delayed-inode.c 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "ctree.h"
  24. #define BTRFS_DELAYED_WRITEBACK 512
  25. #define BTRFS_DELAYED_BACKGROUND 128
  26. #define BTRFS_DELAYED_BATCH 16
  27. static struct kmem_cache *delayed_node_cache;
  28. int __init btrfs_delayed_inode_init(void)
  29. {
  30. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  31. sizeof(struct btrfs_delayed_node),
  32. 0,
  33. SLAB_MEM_SPREAD,
  34. NULL);
  35. if (!delayed_node_cache)
  36. return -ENOMEM;
  37. return 0;
  38. }
  39. void btrfs_delayed_inode_exit(void)
  40. {
  41. kmem_cache_destroy(delayed_node_cache);
  42. }
  43. static inline void btrfs_init_delayed_node(
  44. struct btrfs_delayed_node *delayed_node,
  45. struct btrfs_root *root, u64 inode_id)
  46. {
  47. delayed_node->root = root;
  48. delayed_node->inode_id = inode_id;
  49. refcount_set(&delayed_node->refs, 0);
  50. delayed_node->ins_root = RB_ROOT;
  51. delayed_node->del_root = RB_ROOT;
  52. mutex_init(&delayed_node->mutex);
  53. INIT_LIST_HEAD(&delayed_node->n_list);
  54. INIT_LIST_HEAD(&delayed_node->p_list);
  55. }
  56. static inline int btrfs_is_continuous_delayed_item(
  57. struct btrfs_delayed_item *item1,
  58. struct btrfs_delayed_item *item2)
  59. {
  60. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  61. item1->key.objectid == item2->key.objectid &&
  62. item1->key.type == item2->key.type &&
  63. item1->key.offset + 1 == item2->key.offset)
  64. return 1;
  65. return 0;
  66. }
  67. static struct btrfs_delayed_node *btrfs_get_delayed_node(
  68. struct btrfs_inode *btrfs_inode)
  69. {
  70. struct btrfs_root *root = btrfs_inode->root;
  71. u64 ino = btrfs_ino(btrfs_inode);
  72. struct btrfs_delayed_node *node;
  73. node = READ_ONCE(btrfs_inode->delayed_node);
  74. if (node) {
  75. refcount_inc(&node->refs);
  76. return node;
  77. }
  78. spin_lock(&root->inode_lock);
  79. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  80. if (node) {
  81. if (btrfs_inode->delayed_node) {
  82. refcount_inc(&node->refs); /* can be accessed */
  83. BUG_ON(btrfs_inode->delayed_node != node);
  84. spin_unlock(&root->inode_lock);
  85. return node;
  86. }
  87. btrfs_inode->delayed_node = node;
  88. /* can be accessed and cached in the inode */
  89. refcount_add(2, &node->refs);
  90. spin_unlock(&root->inode_lock);
  91. return node;
  92. }
  93. spin_unlock(&root->inode_lock);
  94. return NULL;
  95. }
  96. /* Will return either the node or PTR_ERR(-ENOMEM) */
  97. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  98. struct btrfs_inode *btrfs_inode)
  99. {
  100. struct btrfs_delayed_node *node;
  101. struct btrfs_root *root = btrfs_inode->root;
  102. u64 ino = btrfs_ino(btrfs_inode);
  103. int ret;
  104. again:
  105. node = btrfs_get_delayed_node(btrfs_inode);
  106. if (node)
  107. return node;
  108. node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
  109. if (!node)
  110. return ERR_PTR(-ENOMEM);
  111. btrfs_init_delayed_node(node, root, ino);
  112. /* cached in the btrfs inode and can be accessed */
  113. refcount_set(&node->refs, 2);
  114. ret = radix_tree_preload(GFP_NOFS);
  115. if (ret) {
  116. kmem_cache_free(delayed_node_cache, node);
  117. return ERR_PTR(ret);
  118. }
  119. spin_lock(&root->inode_lock);
  120. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  121. if (ret == -EEXIST) {
  122. spin_unlock(&root->inode_lock);
  123. kmem_cache_free(delayed_node_cache, node);
  124. radix_tree_preload_end();
  125. goto again;
  126. }
  127. btrfs_inode->delayed_node = node;
  128. spin_unlock(&root->inode_lock);
  129. radix_tree_preload_end();
  130. return node;
  131. }
  132. /*
  133. * Call it when holding delayed_node->mutex
  134. *
  135. * If mod = 1, add this node into the prepared list.
  136. */
  137. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  138. struct btrfs_delayed_node *node,
  139. int mod)
  140. {
  141. spin_lock(&root->lock);
  142. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  143. if (!list_empty(&node->p_list))
  144. list_move_tail(&node->p_list, &root->prepare_list);
  145. else if (mod)
  146. list_add_tail(&node->p_list, &root->prepare_list);
  147. } else {
  148. list_add_tail(&node->n_list, &root->node_list);
  149. list_add_tail(&node->p_list, &root->prepare_list);
  150. refcount_inc(&node->refs); /* inserted into list */
  151. root->nodes++;
  152. set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  153. }
  154. spin_unlock(&root->lock);
  155. }
  156. /* Call it when holding delayed_node->mutex */
  157. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  158. struct btrfs_delayed_node *node)
  159. {
  160. spin_lock(&root->lock);
  161. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  162. root->nodes--;
  163. refcount_dec(&node->refs); /* not in the list */
  164. list_del_init(&node->n_list);
  165. if (!list_empty(&node->p_list))
  166. list_del_init(&node->p_list);
  167. clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  168. }
  169. spin_unlock(&root->lock);
  170. }
  171. static struct btrfs_delayed_node *btrfs_first_delayed_node(
  172. struct btrfs_delayed_root *delayed_root)
  173. {
  174. struct list_head *p;
  175. struct btrfs_delayed_node *node = NULL;
  176. spin_lock(&delayed_root->lock);
  177. if (list_empty(&delayed_root->node_list))
  178. goto out;
  179. p = delayed_root->node_list.next;
  180. node = list_entry(p, struct btrfs_delayed_node, n_list);
  181. refcount_inc(&node->refs);
  182. out:
  183. spin_unlock(&delayed_root->lock);
  184. return node;
  185. }
  186. static struct btrfs_delayed_node *btrfs_next_delayed_node(
  187. struct btrfs_delayed_node *node)
  188. {
  189. struct btrfs_delayed_root *delayed_root;
  190. struct list_head *p;
  191. struct btrfs_delayed_node *next = NULL;
  192. delayed_root = node->root->fs_info->delayed_root;
  193. spin_lock(&delayed_root->lock);
  194. if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  195. /* not in the list */
  196. if (list_empty(&delayed_root->node_list))
  197. goto out;
  198. p = delayed_root->node_list.next;
  199. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  200. goto out;
  201. else
  202. p = node->n_list.next;
  203. next = list_entry(p, struct btrfs_delayed_node, n_list);
  204. refcount_inc(&next->refs);
  205. out:
  206. spin_unlock(&delayed_root->lock);
  207. return next;
  208. }
  209. static void __btrfs_release_delayed_node(
  210. struct btrfs_delayed_node *delayed_node,
  211. int mod)
  212. {
  213. struct btrfs_delayed_root *delayed_root;
  214. if (!delayed_node)
  215. return;
  216. delayed_root = delayed_node->root->fs_info->delayed_root;
  217. mutex_lock(&delayed_node->mutex);
  218. if (delayed_node->count)
  219. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  220. else
  221. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  222. mutex_unlock(&delayed_node->mutex);
  223. if (refcount_dec_and_test(&delayed_node->refs)) {
  224. bool free = false;
  225. struct btrfs_root *root = delayed_node->root;
  226. spin_lock(&root->inode_lock);
  227. if (refcount_read(&delayed_node->refs) == 0) {
  228. radix_tree_delete(&root->delayed_nodes_tree,
  229. delayed_node->inode_id);
  230. free = true;
  231. }
