i915_gem.c 127 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include <drm/drmP.h>
  28. #include <drm/drm_vma_manager.h>
  29. #include <drm/i915_drm.h>
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. #include <linux/dma-buf.h>
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
  40. bool force);
  41. static __must_check int
  42. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  43. bool readonly);
  44. static int i915_gem_phys_pwrite(struct drm_device *dev,
  45. struct drm_i915_gem_object *obj,
  46. struct drm_i915_gem_pwrite *args,
  47. struct drm_file *file);
  48. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  49. struct drm_i915_gem_object *obj);
  50. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  51. struct drm_i915_fence_reg *fence,
  52. bool enable);
  53. static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
  54. struct shrink_control *sc);
  55. static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
  56. struct shrink_control *sc);
  57. static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
  58. static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
  59. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  60. static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
  61. static bool cpu_cache_is_coherent(struct drm_device *dev,
  62. enum i915_cache_level level)
  63. {
  64. return HAS_LLC(dev) || level != I915_CACHE_NONE;
  65. }
  66. static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
  67. {
  68. if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
  69. return true;
  70. return obj->pin_display;
  71. }
  72. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  73. {
  74. if (obj->tiling_mode)
  75. i915_gem_release_mmap(obj);
  76. /* As we do not have an associated fence register, we will force
  77. * a tiling change if we ever need to acquire one.
  78. */
  79. obj->fence_dirty = false;
  80. obj->fence_reg = I915_FENCE_REG_NONE;
  81. }
  82. /* some bookkeeping */
  83. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  84. size_t size)
  85. {
  86. spin_lock(&dev_priv->mm.object_stat_lock);
  87. dev_priv->mm.object_count++;
  88. dev_priv->mm.object_memory += size;
  89. spin_unlock(&dev_priv->mm.object_stat_lock);
  90. }
  91. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  92. size_t size)
  93. {
  94. spin_lock(&dev_priv->mm.object_stat_lock);
  95. dev_priv->mm.object_count--;
  96. dev_priv->mm.object_memory -= size;
  97. spin_unlock(&dev_priv->mm.object_stat_lock);
  98. }
  99. static int
  100. i915_gem_wait_for_error(struct i915_gpu_error *error)
  101. {
  102. int ret;
  103. #define EXIT_COND (!i915_reset_in_progress(error) || \
  104. i915_terminally_wedged(error))
  105. if (EXIT_COND)
  106. return 0;
  107. /*
  108. * Only wait 10 seconds for the gpu reset to complete to avoid hanging
  109. * userspace. If it takes that long something really bad is going on and
  110. * we should simply try to bail out and fail as gracefully as possible.
  111. */
  112. ret = wait_event_interruptible_timeout(error->reset_queue,
  113. EXIT_COND,
  114. 10*HZ);
  115. if (ret == 0) {
  116. DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
  117. return -EIO;
  118. } else if (ret < 0) {
  119. return ret;
  120. }
  121. #undef EXIT_COND
  122. return 0;
  123. }
  124. int i915_mutex_lock_interruptible(struct drm_device *dev)
  125. {
  126. struct drm_i915_private *dev_priv = dev->dev_private;
  127. int ret;
  128. ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
  129. if (ret)
  130. return ret;
  131. ret = mutex_lock_interruptible(&dev->struct_mutex);
  132. if (ret)
  133. return ret;
  134. WARN_ON(i915_verify_lists(dev));
  135. return 0;
  136. }
  137. static inline bool
  138. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  139. {
  140. return i915_gem_obj_bound_any(obj) && !obj->active;
  141. }
  142. int
  143. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  144. struct drm_file *file)
  145. {
  146. struct drm_i915_private *dev_priv = dev->dev_private;
  147. struct drm_i915_gem_init *args = data;
  148. if (drm_core_check_feature(dev, DRIVER_MODESET))
  149. return -ENODEV;
  150. if (args->gtt_start >= args->gtt_end ||
  151. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  152. return -EINVAL;
  153. /* GEM with user mode setting was never supported on ilk and later. */
  154. if (INTEL_INFO(dev)->gen >= 5)
  155. return -ENODEV;
  156. mutex_lock(&dev->struct_mutex);
  157. i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
  158. args->gtt_end);
  159. dev_priv->gtt.mappable_end = args->gtt_end;
  160. mutex_unlock(&dev->struct_mutex);
  161. return 0;
  162. }
  163. int
  164. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  165. struct drm_file *file)
  166. {
  167. struct drm_i915_private *dev_priv = dev->dev_private;
  168. struct drm_i915_gem_get_aperture *args = data;
  169. struct drm_i915_gem_object *obj;
  170. size_t pinned;
  171. pinned = 0;
  172. mutex_lock(&dev->struct_mutex);
  173. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
  174. if (i915_gem_obj_is_pinned(obj))
  175. pinned += i915_gem_obj_ggtt_size(obj);
  176. mutex_unlock(&dev->struct_mutex);
  177. args->aper_size = dev_priv->gtt.base.total;
  178. args->aper_available_size = args->aper_size - pinned;
  179. return 0;
  180. }
  181. void *i915_gem_object_alloc(struct drm_device *dev)
  182. {
  183. struct drm_i915_private *dev_priv = dev->dev_private;
  184. return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
  185. }
  186. void i915_gem_object_free(struct drm_i915_gem_object *obj)
  187. {
  188. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  189. kmem_cache_free(dev_priv->slab, obj);
  190. }
  191. static int
  192. i915_gem_create(struct drm_file *file,
  193. struct drm_device *dev,
  194. uint64_t size,
  195. uint32_t *handle_p)
  196. {
  197. struct drm_i915_gem_object *obj;
  198. int ret;
  199. u32 handle;
  200. size = roundup(size, PAGE_SIZE);
  201. if (size == 0)
  202. return -EINVAL;
  203. /* Allocate the new object */
  204. obj = i915_gem_alloc_object(dev, size);
  205. if (obj == NULL)
  206. return -ENOMEM;
  207. ret = drm_gem_handle_create(file, &obj->base, &handle);
  208. /* drop reference from allocate - handle holds it now */
  209. drm_gem_object_unreference_unlocked(&obj->base);
  210. if (ret)
  211. return ret;
  212. *handle_p = handle;
  213. return 0;
  214. }
  215. int
  216. i915_gem_dumb_create(struct drm_file *file,
  217. struct drm_device *dev,
  218. struct drm_mode_create_dumb *args)
  219. {
  220. /* have to work out size/pitch and return them */
  221. args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
  222. args->size = args->pitch * args->height;
  223. return i915_gem_create(file, dev,
  224. args->size, &args->handle);
  225. }
  226. /**
  227. * Creates a new mm object and returns a handle to it.
  228. */
  229. int
  230. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  231. struct drm_file *file)
  232. {
  233. struct drm_i915_gem_create *args = data;
  234. return i915_gem_create(file, dev,
  235. args->size, &args->handle);
  236. }
  237. static inline int
  238. __copy_to_user_swizzled(char __user *cpu_vaddr,
  239. const char *gpu_vaddr, int gpu_offset,
  240. int length)
  241. {
  242. int ret, cpu_offset = 0;
  243. while (length > 0) {
  244. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  245. int this_length = min(cacheline_end - gpu_offset, length);
  246. int swizzled_gpu_offset = gpu_offset ^ 64;
  247. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  248. gpu_vaddr + swizzled_gpu_offset,
  249. this_length);
  250. if (ret)
  251. return ret + length;
  252. cpu_offset += this_length;
  253. gpu_offset += this_length;
  254. length -= this_length;
  255. }
  256. return 0;
  257. }
  258. static inline int
  259. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  260. const char __user *cpu_vaddr,
  261. int length)
  262. {
  263. int ret, cpu_offset = 0;
  264. while (length > 0) {
  265. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  266. int this_length = min(cacheline_end - gpu_offset, length);
  267. int swizzled_gpu_offset = gpu_offset ^ 64;
  268. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  269. cpu_vaddr + cpu_offset,
  270. this_length);
  271. if (ret)
  272. return ret + length;
  273. cpu_offset += this_length;
  274. gpu_offset += this_length;
  275. length -= this_length;
  276. }
  277. return 0;
  278. }
  279. /*
  280. * Pins the specified object's pages and synchronizes the object with
  281. * GPU accesses. Sets needs_clflush to non-zero if the caller should
  282. * flush the object from the CPU cache.
  283. */
  284. int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
  285. int *needs_clflush)
  286. {
  287. int ret;
  288. *needs_clflush = 0;
  289. if (!obj->base.filp)
  290. return -EINVAL;
  291. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  292. /* If we're not in the cpu read domain, set ourself into the gtt
  293. * read domain and manually flush cachelines (if required). This
  294. * optimizes for the case when the gpu will dirty the data
  295. * anyway again before the next pread happens. */
  296. *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
  297. obj->cache_level);
  298. ret = i915_gem_object_wait_rendering(obj, true);
  299. if (ret)
  300. return ret;
  301. }
  302. ret = i915_gem_object_get_pages(obj);
  303. if (ret)
  304. return ret;
  305. i915_gem_object_pin_pages(obj);
  306. return ret;
  307. }
  308. /* Per-page copy function for the shmem pread fastpath.
  309. * Flushes invalid cachelines before reading the target if
  310. * needs_clflush is set. */
  311. static int
  312. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  313. char __user *user_data,
  314. bool page_do_bit17_swizzling, bool needs_clflush)
  315. {
  316. char *vaddr;
  317. int ret;
  318. if (unlikely(page_do_bit17_swizzling))
  319. return -EINVAL;
  320. vaddr = kmap_atomic(page);
  321. if (needs_clflush)
  322. drm_clflush_virt_range(vaddr + shmem_page_offset,
  323. page_length);
  324. ret = __copy_to_user_inatomic(user_data,
  325. vaddr + shmem_page_offset,
  326. page_length);
  327. kunmap_atomic(vaddr);
  328. return ret ? -EFAULT : 0;
  329. }
  330. static void
  331. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  332. bool swizzled)
  333. {
  334. if (unlikely(swizzled)) {
  335. unsigned long start = (unsigned long) addr;
  336. unsigned long end = (unsigned long) addr + length;
  337. /* For swizzling simply ensure that we always flush both
  338. * channels. Lame, but simple and it works. Swizzled
  339. * pwrite/pread is far from a hotpath - current userspace
  340. * doesn't use it at all. */
  341. start = round_down(start, 128);
  342. end = round_up(end, 128);
  343. drm_clflush_virt_range((void *)start, end - start);
  344. } else {
  345. drm_clflush_virt_range(addr, length);
  346. }
  347. }
  348. /* Only difference to the fast-path function is that this can handle bit17
  349. * and uses non-atomic copy and kmap functions. */
  350. static int
  351. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  352. char __user *user_data,
  353. bool page_do_bit17_swizzling, bool needs_clflush)
  354. {
  355. char *vaddr;
  356. int ret;
  357. vaddr = kmap(page);
  358. if (needs_clflush)
  359. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  360. page_length,
  361. page_do_bit17_swizzling);
  362. if (page_do_bit17_swizzling)
  363. ret = __copy_to_user_swizzled(user_data,
  364. vaddr, shmem_page_offset,
  365. page_length);
  366. else
  367. ret = __copy_to_user(user_data,
  368. vaddr + shmem_page_offset,
  369. page_length);
  370. kunmap(page);
  371. return ret ? - EFAULT : 0;
  372. }
  373. static int
  374. i915_gem_shmem_pread(struct drm_device *dev,
  375. struct drm_i915_gem_object *obj,
  376. struct drm_i915_gem_pread *args,
  377. struct drm_file *file)
  378. {
  379. char __user *user_data;
  380. ssize_t remain;
  381. loff_t offset;
  382. int shmem_page_offset, page_length, ret = 0;
  383. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  384. int prefaulted = 0;
  385. int needs_clflush = 0;
  386. struct sg_page_iter sg_iter;
  387. user_data = to_user_ptr(args->data_ptr);
  388. remain = args->size;
  389. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  390. ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
  391. if (ret)
  392. return ret;
  393. offset = args->offset;
  394. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
  395. offset >> PAGE_SHIFT) {
  396. struct page *page = sg_page_iter_page(&sg_iter);
  397. if (remain <= 0)
  398. break;
  399. /* Operation in this page
  400. *
  401. * shmem_page_offset = offset within page in shmem file
  402. * page_length = bytes to copy for this page
  403. */
  404. shmem_page_offset = offset_in_page(offset);
  405. page_length = remain;
  406. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  407. page_length = PAGE_SIZE - shmem_page_offset;
  408. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  409. (page_to_phys(page) & (1 << 17)) != 0;
  410. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  411. user_data, page_do_bit17_swizzling,
  412. needs_clflush);
  413. if (ret == 0)
  414. goto next_page;
  415. mutex_unlock(&dev->struct_mutex);
  416. if (likely(!i915.prefault_disable) && !prefaulted) {
  417. ret = fault_in_multipages_writeable(user_data, remain);
  418. /* Userspace is tricking us, but we've already clobbered
  419. * its pages with the prefault and promised to write the
  420. * data up to the first fault. Hence ignore any errors
  421. * and just continue. */
  422. (void)ret;
  423. prefaulted = 1;
  424. }
  425. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  426. user_data, page_do_bit17_swizzling,
  427. needs_clflush);
  428. mutex_lock(&dev->struct_mutex);
  429. if (ret)
  430. goto out;
  431. next_page:
  432. remain -= page_length;
  433. user_data += page_length;
  434. offset += page_length;
  435. }
  436. out:
  437. i915_gem_object_unpin_pages(obj);
  438. return ret;
  439. }
  440. /**
  441. * Reads data from the object referenced by handle.
  442. *
  443. * On error, the contents of *data are undefined.
  444. */
  445. int
  446. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  447. struct drm_file *file)
  448. {
  449. struct drm_i915_gem_pread *args = data;
  450. struct drm_i915_gem_object *obj;
  451. int ret = 0;
  452. if (args->size == 0)
  453. return 0;
  454. if (!access_ok(VERIFY_WRITE,
  455. to_user_ptr(args->data_ptr),
  456. args->size))
  457. return -EFAULT;
  458. ret = i915_mutex_lock_interruptible(dev);
  459. if (ret)
  460. return ret;
  461. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  462. if (&obj->base == NULL) {
  463. ret = -ENOENT;
  464. goto unlock;
  465. }
  466. /* Bounds check source. */
  467. if (args->offset > obj->base.size ||
  468. args->size > obj->base.size - args->offset) {
  469. ret = -EINVAL;
  470. goto out;
  471. }
  472. /* prime objects have no backing filp to GEM pread/pwrite
  473. * pages from.
  474. */
  475. if (!obj->base.filp) {
  476. ret = -EINVAL;
  477. goto out;
  478. }
  479. trace_i915_gem_object_pread(obj, args->offset, args->size);
  480. ret = i915_gem_shmem_pread(dev, obj, args, file);
  481. out:
  482. drm_gem_object_unreference(&obj->base);
  483. unlock:
  484. mutex_unlock(&dev->struct_mutex);
  485. return ret;
  486. }
  487. /* This is the fast write path which cannot handle
  488. * page faults in the source data
  489. */
  490. static inline int
  491. fast_user_write(struct io_mapping *mapping,
  492. loff_t page_base, int page_offset,
  493. char __user *user_data,
  494. int length)
  495. {
  496. void __iomem *vaddr_atomic;
  497. void *vaddr;
  498. unsigned long unwritten;
  499. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  500. /* We can use the cpu mem copy function because this is X86. */
  501. vaddr = (void __force*)vaddr_atomic + page_offset;
  502. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  503. user_data, length);
  504. io_mapping_unmap_atomic(vaddr_atomic);
  505. return unwritten;
  506. }
  507. /**
  508. * This is the fast pwrite path, where we copy the data directly from the
  509. * user into the GTT, uncached.
  510. */
  511. static int
  512. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  513. struct drm_i915_gem_object *obj,
  514. struct drm_i915_gem_pwrite *args,
  515. struct drm_file *file)
  516. {
  517. drm_i915_private_t *dev_priv = dev->dev_private;
  518. ssize_t remain;
  519. loff_t offset, page_base;
  520. char __user *user_data;
  521. int page_offset, page_length, ret;
  522. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
  523. if (ret)
  524. goto out;
  525. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  526. if (ret)
  527. goto out_unpin;
  528. ret = i915_gem_object_put_fence(obj);
  529. if (ret)
  530. goto out_unpin;
  531. user_data = to_user_ptr(args->data_ptr);
  532. remain = args->size;
  533. offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
  534. while (remain > 0) {
  535. /* Operation in this page
  536. *
  537. * page_base = page offset within aperture
  538. * page_offset = offset within page
  539. * page_length = bytes to copy for this page
  540. */
  541. page_base = offset & PAGE_MASK;
  542. page_offset = offset_in_page(offset);
  543. page_length = remain;
  544. if ((page_offset + remain) > PAGE_SIZE)
  545. page_length = PAGE_SIZE - page_offset;
  546. /* If we get a fault while copying data, then (presumably) our
  547. * source page isn't available. Return the error and we'll
  548. * retry in the slow path.
  549. */
  550. if (fast_user_write(dev_priv->gtt.mappable, page_base,
  551. page_offset, user_data, page_length)) {
  552. ret = -EFAULT;
  553. goto out_unpin;
  554. }
  555. remain -= page_length;
  556. user_data += page_length;
  557. offset += page_length;
  558. }
  559. out_unpin:
  560. i915_gem_object_ggtt_unpin(obj);
  561. out:
  562. return ret;
  563. }
  564. /* Per-page copy function for the shmem pwrite fastpath.
