i915_request.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440
  1. /*
  2. * Copyright © 2008-2015 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. */
  24. #include <linux/prefetch.h>
  25. #include <linux/dma-fence-array.h>
  26. #include <linux/sched.h>
  27. #include <linux/sched/clock.h>
  28. #include <linux/sched/signal.h>
  29. #include "i915_drv.h"
  30. static const char *i915_fence_get_driver_name(struct dma_fence *fence)
  31. {
  32. return "i915";
  33. }
  34. static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
  35. {
  36. /*
  37. * The timeline struct (as part of the ppgtt underneath a context)
  38. * may be freed when the request is no longer in use by the GPU.
  39. * We could extend the life of a context to beyond that of all
  40. * fences, possibly keeping the hw resource around indefinitely,
  41. * or we just give them a false name. Since
  42. * dma_fence_ops.get_timeline_name is a debug feature, the occasional
  43. * lie seems justifiable.
  44. */
  45. if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
  46. return "signaled";
  47. return to_request(fence)->timeline->common->name;
  48. }
  49. static bool i915_fence_signaled(struct dma_fence *fence)
  50. {
  51. return i915_request_completed(to_request(fence));
  52. }
  53. static bool i915_fence_enable_signaling(struct dma_fence *fence)
  54. {
  55. return intel_engine_enable_signaling(to_request(fence), true);
  56. }
  57. static signed long i915_fence_wait(struct dma_fence *fence,
  58. bool interruptible,
  59. signed long timeout)
  60. {
  61. return i915_request_wait(to_request(fence), interruptible, timeout);
  62. }
  63. static void i915_fence_release(struct dma_fence *fence)
  64. {
  65. struct i915_request *rq = to_request(fence);
  66. /*
  67. * The request is put onto a RCU freelist (i.e. the address
  68. * is immediately reused), mark the fences as being freed now.
  69. * Otherwise the debugobjects for the fences are only marked as
  70. * freed when the slab cache itself is freed, and so we would get
  71. * caught trying to reuse dead objects.
  72. */
  73. i915_sw_fence_fini(&rq->submit);
  74. kmem_cache_free(rq->i915->requests, rq);
  75. }
  76. const struct dma_fence_ops i915_fence_ops = {
  77. .get_driver_name = i915_fence_get_driver_name,
  78. .get_timeline_name = i915_fence_get_timeline_name,
  79. .enable_signaling = i915_fence_enable_signaling,
  80. .signaled = i915_fence_signaled,
  81. .wait = i915_fence_wait,
  82. .release = i915_fence_release,
  83. };
  84. static inline void
  85. i915_request_remove_from_client(struct i915_request *request)
  86. {
  87. struct drm_i915_file_private *file_priv;
  88. file_priv = request->file_priv;
  89. if (!file_priv)
  90. return;
  91. spin_lock(&file_priv->mm.lock);
  92. if (request->file_priv) {
  93. list_del(&request->client_link);
  94. request->file_priv = NULL;
  95. }
  96. spin_unlock(&file_priv->mm.lock);
  97. }
  98. static struct i915_dependency *
  99. i915_dependency_alloc(struct drm_i915_private *i915)
  100. {
  101. return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
  102. }
  103. static void
  104. i915_dependency_free(struct drm_i915_private *i915,
  105. struct i915_dependency *dep)
  106. {
  107. kmem_cache_free(i915->dependencies, dep);
  108. }
  109. static void
  110. __i915_sched_node_add_dependency(struct i915_sched_node *node,
  111. struct i915_sched_node *signal,
  112. struct i915_dependency *dep,
  113. unsigned long flags)
  114. {
  115. INIT_LIST_HEAD(&dep->dfs_link);
  116. list_add(&dep->wait_link, &signal->waiters_list);
  117. list_add(&dep->signal_link, &node->signalers_list);
  118. dep->signaler = signal;
  119. dep->flags = flags;
  120. }
  121. static int
  122. i915_sched_node_add_dependency(struct drm_i915_private *i915,
  123. struct i915_sched_node *node,
  124. struct i915_sched_node *signal)
  125. {
  126. struct i915_dependency *dep;
  127. dep = i915_dependency_alloc(i915);
  128. if (!dep)
  129. return -ENOMEM;
  130. __i915_sched_node_add_dependency(node, signal, dep,
  131. I915_DEPENDENCY_ALLOC);
  132. return 0;
  133. }
  134. static void
  135. i915_sched_node_fini(struct drm_i915_private *i915,
  136. struct i915_sched_node *node)
  137. {
  138. struct i915_dependency *dep, *tmp;
  139. GEM_BUG_ON(!list_empty(&node->link));
  140. /*
  141. * Everyone we depended upon (the fences we wait to be signaled)
  142. * should retire before us and remove themselves from our list.
  143. * However, retirement is run independently on each timeline and
  144. * so we may be called out-of-order.