  232. spin_unlock(&root->inode_lock);
  233. if (free)
  234. kmem_cache_free(delayed_node_cache, delayed_node);
  235. }
  236. }
  237. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  238. {
  239. __btrfs_release_delayed_node(node, 0);
  240. }
  241. static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  242. struct btrfs_delayed_root *delayed_root)
  243. {
  244. struct list_head *p;
  245. struct btrfs_delayed_node *node = NULL;
  246. spin_lock(&delayed_root->lock);
  247. if (list_empty(&delayed_root->prepare_list))
  248. goto out;
  249. p = delayed_root->prepare_list.next;
  250. list_del_init(p);
  251. node = list_entry(p, struct btrfs_delayed_node, p_list);
  252. refcount_inc(&node->refs);
  253. out:
  254. spin_unlock(&delayed_root->lock);
  255. return node;
  256. }
  257. static inline void btrfs_release_prepared_delayed_node(
  258. struct btrfs_delayed_node *node)
  259. {
  260. __btrfs_release_delayed_node(node, 1);
  261. }
  262. static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  263. {
  264. struct btrfs_delayed_item *item;
  265. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  266. if (item) {
  267. item->data_len = data_len;
  268. item->ins_or_del = 0;
  269. item->bytes_reserved = 0;
  270. item->delayed_node = NULL;
  271. refcount_set(&item->refs, 1);
  272. }
  273. return item;
  274. }
  275. /*
  276. * __btrfs_lookup_delayed_item - look up the delayed item by key
  277. * @delayed_node: pointer to the delayed node
  278. * @key: the key to look up
  279. * @prev: used to store the prev item if the right item isn't found
  280. * @next: used to store the next item if the right item isn't found
  281. *
  282. * Note: if we don't find the right item, we will return the prev item and
  283. * the next item.
  284. */
  285. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  286. struct rb_root *root,
  287. struct btrfs_key *key,
  288. struct btrfs_delayed_item **prev,
  289. struct btrfs_delayed_item **next)
  290. {
  291. struct rb_node *node, *prev_node = NULL;
  292. struct btrfs_delayed_item *delayed_item = NULL;
  293. int ret = 0;
  294. node = root->rb_node;
  295. while (node) {
  296. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  297. rb_node);
  298. prev_node = node;
  299. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  300. if (ret < 0)
  301. node = node->rb_right;
  302. else if (ret > 0)
  303. node = node->rb_left;
  304. else
  305. return delayed_item;
  306. }
  307. if (prev) {
  308. if (!prev_node)
  309. *prev = NULL;
  310. else if (ret < 0)
  311. *prev = delayed_item;
  312. else if ((node = rb_prev(prev_node)) != NULL) {
  313. *prev = rb_entry(node, struct btrfs_delayed_item,
  314. rb_node);
  315. } else
  316. *prev = NULL;
  317. }
  318. if (next) {
  319. if (!prev_node)
  320. *next = NULL;
  321. else if (ret > 0)
  322. *next = delayed_item;
  323. else if ((node = rb_next(prev_node)) != NULL) {
  324. *next = rb_entry(node, struct btrfs_delayed_item,
  325. rb_node);
  326. } else
  327. *next = NULL;
  328. }
  329. return NULL;
  330. }
  331. static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  332. struct btrfs_delayed_node *delayed_node,
  333. struct btrfs_key *key)
  334. {
  335. return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  336. NULL, NULL);
  337. }
  338. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  339. struct btrfs_delayed_item *ins,
  340. int action)
  341. {
  342. struct rb_node **p, *node;
  343. struct rb_node *parent_node = NULL;
  344. struct rb_root *root;
  345. struct btrfs_delayed_item *item;
  346. int cmp;
  347. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  348. root = &delayed_node->ins_root;
  349. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  350. root = &delayed_node->del_root;
  351. else
  352. BUG();
  353. p = &root->rb_node;
  354. node = &ins->rb_node;
  355. while (*p) {
  356. parent_node = *p;
  357. item = rb_entry(parent_node, struct btrfs_delayed_item,
  358. rb_node);
  359. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  360. if (cmp < 0)
  361. p = &(*p)->rb_right;
  362. else if (cmp > 0)
  363. p = &(*p)->rb_left;
  364. else
  365. return -EEXIST;
  366. }
  367. rb_link_node(node, parent_node, p);
  368. rb_insert_color(node, root);
  369. ins->delayed_node = delayed_node;
  370. ins->ins_or_del = action;
  371. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  372. action == BTRFS_DELAYED_INSERTION_ITEM &&
  373. ins->key.offset >= delayed_node->index_cnt)
  374. delayed_node->index_cnt = ins->key.offset + 1;
  375. delayed_node->count++;
  376. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  377. return 0;
  378. }
  379. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  380. struct btrfs_delayed_item *item)
  381. {
  382. return __btrfs_add_delayed_item(node, item,
  383. BTRFS_DELAYED_INSERTION_ITEM);
  384. }
  385. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  386. struct btrfs_delayed_item *item)
  387. {
  388. return __btrfs_add_delayed_item(node, item,
  389. BTRFS_DELAYED_DELETION_ITEM);
  390. }
  391. static void finish_one_item(struct btrfs_delayed_root *delayed_root)
  392. {
  393. int seq = atomic_inc_return(&delayed_root->items_seq);
  394. /*
  395. * atomic_dec_return implies a barrier for waitqueue_active
  396. */
  397. if ((atomic_dec_return(&delayed_root->items) <
  398. BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
  399. waitqueue_active(&delayed_root->wait))
  400. wake_up(&delayed_root->wait);
  401. }
  402. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  403. {
  404. struct rb_root *root;
  405. struct btrfs_delayed_root *delayed_root;
  406. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  407. BUG_ON(!delayed_root);
  408. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  409. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  410. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  411. root = &delayed_item->delayed_node->ins_root;
  412. else
  413. root = &delayed_item->delayed_node->del_root;
  414. rb_erase(&delayed_item->rb_node, root);
  415. delayed_item->delayed_node->count--;
  416. finish_one_item(delayed_root);
  417. }
  418. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  419. {
  420. if (item) {
  421. __btrfs_remove_delayed_item(item);
  422. if (refcount_dec_and_test(&item->refs))
  423. kfree(item);
  424. }
  425. }
  426. static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  427. struct btrfs_delayed_node *delayed_node)
  428. {
  429. struct rb_node *p;
  430. struct btrfs_delayed_item *item = NULL;
  431. p = rb_first(&delayed_node->ins_root);
  432. if (p)
  433. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  434. return item;
  435. }
  436. static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  437. struct btrfs_delayed_node *delayed_node)
  438. {
  439. struct rb_node *p;
  440. struct btrfs_delayed_item *item = NULL;
  441. p = rb_first(&delayed_node->del_root);
  442. if (p)
  443. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  444. return item;
  445. }
  446. static struct btrfs_delayed_item *__btrfs_next_delayed_item(
  447. struct btrfs_delayed_item *item)
  448. {
  449. struct rb_node *p;
  450. struct btrfs_delayed_item *next = NULL;