  565. * Flushes invalid cachelines before writing to the target if
  566. * needs_clflush_before is set and flushes out any written cachelines after
  567. * writing if needs_clflush is set. */
  568. static int
  569. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  570. char __user *user_data,
  571. bool page_do_bit17_swizzling,
  572. bool needs_clflush_before,
  573. bool needs_clflush_after)
  574. {
  575. char *vaddr;
  576. int ret;
  577. if (unlikely(page_do_bit17_swizzling))
  578. return -EINVAL;
  579. vaddr = kmap_atomic(page);
  580. if (needs_clflush_before)
  581. drm_clflush_virt_range(vaddr + shmem_page_offset,
  582. page_length);
  583. ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
  584. user_data, page_length);
  585. if (needs_clflush_after)
  586. drm_clflush_virt_range(vaddr + shmem_page_offset,
  587. page_length);
  588. kunmap_atomic(vaddr);
  589. return ret ? -EFAULT : 0;
  590. }
  591. /* Only difference to the fast-path function is that this can handle bit17
  592. * and uses non-atomic copy and kmap functions. */
  593. static int
  594. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  595. char __user *user_data,
  596. bool page_do_bit17_swizzling,
  597. bool needs_clflush_before,
  598. bool needs_clflush_after)
  599. {
  600. char *vaddr;
  601. int ret;
  602. vaddr = kmap(page);
  603. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  604. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  605. page_length,
  606. page_do_bit17_swizzling);
  607. if (page_do_bit17_swizzling)
  608. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  609. user_data,
  610. page_length);
  611. else
  612. ret = __copy_from_user(vaddr + shmem_page_offset,
  613. user_data,
  614. page_length);
  615. if (needs_clflush_after)
  616. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  617. page_length,
  618. page_do_bit17_swizzling);
  619. kunmap(page);
  620. return ret ? -EFAULT : 0;
  621. }
  622. static int
  623. i915_gem_shmem_pwrite(struct drm_device *dev,
  624. struct drm_i915_gem_object *obj,
  625. struct drm_i915_gem_pwrite *args,
  626. struct drm_file *file)
  627. {
  628. ssize_t remain;
  629. loff_t offset;
  630. char __user *user_data;
  631. int shmem_page_offset, page_length, ret = 0;
  632. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  633. int hit_slowpath = 0;
  634. int needs_clflush_after = 0;
  635. int needs_clflush_before = 0;
  636. struct sg_page_iter sg_iter;
  637. user_data = to_user_ptr(args->data_ptr);
  638. remain = args->size;
  639. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  640. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  641. /* If we're not in the cpu write domain, set ourself into the gtt
  642. * write domain and manually flush cachelines (if required). This
  643. * optimizes for the case when the gpu will use the data
  644. * right away and we therefore have to clflush anyway. */
  645. needs_clflush_after = cpu_write_needs_clflush(obj);
  646. ret = i915_gem_object_wait_rendering(obj, false);
  647. if (ret)
  648. return ret;
  649. }
  650. /* Same trick applies to invalidate partially written cachelines read
  651. * before writing. */
  652. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  653. needs_clflush_before =
  654. !cpu_cache_is_coherent(dev, obj->cache_level);
  655. ret = i915_gem_object_get_pages(obj);
  656. if (ret)
  657. return ret;
  658. i915_gem_object_pin_pages(obj);
  659. offset = args->offset;
  660. obj->dirty = 1;
  661. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
  662. offset >> PAGE_SHIFT) {
  663. struct page *page = sg_page_iter_page(&sg_iter);
  664. int partial_cacheline_write;
  665. if (remain <= 0)
  666. break;
  667. /* Operation in this page
  668. *
  669. * shmem_page_offset = offset within page in shmem file
  670. * page_length = bytes to copy for this page
  671. */
  672. shmem_page_offset = offset_in_page(offset);
  673. page_length = remain;
  674. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  675. page_length = PAGE_SIZE - shmem_page_offset;
  676. /* If we don't overwrite a cacheline completely we need to be
  677. * careful to have up-to-date data by first clflushing. Don't
  678. * overcomplicate things and flush the entire patch. */
  679. partial_cacheline_write = needs_clflush_before &&
  680. ((shmem_page_offset | page_length)
  681. & (boot_cpu_data.x86_clflush_size - 1));
  682. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  683. (page_to_phys(page) & (1 << 17)) != 0;
  684. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  685. user_data, page_do_bit17_swizzling,
  686. partial_cacheline_write,
  687. needs_clflush_after);
  688. if (ret == 0)
  689. goto next_page;
  690. hit_slowpath = 1;
  691. mutex_unlock(&dev->struct_mutex);
  692. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  693. user_data, page_do_bit17_swizzling,
  694. partial_cacheline_write,
  695. needs_clflush_after);
  696. mutex_lock(&dev->struct_mutex);
  697. if (ret)
  698. goto out;
  699. next_page:
  700. remain -= page_length;
  701. user_data += page_length;
  702. offset += page_length;
  703. }
  704. out:
  705. i915_gem_object_unpin_pages(obj);
  706. if (hit_slowpath) {
  707. /*
  708. * Fixup: Flush cpu caches in case we didn't flush the dirty
  709. * cachelines in-line while writing and the object moved
  710. * out of the cpu write domain while we've dropped the lock.
  711. */
  712. if (!needs_clflush_after &&
  713. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  714. if (i915_gem_clflush_object(obj, obj->pin_display))
  715. i915_gem_chipset_flush(dev);
  716. }
  717. }
  718. if (needs_clflush_after)
  719. i915_gem_chipset_flush(dev);
  720. return ret;
  721. }
  722. /**
  723. * Writes data to the object referenced by handle.
  724. *
  725. * On error, the contents of the buffer that were to be modified are undefined.
  726. */
  727. int
  728. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  729. struct drm_file *file)
  730. {
  731. struct drm_i915_gem_pwrite *args = data;
  732. struct drm_i915_gem_object *obj;
  733. int ret;
  734. if (args->size == 0)
  735. return 0;
  736. if (!access_ok(VERIFY_READ,
  737. to_user_ptr(args->data_ptr),
  738. args->size))
  739. return -EFAULT;
  740. if (likely(!i915.prefault_disable)) {
  741. ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
  742. args->size);
  743. if (ret)
  744. return -EFAULT;
  745. }
  746. ret = i915_mutex_lock_interruptible(dev);
  747. if (ret)
  748. return ret;
  749. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  750. if (&obj->base == NULL) {
  751. ret = -ENOENT;
  752. goto unlock;
  753. }
  754. /* Bounds check destination. */
  755. if (args->offset > obj->base.size ||
  756. args->size > obj->base.size - args->offset) {
  757. ret = -EINVAL;
  758. goto out;
  759. }
  760. /* prime objects have no backing filp to GEM pread/pwrite
  761. * pages from.
  762. */
  763. if (!obj->base.filp) {
  764. ret = -EINVAL;
  765. goto out;
  766. }
  767. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  768. ret = -EFAULT;
  769. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  770. * it would end up going through the fenced access, and we'll get
  771. * different detiling behavior between reading and writing.
  772. * pread/pwrite currently are reading and writing from the CPU
  773. * perspective, requiring manual detiling by the client.
  774. */
  775. if (obj->phys_obj) {
  776. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  777. goto out;
  778. }
  779. if (obj->tiling_mode == I915_TILING_NONE &&
  780. obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
  781. cpu_write_needs_clflush(obj)) {
  782. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  783. /* Note that the gtt paths might fail with non-page-backed user
  784. * pointers (e.g. gtt mappings when moving data between
  785. * textures). Fallback to the shmem path in that case. */
  786. }
  787. if (ret == -EFAULT || ret == -ENOSPC)
  788. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  789. out:
  790. drm_gem_object_unreference(&obj->base);
  791. unlock:
  792. mutex_unlock(&dev->struct_mutex);
  793. return ret;
  794. }
  795. int
  796. i915_gem_check_wedge(struct i915_gpu_error *error,
  797. bool interruptible)
  798. {
  799. if (i915_reset_in_progress(error)) {
  800. /* Non-interruptible callers can't handle -EAGAIN, hence return
  801. * -EIO unconditionally for these. */
  802. if (!interruptible)
  803. return -EIO;
  804. /* Recovery complete, but the reset failed ... */
  805. if (i915_terminally_wedged(error))
  806. return -EIO;
  807. return -EAGAIN;
  808. }
  809. return 0;
  810. }
  811. /*
  812. * Compare seqno against outstanding lazy request. Emit a request if they are
  813. * equal.
  814. */
  815. static int
  816. i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
  817. {
  818. int ret;
  819. BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
  820. ret = 0;
  821. if (seqno == ring->outstanding_lazy_seqno)
  822. ret = i915_add_request(ring, NULL);
  823. return ret;
  824. }
  825. static void fake_irq(unsigned long data)
  826. {
  827. wake_up_process((struct task_struct *)data);
  828. }
  829. static bool missed_irq(struct drm_i915_private *dev_priv,
  830. struct intel_ring_buffer *ring)
  831. {
  832. return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
  833. }
  834. static bool can_wait_boost(struct drm_i915_file_private *file_priv)
  835. {
  836. if (file_priv == NULL)
  837. return true;
  838. return !atomic_xchg(&file_priv->rps_wait_boost, true);
  839. }
  840. /**
  841. * __wait_seqno - wait until execution of seqno has finished
  842. * @ring: the ring expected to report seqno
  843. * @seqno: duh!
  844. * @reset_counter: reset sequence associated with the given seqno
  845. * @interruptible: do an interruptible wait (normally yes)
  846. * @timeout: in - how long to wait (NULL forever); out - how much time remaining
  847. *
  848. * Note: It is of utmost importance that the passed in seqno and reset_counter
  849. * values have been read by the caller in an smp safe manner. Where read-side
  850. * locks are involved, it is sufficient to read the reset_counter before
  851. * unlocking the lock that protects the seqno. For lockless tricks, the
  852. * reset_counter _must_ be read before, and an appropriate smp_rmb must be
  853. * inserted.
  854. *
  855. * Returns 0 if the seqno was found within the alloted time. Else returns the
  856. * errno with remaining time filled in timeout argument.
  857. */
  858. static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
  859. unsigned reset_counter,
  860. bool interruptible,
  861. struct timespec *timeout,
  862. struct drm_i915_file_private *file_priv)
  863. {
  864. struct drm_device *dev = ring->dev;
  865. drm_i915_private_t *dev_priv = dev->dev_private;
  866. const bool irq_test_in_progress =
  867. ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
  868. struct timespec before, now;
  869. DEFINE_WAIT(wait);
  870. unsigned long timeout_expire;
  871. int ret;
  872. WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
  873. if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
  874. return 0;
  875. timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
  876. if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
  877. gen6_rps_boost(dev_priv);
  878. if (file_priv)
  879. mod_delayed_work(dev_priv->wq,
  880. &file_priv->mm.idle_work,
  881. msecs_to_jiffies(100));
  882. }
  883. if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
  884. return -ENODEV;
  885. /* Record current time in case interrupted by signal, or wedged */
  886. trace_i915_gem_request_wait_begin(ring, seqno);
  887. getrawmonotonic(&before);
  888. for (;;) {
  889. struct timer_list timer;
  890. prepare_to_wait(&ring->irq_queue, &wait,
  891. interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
  892. /* We need to check whether any gpu reset happened in between
  893. * the caller grabbing the seqno and now ... */
  894. if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
  895. /* ... but upgrade the -EAGAIN to an -EIO if the gpu
  896. * is truely gone. */
  897. ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
  898. if (ret == 0)
  899. ret = -EAGAIN;
  900. break;
  901. }
  902. if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
  903. ret = 0;
  904. break;
  905. }
  906. if (interruptible && signal_pending(current)) {
  907. ret = -ERESTARTSYS;
  908. break;
  909. }
  910. if (timeout && time_after_eq(jiffies, timeout_expire)) {
  911. ret = -ETIME;
  912. break;
  913. }
  914. timer.function = NULL;
  915. if (timeout || missed_irq(dev_priv, ring)) {
  916. unsigned long expire;
  917. setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
  918. expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
  919. mod_timer(&timer, expire);
  920. }
  921. io_schedule();
  922. if (timer.function) {
  923. del_singleshot_timer_sync(&timer);
  924. destroy_timer_on_stack(&timer);
  925. }
  926. }
  927. getrawmonotonic(&now);
  928. trace_i915_gem_request_wait_end(ring, seqno);
  929. if (!irq_test_in_progress)
  930. ring->irq_put(ring);
  931. finish_wait(&ring->irq_queue, &wait);
  932. if (timeout) {
  933. struct timespec sleep_time = timespec_sub(now, before);
  934. *timeout = timespec_sub(*timeout, sleep_time);
  935. if (!timespec_valid(timeout)) /* i.e. negative time remains */
  936. set_normalized_timespec(timeout, 0, 0);
  937. }
  938. return ret;
  939. }
  940. /**
  941. * Waits for a sequence number to be signaled, and cleans up the
  942. * request and object lists appropriately for that event.
  943. */
  944. int
  945. i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
  946. {
  947. struct drm_device *dev = ring->dev;
  948. struct drm_i915_private *dev_priv = dev->dev_private;
  949. bool interruptible = dev_priv->mm.interruptible;
  950. int ret;
  951. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  952. BUG_ON(seqno == 0);
  953. ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
  954. if (ret)
  955. return ret;
  956. ret = i915_gem_check_olr(ring, seqno);
  957. if (ret)
  958. return ret;
  959. return __wait_seqno(ring, seqno,
  960. atomic_read(&dev_priv->gpu_error.reset_counter),
  961. interruptible, NULL, NULL);
  962. }
  963. static int
  964. i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
  965. struct intel_ring_buffer *ring)
  966. {
  967. i915_gem_retire_requests_ring(ring);
  968. /* Manually manage the write flush as we may have not yet
  969. * retired the buffer.
  970. *
  971. * Note that the last_write_seqno is always the earlier of
  972. * the two (read/write) seqno, so if we haved successfully waited,
  973. * we know we have passed the last write.
  974. */
  975. obj->last_write_seqno = 0;
  976. obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
  977. return 0;
  978. }
  979. /**
  980. * Ensures that all rendering to the object has completed and the object is
  981. * safe to unbind from the GTT or access from the CPU.
  982. */
  983. static __must_check int
  984. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  985. bool readonly)
  986. {
  987. struct intel_ring_buffer *ring = obj->ring;
  988. u32 seqno;
  989. int ret;
  990. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  991. if (seqno == 0)
  992. return 0;
  993. ret = i915_wait_seqno(ring, seqno);
  994. if (ret)
  995. return ret;
  996. return i915_gem_object_wait_rendering__tail(obj, ring);
  997. }
  998. /* A nonblocking variant of the above wait. This is a highly dangerous routine
  999. * as the object state may change during this call.
  1000. */
  1001. static __must_check int
  1002. i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
  1003. struct drm_i915_file_private *file_priv,
  1004. bool readonly)
  1005. {
  1006. struct drm_device *dev = obj->base.dev;
  1007. struct drm_i915_private *dev_priv = dev->dev_private;
  1008. struct intel_ring_buffer *ring = obj->ring;
  1009. unsigned reset_counter;
  1010. u32 seqno;
  1011. int ret;
  1012. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  1013. BUG_ON(!dev_priv->mm.interruptible);
  1014. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  1015. if (seqno == 0)
  1016. return 0;
  1017. ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
  1018. if (ret)
  1019. return ret;
  1020. ret = i915_gem_check_olr(ring, seqno);
  1021. if (ret)
  1022. return ret;
  1023. reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  1024. mutex_unlock(&dev->struct_mutex);
  1025. ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
  1026. mutex_lock(&dev->struct_mutex);
  1027. if (ret)
  1028. return ret;
  1029. return i915_gem_object_wait_rendering__tail(obj, ring);
  1030. }
  1031. /**
  1032. * Called when user space prepares to use an object with the CPU, either
  1033. * through the mmap ioctl's mapping or a GTT mapping.
  1034. */
  1035. int
  1036. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  1037. struct drm_file *file)
  1038. {
  1039. struct drm_i915_gem_set_domain *args = data;
  1040. struct drm_i915_gem_object *obj;
  1041. uint32_t read_domains = args->read_domains;
  1042. uint32_t write_domain = args->write_domain;
  1043. int ret;
  1044. /* Only handle setting domains to types used by the CPU. */
  1045. if (write_domain & I915_GEM_GPU_DOMAINS)
  1046. return -EINVAL;
  1047. if (read_domains & I915_GEM_GPU_DOMAINS)
  1048. return -EINVAL;
  1049. /* Having something in the write domain implies it's in the read
  1050. * domain, and only that read domain. Enforce that in the request.
  1051. */
  1052. if (write_domain != 0 && read_domains != write_domain)
  1053. return -EINVAL;
  1054. ret = i915_mutex_lock_interruptible(dev);
  1055. if (ret)
  1056. return ret;
  1057. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1058. if (&obj->base == NULL) {
  1059. ret = -ENOENT;
  1060. goto unlock;
  1061. }
  1062. /* Try to flush the object off the GPU without holding the lock.
  1063. * We will repeat the flush holding the lock in the normal manner
  1064. * to catch cases where we are gazumped.
  1065. */
  1066. ret = i915_gem_object_wait_rendering__nonblocking(obj,
  1067. file->driver_priv,
  1068. !write_domain);
  1069. if (ret)
  1070. goto unref;
  1071. if (read_domains & I915_GEM_DOMAIN_GTT) {
  1072. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  1073. /* Silently promote "you're not bound, there was nothing to do"
  1074. * to success, since the client was just asking us to
  1075. * make sure everything was done.
  1076. */
  1077. if (ret == -EINVAL)
  1078. ret = 0;
  1079. } else {
  1080. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  1081. }
  1082. unref:
  1083. drm_gem_object_unreference(&obj->base);
  1084. unlock:
  1085. mutex_unlock(&dev->struct_mutex);
  1086. return ret;
  1087. }
  1088. /**
  1089. * Called when user space has done writes to this buffer
  1090. */
  1091. int
  1092. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1093. struct drm_file *file)
  1094. {
  1095. struct drm_i915_gem_sw_finish *args = data;
  1096. struct drm_i915_gem_object *obj;
  1097. int ret = 0;
  1098. ret = i915_mutex_lock_interruptible(dev);
  1099. if (ret)
  1100. return ret;
  1101. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1102. if (&obj->base == NULL) {
  1103. ret = -ENOENT;
  1104. goto unlock;
  1105. }
  1106. /* Pinned buffers may be scanout, so flush the cache */
  1107. if (obj->pin_display)
  1108. i915_gem_object_flush_cpu_write_domain(obj, true);
  1109. drm_gem_object_unreference(&obj->base);
  1110. unlock:
  1111. mutex_unlock(&dev->struct_mutex);
  1112. return ret;
  1113. }
  1114. /**
  1115. * Maps the contents of an object, returning the address it is mapped
  1116. * into.
  1117. *
  1118. * While the mapping holds a reference on the contents of the object, it doesn't
  1119. * imply a ref on the object itself.
  1120. */
  1121. int
  1122. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1123. struct drm_file *file)
  1124. {
  1125. struct drm_i915_gem_mmap *args = data;
  1126. struct drm_gem_object *obj;
  1127. unsigned long addr;
  1128. obj = drm_gem_object_lookup(dev, file, args->handle);
  1129. if (obj == NULL)
  1130. return -ENOENT;
  1131. /* prime objects have no backing filp to GEM mmap
  1132. * pages from.