  145. */
  146. list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
  147. GEM_BUG_ON(!i915_sched_node_signaled(dep->signaler));
  148. GEM_BUG_ON(!list_empty(&dep->dfs_link));
  149. list_del(&dep->wait_link);
  150. if (dep->flags & I915_DEPENDENCY_ALLOC)
  151. i915_dependency_free(i915, dep);
  152. }
  153. /* Remove ourselves from everyone who depends upon us */
  154. list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
  155. GEM_BUG_ON(dep->signaler != node);
  156. GEM_BUG_ON(!list_empty(&dep->dfs_link));
  157. list_del(&dep->signal_link);
  158. if (dep->flags & I915_DEPENDENCY_ALLOC)
  159. i915_dependency_free(i915, dep);
  160. }
  161. }
  162. static void
  163. i915_sched_node_init(struct i915_sched_node *node)
  164. {
  165. INIT_LIST_HEAD(&node->signalers_list);
  166. INIT_LIST_HEAD(&node->waiters_list);
  167. INIT_LIST_HEAD(&node->link);
  168. node->attr.priority = I915_PRIORITY_INVALID;
  169. }
  170. static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
  171. {
  172. struct intel_engine_cs *engine;
  173. enum intel_engine_id id;
  174. int ret;
  175. /* Carefully retire all requests without writing to the rings */
  176. ret = i915_gem_wait_for_idle(i915,
  177. I915_WAIT_INTERRUPTIBLE |
  178. I915_WAIT_LOCKED);
  179. if (ret)
  180. return ret;
  181. GEM_BUG_ON(i915->gt.active_requests);
  182. /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
  183. for_each_engine(engine, i915, id) {
  184. struct i915_gem_timeline *timeline;
  185. struct intel_timeline *tl = engine->timeline;
  186. GEM_TRACE("%s seqno %d (current %d) -> %d\n",
  187. engine->name,
  188. tl->seqno,
  189. intel_engine_get_seqno(engine),
  190. seqno);
  191. if (!i915_seqno_passed(seqno, tl->seqno)) {
  192. /* Flush any waiters before we reuse the seqno */
  193. intel_engine_disarm_breadcrumbs(engine);
  194. GEM_BUG_ON(!list_empty(&engine->breadcrumbs.signals));
  195. }
  196. /* Check we are idle before we fiddle with hw state! */
  197. GEM_BUG_ON(!intel_engine_is_idle(engine));
  198. GEM_BUG_ON(i915_gem_active_isset(&engine->timeline->last_request));
  199. /* Finally reset hw state */
  200. intel_engine_init_global_seqno(engine, seqno);
  201. tl->seqno = seqno;
  202. list_for_each_entry(timeline, &i915->gt.timelines, link)
  203. memset(timeline->engine[id].global_sync, 0,
  204. sizeof(timeline->engine[id].global_sync));
  205. }
  206. i915->gt.request_serial = seqno;
  207. return 0;
  208. }
  209. int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
  210. {
  211. struct drm_i915_private *i915 = to_i915(dev);
  212. lockdep_assert_held(&i915->drm.struct_mutex);
  213. if (seqno == 0)
  214. return -EINVAL;
  215. /* HWS page needs to be set less than what we will inject to ring */
  216. return reset_all_global_seqno(i915, seqno - 1);
  217. }
  218. static int reserve_gt(struct drm_i915_private *i915)
  219. {
  220. int ret;
  221. /*
  222. * Reservation is fine until we may need to wrap around
  223. *
  224. * By incrementing the serial for every request, we know that no
  225. * individual engine may exceed that serial (as each is reset to 0
  226. * on any wrap). This protects even the most pessimistic of migrations
  227. * of every request from all engines onto just one.
  228. */
  229. while (unlikely(++i915->gt.request_serial == 0)) {
  230. ret = reset_all_global_seqno(i915, 0);
  231. if (ret) {
  232. i915->gt.request_serial--;
  233. return ret;
  234. }
  235. }
  236. if (!i915->gt.active_requests++)
  237. i915_gem_unpark(i915);
  238. return 0;
  239. }
  240. static void unreserve_gt(struct drm_i915_private *i915)
  241. {
  242. GEM_BUG_ON(!i915->gt.active_requests);
  243. if (!--i915->gt.active_requests)
  244. i915_gem_park(i915);
  245. }
  246. void i915_gem_retire_noop(struct i915_gem_active *active,
  247. struct i915_request *request)
  248. {
  249. /* Space left intentionally blank */
  250. }
  251. static void advance_ring(struct i915_request *request)
  252. {
  253. struct intel_ring *ring = request->ring;
  254. unsigned int tail;
  255. /*
  256. * We know the GPU must have read the request to have
  257. * sent us the seqno + interrupt, so use the position
  258. * of tail of the request to update the last known position
  259. * of the GPU head.
  260. *
  261. * Note this requires that we are always called in request
  262. * completion order.
  263. */
  264. GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list));
  265. if (list_is_last(&request->ring_link, &ring->request_list)) {
  266. /*
  267. * We may race here with execlists resubmitting this request
  268. * as we retire it. The resubmission will move the ring->tail
  269. * forwards (to request->wa_tail). We either read the
  270. * current value that was written to hw, or the value that
  271. * is just about to be. Either works, if we miss the last two
  272. * noops - they are safe to be replayed on a reset.
  273. */
  274. tail = READ_ONCE(request->tail);
  275. list_del(&ring->active_link);
  276. } else {
  277. tail = request->postfix;
  278. }
  279. list_del_init(&request->ring_link);
  280. ring->head = tail;
  281. }
  282. static void free_capture_list(struct i915_request *request)
  283. {
  284. struct i915_capture_list *capture;
  285. capture = request->capture_list;
  286. while (capture) {
  287. struct i915_capture_list *next = capture->next;
  288. kfree(capture);
  289. capture = next;
  290. }
  291. }
  292. static void __retire_engine_request(struct intel_engine_cs *engine,
  293. struct i915_request *rq)
  294. {
  295. GEM_TRACE("%s(%s) fence %llx:%d, global=%d, current %d\n",
  296. __func__, engine->name,
  297. rq->fence.context, rq->fence.seqno,
  298. rq->global_seqno,
  299. intel_engine_get_seqno(engine));
  300. GEM_BUG_ON(!i915_request_completed(rq));
  301. local_irq_disable();
  302. spin_lock(&engine->timeline->lock);
  303. GEM_BUG_ON(!list_is_first(&rq->link, &engine->timeline->requests));
  304. list_del_init(&rq->link);
  305. spin_unlock(&engine->timeline->lock);
  306. spin_lock(&rq->lock);
  307. if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
  308. dma_fence_signal_locked(&rq->fence);
  309. if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
  310. intel_engine_cancel_signaling(rq);
  311. if (rq->waitboost) {
  312. GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
  313. atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
  314. }
  315. spin_unlock(&rq->lock);
  316. local_irq_enable();
  317. /*
  318. * The backing object for the context is done after switching to the
  319. * *next* context. Therefore we cannot retire the previous context until
  320. * the next context has already started running. However, since we
  321. * cannot take the required locks at i915_request_submit() we
  322. * defer the unpinning of the active context to now, retirement of
  323. * the subsequent request.