  451. p = rb_next(&item->rb_node);
  452. if (p)
  453. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  454. return next;
  455. }
  456. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  457. struct btrfs_fs_info *fs_info,
  458. struct btrfs_delayed_item *item)
  459. {
  460. struct btrfs_block_rsv *src_rsv;
  461. struct btrfs_block_rsv *dst_rsv;
  462. u64 num_bytes;
  463. int ret;
  464. if (!trans->bytes_reserved)
  465. return 0;
  466. src_rsv = trans->block_rsv;
  467. dst_rsv = &fs_info->delayed_block_rsv;
  468. num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
  469. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
  470. if (!ret) {
  471. trace_btrfs_space_reservation(fs_info, "delayed_item",
  472. item->key.objectid,
  473. num_bytes, 1);
  474. item->bytes_reserved = num_bytes;
  475. }
  476. return ret;
  477. }
  478. static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
  479. struct btrfs_delayed_item *item)
  480. {
  481. struct btrfs_block_rsv *rsv;
  482. if (!item->bytes_reserved)
  483. return;
  484. rsv = &fs_info->delayed_block_rsv;
  485. trace_btrfs_space_reservation(fs_info, "delayed_item",
  486. item->key.objectid, item->bytes_reserved,
  487. 0);
  488. btrfs_block_rsv_release(fs_info, rsv,
  489. item->bytes_reserved);
  490. }
  491. static int btrfs_delayed_inode_reserve_metadata(
  492. struct btrfs_trans_handle *trans,
  493. struct btrfs_root *root,
  494. struct btrfs_inode *inode,
  495. struct btrfs_delayed_node *node)
  496. {
  497. struct btrfs_fs_info *fs_info = root->fs_info;
  498. struct btrfs_block_rsv *src_rsv;
  499. struct btrfs_block_rsv *dst_rsv;
  500. u64 num_bytes;
  501. int ret;
  502. bool release = false;
  503. src_rsv = trans->block_rsv;
  504. dst_rsv = &fs_info->delayed_block_rsv;
  505. num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
  506. /*
  507. * If our block_rsv is the delalloc block reserve then check and see if
  508. * we have our extra reservation for updating the inode. If not fall
  509. * through and try to reserve space quickly.
  510. *
  511. * We used to try and steal from the delalloc block rsv or the global
  512. * reserve, but we'd steal a full reservation, which isn't kind. We are
  513. * here through delalloc which means we've likely just cowed down close
  514. * to the leaf that contains the inode, so we would steal less just
  515. * doing the fallback inode update, so if we do end up having to steal
  516. * from the global block rsv we hopefully only steal one or two blocks
  517. * worth which is less likely to hurt us.
  518. */
  519. if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
  520. spin_lock(&inode->lock);
  521. if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  522. &inode->runtime_flags))
  523. release = true;
  524. else
  525. src_rsv = NULL;
  526. spin_unlock(&inode->lock);
  527. }
  528. /*
  529. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  530. * which doesn't reserve space for speed. This is a problem since we
  531. * still need to reserve space for this update, so try to reserve the
  532. * space.
  533. *
  534. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  535. * we're accounted for.
  536. */
  537. if (!src_rsv || (!trans->bytes_reserved &&
  538. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  539. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  540. BTRFS_RESERVE_NO_FLUSH);
  541. /*
  542. * Since we're under a transaction reserve_metadata_bytes could
  543. * try to commit the transaction which will make it return
  544. * EAGAIN to make us stop the transaction we have, so return
  545. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  546. */
  547. if (ret == -EAGAIN)
  548. ret = -ENOSPC;
  549. if (!ret) {
  550. node->bytes_reserved = num_bytes;
  551. trace_btrfs_space_reservation(fs_info,
  552. "delayed_inode",
  553. btrfs_ino(inode),
  554. num_bytes, 1);
  555. }
  556. return ret;
  557. }
  558. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
  559. /*
  560. * Migrate only takes a reservation, it doesn't touch the size of the
  561. * block_rsv. This is to simplify people who don't normally have things
  562. * migrated from their block rsv. If they go to release their
  563. * reservation, that will decrease the size as well, so if migrate
  564. * reduced size we'd end up with a negative size. But for the
  565. * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
  566. * but we could in fact do this reserve/migrate dance several times
  567. * between the time we did the original reservation and we'd clean it
  568. * up. So to take care of this, release the space for the meta
  569. * reservation here. I think it may be time for a documentation page on
  570. * how block rsvs. work.
  571. */
  572. if (!ret) {
  573. trace_btrfs_space_reservation(fs_info, "delayed_inode",
  574. btrfs_ino(inode), num_bytes, 1);
  575. node->bytes_reserved = num_bytes;
  576. }
  577. if (release) {
  578. trace_btrfs_space_reservation(fs_info, "delalloc",
  579. btrfs_ino(inode), num_bytes, 0);
  580. btrfs_block_rsv_release(fs_info, src_rsv, num_bytes);
  581. }
  582. return ret;
  583. }
  584. static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
  585. struct btrfs_delayed_node *node)
  586. {
  587. struct btrfs_block_rsv *rsv;
  588. if (!node->bytes_reserved)
  589. return;
  590. rsv = &fs_info->delayed_block_rsv;
  591. trace_btrfs_space_reservation(fs_info, "delayed_inode",
  592. node->inode_id, node->bytes_reserved, 0);
  593. btrfs_block_rsv_release(fs_info, rsv,
  594. node->bytes_reserved);
  595. node->bytes_reserved = 0;
  596. }
  597. /*
  598. * This helper will insert some continuous items into the same leaf according
  599. * to the free space of the leaf.
  600. */
  601. static int btrfs_batch_insert_items(struct btrfs_root *root,
  602. struct btrfs_path *path,
  603. struct btrfs_delayed_item *item)
  604. {
  605. struct btrfs_fs_info *fs_info = root->fs_info;
  606. struct btrfs_delayed_item *curr, *next;
  607. int free_space;
  608. int total_data_size = 0, total_size = 0;
  609. struct extent_buffer *leaf;
  610. char *data_ptr;
  611. struct btrfs_key *keys;
  612. u32 *data_size;
  613. struct list_head head;
  614. int slot;
  615. int nitems;
  616. int i;
  617. int ret = 0;
  618. BUG_ON(!path->nodes[0]);
  619. leaf = path->nodes[0];
  620. free_space = btrfs_leaf_free_space(fs_info, leaf);
  621. INIT_LIST_HEAD(&head);
  622. next = item;
  623. nitems = 0;
  624. /*
  625. * count the number of the continuous items that we can insert in batch
  626. */
  627. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  628. free_space) {
  629. total_data_size += next->data_len;
  630. total_size += next->data_len + sizeof(struct btrfs_item);
  631. list_add_tail(&next->tree_list, &head);
  632. nitems++;
  633. curr = next;
  634. next = __btrfs_next_delayed_item(curr);
  635. if (!next)
  636. break;
  637. if (!btrfs_is_continuous_delayed_item(curr, next))
  638. break;
  639. }
  640. if (!nitems) {
  641. ret = 0;
  642. goto out;
  643. }
  644. /*
  645. * we need allocate some memory space, but it might cause the task
  646. * to sleep, so we set all locked nodes in the path to blocking locks
  647. * first.