  1133. */
  1134. if (!obj->filp) {
  1135. drm_gem_object_unreference_unlocked(obj);
  1136. return -EINVAL;
  1137. }
  1138. addr = vm_mmap(obj->filp, 0, args->size,
  1139. PROT_READ | PROT_WRITE, MAP_SHARED,
  1140. args->offset);
  1141. drm_gem_object_unreference_unlocked(obj);
  1142. if (IS_ERR((void *)addr))
  1143. return addr;
  1144. args->addr_ptr = (uint64_t) addr;
  1145. return 0;
  1146. }
  1147. /**
  1148. * i915_gem_fault - fault a page into the GTT
  1149. * vma: VMA in question
  1150. * vmf: fault info
  1151. *
  1152. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1153. * from userspace. The fault handler takes care of binding the object to
  1154. * the GTT (if needed), allocating and programming a fence register (again,
  1155. * only if needed based on whether the old reg is still valid or the object
  1156. * is tiled) and inserting a new PTE into the faulting process.
  1157. *
  1158. * Note that the faulting process may involve evicting existing objects
  1159. * from the GTT and/or fence registers to make room. So performance may
  1160. * suffer if the GTT working set is large or there are few fence registers
  1161. * left.
  1162. */
  1163. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1164. {
  1165. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1166. struct drm_device *dev = obj->base.dev;
  1167. drm_i915_private_t *dev_priv = dev->dev_private;
  1168. pgoff_t page_offset;
  1169. unsigned long pfn;
  1170. int ret = 0;
  1171. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1172. intel_runtime_pm_get(dev_priv);
  1173. /* We don't use vmf->pgoff since that has the fake offset */
  1174. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1175. PAGE_SHIFT;
  1176. ret = i915_mutex_lock_interruptible(dev);
  1177. if (ret)
  1178. goto out;
  1179. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1180. /* Try to flush the object off the GPU first without holding the lock.
  1181. * Upon reacquiring the lock, we will perform our sanity checks and then
  1182. * repeat the flush holding the lock in the normal manner to catch cases
  1183. * where we are gazumped.
  1184. */
  1185. ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
  1186. if (ret)
  1187. goto unlock;
  1188. /* Access to snoopable pages through the GTT is incoherent. */
  1189. if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
  1190. ret = -EINVAL;
  1191. goto unlock;
  1192. }
  1193. /* Now bind it into the GTT if needed */
  1194. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
  1195. if (ret)
  1196. goto unlock;
  1197. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1198. if (ret)
  1199. goto unpin;
  1200. ret = i915_gem_object_get_fence(obj);
  1201. if (ret)
  1202. goto unpin;
  1203. obj->fault_mappable = true;
  1204. pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
  1205. pfn >>= PAGE_SHIFT;
  1206. pfn += page_offset;
  1207. /* Finally, remap it using the new GTT offset */
  1208. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1209. unpin:
  1210. i915_gem_object_ggtt_unpin(obj);
  1211. unlock:
  1212. mutex_unlock(&dev->struct_mutex);
  1213. out:
  1214. switch (ret) {
  1215. case -EIO:
  1216. /* If this -EIO is due to a gpu hang, give the reset code a
  1217. * chance to clean up the mess. Otherwise return the proper
  1218. * SIGBUS. */
  1219. if (i915_terminally_wedged(&dev_priv->gpu_error)) {
  1220. ret = VM_FAULT_SIGBUS;
  1221. break;
  1222. }
  1223. case -EAGAIN:
  1224. /*
  1225. * EAGAIN means the gpu is hung and we'll wait for the error
  1226. * handler to reset everything when re-faulting in
  1227. * i915_mutex_lock_interruptible.
  1228. */
  1229. case 0:
  1230. case -ERESTARTSYS:
  1231. case -EINTR:
  1232. case -EBUSY:
  1233. /*
  1234. * EBUSY is ok: this just means that another thread
  1235. * already did the job.
  1236. */
  1237. ret = VM_FAULT_NOPAGE;
  1238. break;
  1239. case -ENOMEM:
  1240. ret = VM_FAULT_OOM;
  1241. break;
  1242. case -ENOSPC:
  1243. case -EFAULT:
  1244. ret = VM_FAULT_SIGBUS;
  1245. break;
  1246. default:
  1247. WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
  1248. ret = VM_FAULT_SIGBUS;
  1249. break;
  1250. }
  1251. intel_runtime_pm_put(dev_priv);
  1252. return ret;
  1253. }
  1254. void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
  1255. {
  1256. struct i915_vma *vma;
  1257. /*
  1258. * Only the global gtt is relevant for gtt memory mappings, so restrict
  1259. * list traversal to objects bound into the global address space. Note
  1260. * that the active list should be empty, but better safe than sorry.
  1261. */
  1262. WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
  1263. list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
  1264. i915_gem_release_mmap(vma->obj);
  1265. list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
  1266. i915_gem_release_mmap(vma->obj);
  1267. }
  1268. /**
  1269. * i915_gem_release_mmap - remove physical page mappings
  1270. * @obj: obj in question
  1271. *
  1272. * Preserve the reservation of the mmapping with the DRM core code, but
  1273. * relinquish ownership of the pages back to the system.
  1274. *
  1275. * It is vital that we remove the page mapping if we have mapped a tiled
  1276. * object through the GTT and then lose the fence register due to
  1277. * resource pressure. Similarly if the object has been moved out of the
  1278. * aperture, than pages mapped into userspace must be revoked. Removing the
  1279. * mapping will then trigger a page fault on the next user access, allowing
  1280. * fixup by i915_gem_fault().
  1281. */
  1282. void
  1283. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1284. {
  1285. if (!obj->fault_mappable)
  1286. return;
  1287. drm_vma_node_unmap(&obj->base.vma_node,
  1288. obj->base.dev->anon_inode->i_mapping);
  1289. obj->fault_mappable = false;
  1290. }
  1291. uint32_t
  1292. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1293. {
  1294. uint32_t gtt_size;
  1295. if (INTEL_INFO(dev)->gen >= 4 ||
  1296. tiling_mode == I915_TILING_NONE)
  1297. return size;
  1298. /* Previous chips need a power-of-two fence region when tiling */
  1299. if (INTEL_INFO(dev)->gen == 3)
  1300. gtt_size = 1024*1024;
  1301. else
  1302. gtt_size = 512*1024;
  1303. while (gtt_size < size)
  1304. gtt_size <<= 1;
  1305. return gtt_size;
  1306. }
  1307. /**
  1308. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1309. * @obj: object to check
  1310. *
  1311. * Return the required GTT alignment for an object, taking into account
  1312. * potential fence register mapping.
  1313. */
  1314. uint32_t
  1315. i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
  1316. int tiling_mode, bool fenced)
  1317. {
  1318. /*
  1319. * Minimum alignment is 4k (GTT page size), but might be greater
  1320. * if a fence register is needed for the object.
  1321. */
  1322. if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
  1323. tiling_mode == I915_TILING_NONE)
  1324. return 4096;
  1325. /*
  1326. * Previous chips need to be aligned to the size of the smallest
  1327. * fence register that can contain the object.
  1328. */
  1329. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1330. }
  1331. static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
  1332. {
  1333. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1334. int ret;
  1335. if (drm_vma_node_has_offset(&obj->base.vma_node))
  1336. return 0;
  1337. dev_priv->mm.shrinker_no_lock_stealing = true;
  1338. ret = drm_gem_create_mmap_offset(&obj->base);
  1339. if (ret != -ENOSPC)
  1340. goto out;
  1341. /* Badly fragmented mmap space? The only way we can recover
  1342. * space is by destroying unwanted objects. We can't randomly release
  1343. * mmap_offsets as userspace expects them to be persistent for the
  1344. * lifetime of the objects. The closest we can is to release the
  1345. * offsets on purgeable objects by truncating it and marking it purged,
  1346. * which prevents userspace from ever using that object again.
  1347. */
  1348. i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
  1349. ret = drm_gem_create_mmap_offset(&obj->base);
  1350. if (ret != -ENOSPC)
  1351. goto out;
  1352. i915_gem_shrink_all(dev_priv);
  1353. ret = drm_gem_create_mmap_offset(&obj->base);
  1354. out:
  1355. dev_priv->mm.shrinker_no_lock_stealing = false;
  1356. return ret;
  1357. }
  1358. static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
  1359. {
  1360. drm_gem_free_mmap_offset(&obj->base);
  1361. }
  1362. int
  1363. i915_gem_mmap_gtt(struct drm_file *file,
  1364. struct drm_device *dev,
  1365. uint32_t handle,
  1366. uint64_t *offset)
  1367. {
  1368. struct drm_i915_private *dev_priv = dev->dev_private;
  1369. struct drm_i915_gem_object *obj;
  1370. int ret;
  1371. ret = i915_mutex_lock_interruptible(dev);
  1372. if (ret)
  1373. return ret;
  1374. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1375. if (&obj->base == NULL) {
  1376. ret = -ENOENT;
  1377. goto unlock;
  1378. }
  1379. if (obj->base.size > dev_priv->gtt.mappable_end) {
  1380. ret = -E2BIG;
  1381. goto out;
  1382. }
  1383. if (obj->madv != I915_MADV_WILLNEED) {
  1384. DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
  1385. ret = -EFAULT;
  1386. goto out;
  1387. }
  1388. ret = i915_gem_object_create_mmap_offset(obj);
  1389. if (ret)
  1390. goto out;
  1391. *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
  1392. out:
  1393. drm_gem_object_unreference(&obj->base);
  1394. unlock:
  1395. mutex_unlock(&dev->struct_mutex);
  1396. return ret;
  1397. }
  1398. /**
  1399. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1400. * @dev: DRM device
  1401. * @data: GTT mapping ioctl data
  1402. * @file: GEM object info
  1403. *
  1404. * Simply returns the fake offset to userspace so it can mmap it.
  1405. * The mmap call will end up in drm_gem_mmap(), which will set things
  1406. * up so we can get faults in the handler above.
  1407. *
  1408. * The fault handler will take care of binding the object into the GTT
  1409. * (since it may have been evicted to make room for something), allocating
  1410. * a fence register, and mapping the appropriate aperture address into
  1411. * userspace.
  1412. */
  1413. int
  1414. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1415. struct drm_file *file)
  1416. {
  1417. struct drm_i915_gem_mmap_gtt *args = data;
  1418. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1419. }
  1420. /* Immediately discard the backing storage */
  1421. static void
  1422. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1423. {
  1424. struct inode *inode;
  1425. i915_gem_object_free_mmap_offset(obj);
  1426. if (obj->base.filp == NULL)
  1427. return;
  1428. /* Our goal here is to return as much of the memory as
  1429. * is possible back to the system as we are called from OOM.
  1430. * To do this we must instruct the shmfs to drop all of its
  1431. * backing pages, *now*.
  1432. */
  1433. inode = file_inode(obj->base.filp);
  1434. shmem_truncate_range(inode, 0, (loff_t)-1);
  1435. obj->madv = __I915_MADV_PURGED;
  1436. }
  1437. static inline int
  1438. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1439. {
  1440. return obj->madv == I915_MADV_DONTNEED;
  1441. }
  1442. static void
  1443. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1444. {
  1445. struct sg_page_iter sg_iter;
  1446. int ret;
  1447. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1448. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1449. if (ret) {
  1450. /* In the event of a disaster, abandon all caches and
  1451. * hope for the best.
  1452. */
  1453. WARN_ON(ret != -EIO);
  1454. i915_gem_clflush_object(obj, true);
  1455. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1456. }
  1457. if (i915_gem_object_needs_bit17_swizzle(obj))
  1458. i915_gem_object_save_bit_17_swizzle(obj);
  1459. if (obj->madv == I915_MADV_DONTNEED)
  1460. obj->dirty = 0;
  1461. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
  1462. struct page *page = sg_page_iter_page(&sg_iter);
  1463. if (obj->dirty)
  1464. set_page_dirty(page);
  1465. if (obj->madv == I915_MADV_WILLNEED)
  1466. mark_page_accessed(page);
  1467. page_cache_release(page);
  1468. }
  1469. obj->dirty = 0;
  1470. sg_free_table(obj->pages);
  1471. kfree(obj->pages);
  1472. }
  1473. int
  1474. i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
  1475. {
  1476. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1477. if (obj->pages == NULL)
  1478. return 0;
  1479. if (obj->pages_pin_count)
  1480. return -EBUSY;
  1481. BUG_ON(i915_gem_obj_bound_any(obj));
  1482. /* ->put_pages might need to allocate memory for the bit17 swizzle
  1483. * array, hence protect them from being reaped by removing them from gtt
  1484. * lists early. */
  1485. list_del(&obj->global_list);
  1486. ops->put_pages(obj);
  1487. obj->pages = NULL;
  1488. if (i915_gem_object_is_purgeable(obj))
  1489. i915_gem_object_truncate(obj);
  1490. return 0;
  1491. }
  1492. static unsigned long
  1493. __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
  1494. bool purgeable_only)
  1495. {
  1496. struct list_head still_bound_list;
  1497. struct drm_i915_gem_object *obj, *next;
  1498. unsigned long count = 0;
  1499. list_for_each_entry_safe(obj, next,
  1500. &dev_priv->mm.unbound_list,
  1501. global_list) {
  1502. if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
  1503. i915_gem_object_put_pages(obj) == 0) {
  1504. count += obj->base.size >> PAGE_SHIFT;
  1505. if (count >= target)
  1506. return count;
  1507. }
  1508. }
  1509. /*
  1510. * As we may completely rewrite the bound list whilst unbinding
  1511. * (due to retiring requests) we have to strictly process only
  1512. * one element of the list at the time, and recheck the list
  1513. * on every iteration.
  1514. */
  1515. INIT_LIST_HEAD(&still_bound_list);
  1516. while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
  1517. struct i915_vma *vma, *v;
  1518. obj = list_first_entry(&dev_priv->mm.bound_list,
  1519. typeof(*obj), global_list);
  1520. list_move_tail(&obj->global_list, &still_bound_list);
  1521. if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
  1522. continue;
  1523. /*
  1524. * Hold a reference whilst we unbind this object, as we may
  1525. * end up waiting for and retiring requests. This might
  1526. * release the final reference (held by the active list)
  1527. * and result in the object being freed from under us.
  1528. * in this object being freed.
  1529. *
  1530. * Note 1: Shrinking the bound list is special since only active
  1531. * (and hence bound objects) can contain such limbo objects, so
  1532. * we don't need special tricks for shrinking the unbound list.
  1533. * The only other place where we have to be careful with active
  1534. * objects suddenly disappearing due to retiring requests is the
  1535. * eviction code.
  1536. *
  1537. * Note 2: Even though the bound list doesn't hold a reference
  1538. * to the object we can safely grab one here: The final object
  1539. * unreferencing and the bound_list are both protected by the
  1540. * dev->struct_mutex and so we won't ever be able to observe an
  1541. * object on the bound_list with a reference count equals 0.
  1542. */
  1543. drm_gem_object_reference(&obj->base);
  1544. list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
  1545. if (i915_vma_unbind(vma))
  1546. break;
  1547. if (i915_gem_object_put_pages(obj) == 0)
  1548. count += obj->base.size >> PAGE_SHIFT;
  1549. drm_gem_object_unreference(&obj->base);
  1550. }
  1551. list_splice(&still_bound_list, &dev_priv->mm.bound_list);
  1552. return count;
  1553. }
  1554. static unsigned long
  1555. i915_gem_purge(struct drm_i915_private *dev_priv, long target)
  1556. {
  1557. return __i915_gem_shrink(dev_priv, target, true);
  1558. }
  1559. static unsigned long
  1560. i915_gem_shrink_all(struct drm_i915_private *dev_priv)
  1561. {
  1562. struct drm_i915_gem_object *obj, *next;
  1563. long freed = 0;
  1564. i915_gem_evict_everything(dev_priv->dev);
  1565. list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
  1566. global_list) {
  1567. if (i915_gem_object_put_pages(obj) == 0)
  1568. freed += obj->base.size >> PAGE_SHIFT;
  1569. }
  1570. return freed;
  1571. }
  1572. static int
  1573. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
  1574. {
  1575. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1576. int page_count, i;
  1577. struct address_space *mapping;
  1578. struct sg_table *st;
  1579. struct scatterlist *sg;
  1580. struct sg_page_iter sg_iter;
  1581. struct page *page;
  1582. unsigned long last_pfn = 0; /* suppress gcc warning */
  1583. gfp_t gfp;
  1584. /* Assert that the object is not currently in any GPU domain. As it
  1585. * wasn't in the GTT, there shouldn't be any way it could have been in
  1586. * a GPU cache
  1587. */
  1588. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  1589. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  1590. st = kmalloc(sizeof(*st), GFP_KERNEL);
  1591. if (st == NULL)
  1592. return -ENOMEM;
  1593. page_count = obj->base.size / PAGE_SIZE;
  1594. if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
  1595. kfree(st);
  1596. return -ENOMEM;
  1597. }
  1598. /* Get the list of pages out of our struct file. They'll be pinned
  1599. * at this point until we release them.
  1600. *
  1601. * Fail silently without starting the shrinker
  1602. */
  1603. mapping = file_inode(obj->base.filp)->i_mapping;
  1604. gfp = mapping_gfp_mask(mapping);
  1605. gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
  1606. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1607. sg = st->sgl;
  1608. st->nents = 0;
  1609. for (i = 0; i < page_count; i++) {
  1610. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1611. if (IS_ERR(page)) {
  1612. i915_gem_purge(dev_priv, page_count);
  1613. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1614. }
  1615. if (IS_ERR(page)) {
  1616. /* We've tried hard to allocate the memory by reaping
  1617. * our own buffer, now let the real VM do its job and
  1618. * go down in flames if truly OOM.