  324. */
  325. if (engine->last_retired_context)
  326. intel_context_unpin(engine->last_retired_context, engine);
  327. engine->last_retired_context = rq->ctx;
  328. }
  329. static void __retire_engine_upto(struct intel_engine_cs *engine,
  330. struct i915_request *rq)
  331. {
  332. struct i915_request *tmp;
  333. if (list_empty(&rq->link))
  334. return;
  335. do {
  336. tmp = list_first_entry(&engine->timeline->requests,
  337. typeof(*tmp), link);
  338. GEM_BUG_ON(tmp->engine != engine);
  339. __retire_engine_request(engine, tmp);
  340. } while (tmp != rq);
  341. }
  342. static void i915_request_retire(struct i915_request *request)
  343. {
  344. struct i915_gem_active *active, *next;
  345. GEM_TRACE("%s fence %llx:%d, global=%d, current %d\n",
  346. request->engine->name,
  347. request->fence.context, request->fence.seqno,
  348. request->global_seqno,
  349. intel_engine_get_seqno(request->engine));
  350. lockdep_assert_held(&request->i915->drm.struct_mutex);
  351. GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
  352. GEM_BUG_ON(!i915_request_completed(request));
  353. trace_i915_request_retire(request);
  354. advance_ring(request);
  355. free_capture_list(request);
  356. /*
  357. * Walk through the active list, calling retire on each. This allows
  358. * objects to track their GPU activity and mark themselves as idle
  359. * when their *last* active request is completed (updating state
  360. * tracking lists for eviction, active references for GEM, etc).
  361. *
  362. * As the ->retire() may free the node, we decouple it first and
  363. * pass along the auxiliary information (to avoid dereferencing
  364. * the node after the callback).
  365. */
  366. list_for_each_entry_safe(active, next, &request->active_list, link) {
  367. /*
  368. * In microbenchmarks or focusing upon time inside the kernel,
  369. * we may spend an inordinate amount of time simply handling
  370. * the retirement of requests and processing their callbacks.
  371. * Of which, this loop itself is particularly hot due to the
  372. * cache misses when jumping around the list of i915_gem_active.
  373. * So we try to keep this loop as streamlined as possible and
  374. * also prefetch the next i915_gem_active to try and hide
  375. * the likely cache miss.
  376. */
  377. prefetchw(next);
  378. INIT_LIST_HEAD(&active->link);
  379. RCU_INIT_POINTER(active->request, NULL);
  380. active->retire(active, request);
  381. }
  382. i915_request_remove_from_client(request);
  383. /* Retirement decays the ban score as it is a sign of ctx progress */
  384. atomic_dec_if_positive(&request->ctx->ban_score);
  385. intel_context_unpin(request->ctx, request->engine);
  386. __retire_engine_upto(request->engine, request);
  387. unreserve_gt(request->i915);
  388. i915_sched_node_fini(request->i915, &request->sched);
  389. i915_request_put(request);
  390. }
  391. void i915_request_retire_upto(struct i915_request *rq)
  392. {
  393. struct intel_ring *ring = rq->ring;
  394. struct i915_request *tmp;
  395. GEM_TRACE("%s fence %llx:%d, global=%d, current %d\n",
  396. rq->engine->name,
  397. rq->fence.context, rq->fence.seqno,
  398. rq->global_seqno,
  399. intel_engine_get_seqno(rq->engine));
  400. lockdep_assert_held(&rq->i915->drm.struct_mutex);
  401. GEM_BUG_ON(!i915_request_completed(rq));
  402. if (list_empty(&rq->ring_link))
  403. return;
  404. do {
  405. tmp = list_first_entry(&ring->request_list,
  406. typeof(*tmp), ring_link);
  407. i915_request_retire(tmp);
  408. } while (tmp != rq);
  409. }
  410. static u32 timeline_get_seqno(struct intel_timeline *tl)
  411. {
  412. return ++tl->seqno;
  413. }
  414. static void move_to_timeline(struct i915_request *request,
  415. struct intel_timeline *timeline)
  416. {
  417. GEM_BUG_ON(request->timeline == request->engine->timeline);
  418. lockdep_assert_held(&request->engine->timeline->lock);
  419. spin_lock(&request->timeline->lock);
  420. list_move_tail(&request->link, &timeline->requests);
  421. spin_unlock(&request->timeline->lock);
  422. }
  423. void __i915_request_submit(struct i915_request *request)
  424. {
  425. struct intel_engine_cs *engine = request->engine;
  426. u32 seqno;
  427. GEM_TRACE("%s fence %llx:%d -> global=%d, current %d\n",
  428. engine->name,
  429. request->fence.context, request->fence.seqno,
  430. engine->timeline->seqno + 1,
  431. intel_engine_get_seqno(engine));
  432. GEM_BUG_ON(!irqs_disabled());
  433. lockdep_assert_held(&engine->timeline->lock);
  434. GEM_BUG_ON(request->global_seqno);
  435. seqno = timeline_get_seqno(engine->timeline);
  436. GEM_BUG_ON(!seqno);
  437. GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
  438. /* We may be recursing from the signal callback of another i915 fence */
  439. spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
  440. request->global_seqno = seqno;
  441. if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
  442. intel_engine_enable_signaling(request, false);
  443. spin_unlock(&request->lock);
  444. engine->emit_breadcrumb(request,
  445. request->ring->vaddr + request->postfix);
  446. /* Transfer from per-context onto the global per-engine timeline */
  447. move_to_timeline(request, engine->timeline);
  448. trace_i915_request_execute(request);
  449. wake_up_all(&request->execute);
  450. }
  451. void i915_request_submit(struct i915_request *request)
  452. {
  453. struct intel_engine_cs *engine = request->engine;
  454. unsigned long flags;
  455. /* Will be called from irq-context when using foreign fences. */
  456. spin_lock_irqsave(&engine->timeline->lock, flags);
  457. __i915_request_submit(request);
  458. spin_unlock_irqrestore(&engine->timeline->lock, flags);
  459. }
  460. void __i915_request_unsubmit(struct i915_request *request)
  461. {
  462. struct intel_engine_cs *engine = request->engine;
  463. GEM_TRACE("%s fence %llx:%d <- global=%d, current %d\n",
  464. engine->name,
  465. request->fence.context, request->fence.seqno,
  466. request->global_seqno,
  467. intel_engine_get_seqno(engine));
  468. GEM_BUG_ON(!irqs_disabled());
  469. lockdep_assert_held(&engine->timeline->lock);
  470. /*
  471. * Only unwind in reverse order, required so that the per-context list
  472. * is kept in seqno/ring order.
