW;
  1544. if (INTEL_INFO(ring->dev)->gen >= 8)
  1545. cmd += 1;
  1546. /*
  1547. * Bspec vol 1c.3 - blitter engine command streamer:
  1548. * "If ENABLED, all TLBs will be invalidated once the flush
  1549. * operation is complete. This bit is only valid when the
  1550. * Post-Sync Operation field is a value of 1h or 3h."
  1551. */
  1552. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1553. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1554. MI_FLUSH_DW_OP_STOREDW;
  1555. intel_ring_emit(ring, cmd);
  1556. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1557. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1558. intel_ring_emit(ring, 0); /* upper addr */
  1559. intel_ring_emit(ring, 0); /* value */
  1560. } else {
  1561. intel_ring_emit(ring, 0);
  1562. intel_ring_emit(ring, MI_NOOP);
  1563. }
  1564. intel_ring_advance(ring);
  1565. if (IS_GEN7(dev) && !invalidate && flush)
  1566. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1567. return 0;
  1568. }
  1569. int intel_init_render_ring_buffer(struct drm_device *dev)
  1570. {
  1571. drm_i915_private_t *dev_priv = dev->dev_private;
  1572. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1573. ring->name = "render ring";
  1574. ring->id = RCS;
  1575. ring->mmio_base = RENDER_RING_BASE;
  1576. if (INTEL_INFO(dev)->gen >= 6) {
  1577. ring->add_request = gen6_add_request;
  1578. ring->flush = gen7_render_ring_flush;
  1579. if (INTEL_INFO(dev)->gen == 6)
  1580. ring->flush = gen6_render_ring_flush;
  1581. if (INTEL_INFO(dev)->gen >= 8) {
  1582. ring->flush = gen8_render_ring_flush;
  1583. ring->irq_get = gen8_ring_get_irq;
  1584. ring->irq_put = gen8_ring_put_irq;
  1585. } else {
  1586. ring->irq_get = gen6_ring_get_irq;
  1587. ring->irq_put = gen6_ring_put_irq;
  1588. }
  1589. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1590. ring->get_seqno = gen6_ring_get_seqno;
  1591. ring->set_seqno = ring_set_seqno;
  1592. ring->sync_to = gen6_ring_sync;
  1593. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1594. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
  1595. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
  1596. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
  1597. ring->signal_mbox[RCS] = GEN6_NOSYNC;
  1598. ring->signal_mbox[VCS] = GEN6_VRSYNC;
  1599. ring->signal_mbox[BCS] = GEN6_BRSYNC;
  1600. ring->signal_mbox[VECS] = GEN6_VERSYNC;
  1601. } else if (IS_GEN5(dev)) {
  1602. ring->add_request = pc_render_add_request;
  1603. ring->flush = gen4_render_ring_flush;
  1604. ring->get_seqno = pc_render_get_seqno;
  1605. ring->set_seqno = pc_render_set_seqno;
  1606. ring->irq_get = gen5_ring_get_irq;
  1607. ring->irq_put = gen5_ring_put_irq;
  1608. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  1609. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  1610. } else {
  1611. ring->add_request = i9xx_add_request;
  1612. if (INTEL_INFO(dev)->gen < 4)
  1613. ring->flush = gen2_render_ring_flush;
  1614. else
  1615. ring->flush = gen4_render_ring_flush;
  1616. ring->get_seqno = ring_get_seqno;
  1617. ring->set_seqno = ring_set_seqno;
  1618. if (IS_GEN2(dev)) {
  1619. ring->irq_get = i8xx_ring_get_irq;
  1620. ring->irq_put = i8xx_ring_put_irq;
  1621. } else {
  1622. ring->irq_get = i9xx_ring_get_irq;
  1623. ring->irq_put = i9xx_ring_put_irq;
  1624. }
  1625. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1626. }
  1627. ring->write_tail = ring_write_tail;
  1628. if (IS_HASWELL(dev))
  1629. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  1630. else if (IS_GEN8(dev))
  1631. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1632. else if (INTEL_INFO(dev)->gen >= 6)
  1633. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1634. else if (INTEL_INFO(dev)->gen >= 4)
  1635. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1636. else if (IS_I830(dev) || IS_845G(dev))
  1637. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1638. else
  1639. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1640. ring->init = init_render_ring;
  1641. ring->cleanup = render_ring_cleanup;
  1642. /* Workaround batchbuffer to combat CS tlb bug. */
  1643. if (HAS_BROKEN_CS_TLB(dev)) {
  1644. struct drm_i915_gem_object *obj;
  1645. int ret;
  1646. obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
  1647. if (obj == NULL) {
  1648. DRM_ERROR("Failed to allocate batch bo\n");
  1649. return -ENOMEM;
  1650. }
  1651. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  1652. if (ret != 0) {