  1619. */
  1620. gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
  1621. gfp |= __GFP_IO | __GFP_WAIT;
  1622. i915_gem_shrink_all(dev_priv);
  1623. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1624. if (IS_ERR(page))
  1625. goto err_pages;
  1626. gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
  1627. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1628. }
  1629. #ifdef CONFIG_SWIOTLB
  1630. if (swiotlb_nr_tbl()) {
  1631. st->nents++;
  1632. sg_set_page(sg, page, PAGE_SIZE, 0);
  1633. sg = sg_next(sg);
  1634. continue;
  1635. }
  1636. #endif
  1637. if (!i || page_to_pfn(page) != last_pfn + 1) {
  1638. if (i)
  1639. sg = sg_next(sg);
  1640. st->nents++;
  1641. sg_set_page(sg, page, PAGE_SIZE, 0);
  1642. } else {
  1643. sg->length += PAGE_SIZE;
  1644. }
  1645. last_pfn = page_to_pfn(page);
  1646. /* Check that the i965g/gm workaround works. */
  1647. WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
  1648. }
  1649. #ifdef CONFIG_SWIOTLB
  1650. if (!swiotlb_nr_tbl())
  1651. #endif
  1652. sg_mark_end(sg);
  1653. obj->pages = st;
  1654. if (i915_gem_object_needs_bit17_swizzle(obj))
  1655. i915_gem_object_do_bit_17_swizzle(obj);
  1656. return 0;
  1657. err_pages:
  1658. sg_mark_end(sg);
  1659. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
  1660. page_cache_release(sg_page_iter_page(&sg_iter));
  1661. sg_free_table(st);
  1662. kfree(st);
  1663. return PTR_ERR(page);
  1664. }
  1665. /* Ensure that the associated pages are gathered from the backing storage
  1666. * and pinned into our object. i915_gem_object_get_pages() may be called
  1667. * multiple times before they are released by a single call to
  1668. * i915_gem_object_put_pages() - once the pages are no longer referenced
  1669. * either as a result of memory pressure (reaping pages under the shrinker)
  1670. * or as the object is itself released.
  1671. */
  1672. int
  1673. i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
  1674. {
  1675. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1676. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1677. int ret;
  1678. if (obj->pages)
  1679. return 0;
  1680. if (obj->madv != I915_MADV_WILLNEED) {
  1681. DRM_DEBUG("Attempting to obtain a purgeable object\n");
  1682. return -EFAULT;
  1683. }
  1684. BUG_ON(obj->pages_pin_count);
  1685. ret = ops->get_pages(obj);
  1686. if (ret)
  1687. return ret;
  1688. list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
  1689. return 0;
  1690. }
  1691. static void
  1692. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1693. struct intel_ring_buffer *ring)
  1694. {
  1695. struct drm_device *dev = obj->base.dev;
  1696. struct drm_i915_private *dev_priv = dev->dev_private;
  1697. u32 seqno = intel_ring_get_seqno(ring);
  1698. BUG_ON(ring == NULL);
  1699. if (obj->ring != ring && obj->last_write_seqno) {
  1700. /* Keep the seqno relative to the current ring */
  1701. obj->last_write_seqno = seqno;
  1702. }
  1703. obj->ring = ring;
  1704. /* Add a reference if we're newly entering the active list. */
  1705. if (!obj->active) {
  1706. drm_gem_object_reference(&obj->base);
  1707. obj->active = 1;
  1708. }
  1709. list_move_tail(&obj->ring_list, &ring->active_list);
  1710. obj->last_read_seqno = seqno;
  1711. if (obj->fenced_gpu_access) {
  1712. obj->last_fenced_seqno = seqno;
  1713. /* Bump MRU to take account of the delayed flush */
  1714. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1715. struct drm_i915_fence_reg *reg;
  1716. reg = &dev_priv->fence_regs[obj->fence_reg];
  1717. list_move_tail(&reg->lru_list,
  1718. &dev_priv->mm.fence_list);
  1719. }
  1720. }
  1721. }
  1722. void i915_vma_move_to_active(struct i915_vma *vma,
  1723. struct intel_ring_buffer *ring)
  1724. {
  1725. list_move_tail(&vma->mm_list, &vma->vm->active_list);
  1726. return i915_gem_object_move_to_active(vma->obj, ring);
  1727. }
  1728. static void
  1729. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1730. {
  1731. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1732. struct i915_address_space *vm;
  1733. struct i915_vma *vma;
  1734. BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
  1735. BUG_ON(!obj->active);
  1736. list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
  1737. vma = i915_gem_obj_to_vma(obj, vm);
  1738. if (vma && !list_empty(&vma->mm_list))
  1739. list_move_tail(&vma->mm_list, &vm->inactive_list);
  1740. }
  1741. list_del_init(&obj->ring_list);
  1742. obj->ring = NULL;
  1743. obj->last_read_seqno = 0;
  1744. obj->last_write_seqno = 0;
  1745. obj->base.write_domain = 0;
  1746. obj->last_fenced_seqno = 0;
  1747. obj->fenced_gpu_access = false;
  1748. obj->active = 0;
  1749. drm_gem_object_unreference(&obj->base);
  1750. WARN_ON(i915_verify_lists(dev));
  1751. }
  1752. static int
  1753. i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
  1754. {
  1755. struct drm_i915_private *dev_priv = dev->dev_private;
  1756. struct intel_ring_buffer *ring;
  1757. int ret, i, j;
  1758. /* Carefully retire all requests without writing to the rings */
  1759. for_each_ring(ring, dev_priv, i) {
  1760. ret = intel_ring_idle(ring);
  1761. if (ret)
  1762. return ret;
  1763. }
  1764. i915_gem_retire_requests(dev);
  1765. /* Finally reset hw state */
  1766. for_each_ring(ring, dev_priv, i) {
  1767. intel_ring_init_seqno(ring, seqno);
  1768. for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
  1769. ring->sync_seqno[j] = 0;
  1770. }
  1771. return 0;
  1772. }
  1773. int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
  1774. {
  1775. struct drm_i915_private *dev_priv = dev->dev_private;
  1776. int ret;
  1777. if (seqno == 0)
  1778. return -EINVAL;
  1779. /* HWS page needs to be set less than what we
  1780. * will inject to ring
  1781. */
  1782. ret = i915_gem_init_seqno(dev, seqno - 1);
  1783. if (ret)
  1784. return ret;
  1785. /* Carefully set the last_seqno value so that wrap
  1786. * detection still works
  1787. */
  1788. dev_priv->next_seqno = seqno;
  1789. dev_priv->last_seqno = seqno - 1;
  1790. if (dev_priv->last_seqno == 0)
  1791. dev_priv->last_seqno--;
  1792. return 0;
  1793. }
  1794. int
  1795. i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
  1796. {
  1797. struct drm_i915_private *dev_priv = dev->dev_private;
  1798. /* reserve 0 for non-seqno */
  1799. if (dev_priv->next_seqno == 0) {
  1800. int ret = i915_gem_init_seqno(dev, 0);
  1801. if (ret)
  1802. return ret;
  1803. dev_priv->next_seqno = 1;
  1804. }
  1805. *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
  1806. return 0;
  1807. }
  1808. int __i915_add_request(struct intel_ring_buffer *ring,
  1809. struct drm_file *file,
  1810. struct drm_i915_gem_object *obj,
  1811. u32 *out_seqno)
  1812. {
  1813. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1814. struct drm_i915_gem_request *request;
  1815. u32 request_ring_position, request_start;
  1816. int ret;
  1817. request_start = intel_ring_get_tail(ring);
  1818. /*
  1819. * Emit any outstanding flushes - execbuf can fail to emit the flush
  1820. * after having emitted the batchbuffer command. Hence we need to fix
  1821. * things up similar to emitting the lazy request. The difference here
  1822. * is that the flush _must_ happen before the next request, no matter
  1823. * what.
  1824. */
  1825. ret = intel_ring_flush_all_caches(ring);
  1826. if (ret)
  1827. return ret;
  1828. request = ring->preallocated_lazy_request;
  1829. if (WARN_ON(request == NULL))
  1830. return -ENOMEM;
  1831. /* Record the position of the start of the request so that
  1832. * should we detect the updated seqno part-way through the
  1833. * GPU processing the request, we never over-estimate the
  1834. * position of the head.
  1835. */
  1836. request_ring_position = intel_ring_get_tail(ring);
  1837. ret = ring->add_request(ring);
  1838. if (ret)
  1839. return ret;
  1840. request->seqno = intel_ring_get_seqno(ring);
  1841. request->ring = ring;
  1842. request->head = request_start;
  1843. request->tail = request_ring_position;
  1844. /* Whilst this request exists, batch_obj will be on the
  1845. * active_list, and so will hold the active reference. Only when this
  1846. * request is retired will the the batch_obj be moved onto the
  1847. * inactive_list and lose its active reference. Hence we do not need
  1848. * to explicitly hold another reference here.
  1849. */
  1850. request->batch_obj = obj;
  1851. /* Hold a reference to the current context so that we can inspect
  1852. * it later in case a hangcheck error event fires.
  1853. */
  1854. request->ctx = ring->last_context;
  1855. if (request->ctx)
  1856. i915_gem_context_reference(request->ctx);
  1857. request->emitted_jiffies = jiffies;
  1858. list_add_tail(&request->list, &ring->request_list);
  1859. request->file_priv = NULL;
  1860. if (file) {
  1861. struct drm_i915_file_private *file_priv = file->driver_priv;
  1862. spin_lock(&file_priv->mm.lock);
  1863. request->file_priv = file_priv;
  1864. list_add_tail(&request->client_list,
  1865. &file_priv->mm.request_list);
  1866. spin_unlock(&file_priv->mm.lock);
  1867. }
  1868. trace_i915_gem_request_add(ring, request->seqno);
  1869. ring->outstanding_lazy_seqno = 0;
  1870. ring->preallocated_lazy_request = NULL;
  1871. if (!dev_priv->ums.mm_suspended) {
  1872. i915_queue_hangcheck(ring->dev);
  1873. cancel_delayed_work_sync(&dev_priv->mm.idle_work);
  1874. queue_delayed_work(dev_priv->wq,
  1875. &dev_priv->mm.retire_work,
  1876. round_jiffies_up_relative(HZ));
  1877. intel_mark_busy(dev_priv->dev);
  1878. }
  1879. if (out_seqno)
  1880. *out_seqno = request->seqno;
  1881. return 0;
  1882. }
  1883. static inline void
  1884. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1885. {
  1886. struct drm_i915_file_private *file_priv = request->file_priv;
  1887. if (!file_priv)
  1888. return;
  1889. spin_lock(&file_priv->mm.lock);
  1890. list_del(&request->client_list);
  1891. request->file_priv = NULL;
  1892. spin_unlock(&file_priv->mm.lock);
  1893. }
  1894. static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
  1895. const struct i915_hw_context *ctx)
  1896. {
  1897. unsigned long elapsed;
  1898. elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
  1899. if (ctx->hang_stats.banned)
  1900. return true;
  1901. if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
  1902. if (!i915_gem_context_is_default(ctx)) {
  1903. DRM_DEBUG("context hanging too fast, banning!\n");
  1904. return true;
  1905. } else if (dev_priv->gpu_error.stop_rings == 0) {
  1906. DRM_ERROR("gpu hanging too fast, banning!\n");
  1907. return true;
  1908. }
  1909. }
  1910. return false;
  1911. }
  1912. static void i915_set_reset_status(struct drm_i915_private *dev_priv,
  1913. struct i915_hw_context *ctx,
  1914. const bool guilty)
  1915. {
  1916. struct i915_ctx_hang_stats *hs;
  1917. if (WARN_ON(!ctx))
  1918. return;
  1919. hs = &ctx->hang_stats;
  1920. if (guilty) {
  1921. hs->banned = i915_context_is_banned(dev_priv, ctx);
  1922. hs->batch_active++;
  1923. hs->guilty_ts = get_seconds();
  1924. } else {
  1925. hs->batch_pending++;
  1926. }
  1927. }
  1928. static void i915_gem_free_request(struct drm_i915_gem_request *request)
  1929. {
  1930. list_del(&request->list);
  1931. i915_gem_request_remove_from_client(request);
  1932. if (request->ctx)
  1933. i915_gem_context_unreference(request->ctx);
  1934. kfree(request);
  1935. }
  1936. struct drm_i915_gem_request *
  1937. i915_gem_find_active_request(struct intel_ring_buffer *ring)
  1938. {
  1939. struct drm_i915_gem_request *request;
  1940. u32 completed_seqno;
  1941. completed_seqno = ring->get_seqno(ring, false);
  1942. list_for_each_entry(request, &ring->request_list, list) {
  1943. if (i915_seqno_passed(completed_seqno, request->seqno))
  1944. continue;
  1945. return request;
  1946. }
  1947. return NULL;
  1948. }
  1949. static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
  1950. struct intel_ring_buffer *ring)
  1951. {
  1952. struct drm_i915_gem_request *request;
  1953. bool ring_hung;
  1954. request = i915_gem_find_active_request(ring);
  1955. if (request == NULL)
  1956. return;
  1957. ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
  1958. i915_set_reset_status(dev_priv, request->ctx, ring_hung);
  1959. list_for_each_entry_continue(request, &ring->request_list, list)
  1960. i915_set_reset_status(dev_priv, request->ctx, false);
  1961. }
  1962. static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
  1963. struct intel_ring_buffer *ring)
  1964. {
  1965. while (!list_empty(&ring->active_list)) {
  1966. struct drm_i915_gem_object *obj;
  1967. obj = list_first_entry(&ring->active_list,
  1968. struct drm_i915_gem_object,
  1969. ring_list);
  1970. i915_gem_object_move_to_inactive(obj);
  1971. }
  1972. /*
  1973. * We must free the requests after all the corresponding objects have
  1974. * been moved off active lists. Which is the same order as the normal
  1975. * retire_requests function does. This is important if object hold
  1976. * implicit references on things like e.g. ppgtt address spaces through
  1977. * the request.
  1978. */
  1979. while (!list_empty(&ring->request_list)) {
  1980. struct drm_i915_gem_request *request;
  1981. request = list_first_entry(&ring->request_list,
  1982. struct drm_i915_gem_request,
  1983. list);
  1984. i915_gem_free_request(request);
  1985. }
  1986. }
  1987. void i915_gem_restore_fences(struct drm_device *dev)
  1988. {
  1989. struct drm_i915_private *dev_priv = dev->dev_private;
  1990. int i;
  1991. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1992. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1993. /*
  1994. * Commit delayed tiling changes if we have an object still
  1995. * attached to the fence, otherwise just clear the fence.
  1996. */
  1997. if (reg->obj) {
  1998. i915_gem_object_update_fence(reg->obj, reg,
  1999. reg->obj->tiling_mode);
  2000. } else {
  2001. i915_gem_write_fence(dev, i, NULL);
  2002. }
  2003. }
  2004. }
  2005. void i915_gem_reset(struct drm_device *dev)
  2006. {
  2007. struct drm_i915_private *dev_priv = dev->dev_private;
  2008. struct intel_ring_buffer *ring;
  2009. int i;
  2010. /*
  2011. * Before we free the objects from the requests, we need to inspect
  2012. * them for finding the guilty party. As the requests only borrow
  2013. * their reference to the objects, the inspection must be done first.
  2014. */
  2015. for_each_ring(ring, dev_priv, i)
  2016. i915_gem_reset_ring_status(dev_priv, ring);
  2017. for_each_ring(ring, dev_priv, i)
  2018. i915_gem_reset_ring_cleanup(dev_priv, ring);
  2019. i915_gem_cleanup_ringbuffer(dev);
  2020. i915_gem_context_reset(dev);
  2021. i915_gem_restore_fences(dev);
  2022. }
  2023. /**
  2024. * This function clears the request list as sequence numbers are passed.
  2025. */
  2026. static void
  2027. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  2028. {
  2029. uint32_t seqno;
  2030. if (list_empty(&ring->request_list))
  2031. return;
  2032. WARN_ON(i915_verify_lists(ring->dev));
  2033. seqno = ring->get_seqno(ring, true);
  2034. /* Move any buffers on the active list that are no longer referenced
  2035. * by the ringbuffer to the flushing/inactive lists as appropriate,
  2036. * before we free the context associated with the requests.
  2037. */
  2038. while (!list_empty(&ring->active_list)) {
  2039. struct drm_i915_gem_object *obj;
  2040. obj = list_first_entry(&ring->active_list,
  2041. struct drm_i915_gem_object,
  2042. ring_list);
  2043. if (!i915_seqno_passed(seqno, obj->last_read_seqno))
  2044. break;
  2045. i915_gem_object_move_to_inactive(obj);
  2046. }
  2047. while (!list_empty(&ring->request_list)) {
  2048. struct drm_i915_gem_request *request;
  2049. request = list_first_entry(&ring->request_list,
  2050. struct drm_i915_gem_request,
  2051. list);
  2052. if (!i915_seqno_passed(seqno, request->seqno))
  2053. break;
  2054. trace_i915_gem_request_retire(ring, request->seqno);
  2055. /* We know the GPU must have read the request to have
  2056. * sent us the seqno + interrupt, so use the position
  2057. * of tail of the request to update the last known position
  2058. * of the GPU head.
  2059. */
  2060. ring->last_retired_head = request->tail;
  2061. i915_gem_free_request(request);
  2062. }
  2063. if (unlikely(ring->trace_irq_seqno &&
  2064. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  2065. ring->irq_put(ring);
  2066. ring->trace_irq_seqno = 0;
  2067. }
  2068. WARN_ON(i915_verify_lists(ring->dev));
  2069. }
  2070. bool
  2071. i915_gem_retire_requests(struct drm_device *dev)
  2072. {
  2073. drm_i915_private_t *dev_priv = dev->dev_private;
  2074. struct intel_ring_buffer *ring;
  2075. bool idle = true;
  2076. int i;
  2077. for_each_ring(ring, dev_priv, i) {
  2078. i915_gem_retire_requests_ring(ring);
  2079. idle &= list_empty(&ring->request_list);
  2080. }
  2081. if (idle)
  2082. mod_delayed_work(dev_priv->wq,
  2083. &dev_priv->mm.idle_work,
  2084. msecs_to_jiffies(100));
  2085. return idle;
  2086. }
  2087. static void
  2088. i915_gem_retire_work_handler(struct work_struct *work)
  2089. {
  2090. struct drm_i915_private *dev_priv =
  2091. container_of(work, typeof(*dev_priv), mm.retire_work.work);
  2092. struct drm_device *dev = dev_priv->dev;
  2093. bool idle;
  2094. /* Come back later if the device is busy... */
  2095. idle = false;
  2096. if (mutex_trylock(&dev->struct_mutex)) {
  2097. idle = i915_gem_retire_requests(dev);
  2098. mutex_unlock(&dev->struct_mutex);
  2099. }
  2100. if (!idle)
  2101. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
  2102. round_jiffies_up_relative(HZ));
  2103. }
  2104. static void
  2105. i915_gem_idle_work_handler(struct work_struct *work)
  2106. {
  2107. struct drm_i915_private *dev_priv =
  2108. container_of(work, typeof(*dev_priv), mm.idle_work.work);
  2109. intel_mark_idle(dev_priv->dev);
  2110. }
  2111. /**
  2112. * Ensures that an object will eventually get non-busy by flushing any required
  2113. * write domains, emitting any outstanding lazy request and retiring and
  2114. * completed requests.