  473. */
  474. GEM_BUG_ON(!request->global_seqno);
  475. GEM_BUG_ON(request->global_seqno != engine->timeline->seqno);
  476. GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine),
  477. request->global_seqno));
  478. engine->timeline->seqno--;
  479. /* We may be recursing from the signal callback of another i915 fence */
  480. spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
  481. request->global_seqno = 0;
  482. if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
  483. intel_engine_cancel_signaling(request);
  484. spin_unlock(&request->lock);
  485. /* Transfer back from the global per-engine timeline to per-context */
  486. move_to_timeline(request, request->timeline);
  487. /*
  488. * We don't need to wake_up any waiters on request->execute, they
  489. * will get woken by any other event or us re-adding this request
  490. * to the engine timeline (__i915_request_submit()). The waiters
  491. * should be quite adapt at finding that the request now has a new
  492. * global_seqno to the one they went to sleep on.
  493. */
  494. }
  495. void i915_request_unsubmit(struct i915_request *request)
  496. {
  497. struct intel_engine_cs *engine = request->engine;
  498. unsigned long flags;
  499. /* Will be called from irq-context when using foreign fences. */
  500. spin_lock_irqsave(&engine->timeline->lock, flags);
  501. __i915_request_unsubmit(request);
  502. spin_unlock_irqrestore(&engine->timeline->lock, flags);
  503. }
  504. static int __i915_sw_fence_call
  505. submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
  506. {
  507. struct i915_request *request =
  508. container_of(fence, typeof(*request), submit);
  509. switch (state) {
  510. case FENCE_COMPLETE:
  511. trace_i915_request_submit(request);
  512. /*
  513. * We need to serialize use of the submit_request() callback
  514. * with its hotplugging performed during an emergency
  515. * i915_gem_set_wedged(). We use the RCU mechanism to mark the
  516. * critical section in order to force i915_gem_set_wedged() to
  517. * wait until the submit_request() is completed before
  518. * proceeding.
  519. */
  520. rcu_read_lock();
  521. request->engine->submit_request(request);
  522. rcu_read_unlock();
  523. break;
  524. case FENCE_FREE:
  525. i915_request_put(request);
  526. break;
  527. }
  528. return NOTIFY_DONE;
  529. }
  530. /**
  531. * i915_request_alloc - allocate a request structure
  532. *
  533. * @engine: engine that we wish to issue the request on.
  534. * @ctx: context that the request will be associated with.
  535. *
  536. * Returns a pointer to the allocated request if successful,
  537. * or an error code if not.
  538. */
  539. struct i915_request *
  540. i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx)
  541. {
  542. struct drm_i915_private *i915 = engine->i915;
  543. struct i915_request *rq;
  544. struct intel_ring *ring;
  545. int ret;
  546. lockdep_assert_held(&i915->drm.struct_mutex);
  547. /*
  548. * Preempt contexts are reserved for exclusive use to inject a
  549. * preemption context switch. They are never to be used for any trivial
  550. * request!
  551. */
  552. GEM_BUG_ON(ctx == i915->preempt_context);
  553. /*
  554. * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
  555. * EIO if the GPU is already wedged.
  556. */
  557. if (i915_terminally_wedged(&i915->gpu_error))
  558. return ERR_PTR(-EIO);
  559. /*
  560. * Pinning the contexts may generate requests in order to acquire
  561. * GGTT space, so do this first before we reserve a seqno for
  562. * ourselves.
  563. */
  564. ring = intel_context_pin(ctx, engine);
  565. if (IS_ERR(ring))
  566. return ERR_CAST(ring);
  567. GEM_BUG_ON(!ring);
  568. ret = reserve_gt(i915);
  569. if (ret)
  570. goto err_unpin;
  571. ret = intel_ring_wait_for_space(ring, MIN_SPACE_FOR_ADD_REQUEST);
  572. if (ret)
  573. goto err_unreserve;
  574. /* Move our oldest request to the slab-cache (if not in use!) */
  575. rq = list_first_entry_or_null(&ring->request_list,
  576. typeof(*rq), ring_link);
  577. if (rq && i915_request_completed(rq))
  578. i915_request_retire(rq);
  579. /*
  580. * Beware: Dragons be flying overhead.
  581. *
  582. * We use RCU to look up requests in flight. The lookups may
  583. * race with the request being allocated from the slab freelist.
  584. * That is the request we are writing to here, may be in the process
  585. * of being read by __i915_gem_active_get_rcu(). As such,
  586. * we have to be very careful when overwriting the contents. During
  587. * the RCU lookup, we change chase the request->engine pointer,
  588. * read the request->global_seqno and increment the reference count.
  589. *
  590. * The reference count is incremented atomically. If it is zero,
  591. * the lookup knows the request is unallocated and complete. Otherwise,
  592. * it is either still in use, or has been reallocated and reset
  593. * with dma_fence_init(). This increment is safe for release as we
  594. * check that the request we have a reference to and matches the active
  595. * request.
  596. *
  597. * Before we increment the refcount, we chase the request->engine
  598. * pointer. We must not call kmem_cache_zalloc() or else we set
  599. * that pointer to NULL and cause a crash during the lookup. If
  600. * we see the request is completed (based on the value of the
  601. * old engine and seqno), the lookup is complete and reports NULL.
  602. * If we decide the request is not completed (new engine or seqno),
  603. * then we grab a reference and double check that it is still the
  604. * active request - which it won't be and restart the lookup.
  605. *
  606. * Do not use kmem_cache_zalloc() here!
  607. */
  608. rq = kmem_cache_alloc(i915->requests,
  609. GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
  610. if (unlikely(!rq)) {
  611. /* Ratelimit ourselves to prevent oom from malicious clients */
  612. ret = i915_gem_wait_for_idle(i915,
  613. I915_WAIT_LOCKED |
  614. I915_WAIT_INTERRUPTIBLE);
  615. if (ret)
  616. goto err_unreserve;
  617. /*
  618. * We've forced the client to stall and catch up with whatever
  619. * backlog there might have been. As we are assuming that we
  620. * caused the mempressure, now is an opportune time to
  621. * recover as much memory from the request pool as is possible.