  648. */
  649. btrfs_set_path_blocking(path);
  650. keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
  651. if (!keys) {
  652. ret = -ENOMEM;
  653. goto out;
  654. }
  655. data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
  656. if (!data_size) {
  657. ret = -ENOMEM;
  658. goto error;
  659. }
  660. /* get keys of all the delayed items */
  661. i = 0;
  662. list_for_each_entry(next, &head, tree_list) {
  663. keys[i] = next->key;
  664. data_size[i] = next->data_len;
  665. i++;
  666. }
  667. /* reset all the locked nodes in the patch to spinning locks. */
  668. btrfs_clear_path_blocking(path, NULL, 0);
  669. /* insert the keys of the items */
  670. setup_items_for_insert(root, path, keys, data_size,
  671. total_data_size, total_size, nitems);
  672. /* insert the dir index items */
  673. slot = path->slots[0];
  674. list_for_each_entry_safe(curr, next, &head, tree_list) {
  675. data_ptr = btrfs_item_ptr(leaf, slot, char);
  676. write_extent_buffer(leaf, &curr->data,
  677. (unsigned long)data_ptr,
  678. curr->data_len);
  679. slot++;
  680. btrfs_delayed_item_release_metadata(fs_info, curr);
  681. list_del(&curr->tree_list);
  682. btrfs_release_delayed_item(curr);
  683. }
  684. error:
  685. kfree(data_size);
  686. kfree(keys);
  687. out:
  688. return ret;
  689. }
  690. /*
  691. * This helper can just do simple insertion that needn't extend item for new
  692. * data, such as directory name index insertion, inode insertion.
  693. */
  694. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  695. struct btrfs_root *root,
  696. struct btrfs_path *path,
  697. struct btrfs_delayed_item *delayed_item)
  698. {
  699. struct btrfs_fs_info *fs_info = root->fs_info;
  700. struct extent_buffer *leaf;
  701. char *ptr;
  702. int ret;
  703. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  704. delayed_item->data_len);
  705. if (ret < 0 && ret != -EEXIST)
  706. return ret;
  707. leaf = path->nodes[0];
  708. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  709. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  710. delayed_item->data_len);
  711. btrfs_mark_buffer_dirty(leaf);
  712. btrfs_delayed_item_release_metadata(fs_info, delayed_item);
  713. return 0;
  714. }
  715. /*
  716. * we insert an item first, then if there are some continuous items, we try
  717. * to insert those items into the same leaf.
  718. */
  719. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  720. struct btrfs_path *path,
  721. struct btrfs_root *root,
  722. struct btrfs_delayed_node *node)
  723. {
  724. struct btrfs_delayed_item *curr, *prev;
  725. int ret = 0;
  726. do_again:
  727. mutex_lock(&node->mutex);
  728. curr = __btrfs_first_delayed_insertion_item(node);
  729. if (!curr)
  730. goto insert_end;
  731. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  732. if (ret < 0) {
  733. btrfs_release_path(path);
  734. goto insert_end;
  735. }
  736. prev = curr;
  737. curr = __btrfs_next_delayed_item(prev);
  738. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  739. /* insert the continuous items into the same leaf */
  740. path->slots[0]++;
  741. btrfs_batch_insert_items(root, path, curr);
  742. }
  743. btrfs_release_delayed_item(prev);
  744. btrfs_mark_buffer_dirty(path->nodes[0]);
  745. btrfs_release_path(path);
  746. mutex_unlock(&node->mutex);
  747. goto do_again;
  748. insert_end:
  749. mutex_unlock(&node->mutex);
  750. return ret;
  751. }
  752. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  753. struct btrfs_root *root,
  754. struct btrfs_path *path,
  755. struct btrfs_delayed_item *item)
  756. {
  757. struct btrfs_fs_info *fs_info = root->fs_info;
  758. struct btrfs_delayed_item *curr, *next;
  759. struct extent_buffer *leaf;
  760. struct btrfs_key key;
  761. struct list_head head;
  762. int nitems, i, last_item;
  763. int ret = 0;
  764. BUG_ON(!path->nodes[0]);
  765. leaf = path->nodes[0];
  766. i = path->slots[0];
  767. last_item = btrfs_header_nritems(leaf) - 1;
  768. if (i > last_item)
  769. return -ENOENT; /* FIXME: Is errno suitable? */
  770. next = item;
  771. INIT_LIST_HEAD(&head);
  772. btrfs_item_key_to_cpu(leaf, &key, i);
  773. nitems = 0;
  774. /*
  775. * count the number of the dir index items that we can delete in batch
  776. */
  777. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  778. list_add_tail(&next->tree_list, &head);
  779. nitems++;
  780. curr = next;
  781. next = __btrfs_next_delayed_item(curr);
  782. if (!next)
  783. break;
  784. if (!btrfs_is_continuous_delayed_item(curr, next))
  785. break;
  786. i++;
  787. if (i > last_item)
  788. break;
  789. btrfs_item_key_to_cpu(leaf, &key, i);
  790. }
  791. if (!nitems)
  792. return 0;
  793. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  794. if (ret)
  795. goto out;
  796. list_for_each_entry_safe(curr, next, &head, tree_list) {
  797. btrfs_delayed_item_release_metadata(fs_info, curr);
  798. list_del(&curr->tree_list);
  799. btrfs_release_delayed_item(curr);
  800. }
  801. out:
  802. return ret;
  803. }
  804. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  805. struct btrfs_path *path,
  806. struct btrfs_root *root,
  807. struct btrfs_delayed_node *node)
  808. {
  809. struct btrfs_delayed_item *curr, *prev;
  810. int ret = 0;
  811. do_again:
  812. mutex_lock(&node->mutex);
  813. curr = __btrfs_first_delayed_deletion_item(node);
  814. if (!curr)
  815. goto delete_fail;
  816. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  817. if (ret < 0)
  818. goto delete_fail;
  819. else if (ret > 0) {
  820. /*
  821. * can't find the item which the node points to, so this node
  822. * is invalid, just drop it.