  2115. */
  2116. static int
  2117. i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
  2118. {
  2119. int ret;
  2120. if (obj->active) {
  2121. ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
  2122. if (ret)
  2123. return ret;
  2124. i915_gem_retire_requests_ring(obj->ring);
  2125. }
  2126. return 0;
  2127. }
  2128. /**
  2129. * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
  2130. * @DRM_IOCTL_ARGS: standard ioctl arguments
  2131. *
  2132. * Returns 0 if successful, else an error is returned with the remaining time in
  2133. * the timeout parameter.
  2134. * -ETIME: object is still busy after timeout
  2135. * -ERESTARTSYS: signal interrupted the wait
  2136. * -ENONENT: object doesn't exist
  2137. * Also possible, but rare:
  2138. * -EAGAIN: GPU wedged
  2139. * -ENOMEM: damn
  2140. * -ENODEV: Internal IRQ fail
  2141. * -E?: The add request failed
  2142. *
  2143. * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
  2144. * non-zero timeout parameter the wait ioctl will wait for the given number of
  2145. * nanoseconds on an object becoming unbusy. Since the wait itself does so
  2146. * without holding struct_mutex the object may become re-busied before this
  2147. * function completes. A similar but shorter * race condition exists in the busy
  2148. * ioctl
  2149. */
  2150. int
  2151. i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
  2152. {
  2153. drm_i915_private_t *dev_priv = dev->dev_private;
  2154. struct drm_i915_gem_wait *args = data;
  2155. struct drm_i915_gem_object *obj;
  2156. struct intel_ring_buffer *ring = NULL;
  2157. struct timespec timeout_stack, *timeout = NULL;
  2158. unsigned reset_counter;
  2159. u32 seqno = 0;
  2160. int ret = 0;
  2161. if (args->timeout_ns >= 0) {
  2162. timeout_stack = ns_to_timespec(args->timeout_ns);
  2163. timeout = &timeout_stack;
  2164. }
  2165. ret = i915_mutex_lock_interruptible(dev);
  2166. if (ret)
  2167. return ret;
  2168. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
  2169. if (&obj->base == NULL) {
  2170. mutex_unlock(&dev->struct_mutex);
  2171. return -ENOENT;
  2172. }
  2173. /* Need to make sure the object gets inactive eventually. */
  2174. ret = i915_gem_object_flush_active(obj);
  2175. if (ret)
  2176. goto out;
  2177. if (obj->active) {
  2178. seqno = obj->last_read_seqno;
  2179. ring = obj->ring;
  2180. }
  2181. if (seqno == 0)
  2182. goto out;
  2183. /* Do this after OLR check to make sure we make forward progress polling
  2184. * on this IOCTL with a 0 timeout (like busy ioctl)
  2185. */
  2186. if (!args->timeout_ns) {
  2187. ret = -ETIME;
  2188. goto out;
  2189. }
  2190. drm_gem_object_unreference(&obj->base);
  2191. reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  2192. mutex_unlock(&dev->struct_mutex);
  2193. ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
  2194. if (timeout)
  2195. args->timeout_ns = timespec_to_ns(timeout);
  2196. return ret;
  2197. out:
  2198. drm_gem_object_unreference(&obj->base);
  2199. mutex_unlock(&dev->struct_mutex);
  2200. return ret;
  2201. }
  2202. /**
  2203. * i915_gem_object_sync - sync an object to a ring.
  2204. *
  2205. * @obj: object which may be in use on another ring.
  2206. * @to: ring we wish to use the object on. May be NULL.
  2207. *
  2208. * This code is meant to abstract object synchronization with the GPU.
  2209. * Calling with NULL implies synchronizing the object with the CPU
  2210. * rather than a particular GPU ring.
  2211. *
  2212. * Returns 0 if successful, else propagates up the lower layer error.
  2213. */
  2214. int
  2215. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  2216. struct intel_ring_buffer *to)
  2217. {
  2218. struct intel_ring_buffer *from = obj->ring;
  2219. u32 seqno;
  2220. int ret, idx;
  2221. if (from == NULL || to == from)
  2222. return 0;
  2223. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  2224. return i915_gem_object_wait_rendering(obj, false);
  2225. idx = intel_ring_sync_index(from, to);
  2226. seqno = obj->last_read_seqno;
  2227. if (seqno <= from->sync_seqno[idx])
  2228. return 0;
  2229. ret = i915_gem_check_olr(obj->ring, seqno);
  2230. if (ret)
  2231. return ret;
  2232. trace_i915_gem_ring_sync_to(from, to, seqno);
  2233. ret = to->sync_to(to, from, seqno);
  2234. if (!ret)
  2235. /* We use last_read_seqno because sync_to()
  2236. * might have just caused seqno wrap under
  2237. * the radar.
  2238. */
  2239. from->sync_seqno[idx] = obj->last_read_seqno;
  2240. return ret;
  2241. }
  2242. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  2243. {
  2244. u32 old_write_domain, old_read_domains;
  2245. /* Force a pagefault for domain tracking on next user access */
  2246. i915_gem_release_mmap(obj);
  2247. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  2248. return;
  2249. /* Wait for any direct GTT access to complete */
  2250. mb();
  2251. old_read_domains = obj->base.read_domains;
  2252. old_write_domain = obj->base.write_domain;
  2253. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  2254. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  2255. trace_i915_gem_object_change_domain(obj,
  2256. old_read_domains,
  2257. old_write_domain);
  2258. }
  2259. int i915_vma_unbind(struct i915_vma *vma)
  2260. {
  2261. struct drm_i915_gem_object *obj = vma->obj;
  2262. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2263. int ret;
  2264. if (list_empty(&vma->vma_link))
  2265. return 0;
  2266. if (!drm_mm_node_allocated(&vma->node)) {
  2267. i915_gem_vma_destroy(vma);
  2268. return 0;
  2269. }
  2270. if (vma->pin_count)
  2271. return -EBUSY;
  2272. BUG_ON(obj->pages == NULL);
  2273. ret = i915_gem_object_finish_gpu(obj);
  2274. if (ret)
  2275. return ret;
  2276. /* Continue on if we fail due to EIO, the GPU is hung so we
  2277. * should be safe and we need to cleanup or else we might
  2278. * cause memory corruption through use-after-free.
  2279. */
  2280. i915_gem_object_finish_gtt(obj);
  2281. /* release the fence reg _after_ flushing */
  2282. ret = i915_gem_object_put_fence(obj);
  2283. if (ret)
  2284. return ret;
  2285. trace_i915_vma_unbind(vma);
  2286. vma->unbind_vma(vma);
  2287. i915_gem_gtt_finish_object(obj);
  2288. list_del_init(&vma->mm_list);
  2289. /* Avoid an unnecessary call to unbind on rebind. */
  2290. if (i915_is_ggtt(vma->vm))
  2291. obj->map_and_fenceable = true;
  2292. drm_mm_remove_node(&vma->node);
  2293. i915_gem_vma_destroy(vma);
  2294. /* Since the unbound list is global, only move to that list if
  2295. * no more VMAs exist. */
  2296. if (list_empty(&obj->vma_list))
  2297. list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
  2298. /* And finally now the object is completely decoupled from this vma,
  2299. * we can drop its hold on the backing storage and allow it to be
  2300. * reaped by the shrinker.
  2301. */
  2302. i915_gem_object_unpin_pages(obj);
  2303. return 0;
  2304. }
  2305. int i915_gpu_idle(struct drm_device *dev)
  2306. {
  2307. drm_i915_private_t *dev_priv = dev->dev_private;
  2308. struct intel_ring_buffer *ring;
  2309. int ret, i;
  2310. /* Flush everything onto the inactive list. */
  2311. for_each_ring(ring, dev_priv, i) {
  2312. ret = i915_switch_context(ring, NULL, ring->default_context);
  2313. if (ret)
  2314. return ret;
  2315. ret = intel_ring_idle(ring);
  2316. if (ret)
  2317. return ret;
  2318. }
  2319. return 0;
  2320. }
  2321. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  2322. struct drm_i915_gem_object *obj)
  2323. {
  2324. drm_i915_private_t *dev_priv = dev->dev_private;
  2325. int fence_reg;
  2326. int fence_pitch_shift;
  2327. if (INTEL_INFO(dev)->gen >= 6) {
  2328. fence_reg = FENCE_REG_SANDYBRIDGE_0;
  2329. fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
  2330. } else {
  2331. fence_reg = FENCE_REG_965_0;
  2332. fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
  2333. }
  2334. fence_reg += reg * 8;
  2335. /* To w/a incoherency with non-atomic 64-bit register updates,
  2336. * we split the 64-bit update into two 32-bit writes. In order
  2337. * for a partial fence not to be evaluated between writes, we
  2338. * precede the update with write to turn off the fence register,
  2339. * and only enable the fence as the last step.
  2340. *
  2341. * For extra levels of paranoia, we make sure each step lands
  2342. * before applying the next step.
  2343. */
  2344. I915_WRITE(fence_reg, 0);
  2345. POSTING_READ(fence_reg);
  2346. if (obj) {
  2347. u32 size = i915_gem_obj_ggtt_size(obj);
  2348. uint64_t val;
  2349. val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
  2350. 0xfffff000) << 32;
  2351. val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
  2352. val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
  2353. if (obj->tiling_mode == I915_TILING_Y)
  2354. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2355. val |= I965_FENCE_REG_VALID;
  2356. I915_WRITE(fence_reg + 4, val >> 32);
  2357. POSTING_READ(fence_reg + 4);
  2358. I915_WRITE(fence_reg + 0, val);
  2359. POSTING_READ(fence_reg);
  2360. } else {
  2361. I915_WRITE(fence_reg + 4, 0);
  2362. POSTING_READ(fence_reg + 4);
  2363. }
  2364. }
  2365. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  2366. struct drm_i915_gem_object *obj)
  2367. {
  2368. drm_i915_private_t *dev_priv = dev->dev_private;
  2369. u32 val;
  2370. if (obj) {
  2371. u32 size = i915_gem_obj_ggtt_size(obj);
  2372. int pitch_val;
  2373. int tile_width;
  2374. WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
  2375. (size & -size) != size ||
  2376. (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
  2377. "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  2378. i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
  2379. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  2380. tile_width = 128;
  2381. else
  2382. tile_width = 512;
  2383. /* Note: pitch better be a power of two tile widths */
  2384. pitch_val = obj->stride / tile_width;
  2385. pitch_val = ffs(pitch_val) - 1;
  2386. val = i915_gem_obj_ggtt_offset(obj);
  2387. if (obj->tiling_mode == I915_TILING_Y)
  2388. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2389. val |= I915_FENCE_SIZE_BITS(size);
  2390. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2391. val |= I830_FENCE_REG_VALID;
  2392. } else
  2393. val = 0;
  2394. if (reg < 8)
  2395. reg = FENCE_REG_830_0 + reg * 4;
  2396. else
  2397. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  2398. I915_WRITE(reg, val);
  2399. POSTING_READ(reg);
  2400. }
  2401. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  2402. struct drm_i915_gem_object *obj)
  2403. {
  2404. drm_i915_private_t *dev_priv = dev->dev_private;
  2405. uint32_t val;
  2406. if (obj) {
  2407. u32 size = i915_gem_obj_ggtt_size(obj);
  2408. uint32_t pitch_val;
  2409. WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
  2410. (size & -size) != size ||
  2411. (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
  2412. "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
  2413. i915_gem_obj_ggtt_offset(obj), size);
  2414. pitch_val = obj->stride / 128;
  2415. pitch_val = ffs(pitch_val) - 1;
  2416. val = i915_gem_obj_ggtt_offset(obj);
  2417. if (obj->tiling_mode == I915_TILING_Y)
  2418. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2419. val |= I830_FENCE_SIZE_BITS(size);
  2420. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2421. val |= I830_FENCE_REG_VALID;
  2422. } else
  2423. val = 0;
  2424. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  2425. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  2426. }
  2427. inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
  2428. {
  2429. return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
  2430. }
  2431. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  2432. struct drm_i915_gem_object *obj)
  2433. {
  2434. struct drm_i915_private *dev_priv = dev->dev_private;
  2435. /* Ensure that all CPU reads are completed before installing a fence
  2436. * and all writes before removing the fence.
  2437. */
  2438. if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
  2439. mb();
  2440. WARN(obj && (!obj->stride || !obj->tiling_mode),
  2441. "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
  2442. obj->stride, obj->tiling_mode);
  2443. switch (INTEL_INFO(dev)->gen) {
  2444. case 8:
  2445. case 7:
  2446. case 6:
  2447. case 5:
  2448. case 4: i965_write_fence_reg(dev, reg, obj); break;
  2449. case 3: i915_write_fence_reg(dev, reg, obj); break;
  2450. case 2: i830_write_fence_reg(dev, reg, obj); break;
  2451. default: BUG();
  2452. }
  2453. /* And similarly be paranoid that no direct access to this region
  2454. * is reordered to before the fence is installed.
  2455. */
  2456. if (i915_gem_object_needs_mb(obj))
  2457. mb();
  2458. }
  2459. static inline int fence_number(struct drm_i915_private *dev_priv,
  2460. struct drm_i915_fence_reg *fence)
  2461. {
  2462. return fence - dev_priv->fence_regs;
  2463. }
  2464. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  2465. struct drm_i915_fence_reg *fence,
  2466. bool enable)
  2467. {
  2468. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2469. int reg = fence_number(dev_priv, fence);
  2470. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  2471. if (enable) {
  2472. obj->fence_reg = reg;
  2473. fence->obj = obj;
  2474. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  2475. } else {
  2476. obj->fence_reg = I915_FENCE_REG_NONE;
  2477. fence->obj = NULL;
  2478. list_del_init(&fence->lru_list);
  2479. }
  2480. obj->fence_dirty = false;
  2481. }
  2482. static int
  2483. i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
  2484. {
  2485. if (obj->last_fenced_seqno) {
  2486. int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
  2487. if (ret)
  2488. return ret;
  2489. obj->last_fenced_seqno = 0;
  2490. }
  2491. obj->fenced_gpu_access = false;
  2492. return 0;
  2493. }
  2494. int
  2495. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2496. {
  2497. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2498. struct drm_i915_fence_reg *fence;
  2499. int ret;
  2500. ret = i915_gem_object_wait_fence(obj);
  2501. if (ret)
  2502. return ret;
  2503. if (obj->fence_reg == I915_FENCE_REG_NONE)
  2504. return 0;
  2505. fence = &dev_priv->fence_regs[obj->fence_reg];
  2506. i915_gem_object_fence_lost(obj);
  2507. i915_gem_object_update_fence(obj, fence, false);
  2508. return 0;
  2509. }
  2510. static struct drm_i915_fence_reg *
  2511. i915_find_fence_reg(struct drm_device *dev)
  2512. {
  2513. struct drm_i915_private *dev_priv = dev->dev_private;
  2514. struct drm_i915_fence_reg *reg, *avail;
  2515. int i;
  2516. /* First try to find a free reg */
  2517. avail = NULL;
  2518. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2519. reg = &dev_priv->fence_regs[i];
  2520. if (!reg->obj)
  2521. return reg;
  2522. if (!reg->pin_count)
  2523. avail = reg;
  2524. }
  2525. if (avail == NULL)
  2526. goto deadlock;
  2527. /* None available, try to steal one or wait for a user to finish */
  2528. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2529. if (reg->pin_count)
  2530. continue;
  2531. return reg;
  2532. }
  2533. deadlock:
  2534. /* Wait for completion of pending flips which consume fences */
  2535. if (intel_has_pending_fb_unpin(dev))
  2536. return ERR_PTR(-EAGAIN);
  2537. return ERR_PTR(-EDEADLK);
  2538. }
  2539. /**
  2540. * i915_gem_object_get_fence - set up fencing for an object
  2541. * @obj: object to map through a fence reg
  2542. *
  2543. * When mapping objects through the GTT, userspace wants to be able to write
  2544. * to them without having to worry about swizzling if the object is tiled.
  2545. * This function walks the fence regs looking for a free one for @obj,
  2546. * stealing one if it can't find any.
  2547. *
  2548. * It then sets up the reg based on the object's properties: address, pitch
  2549. * and tiling format.
  2550. *
  2551. * For an untiled surface, this removes any existing fence.
  2552. */
  2553. int
  2554. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  2555. {
  2556. struct drm_device *dev = obj->base.dev;
  2557. struct drm_i915_private *dev_priv = dev->dev_private;
  2558. bool enable = obj->tiling_mode != I915_TILING_NONE;
  2559. struct drm_i915_fence_reg *reg;
  2560. int ret;
  2561. /* Have we updated the tiling parameters upon the object and so
  2562. * will need to serialise the write to the associated fence register?
  2563. */
  2564. if (obj->fence_dirty) {
  2565. ret = i915_gem_object_wait_fence(obj);
  2566. if (ret)
  2567. return ret;
  2568. }
  2569. /* Just update our place in the LRU if our fence is getting reused. */
  2570. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2571. reg = &dev_priv->fence_regs[obj->fence_reg];
  2572. if (!obj->fence_dirty) {
  2573. list_move_tail(&reg->lru_list,
  2574. &dev_priv->mm.fence_list);
  2575. return 0;
  2576. }
  2577. } else if (enable) {
  2578. reg = i915_find_fence_reg(dev);
  2579. if (IS_ERR(reg))
  2580. return PTR_ERR(reg);
  2581. if (reg->obj) {
  2582. struct drm_i915_gem_object *old = reg->obj;
  2583. ret = i915_gem_object_wait_fence(old);
  2584. if (ret)
  2585. return ret;
  2586. i915_gem_object_fence_lost(old);
  2587. }
  2588. } else
  2589. return 0;
  2590. i915_gem_object_update_fence(obj, reg, enable);
  2591. return 0;
  2592. }
  2593. static bool i915_gem_valid_gtt_space(struct drm_device *dev,
  2594. struct drm_mm_node *gtt_space,
  2595. unsigned long cache_level)
  2596. {
  2597. struct drm_mm_node *other;
  2598. /* On non-LLC machines we have to be careful when putting differing
  2599. * types of snoopable memory together to avoid the prefetcher
  2600. * crossing memory domains and dying.