  622. * Having already penalized the client to stall, we spend
  623. * a little extra time to re-optimise page allocation.
  624. */
  625. kmem_cache_shrink(i915->requests);
  626. rcu_barrier(); /* Recover the TYPESAFE_BY_RCU pages */
  627. rq = kmem_cache_alloc(i915->requests, GFP_KERNEL);
  628. if (!rq) {
  629. ret = -ENOMEM;
  630. goto err_unreserve;
  631. }
  632. }
  633. INIT_LIST_HEAD(&rq->active_list);
  634. rq->i915 = i915;
  635. rq->engine = engine;
  636. rq->ctx = ctx;
  637. rq->ring = ring;
  638. rq->timeline = ring->timeline;
  639. GEM_BUG_ON(rq->timeline == engine->timeline);
  640. spin_lock_init(&rq->lock);
  641. dma_fence_init(&rq->fence,
  642. &i915_fence_ops,
  643. &rq->lock,
  644. rq->timeline->fence_context,
  645. timeline_get_seqno(rq->timeline));
  646. /* We bump the ref for the fence chain */
  647. i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
  648. init_waitqueue_head(&rq->execute);
  649. i915_sched_node_init(&rq->sched);
  650. /* No zalloc, must clear what we need by hand */
  651. rq->global_seqno = 0;
  652. rq->signaling.wait.seqno = 0;
  653. rq->file_priv = NULL;
  654. rq->batch = NULL;
  655. rq->capture_list = NULL;
  656. rq->waitboost = false;
  657. /*
  658. * Reserve space in the ring buffer for all the commands required to
  659. * eventually emit this request. This is to guarantee that the
  660. * i915_request_add() call can't fail. Note that the reserve may need
  661. * to be redone if the request is not actually submitted straight
  662. * away, e.g. because a GPU scheduler has deferred it.
  663. */
  664. rq->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
  665. GEM_BUG_ON(rq->reserved_space < engine->emit_breadcrumb_sz);
  666. /*
  667. * Record the position of the start of the request so that
  668. * should we detect the updated seqno part-way through the
  669. * GPU processing the request, we never over-estimate the
  670. * position of the head.
  671. */
  672. rq->head = rq->ring->emit;
  673. /* Unconditionally invalidate GPU caches and TLBs. */
  674. ret = engine->emit_flush(rq, EMIT_INVALIDATE);
  675. if (ret)
  676. goto err_unwind;
  677. ret = engine->request_alloc(rq);
  678. if (ret)
  679. goto err_unwind;
  680. /* Keep a second pin for the dual retirement along engine and ring */
  681. __intel_context_pin(rq->ctx, engine);
  682. /* Check that we didn't interrupt ourselves with a new request */
  683. GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno);
  684. return rq;
  685. err_unwind:
  686. rq->ring->emit = rq->head;
  687. /* Make sure we didn't add ourselves to external state before freeing */
  688. GEM_BUG_ON(!list_empty(&rq->active_list));
  689. GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
  690. GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
  691. kmem_cache_free(i915->requests, rq);
  692. err_unreserve:
  693. unreserve_gt(i915);
  694. err_unpin:
  695. intel_context_unpin(ctx, engine);
  696. return ERR_PTR(ret);
  697. }
  698. static int
  699. i915_request_await_request(struct i915_request *to, struct i915_request *from)
  700. {
  701. int ret;
  702. GEM_BUG_ON(to == from);
  703. GEM_BUG_ON(to->timeline == from->timeline);
  704. if (i915_request_completed(from))
  705. return 0;
  706. if (to->engine->schedule) {
  707. ret = i915_sched_node_add_dependency(to->i915,
  708. &to->sched,
  709. &from->sched);
  710. if (ret < 0)
  711. return ret;
  712. }
  713. if (to->engine == from->engine) {
  714. ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
  715. &from->submit,
  716. I915_FENCE_GFP);
  717. return ret < 0 ? ret : 0;
  718. }
  719. if (to->engine->semaphore.sync_to) {
  720. u32 seqno;
  721. GEM_BUG_ON(!from->engine->semaphore.signal);
  722. seqno = i915_request_global_seqno(from);
  723. if (!seqno)
  724. goto await_dma_fence;
  725. if (seqno <= to->timeline->global_sync[from->engine->id])
  726. return 0;
  727. trace_i915_gem_ring_sync_to(to, from);
  728. ret = to->engine->semaphore.sync_to(to, from);
  729. if (ret)
  730. return ret;
  731. to->timeline->global_sync[from->engine->id] = seqno;
  732. return 0;
  733. }
  734. await_dma_fence:
  735. ret = i915_sw_fence_await_dma_fence(&to->submit,
  736. &from->fence, 0,
  737. I915_FENCE_GFP);
  738. return ret < 0 ? ret : 0;
  739. }
  740. int
  741. i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
  742. {
  743. struct dma_fence **child = &fence;
  744. unsigned int nchild = 1;
  745. int ret;
  746. /*
  747. * Note that if the fence-array was created in signal-on-any mode,
  748. * we should *not* decompose it into its individual fences. However,
  749. * we don't currently store which mode the fence-array is operating
  750. * in. Fortunately, the only user of signal-on-any is private to
  751. * amdgpu and we should not see any incoming fence-array from
  752. * sync-file being in signal-on-any mode.
  753. */
  754. if (dma_fence_is_array(fence)) {
  755. struct dma_fence_array *array = to_dma_fence_array(fence);
  756. child = array->fences;
  757. nchild = array->num_fences;
  758. GEM_BUG_ON(!nchild);
  759. }
  760. do {
  761. fence = *child++;
  762. if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
  763. continue;
  764. /*
  765. * Requests on the same timeline are explicitly ordered, along
  766. * with their dependencies, by i915_request_add() which ensures
  767. * that requests are submitted in-order through each ring.