  823. */
  824. prev = curr;
  825. curr = __btrfs_next_delayed_item(prev);
  826. btrfs_release_delayed_item(prev);
  827. ret = 0;
  828. btrfs_release_path(path);
  829. if (curr) {
  830. mutex_unlock(&node->mutex);
  831. goto do_again;
  832. } else
  833. goto delete_fail;
  834. }
  835. btrfs_batch_delete_items(trans, root, path, curr);
  836. btrfs_release_path(path);
  837. mutex_unlock(&node->mutex);
  838. goto do_again;
  839. delete_fail:
  840. btrfs_release_path(path);
  841. mutex_unlock(&node->mutex);
  842. return ret;
  843. }
  844. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  845. {
  846. struct btrfs_delayed_root *delayed_root;
  847. if (delayed_node &&
  848. test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  849. BUG_ON(!delayed_node->root);
  850. clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  851. delayed_node->count--;
  852. delayed_root = delayed_node->root->fs_info->delayed_root;
  853. finish_one_item(delayed_root);
  854. }
  855. }
  856. static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
  857. {
  858. struct btrfs_delayed_root *delayed_root;
  859. ASSERT(delayed_node->root);
  860. clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  861. delayed_node->count--;
  862. delayed_root = delayed_node->root->fs_info->delayed_root;
  863. finish_one_item(delayed_root);
  864. }
  865. static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  866. struct btrfs_root *root,
  867. struct btrfs_path *path,
  868. struct btrfs_delayed_node *node)
  869. {
  870. struct btrfs_fs_info *fs_info = root->fs_info;
  871. struct btrfs_key key;
  872. struct btrfs_inode_item *inode_item;
  873. struct extent_buffer *leaf;
  874. int mod;
  875. int ret;
  876. key.objectid = node->inode_id;
  877. key.type = BTRFS_INODE_ITEM_KEY;
  878. key.offset = 0;
  879. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  880. mod = -1;
  881. else
  882. mod = 1;
  883. ret = btrfs_lookup_inode(trans, root, path, &key, mod);
  884. if (ret > 0) {
  885. btrfs_release_path(path);
  886. return -ENOENT;
  887. } else if (ret < 0) {
  888. return ret;
  889. }
  890. leaf = path->nodes[0];
  891. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  892. struct btrfs_inode_item);
  893. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  894. sizeof(struct btrfs_inode_item));
  895. btrfs_mark_buffer_dirty(leaf);
  896. if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  897. goto no_iref;
  898. path->slots[0]++;
  899. if (path->slots[0] >= btrfs_header_nritems(leaf))
  900. goto search;
  901. again:
  902. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  903. if (key.objectid != node->inode_id)
  904. goto out;
  905. if (key.type != BTRFS_INODE_REF_KEY &&
  906. key.type != BTRFS_INODE_EXTREF_KEY)
  907. goto out;
  908. /*
  909. * Delayed iref deletion is for the inode who has only one link,
  910. * so there is only one iref. The case that several irefs are
  911. * in the same item doesn't exist.
  912. */
  913. btrfs_del_item(trans, root, path);
  914. out:
  915. btrfs_release_delayed_iref(node);
  916. no_iref:
  917. btrfs_release_path(path);
  918. err_out:
  919. btrfs_delayed_inode_release_metadata(fs_info, node);
  920. btrfs_release_delayed_inode(node);
  921. return ret;
  922. search:
  923. btrfs_release_path(path);
  924. key.type = BTRFS_INODE_EXTREF_KEY;
  925. key.offset = -1;
  926. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  927. if (ret < 0)
  928. goto err_out;
  929. ASSERT(ret);
  930. ret = 0;
  931. leaf = path->nodes[0];
  932. path->slots[0]--;
  933. goto again;
  934. }
  935. static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  936. struct btrfs_root *root,
  937. struct btrfs_path *path,
  938. struct btrfs_delayed_node *node)
  939. {
  940. int ret;
  941. mutex_lock(&node->mutex);
  942. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
  943. mutex_unlock(&node->mutex);
  944. return 0;
  945. }
  946. ret = __btrfs_update_delayed_inode(trans, root, path, node);
  947. mutex_unlock(&node->mutex);
  948. return ret;
  949. }
  950. static inline int
  951. __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  952. struct btrfs_path *path,
  953. struct btrfs_delayed_node *node)
  954. {
  955. int ret;
  956. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  957. if (ret)
  958. return ret;
  959. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  960. if (ret)
  961. return ret;
  962. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  963. return ret;
  964. }
  965. /*
  966. * Called when committing the transaction.
  967. * Returns 0 on success.
  968. * Returns < 0 on error and returns with an aborted transaction with any
  969. * outstanding delayed items cleaned up.
  970. */
  971. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  972. struct btrfs_fs_info *fs_info, int nr)
  973. {
  974. struct btrfs_delayed_root *delayed_root;
  975. struct btrfs_delayed_node *curr_node, *prev_node;
  976. struct btrfs_path *path;
  977. struct btrfs_block_rsv *block_rsv;
  978. int ret = 0;
  979. bool count = (nr > 0);
  980. if (trans->aborted)
  981. return -EIO;
  982. path = btrfs_alloc_path();
  983. if (!path)
  984. return -ENOMEM;
  985. path->leave_spinning = 1;
  986. block_rsv = trans->block_rsv;
  987. trans->block_rsv = &fs_info->delayed_block_rsv;
  988. delayed_root = fs_info->delayed_root;
  989. curr_node = btrfs_first_delayed_node(delayed_root);
  990. while (curr_node && (!count || (count && nr--))) {
  991. ret = __btrfs_commit_inode_delayed_items(trans, path,
  992. curr_node);
  993. if (ret) {
  994. btrfs_release_delayed_node(curr_node);
  995. curr_node = NULL;
  996. btrfs_abort_transaction(trans, ret);
  997. break;
  998. }
  999. prev_node = curr_node;
  1000. curr_node = btrfs_next_delayed_node(curr_node);
  1001. btrfs_release_delayed_node(prev_node);
  1002. }
  1003. if (curr_node)
  1004. btrfs_release_delayed_node(curr_node);
  1005. btrfs_free_path(path);
  1006. trans->block_rsv = block_rsv;
  1007. return ret;
  1008. }
  1009. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  1010. struct btrfs_fs_info *fs_info)
  1011. {
  1012. return __btrfs_run_delayed_items(trans, fs_info, -1);
  1013. }
  1014. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
  1015. struct btrfs_fs_info *fs_info, int nr)
  1016. {
  1017. return __btrfs_run_delayed_items(trans, fs_info, nr);
  1018. }
  1019. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  1020. struct btrfs_inode *inode)
  1021. {
  1022. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1023. struct btrfs_path *path;
  1024. struct btrfs_block_rsv *block_rsv;
  1025. int ret;
  1026. if (!delayed_node)
  1027. return 0;
  1028. mutex_lock(&delayed_node->mutex);
  1029. if (!delayed_node->count) {
  1030. mutex_unlock(&delayed_node->mutex);
  1031. btrfs_release_delayed_node(delayed_node);
  1032. return 0;
  1033. }
  1034. mutex_unlock(&delayed_node->mutex);
  1035. path = btrfs_alloc_path();
  1036. if (!path) {
  1037. btrfs_release_delayed_node(delayed_node);
  1038. return -ENOMEM;
  1039. }
  1040. path->leave_spinning = 1;
  1041. block_rsv = trans->block_rsv;
  1042. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1043. ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1044. btrfs_release_delayed_node(delayed_node);
  1045. btrfs_free_path(path);
  1046. trans->block_rsv = block_rsv;
  1047. return ret;
  1048. }
  1049. int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
  1050. {
  1051. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  1052. struct btrfs_trans_handle *trans;
  1053. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1054. struct btrfs_path *path;
  1055. struct btrfs_block_rsv *block_rsv;
  1056. int ret;
  1057. if (!delayed_node)
  1058. return 0;
  1059. mutex_lock(&delayed_node->mutex);
  1060. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1061. mutex_unlock(&delayed_node->mutex);
  1062. btrfs_release_delayed_node(delayed_node);
  1063. return 0;
  1064. }
  1065. mutex_unlock(&delayed_node->mutex);
  1066. trans = btrfs_join_transaction(delayed_node->root);
  1067. if (IS_ERR(trans)) {
  1068. ret = PTR_ERR(trans);