  2601. */
  2602. if (HAS_LLC(dev))
  2603. return true;
  2604. if (!drm_mm_node_allocated(gtt_space))
  2605. return true;
  2606. if (list_empty(&gtt_space->node_list))
  2607. return true;
  2608. other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
  2609. if (other->allocated && !other->hole_follows && other->color != cache_level)
  2610. return false;
  2611. other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
  2612. if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
  2613. return false;
  2614. return true;
  2615. }
  2616. static void i915_gem_verify_gtt(struct drm_device *dev)
  2617. {
  2618. #if WATCH_GTT
  2619. struct drm_i915_private *dev_priv = dev->dev_private;
  2620. struct drm_i915_gem_object *obj;
  2621. int err = 0;
  2622. list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
  2623. if (obj->gtt_space == NULL) {
  2624. printk(KERN_ERR "object found on GTT list with no space reserved\n");
  2625. err++;
  2626. continue;
  2627. }
  2628. if (obj->cache_level != obj->gtt_space->color) {
  2629. printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
  2630. i915_gem_obj_ggtt_offset(obj),
  2631. i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
  2632. obj->cache_level,
  2633. obj->gtt_space->color);
  2634. err++;
  2635. continue;
  2636. }
  2637. if (!i915_gem_valid_gtt_space(dev,
  2638. obj->gtt_space,
  2639. obj->cache_level)) {
  2640. printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
  2641. i915_gem_obj_ggtt_offset(obj),
  2642. i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
  2643. obj->cache_level);
  2644. err++;
  2645. continue;
  2646. }
  2647. }
  2648. WARN_ON(err);
  2649. #endif
  2650. }
  2651. /**
  2652. * Finds free space in the GTT aperture and binds the object there.
  2653. */
  2654. static struct i915_vma *
  2655. i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
  2656. struct i915_address_space *vm,
  2657. unsigned alignment,
  2658. unsigned flags)
  2659. {
  2660. struct drm_device *dev = obj->base.dev;
  2661. drm_i915_private_t *dev_priv = dev->dev_private;
  2662. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2663. size_t gtt_max =
  2664. flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
  2665. struct i915_vma *vma;
  2666. int ret;
  2667. fence_size = i915_gem_get_gtt_size(dev,
  2668. obj->base.size,
  2669. obj->tiling_mode);
  2670. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2671. obj->base.size,
  2672. obj->tiling_mode, true);
  2673. unfenced_alignment =
  2674. i915_gem_get_gtt_alignment(dev,
  2675. obj->base.size,
  2676. obj->tiling_mode, false);
  2677. if (alignment == 0)
  2678. alignment = flags & PIN_MAPPABLE ? fence_alignment :
  2679. unfenced_alignment;
  2680. if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
  2681. DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
  2682. return ERR_PTR(-EINVAL);
  2683. }
  2684. size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
  2685. /* If the object is bigger than the entire aperture, reject it early
  2686. * before evicting everything in a vain attempt to find space.
  2687. */
  2688. if (obj->base.size > gtt_max) {
  2689. DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
  2690. obj->base.size,
  2691. flags & PIN_MAPPABLE ? "mappable" : "total",
  2692. gtt_max);
  2693. return ERR_PTR(-E2BIG);
  2694. }
  2695. ret = i915_gem_object_get_pages(obj);
  2696. if (ret)
  2697. return ERR_PTR(ret);
  2698. i915_gem_object_pin_pages(obj);
  2699. vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
  2700. if (IS_ERR(vma))
  2701. goto err_unpin;
  2702. search_free:
  2703. ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
  2704. size, alignment,
  2705. obj->cache_level, 0, gtt_max,
  2706. DRM_MM_SEARCH_DEFAULT);
  2707. if (ret) {
  2708. ret = i915_gem_evict_something(dev, vm, size, alignment,
  2709. obj->cache_level, flags);
  2710. if (ret == 0)
  2711. goto search_free;
  2712. goto err_free_vma;
  2713. }
  2714. if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
  2715. obj->cache_level))) {
  2716. ret = -EINVAL;
  2717. goto err_remove_node;
  2718. }
  2719. ret = i915_gem_gtt_prepare_object(obj);
  2720. if (ret)
  2721. goto err_remove_node;
  2722. list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
  2723. list_add_tail(&vma->mm_list, &vm->inactive_list);
  2724. if (i915_is_ggtt(vm)) {
  2725. bool mappable, fenceable;
  2726. fenceable = (vma->node.size == fence_size &&
  2727. (vma->node.start & (fence_alignment - 1)) == 0);
  2728. mappable = (vma->node.start + obj->base.size <=
  2729. dev_priv->gtt.mappable_end);
  2730. obj->map_and_fenceable = mappable && fenceable;
  2731. }
  2732. WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
  2733. trace_i915_vma_bind(vma, flags);
  2734. vma->bind_vma(vma, obj->cache_level,
  2735. flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
  2736. i915_gem_verify_gtt(dev);
  2737. return vma;
  2738. err_remove_node:
  2739. drm_mm_remove_node(&vma->node);
  2740. err_free_vma:
  2741. i915_gem_vma_destroy(vma);
  2742. vma = ERR_PTR(ret);
  2743. err_unpin:
  2744. i915_gem_object_unpin_pages(obj);
  2745. return vma;
  2746. }
  2747. bool
  2748. i915_gem_clflush_object(struct drm_i915_gem_object *obj,
  2749. bool force)
  2750. {
  2751. /* If we don't have a page list set up, then we're not pinned
  2752. * to GPU, and we can ignore the cache flush because it'll happen
  2753. * again at bind time.
  2754. */
  2755. if (obj->pages == NULL)
  2756. return false;
  2757. /*
  2758. * Stolen memory is always coherent with the GPU as it is explicitly
  2759. * marked as wc by the system, or the system is cache-coherent.
  2760. */
  2761. if (obj->stolen)
  2762. return false;
  2763. /* If the GPU is snooping the contents of the CPU cache,
  2764. * we do not need to manually clear the CPU cache lines. However,
  2765. * the caches are only snooped when the render cache is
  2766. * flushed/invalidated. As we always have to emit invalidations
  2767. * and flushes when moving into and out of the RENDER domain, correct
  2768. * snooping behaviour occurs naturally as the result of our domain
  2769. * tracking.
  2770. */
  2771. if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
  2772. return false;
  2773. trace_i915_gem_object_clflush(obj);
  2774. drm_clflush_sg(obj->pages);
  2775. return true;
  2776. }
  2777. /** Flushes the GTT write domain for the object if it's dirty. */
  2778. static void
  2779. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2780. {
  2781. uint32_t old_write_domain;
  2782. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2783. return;
  2784. /* No actual flushing is required for the GTT write domain. Writes
  2785. * to it immediately go to main memory as far as we know, so there's
  2786. * no chipset flush. It also doesn't land in render cache.
  2787. *
  2788. * However, we do have to enforce the order so that all writes through
  2789. * the GTT land before any writes to the device, such as updates to
  2790. * the GATT itself.
  2791. */
  2792. wmb();
  2793. old_write_domain = obj->base.write_domain;
  2794. obj->base.write_domain = 0;
  2795. trace_i915_gem_object_change_domain(obj,
  2796. obj->base.read_domains,
  2797. old_write_domain);
  2798. }
  2799. /** Flushes the CPU write domain for the object if it's dirty. */
  2800. static void
  2801. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
  2802. bool force)
  2803. {
  2804. uint32_t old_write_domain;
  2805. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2806. return;
  2807. if (i915_gem_clflush_object(obj, force))
  2808. i915_gem_chipset_flush(obj->base.dev);
  2809. old_write_domain = obj->base.write_domain;
  2810. obj->base.write_domain = 0;
  2811. trace_i915_gem_object_change_domain(obj,
  2812. obj->base.read_domains,
  2813. old_write_domain);
  2814. }
  2815. /**
  2816. * Moves a single object to the GTT read, and possibly write domain.
  2817. *
  2818. * This function returns when the move is complete, including waiting on
  2819. * flushes to occur.
  2820. */
  2821. int
  2822. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2823. {
  2824. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2825. uint32_t old_write_domain, old_read_domains;
  2826. int ret;
  2827. /* Not valid to be called on unbound objects. */
  2828. if (!i915_gem_obj_bound_any(obj))
  2829. return -EINVAL;
  2830. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2831. return 0;
  2832. ret = i915_gem_object_wait_rendering(obj, !write);
  2833. if (ret)
  2834. return ret;
  2835. i915_gem_object_flush_cpu_write_domain(obj, false);
  2836. /* Serialise direct access to this object with the barriers for
  2837. * coherent writes from the GPU, by effectively invalidating the
  2838. * GTT domain upon first access.
  2839. */
  2840. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  2841. mb();
  2842. old_write_domain = obj->base.write_domain;
  2843. old_read_domains = obj->base.read_domains;
  2844. /* It should now be out of any other write domains, and we can update
  2845. * the domain values for our changes.
  2846. */
  2847. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2848. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2849. if (write) {
  2850. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2851. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2852. obj->dirty = 1;
  2853. }
  2854. trace_i915_gem_object_change_domain(obj,
  2855. old_read_domains,
  2856. old_write_domain);
  2857. /* And bump the LRU for this access */
  2858. if (i915_gem_object_is_inactive(obj)) {
  2859. struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
  2860. if (vma)
  2861. list_move_tail(&vma->mm_list,
  2862. &dev_priv->gtt.base.inactive_list);
  2863. }
  2864. return 0;
  2865. }
  2866. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2867. enum i915_cache_level cache_level)
  2868. {
  2869. struct drm_device *dev = obj->base.dev;
  2870. struct i915_vma *vma, *next;
  2871. int ret;
  2872. if (obj->cache_level == cache_level)
  2873. return 0;
  2874. if (i915_gem_obj_is_pinned(obj)) {
  2875. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2876. return -EBUSY;
  2877. }
  2878. list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
  2879. if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
  2880. ret = i915_vma_unbind(vma);
  2881. if (ret)
  2882. return ret;
  2883. }
  2884. }
  2885. if (i915_gem_obj_bound_any(obj)) {
  2886. ret = i915_gem_object_finish_gpu(obj);
  2887. if (ret)
  2888. return ret;
  2889. i915_gem_object_finish_gtt(obj);
  2890. /* Before SandyBridge, you could not use tiling or fence
  2891. * registers with snooped memory, so relinquish any fences
  2892. * currently pointing to our region in the aperture.
  2893. */
  2894. if (INTEL_INFO(dev)->gen < 6) {
  2895. ret = i915_gem_object_put_fence(obj);
  2896. if (ret)
  2897. return ret;
  2898. }
  2899. list_for_each_entry(vma, &obj->vma_list, vma_link)
  2900. if (drm_mm_node_allocated(&vma->node))
  2901. vma->bind_vma(vma, cache_level,
  2902. obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
  2903. }
  2904. list_for_each_entry(vma, &obj->vma_list, vma_link)
  2905. vma->node.color = cache_level;
  2906. obj->cache_level = cache_level;
  2907. if (cpu_write_needs_clflush(obj)) {
  2908. u32 old_read_domains, old_write_domain;
  2909. /* If we're coming from LLC cached, then we haven't
  2910. * actually been tracking whether the data is in the
  2911. * CPU cache or not, since we only allow one bit set
  2912. * in obj->write_domain and have been skipping the clflushes.
  2913. * Just set it to the CPU cache for now.
  2914. */
  2915. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2916. old_read_domains = obj->base.read_domains;
  2917. old_write_domain = obj->base.write_domain;
  2918. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2919. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2920. trace_i915_gem_object_change_domain(obj,
  2921. old_read_domains,
  2922. old_write_domain);
  2923. }
  2924. i915_gem_verify_gtt(dev);
  2925. return 0;
  2926. }
  2927. int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
  2928. struct drm_file *file)
  2929. {
  2930. struct drm_i915_gem_caching *args = data;
  2931. struct drm_i915_gem_object *obj;
  2932. int ret;
  2933. ret = i915_mutex_lock_interruptible(dev);
  2934. if (ret)
  2935. return ret;
  2936. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2937. if (&obj->base == NULL) {
  2938. ret = -ENOENT;
  2939. goto unlock;
  2940. }
  2941. switch (obj->cache_level) {
  2942. case I915_CACHE_LLC:
  2943. case I915_CACHE_L3_LLC:
  2944. args->caching = I915_CACHING_CACHED;
  2945. break;
  2946. case I915_CACHE_WT:
  2947. args->caching = I915_CACHING_DISPLAY;
  2948. break;
  2949. default:
  2950. args->caching = I915_CACHING_NONE;
  2951. break;
  2952. }
  2953. drm_gem_object_unreference(&obj->base);
  2954. unlock:
  2955. mutex_unlock(&dev->struct_mutex);
  2956. return ret;
  2957. }
  2958. int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
  2959. struct drm_file *file)
  2960. {
  2961. struct drm_i915_gem_caching *args = data;
  2962. struct drm_i915_gem_object *obj;
  2963. enum i915_cache_level level;
  2964. int ret;
  2965. switch (args->caching) {
  2966. case I915_CACHING_NONE:
  2967. level = I915_CACHE_NONE;
  2968. break;
  2969. case I915_CACHING_CACHED:
  2970. level = I915_CACHE_LLC;
  2971. break;
  2972. case I915_CACHING_DISPLAY:
  2973. level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
  2974. break;
  2975. default:
  2976. return -EINVAL;
  2977. }
  2978. ret = i915_mutex_lock_interruptible(dev);
  2979. if (ret)
  2980. return ret;
  2981. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2982. if (&obj->base == NULL) {
  2983. ret = -ENOENT;
  2984. goto unlock;
  2985. }
  2986. ret = i915_gem_object_set_cache_level(obj, level);
  2987. drm_gem_object_unreference(&obj->base);
  2988. unlock:
  2989. mutex_unlock(&dev->struct_mutex);
  2990. return ret;
  2991. }
  2992. static bool is_pin_display(struct drm_i915_gem_object *obj)
  2993. {
  2994. /* There are 3 sources that pin objects:
  2995. * 1. The display engine (scanouts, sprites, cursors);
  2996. * 2. Reservations for execbuffer;
  2997. * 3. The user.
  2998. *
  2999. * We can ignore reservations as we hold the struct_mutex and
  3000. * are only called outside of the reservation path. The user
  3001. * can only increment pin_count once, and so if after
  3002. * subtracting the potential reference by the user, any pin_count
  3003. * remains, it must be due to another use by the display engine.
  3004. */
  3005. return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
  3006. }
  3007. /*
  3008. * Prepare buffer for display plane (scanout, cursors, etc).
  3009. * Can be called from an uninterruptible phase (modesetting) and allows
  3010. * any flushes to be pipelined (for pageflips).
  3011. */
  3012. int
  3013. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  3014. u32 alignment,
  3015. struct intel_ring_buffer *pipelined)
  3016. {
  3017. u32 old_read_domains, old_write_domain;
  3018. int ret;
  3019. if (pipelined != obj->ring) {
  3020. ret = i915_gem_object_sync(obj, pipelined);
  3021. if (ret)
  3022. return ret;
  3023. }
  3024. /* Mark the pin_display early so that we account for the
  3025. * display coherency whilst setting up the cache domains.
  3026. */
  3027. obj->pin_display = true;
  3028. /* The display engine is not coherent with the LLC cache on gen6. As
  3029. * a result, we make sure that the pinning that is about to occur is
  3030. * done with uncached PTEs. This is lowest common denominator for all
  3031. * chipsets.
  3032. *
  3033. * However for gen6+, we could do better by using the GFDT bit instead
  3034. * of uncaching, which would allow us to flush all the LLC-cached data
  3035. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  3036. */
  3037. ret = i915_gem_object_set_cache_level(obj,
  3038. HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
  3039. if (ret)
  3040. goto err_unpin_display;
  3041. /* As the user may map the buffer once pinned in the display plane
  3042. * (e.g. libkms for the bootup splash), we have to ensure that we
  3043. * always use map_and_fenceable for all scanout buffers.
  3044. */
  3045. ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
  3046. if (ret)
  3047. goto err_unpin_display;
  3048. i915_gem_object_flush_cpu_write_domain(obj, true);
  3049. old_write_domain = obj->base.write_domain;
  3050. old_read_domains = obj->base.read_domains;
  3051. /* It should now be out of any other write domains, and we can update
  3052. * the domain values for our changes.
  3053. */
  3054. obj->base.write_domain = 0;
  3055. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  3056. trace_i915_gem_object_change_domain(obj,
  3057. old_read_domains,
  3058. old_write_domain);
  3059. return 0;
  3060. err_unpin_display:
  3061. obj->pin_display = is_pin_display(obj);
  3062. return ret;
  3063. }
  3064. void
  3065. i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
  3066. {
  3067. i915_gem_object_ggtt_unpin(obj);
  3068. obj->pin_display = is_pin_display(obj);
  3069. }
  3070. int
  3071. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  3072. {
  3073. int ret;
  3074. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  3075. return 0;
  3076. ret = i915_gem_object_wait_rendering(obj, false);
  3077. if (ret)
  3078. return ret;
  3079. /* Ensure that we invalidate the GPU's caches and TLBs. */
  3080. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  3081. return 0;
  3082. }
  3083. /**
  3084. * Moves a single object to the CPU read, and possibly write domain.
  3085. *
  3086. * This function returns when the move is complete, including waiting on
  3087. * flushes to occur.
  3088. */
  3089. int
  3090. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  3091. {
  3092. uint32_t old_write_domain, old_read_domains;
  3093. int ret;
  3094. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  3095. return 0;
  3096. ret = i915_gem_object_wait_rendering(obj, !write);
  3097. if (ret)
  3098. return ret;
  3099. i915_gem_object_flush_gtt_write_domain(obj);
  3100. old_write_domain = obj->base.write_domain;
  3101. old_read_domains = obj->base.read_domains;
  3102. /* Flush the CPU cache if it's still invalid. */
  3103. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  3104. i915_gem_clflush_object(obj, false);
  3105. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  3106. }
  3107. /* It should now be out of any other write domains, and we can update
  3108. * the domain values for our changes.
  3109. */
  3110. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  3111. /* If we're writing through the CPU, then the GPU read domains will
  3112. * need to be invalidated at next use.
  3113. */
  3114. if (write) {
  3115. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3116. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3117. }
  3118. trace_i915_gem_object_change_domain(obj,
  3119. old_read_domains,
  3120. old_write_domain);
  3121. return 0;
  3122. }
  3123. /* Throttle our rendering by waiting until the ring has completed our requests
  3124. * emitted over 20 msec ago.