  768. */
  769. if (fence->context == rq->fence.context)
  770. continue;
  771. /* Squash repeated waits to the same timelines */
  772. if (fence->context != rq->i915->mm.unordered_timeline &&
  773. intel_timeline_sync_is_later(rq->timeline, fence))
  774. continue;
  775. if (dma_fence_is_i915(fence))
  776. ret = i915_request_await_request(rq, to_request(fence));
  777. else
  778. ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
  779. I915_FENCE_TIMEOUT,
  780. I915_FENCE_GFP);
  781. if (ret < 0)
  782. return ret;
  783. /* Record the latest fence used against each timeline */
  784. if (fence->context != rq->i915->mm.unordered_timeline)
  785. intel_timeline_sync_set(rq->timeline, fence);
  786. } while (--nchild);
  787. return 0;
  788. }
  789. /**
  790. * i915_request_await_object - set this request to (async) wait upon a bo
  791. * @to: request we are wishing to use
  792. * @obj: object which may be in use on another ring.
  793. * @write: whether the wait is on behalf of a writer
  794. *
  795. * This code is meant to abstract object synchronization with the GPU.
  796. * Conceptually we serialise writes between engines inside the GPU.
  797. * We only allow one engine to write into a buffer at any time, but
  798. * multiple readers. To ensure each has a coherent view of memory, we must:
  799. *
  800. * - If there is an outstanding write request to the object, the new
  801. * request must wait for it to complete (either CPU or in hw, requests
  802. * on the same ring will be naturally ordered).
  803. *
  804. * - If we are a write request (pending_write_domain is set), the new
  805. * request must wait for outstanding read requests to complete.
  806. *
  807. * Returns 0 if successful, else propagates up the lower layer error.
  808. */
  809. int
  810. i915_request_await_object(struct i915_request *to,
  811. struct drm_i915_gem_object *obj,
  812. bool write)
  813. {
  814. struct dma_fence *excl;
  815. int ret = 0;
  816. if (write) {
  817. struct dma_fence **shared;
  818. unsigned int count, i;
  819. ret = reservation_object_get_fences_rcu(obj->resv,
  820. &excl, &count, &shared);
  821. if (ret)
  822. return ret;
  823. for (i = 0; i < count; i++) {
  824. ret = i915_request_await_dma_fence(to, shared[i]);
  825. if (ret)
  826. break;
  827. dma_fence_put(shared[i]);
  828. }
  829. for (; i < count; i++)
  830. dma_fence_put(shared[i]);
  831. kfree(shared);
  832. } else {
  833. excl = reservation_object_get_excl_rcu(obj->resv);
  834. }
  835. if (excl) {
  836. if (ret == 0)
  837. ret = i915_request_await_dma_fence(to, excl);
  838. dma_fence_put(excl);
  839. }
  840. return ret;
  841. }
  842. /*
  843. * NB: This function is not allowed to fail. Doing so would mean the the
  844. * request is not being tracked for completion but the work itself is
  845. * going to happen on the hardware. This would be a Bad Thing(tm).
  846. */
  847. void __i915_request_add(struct i915_request *request, bool flush_caches)
  848. {
  849. struct intel_engine_cs *engine = request->engine;
  850. struct intel_ring *ring = request->ring;
  851. struct intel_timeline *timeline = request->timeline;
  852. struct i915_request *prev;
  853. u32 *cs;
  854. int err;
  855. GEM_TRACE("%s fence %llx:%d\n",
  856. engine->name, request->fence.context, request->fence.seqno);
  857. lockdep_assert_held(&request->i915->drm.struct_mutex);
  858. trace_i915_request_add(request);
  859. /*
  860. * Make sure that no request gazumped us - if it was allocated after
  861. * our i915_request_alloc() and called __i915_request_add() before
  862. * us, the timeline will hold its seqno which is later than ours.
  863. */
  864. GEM_BUG_ON(timeline->seqno != request->fence.seqno);
  865. /*
  866. * To ensure that this call will not fail, space for its emissions
  867. * should already have been reserved in the ring buffer. Let the ring
  868. * know that it is time to use that space up.
  869. */
  870. request->reserved_space = 0;
  871. /*
  872. * Emit any outstanding flushes - execbuf can fail to emit the flush
  873. * after having emitted the batchbuffer command. Hence we need to fix
  874. * things up similar to emitting the lazy request. The difference here
  875. * is that the flush _must_ happen before the next request, no matter
  876. * what.
  877. */
  878. if (flush_caches) {
  879. err = engine->emit_flush(request, EMIT_FLUSH);
  880. /* Not allowed to fail! */
  881. WARN(err, "engine->emit_flush() failed: %d!\n", err);
  882. }
  883. /*
  884. * Record the position of the start of the breadcrumb so that
  885. * should we detect the updated seqno part-way through the
  886. * GPU processing the request, we never over-estimate the
  887. * position of the ring's HEAD.
  888. */
  889. cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
  890. GEM_BUG_ON(IS_ERR(cs));
  891. request->postfix = intel_ring_offset(request, cs);
  892. /*
  893. * Seal the request and mark it as pending execution. Note that
  894. * we may inspect this state, without holding any locks, during
  895. * hangcheck. Hence we apply the barrier to ensure that we do not
  896. * see a more recent value in the hws than we are tracking.
  897. */
  898. prev = i915_gem_active_raw(&timeline->last_request,
  899. &request->i915->drm.struct_mutex);
  900. if (prev && !i915_request_completed(prev)) {
  901. i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
  902. &request->submitq);
  903. if (engine->schedule)
  904. __i915_sched_node_add_dependency(&request->sched,
  905. &prev->sched,
  906. &request->dep,
  907. 0);
  908. }
  909. spin_lock_irq(&timeline->lock);
  910. list_add_tail(&request->link, &timeline->requests);
  911. spin_unlock_irq(&timeline->lock);
  912. GEM_BUG_ON(timeline->seqno != request->fence.seqno);
  913. i915_gem_active_set(&timeline->last_request, request);
  914. list_add_tail(&request->ring_link, &ring->request_list);
  915. if (list_is_first(&request->ring_link, &ring->request_list))
  916. list_add(&ring->active_link, &request->i915->gt.active_rings);
  917. request->emitted_jiffies = jiffies;
  918. /*
  919. * Let the backend know a new request has arrived that may need
  920. * to adjust the existing execution schedule due to a high priority
  921. * request - i.e. we may want to preempt the current request in order
  922. * to run a high priority dependency chain *before* we can execute this
  923. * request.