  1653. drm_gem_object_unreference(&obj->base);
  1654. DRM_ERROR("Failed to ping batch bo\n");
  1655. return ret;
  1656. }
  1657. ring->scratch.obj = obj;
  1658. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  1659. }
  1660. return intel_init_ring_buffer(dev, ring);
  1661. }
  1662. int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
  1663. {
  1664. drm_i915_private_t *dev_priv = dev->dev_private;
  1665. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1666. int ret;
  1667. ring->name = "render ring";
  1668. ring->id = RCS;
  1669. ring->mmio_base = RENDER_RING_BASE;
  1670. if (INTEL_INFO(dev)->gen >= 6) {
  1671. /* non-kms not supported on gen6+ */
  1672. return -ENODEV;
  1673. }
  1674. /* Note: gem is not supported on gen5/ilk without kms (the corresponding
  1675. * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
  1676. * the special gen5 functions. */
  1677. ring->add_request = i9xx_add_request;
  1678. if (INTEL_INFO(dev)->gen < 4)
  1679. ring->flush = gen2_render_ring_flush;
  1680. else
  1681. ring->flush = gen4_render_ring_flush;
  1682. ring->get_seqno = ring_get_seqno;
  1683. ring->set_seqno = ring_set_seqno;
  1684. if (IS_GEN2(dev)) {
  1685. ring->irq_get = i8xx_ring_get_irq;
  1686. ring->irq_put = i8xx_ring_put_irq;
  1687. } else {
  1688. ring->irq_get = i9xx_ring_get_irq;
  1689. ring->irq_put = i9xx_ring_put_irq;
  1690. }
  1691. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1692. ring->write_tail = ring_write_tail;
  1693. if (INTEL_INFO(dev)->gen >= 4)
  1694. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1695. else if (IS_I830(dev) || IS_845G(dev))
  1696. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1697. else
  1698. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1699. ring->init = init_render_ring;
  1700. ring->cleanup = render_ring_cleanup;
  1701. ring->dev = dev;
  1702. INIT_LIST_HEAD(&ring->active_list);
  1703. INIT_LIST_HEAD(&ring->request_list);
  1704. ring->size = size;
  1705. ring->effective_size = ring->size;
  1706. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  1707. ring->effective_size -= 128;
  1708. ring->virtual_start = ioremap_wc(start, size);
  1709. if (ring->virtual_start == NULL) {
  1710. DRM_ERROR("can not ioremap virtual address for"
  1711. " ring buffer\n");
  1712. return -ENOMEM;
  1713. }
  1714. if (!I915_NEED_GFX_HWS(dev)) {
  1715. ret = init_phys_status_page(ring);
  1716. if (ret)
  1717. return ret;
  1718. }
  1719. return 0;
  1720. }
  1721. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  1722. {
  1723. drm_i915_private_t *dev_priv = dev->dev_private;
  1724. struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
  1725. ring->name = "bsd ring";
  1726. ring->id = VCS;
  1727. ring->write_tail = ring_write_tail;
  1728. if (INTEL_INFO(dev)->gen >= 6) {
  1729. ring->mmio_base = GEN6_BSD_RING_BASE;
  1730. /* gen6 bsd needs a special wa for tail updates */
  1731. if (IS_GEN6(dev))
  1732. ring->write_tail = gen6_bsd_ring_write_tail;
  1733. ring->flush = gen6_bsd_ring_flush;
  1734. ring->add_request = gen6_add_request;
  1735. ring->get_seqno = gen6_ring_get_seqno;
  1736. ring->set_seqno = ring_set_seqno;
  1737. if (INTEL_INFO(dev)->gen >= 8) {
  1738. ring->irq_enable_mask =
  1739. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  1740. ring->irq_get = gen8_ring_get_irq;
  1741. ring->irq_put = gen8_ring_put_irq;
  1742. ring->dispatch_execbuffer =
  1743. gen8_ring_dispatch_execbuffer;
  1744. } else {
  1745. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  1746. ring->irq_get = gen6_ring_get_irq;
  1747. ring->irq_put = gen6_ring_put_irq;
  1748. ring->dispatch_execbuffer =
  1749. gen6_ring_dispatch_execbuffer;
  1750. }
  1751. ring->sync_to = gen6_ring_sync;
  1752. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
  1753. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  1754. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
  1755. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
  1756. ring->signal_mbox[RCS] = GEN6_RVSYNC;
  1757. ring->signal_mbox[VCS] = GEN6_NOSYNC;
  1758. ring->signal_mbox[BCS] = GEN6_BVSYNC;
  1759. ring->signal_mbox[VECS] = GEN6_VEVSYNC;
  1760. } else {
  1761. ring->mmio_base = BSD_RING_BASE;
  1762. ring->flush = bsd_ring_flush;
  1763. ring->add_request = i9xx_add_request;
  1764. ring->get_seqno = ring_get_seqno;
  1765. ring->set_seqno = ring_set_seqno;
  1766. if (IS_GEN5(dev)) {