  3125. *
  3126. * Note that if we were to use the current jiffies each time around the loop,
  3127. * we wouldn't escape the function with any frames outstanding if the time to
  3128. * render a frame was over 20ms.
  3129. *
  3130. * This should get us reasonable parallelism between CPU and GPU but also
  3131. * relatively low latency when blocking on a particular request to finish.
  3132. */
  3133. static int
  3134. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  3135. {
  3136. struct drm_i915_private *dev_priv = dev->dev_private;
  3137. struct drm_i915_file_private *file_priv = file->driver_priv;
  3138. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  3139. struct drm_i915_gem_request *request;
  3140. struct intel_ring_buffer *ring = NULL;
  3141. unsigned reset_counter;
  3142. u32 seqno = 0;
  3143. int ret;
  3144. ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
  3145. if (ret)
  3146. return ret;
  3147. ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
  3148. if (ret)
  3149. return ret;
  3150. spin_lock(&file_priv->mm.lock);
  3151. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  3152. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3153. break;
  3154. ring = request->ring;
  3155. seqno = request->seqno;
  3156. }
  3157. reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  3158. spin_unlock(&file_priv->mm.lock);
  3159. if (seqno == 0)
  3160. return 0;
  3161. ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
  3162. if (ret == 0)
  3163. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3164. return ret;
  3165. }
  3166. int
  3167. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  3168. struct i915_address_space *vm,
  3169. uint32_t alignment,
  3170. unsigned flags)
  3171. {
  3172. struct i915_vma *vma;
  3173. int ret;
  3174. if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
  3175. return -EINVAL;
  3176. vma = i915_gem_obj_to_vma(obj, vm);
  3177. if (vma) {
  3178. if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
  3179. return -EBUSY;
  3180. if ((alignment &&
  3181. vma->node.start & (alignment - 1)) ||
  3182. (flags & PIN_MAPPABLE && !obj->map_and_fenceable)) {
  3183. WARN(vma->pin_count,
  3184. "bo is already pinned with incorrect alignment:"
  3185. " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
  3186. " obj->map_and_fenceable=%d\n",
  3187. i915_gem_obj_offset(obj, vm), alignment,
  3188. flags & PIN_MAPPABLE,
  3189. obj->map_and_fenceable);
  3190. ret = i915_vma_unbind(vma);
  3191. if (ret)
  3192. return ret;
  3193. vma = NULL;
  3194. }
  3195. }
  3196. if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
  3197. vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
  3198. if (IS_ERR(vma))
  3199. return PTR_ERR(vma);
  3200. }
  3201. if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
  3202. vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
  3203. vma->pin_count++;
  3204. if (flags & PIN_MAPPABLE)
  3205. obj->pin_mappable |= true;
  3206. return 0;
  3207. }
  3208. void
  3209. i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
  3210. {
  3211. struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
  3212. BUG_ON(!vma);
  3213. BUG_ON(vma->pin_count == 0);
  3214. BUG_ON(!i915_gem_obj_ggtt_bound(obj));
  3215. if (--vma->pin_count == 0)
  3216. obj->pin_mappable = false;
  3217. }
  3218. int
  3219. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3220. struct drm_file *file)
  3221. {
  3222. struct drm_i915_gem_pin *args = data;
  3223. struct drm_i915_gem_object *obj;
  3224. int ret;
  3225. if (INTEL_INFO(dev)->gen >= 6)
  3226. return -ENODEV;
  3227. ret = i915_mutex_lock_interruptible(dev);
  3228. if (ret)
  3229. return ret;
  3230. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3231. if (&obj->base == NULL) {
  3232. ret = -ENOENT;
  3233. goto unlock;
  3234. }
  3235. if (obj->madv != I915_MADV_WILLNEED) {
  3236. DRM_DEBUG("Attempting to pin a purgeable buffer\n");
  3237. ret = -EFAULT;
  3238. goto out;
  3239. }
  3240. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  3241. DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3242. args->handle);
  3243. ret = -EINVAL;
  3244. goto out;
  3245. }
  3246. if (obj->user_pin_count == ULONG_MAX) {
  3247. ret = -EBUSY;
  3248. goto out;
  3249. }
  3250. if (obj->user_pin_count == 0) {
  3251. ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
  3252. if (ret)
  3253. goto out;
  3254. }
  3255. obj->user_pin_count++;
  3256. obj->pin_filp = file;
  3257. args->offset = i915_gem_obj_ggtt_offset(obj);
  3258. out:
  3259. drm_gem_object_unreference(&obj->base);
  3260. unlock:
  3261. mutex_unlock(&dev->struct_mutex);
  3262. return ret;
  3263. }
  3264. int
  3265. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3266. struct drm_file *file)
  3267. {
  3268. struct drm_i915_gem_pin *args = data;
  3269. struct drm_i915_gem_object *obj;
  3270. int ret;
  3271. ret = i915_mutex_lock_interruptible(dev);
  3272. if (ret)
  3273. return ret;
  3274. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3275. if (&obj->base == NULL) {
  3276. ret = -ENOENT;
  3277. goto unlock;
  3278. }
  3279. if (obj->pin_filp != file) {
  3280. DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3281. args->handle);
  3282. ret = -EINVAL;
  3283. goto out;
  3284. }
  3285. obj->user_pin_count--;
  3286. if (obj->user_pin_count == 0) {
  3287. obj->pin_filp = NULL;
  3288. i915_gem_object_ggtt_unpin(obj);
  3289. }
  3290. out:
  3291. drm_gem_object_unreference(&obj->base);
  3292. unlock:
  3293. mutex_unlock(&dev->struct_mutex);
  3294. return ret;
  3295. }
  3296. int
  3297. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3298. struct drm_file *file)
  3299. {
  3300. struct drm_i915_gem_busy *args = data;
  3301. struct drm_i915_gem_object *obj;
  3302. int ret;
  3303. ret = i915_mutex_lock_interruptible(dev);
  3304. if (ret)
  3305. return ret;
  3306. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3307. if (&obj->base == NULL) {
  3308. ret = -ENOENT;
  3309. goto unlock;
  3310. }
  3311. /* Count all active objects as busy, even if they are currently not used
  3312. * by the gpu. Users of this interface expect objects to eventually
  3313. * become non-busy without any further actions, therefore emit any
  3314. * necessary flushes here.
  3315. */
  3316. ret = i915_gem_object_flush_active(obj);
  3317. args->busy = obj->active;
  3318. if (obj->ring) {
  3319. BUILD_BUG_ON(I915_NUM_RINGS > 16);
  3320. args->busy |= intel_ring_flag(obj->ring) << 16;
  3321. }
  3322. drm_gem_object_unreference(&obj->base);
  3323. unlock:
  3324. mutex_unlock(&dev->struct_mutex);
  3325. return ret;
  3326. }
  3327. int
  3328. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3329. struct drm_file *file_priv)
  3330. {
  3331. return i915_gem_ring_throttle(dev, file_priv);
  3332. }
  3333. int
  3334. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3335. struct drm_file *file_priv)
  3336. {
  3337. struct drm_i915_gem_madvise *args = data;
  3338. struct drm_i915_gem_object *obj;
  3339. int ret;
  3340. switch (args->madv) {
  3341. case I915_MADV_DONTNEED:
  3342. case I915_MADV_WILLNEED:
  3343. break;
  3344. default:
  3345. return -EINVAL;
  3346. }
  3347. ret = i915_mutex_lock_interruptible(dev);
  3348. if (ret)
  3349. return ret;
  3350. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  3351. if (&obj->base == NULL) {
  3352. ret = -ENOENT;
  3353. goto unlock;
  3354. }
  3355. if (i915_gem_obj_is_pinned(obj)) {
  3356. ret = -EINVAL;
  3357. goto out;
  3358. }
  3359. if (obj->madv != __I915_MADV_PURGED)
  3360. obj->madv = args->madv;
  3361. /* if the object is no longer attached, discard its backing storage */
  3362. if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
  3363. i915_gem_object_truncate(obj);
  3364. args->retained = obj->madv != __I915_MADV_PURGED;
  3365. out:
  3366. drm_gem_object_unreference(&obj->base);
  3367. unlock:
  3368. mutex_unlock(&dev->struct_mutex);
  3369. return ret;
  3370. }
  3371. void i915_gem_object_init(struct drm_i915_gem_object *obj,
  3372. const struct drm_i915_gem_object_ops *ops)
  3373. {
  3374. INIT_LIST_HEAD(&obj->global_list);
  3375. INIT_LIST_HEAD(&obj->ring_list);
  3376. INIT_LIST_HEAD(&obj->obj_exec_link);
  3377. INIT_LIST_HEAD(&obj->vma_list);
  3378. obj->ops = ops;
  3379. obj->fence_reg = I915_FENCE_REG_NONE;
  3380. obj->madv = I915_MADV_WILLNEED;
  3381. /* Avoid an unnecessary call to unbind on the first bind. */
  3382. obj->map_and_fenceable = true;
  3383. i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
  3384. }
  3385. static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
  3386. .get_pages = i915_gem_object_get_pages_gtt,
  3387. .put_pages = i915_gem_object_put_pages_gtt,
  3388. };
  3389. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  3390. size_t size)
  3391. {
  3392. struct drm_i915_gem_object *obj;
  3393. struct address_space *mapping;
  3394. gfp_t mask;
  3395. obj = i915_gem_object_alloc(dev);
  3396. if (obj == NULL)
  3397. return NULL;
  3398. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3399. i915_gem_object_free(obj);
  3400. return NULL;
  3401. }
  3402. mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
  3403. if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
  3404. /* 965gm cannot relocate objects above 4GiB. */
  3405. mask &= ~__GFP_HIGHMEM;
  3406. mask |= __GFP_DMA32;
  3407. }
  3408. mapping = file_inode(obj->base.filp)->i_mapping;
  3409. mapping_set_gfp_mask(mapping, mask);
  3410. i915_gem_object_init(obj, &i915_gem_object_ops);
  3411. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3412. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3413. if (HAS_LLC(dev)) {
  3414. /* On some devices, we can have the GPU use the LLC (the CPU
  3415. * cache) for about a 10% performance improvement
  3416. * compared to uncached. Graphics requests other than
  3417. * display scanout are coherent with the CPU in
  3418. * accessing this cache. This means in this mode we
  3419. * don't need to clflush on the CPU side, and on the
  3420. * GPU side we only need to flush internal caches to
  3421. * get data visible to the CPU.
  3422. *
  3423. * However, we maintain the display planes as UC, and so
  3424. * need to rebind when first used as such.
  3425. */
  3426. obj->cache_level = I915_CACHE_LLC;
  3427. } else
  3428. obj->cache_level = I915_CACHE_NONE;
  3429. trace_i915_gem_object_create(obj);
  3430. return obj;
  3431. }
  3432. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3433. {
  3434. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3435. struct drm_device *dev = obj->base.dev;
  3436. drm_i915_private_t *dev_priv = dev->dev_private;
  3437. struct i915_vma *vma, *next;
  3438. intel_runtime_pm_get(dev_priv);
  3439. trace_i915_gem_object_destroy(obj);
  3440. if (obj->phys_obj)
  3441. i915_gem_detach_phys_object(dev, obj);
  3442. list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
  3443. int ret;
  3444. vma->pin_count = 0;
  3445. ret = i915_vma_unbind(vma);
  3446. if (WARN_ON(ret == -ERESTARTSYS)) {
  3447. bool was_interruptible;
  3448. was_interruptible = dev_priv->mm.interruptible;
  3449. dev_priv->mm.interruptible = false;
  3450. WARN_ON(i915_vma_unbind(vma));
  3451. dev_priv->mm.interruptible = was_interruptible;
  3452. }
  3453. }
  3454. /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
  3455. * before progressing. */
  3456. if (obj->stolen)
  3457. i915_gem_object_unpin_pages(obj);
  3458. if (WARN_ON(obj->pages_pin_count))
  3459. obj->pages_pin_count = 0;
  3460. i915_gem_object_put_pages(obj);
  3461. i915_gem_object_free_mmap_offset(obj);
  3462. i915_gem_object_release_stolen(obj);
  3463. BUG_ON(obj->pages);
  3464. if (obj->base.import_attach)
  3465. drm_prime_gem_destroy(&obj->base, NULL);
  3466. drm_gem_object_release(&obj->base);
  3467. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3468. kfree(obj->bit_17);
  3469. i915_gem_object_free(obj);
  3470. intel_runtime_pm_put(dev_priv);
  3471. }
  3472. struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
  3473. struct i915_address_space *vm)
  3474. {
  3475. struct i915_vma *vma;
  3476. list_for_each_entry(vma, &obj->vma_list, vma_link)
  3477. if (vma->vm == vm)
  3478. return vma;
  3479. return NULL;
  3480. }
  3481. void i915_gem_vma_destroy(struct i915_vma *vma)
  3482. {
  3483. WARN_ON(vma->node.allocated);
  3484. /* Keep the vma as a placeholder in the execbuffer reservation lists */
  3485. if (!list_empty(&vma->exec_list))
  3486. return;
  3487. list_del(&vma->vma_link);
  3488. kfree(vma);
  3489. }
  3490. int
  3491. i915_gem_suspend(struct drm_device *dev)
  3492. {
  3493. drm_i915_private_t *dev_priv = dev->dev_private;
  3494. int ret = 0;
  3495. mutex_lock(&dev->struct_mutex);
  3496. if (dev_priv->ums.mm_suspended)
  3497. goto err;
  3498. ret = i915_gpu_idle(dev);
  3499. if (ret)
  3500. goto err;
  3501. i915_gem_retire_requests(dev);
  3502. /* Under UMS, be paranoid and evict. */
  3503. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3504. i915_gem_evict_everything(dev);
  3505. i915_kernel_lost_context(dev);
  3506. i915_gem_cleanup_ringbuffer(dev);
  3507. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3508. * We need to replace this with a semaphore, or something.
  3509. * And not confound ums.mm_suspended!
  3510. */
  3511. dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
  3512. DRIVER_MODESET);
  3513. mutex_unlock(&dev->struct_mutex);
  3514. del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
  3515. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3516. cancel_delayed_work_sync(&dev_priv->mm.idle_work);
  3517. return 0;
  3518. err:
  3519. mutex_unlock(&dev->struct_mutex);
  3520. return ret;
  3521. }
  3522. int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
  3523. {
  3524. struct drm_device *dev = ring->dev;
  3525. drm_i915_private_t *dev_priv = dev->dev_private;
  3526. u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
  3527. u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
  3528. int i, ret;
  3529. if (!HAS_L3_DPF(dev) || !remap_info)
  3530. return 0;
  3531. ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
  3532. if (ret)
  3533. return ret;
  3534. /*
  3535. * Note: We do not worry about the concurrent register cacheline hang
  3536. * here because no other code should access these registers other than
  3537. * at initialization time.
  3538. */
  3539. for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
  3540. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  3541. intel_ring_emit(ring, reg_base + i);
  3542. intel_ring_emit(ring, remap_info[i/4]);
  3543. }
  3544. intel_ring_advance(ring);
  3545. return ret;
  3546. }
  3547. void i915_gem_init_swizzling(struct drm_device *dev)
  3548. {
  3549. drm_i915_private_t *dev_priv = dev->dev_private;
  3550. if (INTEL_INFO(dev)->gen < 5 ||
  3551. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  3552. return;
  3553. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  3554. DISP_TILE_SURFACE_SWIZZLING);
  3555. if (IS_GEN5(dev))
  3556. return;
  3557. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  3558. if (IS_GEN6(dev))
  3559. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3560. else if (IS_GEN7(dev))
  3561. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3562. else if (IS_GEN8(dev))
  3563. I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
  3564. else
  3565. BUG();
  3566. }
  3567. static bool
  3568. intel_enable_blt(struct drm_device *dev)
  3569. {
  3570. if (!HAS_BLT(dev))
  3571. return false;
  3572. /* The blitter was dysfunctional on early prototypes */
  3573. if (IS_GEN6(dev) && dev->pdev->revision < 8) {
  3574. DRM_INFO("BLT not supported on this pre-production hardware;"
  3575. " graphics performance will be degraded.\n");
  3576. return false;
  3577. }
  3578. return true;
  3579. }
  3580. static int i915_gem_init_rings(struct drm_device *dev)
  3581. {
  3582. struct drm_i915_private *dev_priv = dev->dev_private;
  3583. int ret;
  3584. ret = intel_init_render_ring_buffer(dev);
  3585. if (ret)
  3586. return ret;
  3587. if (HAS_BSD(dev)) {
  3588. ret = intel_init_bsd_ring_buffer(dev);
  3589. if (ret)
  3590. goto cleanup_render_ring;
  3591. }
  3592. if (intel_enable_blt(dev)) {
  3593. ret = intel_init_blt_ring_buffer(dev);
  3594. if (ret)
  3595. goto cleanup_bsd_ring;
  3596. }
  3597. if (HAS_VEBOX(dev)) {
  3598. ret = intel_init_vebox_ring_buffer(dev);
  3599. if (ret)
  3600. goto cleanup_blt_ring;
  3601. }
  3602. ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
  3603. if (ret)
  3604. goto cleanup_vebox_ring;
  3605. return 0;
  3606. cleanup_vebox_ring:
  3607. intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
  3608. cleanup_blt_ring:
  3609. intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
  3610. cleanup_bsd_ring:
  3611. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3612. cleanup_render_ring:
  3613. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3614. return ret;
  3615. }
  3616. int
  3617. i915_gem_init_hw(struct drm_device *dev)
  3618. {
  3619. drm_i915_private_t *dev_priv = dev->dev_private;
  3620. int ret, i;
  3621. if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
  3622. return -EIO;
  3623. if (dev_priv->ellc_size)
  3624. I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
  3625. if (IS_HASWELL(dev))
  3626. I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
  3627. LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
  3628. if (HAS_PCH_NOP(dev)) {
  3629. if (IS_IVYBRIDGE(dev)) {
  3630. u32 temp = I915_READ(GEN7_MSG_CTL);
  3631. temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
  3632. I915_WRITE(GEN7_MSG_CTL, temp);
  3633. } else if (INTEL_INFO(dev)->gen >= 7) {
  3634. u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
  3635. temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
  3636. I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
  3637. }
  3638. }
  3639. i915_gem_init_swizzling(dev);
  3640. ret = i915_gem_init_rings(dev);
  3641. if (ret)
  3642. return ret;
  3643. for (i = 0; i < NUM_L3_SLICES(dev); i++)
  3644. i915_gem_l3_remap(&dev_priv->ring[RCS], i);
  3645. /*
  3646. * XXX: Contexts should only be initialized once. Doing a switch to the
  3647. * default context switch however is something we'd like to do after
  3648. * reset or thaw (the latter may not actually be necessary for HW, but
  3649. * goes with our code better). Context switching requires rings (for
  3650. * the do_switch), but before enabling PPGTT. So don't move this.