  924. *
  925. * This is called before the request is ready to run so that we can
  926. * decide whether to preempt the entire chain so that it is ready to
  927. * run at the earliest possible convenience.
  928. */
  929. rcu_read_lock();
  930. if (engine->schedule)
  931. engine->schedule(request, &request->ctx->sched);
  932. rcu_read_unlock();
  933. local_bh_disable();
  934. i915_sw_fence_commit(&request->submit);
  935. local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
  936. /*
  937. * In typical scenarios, we do not expect the previous request on
  938. * the timeline to be still tracked by timeline->last_request if it
  939. * has been completed. If the completed request is still here, that
  940. * implies that request retirement is a long way behind submission,
  941. * suggesting that we haven't been retiring frequently enough from
  942. * the combination of retire-before-alloc, waiters and the background
  943. * retirement worker. So if the last request on this timeline was
  944. * already completed, do a catch up pass, flushing the retirement queue
  945. * up to this client. Since we have now moved the heaviest operations
  946. * during retirement onto secondary workers, such as freeing objects
  947. * or contexts, retiring a bunch of requests is mostly list management
  948. * (and cache misses), and so we should not be overly penalizing this
  949. * client by performing excess work, though we may still performing
  950. * work on behalf of others -- but instead we should benefit from
  951. * improved resource management. (Well, that's the theory at least.)
  952. */
  953. if (prev && i915_request_completed(prev))
  954. i915_request_retire_upto(prev);
  955. }
  956. static unsigned long local_clock_us(unsigned int *cpu)
  957. {
  958. unsigned long t;
  959. /*
  960. * Cheaply and approximately convert from nanoseconds to microseconds.
  961. * The result and subsequent calculations are also defined in the same
  962. * approximate microseconds units. The principal source of timing
  963. * error here is from the simple truncation.
  964. *
  965. * Note that local_clock() is only defined wrt to the current CPU;
  966. * the comparisons are no longer valid if we switch CPUs. Instead of
  967. * blocking preemption for the entire busywait, we can detect the CPU
  968. * switch and use that as indicator of system load and a reason to
  969. * stop busywaiting, see busywait_stop().
  970. */
  971. *cpu = get_cpu();
  972. t = local_clock() >> 10;
  973. put_cpu();
  974. return t;
  975. }
  976. static bool busywait_stop(unsigned long timeout, unsigned int cpu)
  977. {
  978. unsigned int this_cpu;
  979. if (time_after(local_clock_us(&this_cpu), timeout))
  980. return true;
  981. return this_cpu != cpu;
  982. }
  983. static bool __i915_spin_request(const struct i915_request *rq,
  984. u32 seqno, int state, unsigned long timeout_us)
  985. {
  986. struct intel_engine_cs *engine = rq->engine;
  987. unsigned int irq, cpu;
  988. GEM_BUG_ON(!seqno);
  989. /*
  990. * Only wait for the request if we know it is likely to complete.
  991. *
  992. * We don't track the timestamps around requests, nor the average
  993. * request length, so we do not have a good indicator that this
  994. * request will complete within the timeout. What we do know is the
  995. * order in which requests are executed by the engine and so we can
  996. * tell if the request has started. If the request hasn't started yet,
  997. * it is a fair assumption that it will not complete within our
  998. * relatively short timeout.
  999. */
  1000. if (!i915_seqno_passed(intel_engine_get_seqno(engine), seqno - 1))
  1001. return false;
  1002. /*
  1003. * When waiting for high frequency requests, e.g. during synchronous
  1004. * rendering split between the CPU and GPU, the finite amount of time
  1005. * required to set up the irq and wait upon it limits the response
  1006. * rate. By busywaiting on the request completion for a short while we
  1007. * can service the high frequency waits as quick as possible. However,
  1008. * if it is a slow request, we want to sleep as quickly as possible.
  1009. * The tradeoff between waiting and sleeping is roughly the time it
  1010. * takes to sleep on a request, on the order of a microsecond.
  1011. */
  1012. irq = atomic_read(&engine->irq_count);
  1013. timeout_us += local_clock_us(&cpu);
  1014. do {
  1015. if (i915_seqno_passed(intel_engine_get_seqno(engine), seqno))
  1016. return seqno == i915_request_global_seqno(rq);
  1017. /*
  1018. * Seqno are meant to be ordered *before* the interrupt. If
  1019. * we see an interrupt without a corresponding seqno advance,
  1020. * assume we won't see one in the near future but require
  1021. * the engine->seqno_barrier() to fixup coherency.
  1022. */
  1023. if (atomic_read(&engine->irq_count) != irq)
  1024. break;
  1025. if (signal_pending_state(state, current))
  1026. break;
  1027. if (busywait_stop(timeout_us, cpu))
  1028. break;
  1029. cpu_relax();
  1030. } while (!need_resched());
  1031. return false;
  1032. }
  1033. static bool __i915_wait_request_check_and_reset(struct i915_request *request)
  1034. {
  1035. struct i915_gpu_error *error = &request->i915->gpu_error;
  1036. if (likely(!i915_reset_handoff(error)))
  1037. return false;
  1038. __set_current_state(TASK_RUNNING);
  1039. i915_reset(request->i915, error->stalled_mask, error->reason);
  1040. return true;
  1041. }
  1042. /**
  1043. * i915_request_wait - wait until execution of request has finished
  1044. * @rq: the request to wait upon
  1045. * @flags: how to wait
  1046. * @timeout: how long to wait in jiffies
  1047. *
  1048. * i915_request_wait() waits for the request to be completed, for a
  1049. * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
  1050. * unbounded wait).
  1051. *
  1052. * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
  1053. * in via the flags, and vice versa if the struct_mutex is not held, the caller
  1054. * must not specify that the wait is locked.