  1069. goto out;
  1070. }
  1071. path = btrfs_alloc_path();
  1072. if (!path) {
  1073. ret = -ENOMEM;
  1074. goto trans_out;
  1075. }
  1076. path->leave_spinning = 1;
  1077. block_rsv = trans->block_rsv;
  1078. trans->block_rsv = &fs_info->delayed_block_rsv;
  1079. mutex_lock(&delayed_node->mutex);
  1080. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
  1081. ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
  1082. path, delayed_node);
  1083. else
  1084. ret = 0;
  1085. mutex_unlock(&delayed_node->mutex);
  1086. btrfs_free_path(path);
  1087. trans->block_rsv = block_rsv;
  1088. trans_out:
  1089. btrfs_end_transaction(trans);
  1090. btrfs_btree_balance_dirty(fs_info);
  1091. out:
  1092. btrfs_release_delayed_node(delayed_node);
  1093. return ret;
  1094. }
  1095. void btrfs_remove_delayed_node(struct btrfs_inode *inode)
  1096. {
  1097. struct btrfs_delayed_node *delayed_node;
  1098. delayed_node = READ_ONCE(inode->delayed_node);
  1099. if (!delayed_node)
  1100. return;
  1101. inode->delayed_node = NULL;
  1102. btrfs_release_delayed_node(delayed_node);
  1103. }
  1104. struct btrfs_async_delayed_work {
  1105. struct btrfs_delayed_root *delayed_root;
  1106. int nr;
  1107. struct btrfs_work work;
  1108. };
  1109. static void btrfs_async_run_delayed_root(struct btrfs_work *work)
  1110. {
  1111. struct btrfs_async_delayed_work *async_work;
  1112. struct btrfs_delayed_root *delayed_root;
  1113. struct btrfs_trans_handle *trans;
  1114. struct btrfs_path *path;
  1115. struct btrfs_delayed_node *delayed_node = NULL;
  1116. struct btrfs_root *root;
  1117. struct btrfs_block_rsv *block_rsv;
  1118. int total_done = 0;
  1119. async_work = container_of(work, struct btrfs_async_delayed_work, work);
  1120. delayed_root = async_work->delayed_root;
  1121. path = btrfs_alloc_path();
  1122. if (!path)
  1123. goto out;
  1124. again:
  1125. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
  1126. goto free_path;
  1127. delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
  1128. if (!delayed_node)
  1129. goto free_path;
  1130. path->leave_spinning = 1;
  1131. root = delayed_node->root;
  1132. trans = btrfs_join_transaction(root);
  1133. if (IS_ERR(trans))
  1134. goto release_path;
  1135. block_rsv = trans->block_rsv;
  1136. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1137. __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1138. trans->block_rsv = block_rsv;
  1139. btrfs_end_transaction(trans);
  1140. btrfs_btree_balance_dirty_nodelay(root->fs_info);
  1141. release_path:
  1142. btrfs_release_path(path);
  1143. total_done++;
  1144. btrfs_release_prepared_delayed_node(delayed_node);
  1145. if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
  1146. total_done < async_work->nr)
  1147. goto again;
  1148. free_path:
  1149. btrfs_free_path(path);
  1150. out:
  1151. wake_up(&delayed_root->wait);
  1152. kfree(async_work);
  1153. }
  1154. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1155. struct btrfs_fs_info *fs_info, int nr)
  1156. {
  1157. struct btrfs_async_delayed_work *async_work;
  1158. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
  1159. btrfs_workqueue_normal_congested(fs_info->delayed_workers))
  1160. return 0;
  1161. async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
  1162. if (!async_work)
  1163. return -ENOMEM;
  1164. async_work->delayed_root = delayed_root;
  1165. btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
  1166. btrfs_async_run_delayed_root, NULL, NULL);
  1167. async_work->nr = nr;
  1168. btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
  1169. return 0;
  1170. }
  1171. void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
  1172. {
  1173. WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
  1174. }
  1175. static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
  1176. {
  1177. int val = atomic_read(&delayed_root->items_seq);
  1178. if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
  1179. return 1;
  1180. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1181. return 1;
  1182. return 0;
  1183. }
  1184. void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
  1185. {
  1186. struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
  1187. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1188. return;
  1189. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1190. int seq;
  1191. int ret;
  1192. seq = atomic_read(&delayed_root->items_seq);
  1193. ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
  1194. if (ret)
  1195. return;
  1196. wait_event_interruptible(delayed_root->wait,
  1197. could_end_wait(delayed_root, seq));
  1198. return;
  1199. }
  1200. btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
  1201. }
  1202. /* Will return 0 or -ENOMEM */
  1203. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1204. struct btrfs_fs_info *fs_info,
  1205. const char *name, int name_len,
  1206. struct btrfs_inode *dir,
  1207. struct btrfs_disk_key *disk_key, u8 type,
  1208. u64 index)
  1209. {
  1210. struct btrfs_delayed_node *delayed_node;
  1211. struct btrfs_delayed_item *delayed_item;
  1212. struct btrfs_dir_item *dir_item;
  1213. int ret;
  1214. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1215. if (IS_ERR(delayed_node))
  1216. return PTR_ERR(delayed_node);
  1217. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1218. if (!delayed_item) {
  1219. ret = -ENOMEM;
  1220. goto release_node;
  1221. }
  1222. delayed_item->key.objectid = btrfs_ino(dir);
  1223. delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
  1224. delayed_item->key.offset = index;
  1225. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1226. dir_item->location = *disk_key;
  1227. btrfs_set_stack_dir_transid(dir_item, trans->transid);
  1228. btrfs_set_stack_dir_data_len(dir_item, 0);
  1229. btrfs_set_stack_dir_name_len(dir_item, name_len);
  1230. btrfs_set_stack_dir_type(dir_item, type);
  1231. memcpy((char *)(dir_item + 1), name, name_len);
  1232. ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
  1233. /*
  1234. * we have reserved enough space when we start a new transaction,
  1235. * so reserving metadata failure is impossible
  1236. */
  1237. BUG_ON(ret);
  1238. mutex_lock(&delayed_node->mutex);
  1239. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1240. if (unlikely(ret)) {
  1241. btrfs_err(fs_info,
  1242. "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
  1243. name_len, name, delayed_node->root->objectid,
  1244. delayed_node->inode_id, ret);
  1245. BUG();
  1246. }
  1247. mutex_unlock(&delayed_node->mutex);
  1248. release_node:
  1249. btrfs_release_delayed_node(delayed_node);
  1250. return ret;
  1251. }
  1252. static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
  1253. struct btrfs_delayed_node *node,
  1254. struct btrfs_key *key)
  1255. {
  1256. struct btrfs_delayed_item *item;
  1257. mutex_lock(&node->mutex);
  1258. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1259. if (!item) {
  1260. mutex_unlock(&node->mutex);
  1261. return 1;
  1262. }
  1263. btrfs_delayed_item_release_metadata(fs_info, item);
  1264. btrfs_release_delayed_item(item);
  1265. mutex_unlock(&node->mutex);
  1266. return 0;
  1267. }
  1268. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1269. struct btrfs_fs_info *fs_info,
  1270. struct btrfs_inode *dir, u64 index)
  1271. {
  1272. struct btrfs_delayed_node *node;
  1273. struct btrfs_delayed_item *item;
  1274. struct btrfs_key item_key;
  1275. int ret;
  1276. node = btrfs_get_or_create_delayed_node(dir);
  1277. if (IS_ERR(node))
  1278. return PTR_ERR(node);
  1279. item_key.objectid = btrfs_ino(dir);
  1280. item_key.type = BTRFS_DIR_INDEX_KEY;
  1281. item_key.offset = index;
  1282. ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
  1283. if (!ret)
  1284. goto end;
  1285. item = btrfs_alloc_delayed_item(0);
  1286. if (!item) {
  1287. ret = -ENOMEM;
  1288. goto end;
  1289. }
  1290. item->key = item_key;
  1291. ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
  1292. /*
  1293. * we have reserved enough space when we start a new transaction,
  1294. * so reserving metadata failure is impossible.