  1767. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  1768. ring->irq_get = gen5_ring_get_irq;
  1769. ring->irq_put = gen5_ring_put_irq;
  1770. } else {
  1771. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  1772. ring->irq_get = i9xx_ring_get_irq;
  1773. ring->irq_put = i9xx_ring_put_irq;
  1774. }
  1775. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1776. }
  1777. ring->init = init_ring_common;
  1778. return intel_init_ring_buffer(dev, ring);
  1779. }
  1780. int intel_init_blt_ring_buffer(struct drm_device *dev)
  1781. {
  1782. drm_i915_private_t *dev_priv = dev->dev_private;
  1783. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  1784. ring->name = "blitter ring";
  1785. ring->id = BCS;
  1786. ring->mmio_base = BLT_RING_BASE;
  1787. ring->write_tail = ring_write_tail;
  1788. ring->flush = gen6_ring_flush;
  1789. ring->add_request = gen6_add_request;
  1790. ring->get_seqno = gen6_ring_get_seqno;
  1791. ring->set_seqno = ring_set_seqno;
  1792. if (INTEL_INFO(dev)->gen >= 8) {
  1793. ring->irq_enable_mask =
  1794. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  1795. ring->irq_get = gen8_ring_get_irq;
  1796. ring->irq_put = gen8_ring_put_irq;
  1797. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1798. } else {
  1799. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  1800. ring->irq_get = gen6_ring_get_irq;
  1801. ring->irq_put = gen6_ring_put_irq;
  1802. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1803. }
  1804. ring->sync_to = gen6_ring_sync;
  1805. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
  1806. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
  1807. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  1808. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
  1809. ring->signal_mbox[RCS] = GEN6_RBSYNC;
  1810. ring->signal_mbox[VCS] = GEN6_VBSYNC;
  1811. ring->signal_mbox[BCS] = GEN6_NOSYNC;
  1812. ring->signal_mbox[VECS] = GEN6_VEBSYNC;
  1813. ring->init = init_ring_common;
  1814. return intel_init_ring_buffer(dev, ring);
  1815. }
  1816. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  1817. {
  1818. drm_i915_private_t *dev_priv = dev->dev_private;
  1819. struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
  1820. ring->name = "video enhancement ring";
  1821. ring->id = VECS;
  1822. ring->mmio_base = VEBOX_RING_BASE;
  1823. ring->write_tail = ring_write_tail;
  1824. ring->flush = gen6_ring_flush;
  1825. ring->add_request = gen6_add_request;
  1826. ring->get_seqno = gen6_ring_get_seqno;
  1827. ring->set_seqno = ring_set_seqno;
  1828. if (INTEL_INFO(dev)->gen >= 8) {
  1829. ring->irq_enable_mask =
  1830. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  1831. ring->irq_get = gen8_ring_get_irq;
  1832. ring->irq_put = gen8_ring_put_irq;
  1833. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1834. } else {
  1835. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  1836. ring->irq_get = hsw_vebox_get_irq;
  1837. ring->irq_put = hsw_vebox_put_irq;
  1838. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1839. }
  1840. ring->sync_to = gen6_ring_sync;
  1841. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
  1842. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
  1843. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
  1844. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  1845. ring->signal_mbox[RCS] = GEN6_RVESYNC;
  1846. ring->signal_mbox[VCS] = GEN6_VVESYNC;
  1847. ring->signal_mbox[BCS] = GEN6_BVESYNC;
  1848. ring->signal_mbox[VECS] = GEN6_NOSYNC;
  1849. ring->init = init_ring_common;
  1850. return intel_init_ring_buffer(dev, ring);
  1851. }
  1852. int
  1853. intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
  1854. {
  1855. int ret;
  1856. if (!ring->gpu_caches_dirty)
  1857. return 0;
  1858. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  1859. if (ret)
  1860. return ret;
  1861. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  1862. ring->gpu_caches_dirty = false;
  1863. return 0;
  1864. }
  1865. int
  1866. intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
  1867. {
  1868. uint32_t flush_domains;
  1869. int ret;
  1870. flush_domains = 0;
  1871. if (ring->gpu_caches_dirty)
  1872. flush_domains = I915_GEM_GPU_DOMAINS;
  1873. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  1874. if (ret)
  1875. return ret;
  1876. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  1877. ring->gpu_caches_dirty = false;
  1878. return 0;
  1879. }