  3651. */
  3652. ret = i915_gem_context_enable(dev_priv);
  3653. if (ret) {
  3654. DRM_ERROR("Context enable failed %d\n", ret);
  3655. goto err_out;
  3656. }
  3657. return 0;
  3658. err_out:
  3659. i915_gem_cleanup_ringbuffer(dev);
  3660. return ret;
  3661. }
  3662. int i915_gem_init(struct drm_device *dev)
  3663. {
  3664. struct drm_i915_private *dev_priv = dev->dev_private;
  3665. int ret;
  3666. mutex_lock(&dev->struct_mutex);
  3667. if (IS_VALLEYVIEW(dev)) {
  3668. /* VLVA0 (potential hack), BIOS isn't actually waking us */
  3669. I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
  3670. if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
  3671. DRM_DEBUG_DRIVER("allow wake ack timed out\n");
  3672. }
  3673. i915_gem_init_global_gtt(dev);
  3674. ret = i915_gem_context_init(dev);
  3675. if (ret) {
  3676. mutex_unlock(&dev->struct_mutex);
  3677. return ret;
  3678. }
  3679. ret = i915_gem_init_hw(dev);
  3680. mutex_unlock(&dev->struct_mutex);
  3681. if (ret) {
  3682. WARN_ON(dev_priv->mm.aliasing_ppgtt);
  3683. i915_gem_context_fini(dev);
  3684. drm_mm_takedown(&dev_priv->gtt.base.mm);
  3685. return ret;
  3686. }
  3687. /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
  3688. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3689. dev_priv->dri1.allow_batchbuffer = 1;
  3690. return 0;
  3691. }
  3692. void
  3693. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3694. {
  3695. drm_i915_private_t *dev_priv = dev->dev_private;
  3696. struct intel_ring_buffer *ring;
  3697. int i;
  3698. for_each_ring(ring, dev_priv, i)
  3699. intel_cleanup_ring_buffer(ring);
  3700. }
  3701. int
  3702. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3703. struct drm_file *file_priv)
  3704. {
  3705. struct drm_i915_private *dev_priv = dev->dev_private;
  3706. int ret;
  3707. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3708. return 0;
  3709. if (i915_reset_in_progress(&dev_priv->gpu_error)) {
  3710. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3711. atomic_set(&dev_priv->gpu_error.reset_counter, 0);
  3712. }
  3713. mutex_lock(&dev->struct_mutex);
  3714. dev_priv->ums.mm_suspended = 0;
  3715. ret = i915_gem_init_hw(dev);
  3716. if (ret != 0) {
  3717. mutex_unlock(&dev->struct_mutex);
  3718. return ret;
  3719. }
  3720. BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
  3721. mutex_unlock(&dev->struct_mutex);
  3722. ret = drm_irq_install(dev);
  3723. if (ret)
  3724. goto cleanup_ringbuffer;
  3725. return 0;
  3726. cleanup_ringbuffer:
  3727. mutex_lock(&dev->struct_mutex);
  3728. i915_gem_cleanup_ringbuffer(dev);
  3729. dev_priv->ums.mm_suspended = 1;
  3730. mutex_unlock(&dev->struct_mutex);
  3731. return ret;
  3732. }
  3733. int
  3734. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3735. struct drm_file *file_priv)
  3736. {
  3737. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3738. return 0;
  3739. drm_irq_uninstall(dev);
  3740. return i915_gem_suspend(dev);
  3741. }
  3742. void
  3743. i915_gem_lastclose(struct drm_device *dev)
  3744. {
  3745. int ret;
  3746. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3747. return;
  3748. ret = i915_gem_suspend(dev);
  3749. if (ret)
  3750. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3751. }
  3752. static void
  3753. init_ring_lists(struct intel_ring_buffer *ring)
  3754. {
  3755. INIT_LIST_HEAD(&ring->active_list);
  3756. INIT_LIST_HEAD(&ring->request_list);
  3757. }
  3758. void i915_init_vm(struct drm_i915_private *dev_priv,
  3759. struct i915_address_space *vm)
  3760. {
  3761. if (!i915_is_ggtt(vm))
  3762. drm_mm_init(&vm->mm, vm->start, vm->total);
  3763. vm->dev = dev_priv->dev;
  3764. INIT_LIST_HEAD(&vm->active_list);
  3765. INIT_LIST_HEAD(&vm->inactive_list);
  3766. INIT_LIST_HEAD(&vm->global_link);
  3767. list_add_tail(&vm->global_link, &dev_priv->vm_list);
  3768. }
  3769. void
  3770. i915_gem_load(struct drm_device *dev)
  3771. {
  3772. drm_i915_private_t *dev_priv = dev->dev_private;
  3773. int i;
  3774. dev_priv->slab =
  3775. kmem_cache_create("i915_gem_object",
  3776. sizeof(struct drm_i915_gem_object), 0,
  3777. SLAB_HWCACHE_ALIGN,
  3778. NULL);
  3779. INIT_LIST_HEAD(&dev_priv->vm_list);
  3780. i915_init_vm(dev_priv, &dev_priv->gtt.base);
  3781. INIT_LIST_HEAD(&dev_priv->context_list);
  3782. INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
  3783. INIT_LIST_HEAD(&dev_priv->mm.bound_list);
  3784. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3785. for (i = 0; i < I915_NUM_RINGS; i++)
  3786. init_ring_lists(&dev_priv->ring[i]);
  3787. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3788. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3789. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3790. i915_gem_retire_work_handler);
  3791. INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
  3792. i915_gem_idle_work_handler);
  3793. init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
  3794. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3795. if (IS_GEN3(dev)) {
  3796. I915_WRITE(MI_ARB_STATE,
  3797. _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  3798. }
  3799. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3800. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3801. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3802. dev_priv->fence_reg_start = 3;
  3803. if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
  3804. dev_priv->num_fence_regs = 32;
  3805. else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3806. dev_priv->num_fence_regs = 16;
  3807. else
  3808. dev_priv->num_fence_regs = 8;
  3809. /* Initialize fence registers to zero */
  3810. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3811. i915_gem_restore_fences(dev);
  3812. i915_gem_detect_bit_6_swizzle(dev);
  3813. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3814. dev_priv->mm.interruptible = true;
  3815. dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
  3816. dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
  3817. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3818. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3819. }
  3820. /*
  3821. * Create a physically contiguous memory object for this object
  3822. * e.g. for cursor + overlay regs
  3823. */
  3824. static int i915_gem_init_phys_object(struct drm_device *dev,
  3825. int id, int size, int align)
  3826. {
  3827. drm_i915_private_t *dev_priv = dev->dev_private;
  3828. struct drm_i915_gem_phys_object *phys_obj;
  3829. int ret;
  3830. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3831. return 0;
  3832. phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
  3833. if (!phys_obj)
  3834. return -ENOMEM;
  3835. phys_obj->id = id;
  3836. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3837. if (!phys_obj->handle) {
  3838. ret = -ENOMEM;
  3839. goto kfree_obj;
  3840. }
  3841. #ifdef CONFIG_X86
  3842. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3843. #endif
  3844. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3845. return 0;
  3846. kfree_obj:
  3847. kfree(phys_obj);
  3848. return ret;
  3849. }
  3850. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3851. {
  3852. drm_i915_private_t *dev_priv = dev->dev_private;
  3853. struct drm_i915_gem_phys_object *phys_obj;
  3854. if (!dev_priv->mm.phys_objs[id - 1])
  3855. return;
  3856. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3857. if (phys_obj->cur_obj) {
  3858. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3859. }
  3860. #ifdef CONFIG_X86
  3861. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3862. #endif
  3863. drm_pci_free(dev, phys_obj->handle);
  3864. kfree(phys_obj);
  3865. dev_priv->mm.phys_objs[id - 1] = NULL;
  3866. }
  3867. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3868. {
  3869. int i;
  3870. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3871. i915_gem_free_phys_object(dev, i);
  3872. }
  3873. void i915_gem_detach_phys_object(struct drm_device *dev,
  3874. struct drm_i915_gem_object *obj)
  3875. {
  3876. struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
  3877. char *vaddr;
  3878. int i;
  3879. int page_count;
  3880. if (!obj->phys_obj)
  3881. return;
  3882. vaddr = obj->phys_obj->handle->vaddr;
  3883. page_count = obj->base.size / PAGE_SIZE;
  3884. for (i = 0; i < page_count; i++) {
  3885. struct page *page = shmem_read_mapping_page(mapping, i);
  3886. if (!IS_ERR(page)) {
  3887. char *dst = kmap_atomic(page);
  3888. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3889. kunmap_atomic(dst);
  3890. drm_clflush_pages(&page, 1);
  3891. set_page_dirty(page);
  3892. mark_page_accessed(page);
  3893. page_cache_release(page);
  3894. }
  3895. }
  3896. i915_gem_chipset_flush(dev);
  3897. obj->phys_obj->cur_obj = NULL;
  3898. obj->phys_obj = NULL;
  3899. }
  3900. int
  3901. i915_gem_attach_phys_object(struct drm_device *dev,
  3902. struct drm_i915_gem_object *obj,
  3903. int id,
  3904. int align)
  3905. {
  3906. struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
  3907. drm_i915_private_t *dev_priv = dev->dev_private;
  3908. int ret = 0;
  3909. int page_count;
  3910. int i;
  3911. if (id > I915_MAX_PHYS_OBJECT)
  3912. return -EINVAL;
  3913. if (obj->phys_obj) {
  3914. if (obj->phys_obj->id == id)
  3915. return 0;
  3916. i915_gem_detach_phys_object(dev, obj);
  3917. }
  3918. /* create a new object */
  3919. if (!dev_priv->mm.phys_objs[id - 1]) {
  3920. ret = i915_gem_init_phys_object(dev, id,
  3921. obj->base.size, align);
  3922. if (ret) {
  3923. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3924. id, obj->base.size);
  3925. return ret;
  3926. }
  3927. }
  3928. /* bind to the object */
  3929. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3930. obj->phys_obj->cur_obj = obj;
  3931. page_count = obj->base.size / PAGE_SIZE;
  3932. for (i = 0; i < page_count; i++) {
  3933. struct page *page;
  3934. char *dst, *src;
  3935. page = shmem_read_mapping_page(mapping, i);
  3936. if (IS_ERR(page))
  3937. return PTR_ERR(page);
  3938. src = kmap_atomic(page);
  3939. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3940. memcpy(dst, src, PAGE_SIZE);
  3941. kunmap_atomic(src);
  3942. mark_page_accessed(page);
  3943. page_cache_release(page);
  3944. }
  3945. return 0;
  3946. }
  3947. static int
  3948. i915_gem_phys_pwrite(struct drm_device *dev,
  3949. struct drm_i915_gem_object *obj,
  3950. struct drm_i915_gem_pwrite *args,
  3951. struct drm_file *file_priv)
  3952. {
  3953. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3954. char __user *user_data = to_user_ptr(args->data_ptr);
  3955. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3956. unsigned long unwritten;
  3957. /* The physical object once assigned is fixed for the lifetime
  3958. * of the obj, so we can safely drop the lock and continue
  3959. * to access vaddr.
  3960. */
  3961. mutex_unlock(&dev->struct_mutex);
  3962. unwritten = copy_from_user(vaddr, user_data, args->size);
  3963. mutex_lock(&dev->struct_mutex);
  3964. if (unwritten)
  3965. return -EFAULT;
  3966. }
  3967. i915_gem_chipset_flush(dev);
  3968. return 0;
  3969. }
  3970. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3971. {
  3972. struct drm_i915_file_private *file_priv = file->driver_priv;
  3973. cancel_delayed_work_sync(&file_priv->mm.idle_work);
  3974. /* Clean up our request list when the client is going away, so that
  3975. * later retire_requests won't dereference our soon-to-be-gone
  3976. * file_priv.
  3977. */
  3978. spin_lock(&file_priv->mm.lock);
  3979. while (!list_empty(&file_priv->mm.request_list)) {
  3980. struct drm_i915_gem_request *request;
  3981. request = list_first_entry(&file_priv->mm.request_list,
  3982. struct drm_i915_gem_request,
  3983. client_list);
  3984. list_del(&request->client_list);
  3985. request->file_priv = NULL;
  3986. }
  3987. spin_unlock(&file_priv->mm.lock);
  3988. }
  3989. static void
  3990. i915_gem_file_idle_work_handler(struct work_struct *work)
  3991. {
  3992. struct drm_i915_file_private *file_priv =
  3993. container_of(work, typeof(*file_priv), mm.idle_work.work);
  3994. atomic_set(&file_priv->rps_wait_boost, false);
  3995. }
  3996. int i915_gem_open(struct drm_device *dev, struct drm_file *file)
  3997. {
  3998. struct drm_i915_file_private *file_priv;
  3999. int ret;
  4000. DRM_DEBUG_DRIVER("\n");
  4001. file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
  4002. if (!file_priv)
  4003. return -ENOMEM;
  4004. file->driver_priv = file_priv;
  4005. file_priv->dev_priv = dev->dev_private;
  4006. file_priv->file = file;
  4007. spin_lock_init(&file_priv->mm.lock);
  4008. INIT_LIST_HEAD(&file_priv->mm.request_list);
  4009. INIT_DELAYED_WORK(&file_priv->mm.idle_work,
  4010. i915_gem_file_idle_work_handler);
  4011. ret = i915_gem_context_open(dev, file);
  4012. if (ret)
  4013. kfree(file_priv);
  4014. return ret;
  4015. }
  4016. static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
  4017. {
  4018. if (!mutex_is_locked(mutex))
  4019. return false;
  4020. #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
  4021. return mutex->owner == task;
  4022. #else
  4023. /* Since UP may be pre-empted, we cannot assume that we own the lock */
  4024. return false;
  4025. #endif
  4026. }
  4027. static unsigned long
  4028. i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
  4029. {
  4030. struct drm_i915_private *dev_priv =
  4031. container_of(shrinker,
  4032. struct drm_i915_private,
  4033. mm.inactive_shrinker);
  4034. struct drm_device *dev = dev_priv->dev;
  4035. struct drm_i915_gem_object *obj;
  4036. bool unlock = true;
  4037. unsigned long count;
  4038. if (!mutex_trylock(&dev->struct_mutex)) {
  4039. if (!mutex_is_locked_by(&dev->struct_mutex, current))
  4040. return 0;
  4041. if (dev_priv->mm.shrinker_no_lock_stealing)
  4042. return 0;
  4043. unlock = false;
  4044. }
  4045. count = 0;
  4046. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
  4047. if (obj->pages_pin_count == 0)
  4048. count += obj->base.size >> PAGE_SHIFT;
  4049. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  4050. if (obj->active)
  4051. continue;
  4052. if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
  4053. count += obj->base.size >> PAGE_SHIFT;
  4054. }
  4055. if (unlock)
  4056. mutex_unlock(&dev->struct_mutex);
  4057. return count;
  4058. }
  4059. /* All the new VM stuff */
  4060. unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
  4061. struct i915_address_space *vm)
  4062. {
  4063. struct drm_i915_private *dev_priv = o->base.dev->dev_private;
  4064. struct i915_vma *vma;
  4065. if (!dev_priv->mm.aliasing_ppgtt ||
  4066. vm == &dev_priv->mm.aliasing_ppgtt->base)
  4067. vm = &dev_priv->gtt.base;
  4068. BUG_ON(list_empty(&o->vma_list));
  4069. list_for_each_entry(vma, &o->vma_list, vma_link) {
  4070. if (vma->vm == vm)
  4071. return vma->node.start;
  4072. }
  4073. return -1;
  4074. }
  4075. bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
  4076. struct i915_address_space *vm)
  4077. {
  4078. struct i915_vma *vma;
  4079. list_for_each_entry(vma, &o->vma_list, vma_link)
  4080. if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
  4081. return true;
  4082. return false;
  4083. }
  4084. bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
  4085. {
  4086. struct i915_vma *vma;
  4087. list_for_each_entry(vma, &o->vma_list, vma_link)
  4088. if (drm_mm_node_allocated(&vma->node))
  4089. return true;
  4090. return false;
  4091. }
  4092. unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
  4093. struct i915_address_space *vm)
  4094. {
  4095. struct drm_i915_private *dev_priv = o->base.dev->dev_private;
  4096. struct i915_vma *vma;
  4097. if (!dev_priv->mm.aliasing_ppgtt ||
  4098. vm == &dev_priv->mm.aliasing_ppgtt->base)
  4099. vm = &dev_priv->gtt.base;
  4100. BUG_ON(list_empty(&o->vma_list));
  4101. list_for_each_entry(vma, &o->vma_list, vma_link)
  4102. if (vma->vm == vm)
  4103. return vma->node.size;
  4104. return 0;
  4105. }
  4106. static unsigned long
  4107. i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
  4108. {
  4109. struct drm_i915_private *dev_priv =
  4110. container_of(shrinker,
  4111. struct drm_i915_private,
  4112. mm.inactive_shrinker);
  4113. struct drm_device *dev = dev_priv->dev;
  4114. unsigned long freed;
  4115. bool unlock = true;
  4116. if (!mutex_trylock(&dev->struct_mutex)) {
  4117. if (!mutex_is_locked_by(&dev->struct_mutex, current))
  4118. return SHRINK_STOP;
  4119. if (dev_priv->mm.shrinker_no_lock_stealing)
  4120. return SHRINK_STOP;
  4121. unlock = false;
  4122. }
  4123. freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
  4124. if (freed < sc->nr_to_scan)
  4125. freed += __i915_gem_shrink(dev_priv,
  4126. sc->nr_to_scan - freed,
  4127. false);
  4128. if (freed < sc->nr_to_scan)
  4129. freed += i915_gem_shrink_all(dev_priv);
  4130. if (unlock)
  4131. mutex_unlock(&dev->struct_mutex);
  4132. return freed;
  4133. }
  4134. struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
  4135. {
  4136. struct i915_vma *vma;
  4137. if (WARN_ON(list_empty(&obj->vma_list)))
  4138. return NULL;
  4139. vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
  4140. if (vma->vm != obj_to_ggtt(obj))
  4141. return NULL;
  4142. return vma;
  4143. }