  1295. */
  1296. BUG_ON(ret);
  1297. mutex_lock(&node->mutex);
  1298. ret = __btrfs_add_delayed_deletion_item(node, item);
  1299. if (unlikely(ret)) {
  1300. btrfs_err(fs_info,
  1301. "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
  1302. index, node->root->objectid, node->inode_id, ret);
  1303. BUG();
  1304. }
  1305. mutex_unlock(&node->mutex);
  1306. end:
  1307. btrfs_release_delayed_node(node);
  1308. return ret;
  1309. }
  1310. int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
  1311. {
  1312. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1313. if (!delayed_node)
  1314. return -ENOENT;
  1315. /*
  1316. * Since we have held i_mutex of this directory, it is impossible that
  1317. * a new directory index is added into the delayed node and index_cnt
  1318. * is updated now. So we needn't lock the delayed node.
  1319. */
  1320. if (!delayed_node->index_cnt) {
  1321. btrfs_release_delayed_node(delayed_node);
  1322. return -EINVAL;
  1323. }
  1324. inode->index_cnt = delayed_node->index_cnt;
  1325. btrfs_release_delayed_node(delayed_node);
  1326. return 0;
  1327. }
  1328. bool btrfs_readdir_get_delayed_items(struct inode *inode,
  1329. struct list_head *ins_list,
  1330. struct list_head *del_list)
  1331. {
  1332. struct btrfs_delayed_node *delayed_node;
  1333. struct btrfs_delayed_item *item;
  1334. delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
  1335. if (!delayed_node)
  1336. return false;
  1337. /*
  1338. * We can only do one readdir with delayed items at a time because of
  1339. * item->readdir_list.
  1340. */
  1341. inode_unlock_shared(inode);
  1342. inode_lock(inode);
  1343. mutex_lock(&delayed_node->mutex);
  1344. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1345. while (item) {
  1346. refcount_inc(&item->refs);
  1347. list_add_tail(&item->readdir_list, ins_list);
  1348. item = __btrfs_next_delayed_item(item);
  1349. }
  1350. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1351. while (item) {
  1352. refcount_inc(&item->refs);
  1353. list_add_tail(&item->readdir_list, del_list);
  1354. item = __btrfs_next_delayed_item(item);
  1355. }
  1356. mutex_unlock(&delayed_node->mutex);
  1357. /*
  1358. * This delayed node is still cached in the btrfs inode, so refs
  1359. * must be > 1 now, and we needn't check it is going to be freed
  1360. * or not.
  1361. *
  1362. * Besides that, this function is used to read dir, we do not
  1363. * insert/delete delayed items in this period. So we also needn't
  1364. * requeue or dequeue this delayed node.
  1365. */
  1366. refcount_dec(&delayed_node->refs);
  1367. return true;
  1368. }
  1369. void btrfs_readdir_put_delayed_items(struct inode *inode,
  1370. struct list_head *ins_list,
  1371. struct list_head *del_list)
  1372. {
  1373. struct btrfs_delayed_item *curr, *next;
  1374. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1375. list_del(&curr->readdir_list);
  1376. if (refcount_dec_and_test(&curr->refs))
  1377. kfree(curr);
  1378. }
  1379. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1380. list_del(&curr->readdir_list);
  1381. if (refcount_dec_and_test(&curr->refs))
  1382. kfree(curr);
  1383. }
  1384. /*
  1385. * The VFS is going to do up_read(), so we need to downgrade back to a
  1386. * read lock.
  1387. */
  1388. downgrade_write(&inode->i_rwsem);
  1389. }
  1390. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1391. u64 index)
  1392. {
  1393. struct btrfs_delayed_item *curr, *next;
  1394. int ret;
  1395. if (list_empty(del_list))
  1396. return 0;
  1397. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1398. if (curr->key.offset > index)
  1399. break;
  1400. list_del(&curr->readdir_list);
  1401. ret = (curr->key.offset == index);
  1402. if (refcount_dec_and_test(&curr->refs))
  1403. kfree(curr);
  1404. if (ret)
  1405. return 1;
  1406. else
  1407. continue;
  1408. }
  1409. return 0;
  1410. }
  1411. /*
  1412. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1413. *
  1414. */
  1415. int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
  1416. struct list_head *ins_list)
  1417. {
  1418. struct btrfs_dir_item *di;
  1419. struct btrfs_delayed_item *curr, *next;
  1420. struct btrfs_key location;
  1421. char *name;
  1422. int name_len;
  1423. int over = 0;
  1424. unsigned char d_type;
  1425. if (list_empty(ins_list))
  1426. return 0;
  1427. /*
  1428. * Changing the data of the delayed item is impossible. So
  1429. * we needn't lock them. And we have held i_mutex of the
  1430. * directory, nobody can delete any directory indexes now.