  1055. *
  1056. * Returns the remaining time (in jiffies) if the request completed, which may
  1057. * be zero or -ETIME if the request is unfinished after the timeout expires.
  1058. * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
  1059. * pending before the request completes.
  1060. */
  1061. long i915_request_wait(struct i915_request *rq,
  1062. unsigned int flags,
  1063. long timeout)
  1064. {
  1065. const int state = flags & I915_WAIT_INTERRUPTIBLE ?
  1066. TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
  1067. wait_queue_head_t *errq = &rq->i915->gpu_error.wait_queue;
  1068. DEFINE_WAIT_FUNC(reset, default_wake_function);
  1069. DEFINE_WAIT_FUNC(exec, default_wake_function);
  1070. struct intel_wait wait;
  1071. might_sleep();
  1072. #if IS_ENABLED(CONFIG_LOCKDEP)
  1073. GEM_BUG_ON(debug_locks &&
  1074. !!lockdep_is_held(&rq->i915->drm.struct_mutex) !=
  1075. !!(flags & I915_WAIT_LOCKED));
  1076. #endif
  1077. GEM_BUG_ON(timeout < 0);
  1078. if (i915_request_completed(rq))
  1079. return timeout;
  1080. if (!timeout)
  1081. return -ETIME;
  1082. trace_i915_request_wait_begin(rq, flags);
  1083. add_wait_queue(&rq->execute, &exec);
  1084. if (flags & I915_WAIT_LOCKED)
  1085. add_wait_queue(errq, &reset);
  1086. intel_wait_init(&wait, rq);
  1087. restart:
  1088. do {
  1089. set_current_state(state);
  1090. if (intel_wait_update_request(&wait, rq))
  1091. break;
  1092. if (flags & I915_WAIT_LOCKED &&
  1093. __i915_wait_request_check_and_reset(rq))
  1094. continue;
  1095. if (signal_pending_state(state, current)) {
  1096. timeout = -ERESTARTSYS;
  1097. goto complete;
  1098. }
  1099. if (!timeout) {
  1100. timeout = -ETIME;
  1101. goto complete;
  1102. }
  1103. timeout = io_schedule_timeout(timeout);
  1104. } while (1);
  1105. GEM_BUG_ON(!intel_wait_has_seqno(&wait));
  1106. GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
  1107. /* Optimistic short spin before touching IRQs */
  1108. if (__i915_spin_request(rq, wait.seqno, state, 5))
  1109. goto complete;
  1110. set_current_state(state);
  1111. if (intel_engine_add_wait(rq->engine, &wait))
  1112. /*
  1113. * In order to check that we haven't missed the interrupt
  1114. * as we enabled it, we need to kick ourselves to do a
  1115. * coherent check on the seqno before we sleep.
  1116. */
  1117. goto wakeup;
  1118. if (flags & I915_WAIT_LOCKED)
  1119. __i915_wait_request_check_and_reset(rq);
  1120. for (;;) {
  1121. if (signal_pending_state(state, current)) {
  1122. timeout = -ERESTARTSYS;
  1123. break;
  1124. }
  1125. if (!timeout) {
  1126. timeout = -ETIME;
  1127. break;
  1128. }
  1129. timeout = io_schedule_timeout(timeout);
  1130. if (intel_wait_complete(&wait) &&
  1131. intel_wait_check_request(&wait, rq))
  1132. break;
  1133. set_current_state(state);
  1134. wakeup:
  1135. /*
  1136. * Carefully check if the request is complete, giving time
  1137. * for the seqno to be visible following the interrupt.
  1138. * We also have to check in case we are kicked by the GPU
  1139. * reset in order to drop the struct_mutex.
  1140. */
  1141. if (__i915_request_irq_complete(rq))
  1142. break;
  1143. /*
  1144. * If the GPU is hung, and we hold the lock, reset the GPU
  1145. * and then check for completion. On a full reset, the engine's
  1146. * HW seqno will be advanced passed us and we are complete.
  1147. * If we do a partial reset, we have to wait for the GPU to
  1148. * resume and update the breadcrumb.
  1149. *
  1150. * If we don't hold the mutex, we can just wait for the worker
  1151. * to come along and update the breadcrumb (either directly
  1152. * itself, or indirectly by recovering the GPU).
  1153. */
  1154. if (flags & I915_WAIT_LOCKED &&
  1155. __i915_wait_request_check_and_reset(rq))
  1156. continue;
  1157. /* Only spin if we know the GPU is processing this request */
  1158. if (__i915_spin_request(rq, wait.seqno, state, 2))
  1159. break;
  1160. if (!intel_wait_check_request(&wait, rq)) {
  1161. intel_engine_remove_wait(rq->engine, &wait);
  1162. goto restart;
  1163. }
  1164. }
  1165. intel_engine_remove_wait(rq->engine, &wait);
  1166. complete:
  1167. __set_current_state(TASK_RUNNING);
  1168. if (flags & I915_WAIT_LOCKED)
  1169. remove_wait_queue(errq, &reset);
  1170. remove_wait_queue(&rq->execute, &exec);
  1171. trace_i915_request_wait_end(rq);
  1172. return timeout;
  1173. }
  1174. static void ring_retire_requests(struct intel_ring *ring)
  1175. {
  1176. struct i915_request *request, *next;
  1177. list_for_each_entry_safe(request, next,
  1178. &ring->request_list, ring_link) {
  1179. if (!i915_request_completed(request))
  1180. break;
  1181. i915_request_retire(request);
  1182. }
  1183. }
  1184. void i915_retire_requests(struct drm_i915_private *i915)
  1185. {
  1186. struct intel_ring *ring, *tmp;
  1187. lockdep_assert_held(&i915->drm.struct_mutex);
  1188. if (!i915->gt.active_requests)
  1189. return;
  1190. /* An outstanding request must be on a still active ring somewhere */
  1191. GEM_BUG_ON(list_empty(&i915->gt.active_rings));
  1192. list_for_each_entry_safe(ring, tmp, &i915->gt.active_rings, active_link)
  1193. ring_retire_requests(ring);
  1194. }
  1195. #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
  1196. #include "selftests/mock_request.c"
  1197. #include "selftests/i915_request.c"
  1198. #endif