  1431. */
  1432. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1433. list_del(&curr->readdir_list);
  1434. if (curr->key.offset < ctx->pos) {
  1435. if (refcount_dec_and_test(&curr->refs))
  1436. kfree(curr);
  1437. continue;
  1438. }
  1439. ctx->pos = curr->key.offset;
  1440. di = (struct btrfs_dir_item *)curr->data;
  1441. name = (char *)(di + 1);
  1442. name_len = btrfs_stack_dir_name_len(di);
  1443. d_type = btrfs_filetype_table[di->type];
  1444. btrfs_disk_key_to_cpu(&location, &di->location);
  1445. over = !dir_emit(ctx, name, name_len,
  1446. location.objectid, d_type);
  1447. if (refcount_dec_and_test(&curr->refs))
  1448. kfree(curr);
  1449. if (over)
  1450. return 1;
  1451. ctx->pos++;
  1452. }
  1453. return 0;
  1454. }
  1455. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1456. struct btrfs_inode_item *inode_item,
  1457. struct inode *inode)
  1458. {
  1459. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1460. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1461. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1462. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1463. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1464. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1465. btrfs_set_stack_inode_generation(inode_item,
  1466. BTRFS_I(inode)->generation);
  1467. btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
  1468. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1469. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1470. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1471. btrfs_set_stack_inode_block_group(inode_item, 0);
  1472. btrfs_set_stack_timespec_sec(&inode_item->atime,
  1473. inode->i_atime.tv_sec);
  1474. btrfs_set_stack_timespec_nsec(&inode_item->atime,
  1475. inode->i_atime.tv_nsec);
  1476. btrfs_set_stack_timespec_sec(&inode_item->mtime,
  1477. inode->i_mtime.tv_sec);
  1478. btrfs_set_stack_timespec_nsec(&inode_item->mtime,
  1479. inode->i_mtime.tv_nsec);
  1480. btrfs_set_stack_timespec_sec(&inode_item->ctime,
  1481. inode->i_ctime.tv_sec);
  1482. btrfs_set_stack_timespec_nsec(&inode_item->ctime,
  1483. inode->i_ctime.tv_nsec);
  1484. btrfs_set_stack_timespec_sec(&inode_item->otime,
  1485. BTRFS_I(inode)->i_otime.tv_sec);
  1486. btrfs_set_stack_timespec_nsec(&inode_item->otime,
  1487. BTRFS_I(inode)->i_otime.tv_nsec);
  1488. }
  1489. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1490. {
  1491. struct btrfs_delayed_node *delayed_node;
  1492. struct btrfs_inode_item *inode_item;
  1493. delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
  1494. if (!delayed_node)
  1495. return -ENOENT;
  1496. mutex_lock(&delayed_node->mutex);
  1497. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1498. mutex_unlock(&delayed_node->mutex);
  1499. btrfs_release_delayed_node(delayed_node);
  1500. return -ENOENT;
  1501. }
  1502. inode_item = &delayed_node->inode_item;
  1503. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1504. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1505. btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
  1506. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1507. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1508. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1509. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1510. BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
  1511. inode->i_version = btrfs_stack_inode_sequence(inode_item);
  1512. inode->i_rdev = 0;
  1513. *rdev = btrfs_stack_inode_rdev(inode_item);
  1514. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1515. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
  1516. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
  1517. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
  1518. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
  1519. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
  1520. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
  1521. BTRFS_I(inode)->i_otime.tv_sec =
  1522. btrfs_stack_timespec_sec(&inode_item->otime);
  1523. BTRFS_I(inode)->i_otime.tv_nsec =
  1524. btrfs_stack_timespec_nsec(&inode_item->otime);
  1525. inode->i_generation = BTRFS_I(inode)->generation;
  1526. BTRFS_I(inode)->index_cnt = (u64)-1;
  1527. mutex_unlock(&delayed_node->mutex);
  1528. btrfs_release_delayed_node(delayed_node);
  1529. return 0;
  1530. }
  1531. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1532. struct btrfs_root *root, struct inode *inode)
  1533. {
  1534. struct btrfs_delayed_node *delayed_node;
  1535. int ret = 0;
  1536. delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
  1537. if (IS_ERR(delayed_node))
  1538. return PTR_ERR(delayed_node);
  1539. mutex_lock(&delayed_node->mutex);
  1540. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1541. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1542. goto release_node;
  1543. }
  1544. ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
  1545. delayed_node);
  1546. if (ret)
  1547. goto release_node;
  1548. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1549. set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  1550. delayed_node->count++;
  1551. atomic_inc(&root->fs_info->delayed_root->items);
  1552. release_node:
  1553. mutex_unlock(&delayed_node->mutex);
  1554. btrfs_release_delayed_node(delayed_node);
  1555. return ret;
  1556. }
  1557. int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
  1558. {
  1559. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  1560. struct btrfs_delayed_node *delayed_node;
  1561. /*
  1562. * we don't do delayed inode updates during log recovery because it
  1563. * leads to enospc problems. This means we also can't do
  1564. * delayed inode refs
  1565. */
  1566. if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
  1567. return -EAGAIN;
  1568. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1569. if (IS_ERR(delayed_node))
  1570. return PTR_ERR(delayed_node);
  1571. /*
  1572. * We don't reserve space for inode ref deletion is because:
  1573. * - We ONLY do async inode ref deletion for the inode who has only
  1574. * one link(i_nlink == 1), it means there is only one inode ref.
  1575. * And in most case, the inode ref and the inode item are in the
  1576. * same leaf, and we will deal with them at the same time.
  1577. * Since we are sure we will reserve the space for the inode item,
  1578. * it is unnecessary to reserve space for inode ref deletion.
  1579. * - If the inode ref and the inode item are not in the same leaf,
  1580. * We also needn't worry about enospc problem, because we reserve
  1581. * much more space for the inode update than it needs.
  1582. * - At the worst, we can steal some space from the global reservation.
  1583. * It is very rare.
  1584. */
  1585. mutex_lock(&delayed_node->mutex);
  1586. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1587. goto release_node;
  1588. set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  1589. delayed_node->count++;
  1590. atomic_inc(&fs_info->delayed_root->items);
  1591. release_node:
  1592. mutex_unlock(&delayed_node->mutex);
  1593. btrfs_release_delayed_node(delayed_node);
  1594. return 0;
  1595. }
  1596. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1597. {
  1598. struct btrfs_root *root = delayed_node->root;
  1599. struct btrfs_fs_info *fs_info = root->fs_info;
  1600. struct btrfs_delayed_item *curr_item, *prev_item;
  1601. mutex_lock(&delayed_node->mutex);
  1602. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1603. while (curr_item) {
  1604. btrfs_delayed_item_release_metadata(fs_info, curr_item);
  1605. prev_item = curr_item;
  1606. curr_item = __btrfs_next_delayed_item(prev_item);
  1607. btrfs_release_delayed_item(prev_item);
  1608. }
  1609. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1610. while (curr_item) {
  1611. btrfs_delayed_item_release_metadata(fs_info, curr_item);
  1612. prev_item = curr_item;
  1613. curr_item = __btrfs_next_delayed_item(prev_item);
  1614. btrfs_release_delayed_item(prev_item);
  1615. }
  1616. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1617. btrfs_release_delayed_iref(delayed_node);
  1618. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1619. btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
  1620. btrfs_release_delayed_inode(delayed_node);
  1621. }
  1622. mutex_unlock(&delayed_node->mutex);
  1623. }
  1624. void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
  1625. {
  1626. struct btrfs_delayed_node *delayed_node;
  1627. delayed_node = btrfs_get_delayed_node(inode);
  1628. if (!delayed_node)
  1629. return;
  1630. __btrfs_kill_delayed_node(delayed_node);
  1631. btrfs_release_delayed_node(delayed_node);
  1632. }
  1633. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1634. {
  1635. u64 inode_id = 0;
  1636. struct btrfs_delayed_node *delayed_nodes[8];
  1637. int i, n;
  1638. while (1) {
  1639. spin_lock(&root->inode_lock);
  1640. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1641. (void **)delayed_nodes, inode_id,
  1642. ARRAY_SIZE(delayed_nodes));
  1643. if (!n) {
  1644. spin_unlock(&root->inode_lock);
  1645. break;
  1646. }
  1647. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1648. for (i = 0; i < n; i++)
  1649. refcount_inc(&delayed_nodes[i]->refs);
  1650. spin_unlock(&root->inode_lock);
  1651. for (i = 0; i < n; i++) {
  1652. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1653. btrfs_release_delayed_node(delayed_nodes[i]);
  1654. }
  1655. }
  1656. }
  1657. void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
  1658. {
  1659. struct btrfs_delayed_node *curr_node, *prev_node;
  1660. curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
  1661. while (curr_node) {
  1662. __btrfs_kill_delayed_node(curr_node);
  1663. prev_node = curr_node;
  1664. curr_node = btrfs_next_delayed_node(curr_node);
  1665. btrfs_release_delayed_node(prev_node);
  1666. }
  1667. }