checkpoint.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
  1. /*
  2. * fs/f2fs/checkpoint.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/bio.h>
  13. #include <linux/mpage.h>
  14. #include <linux/writeback.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/f2fs_fs.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/swap.h>
  19. #include "f2fs.h"
  20. #include "node.h"
  21. #include "segment.h"
  22. #include <trace/events/f2fs.h>
  23. static struct kmem_cache *ino_entry_slab;
  24. static struct kmem_cache *inode_entry_slab;
  25. /*
  26. * We guarantee no failure on the returned page.
  27. */
  28. struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  29. {
  30. struct address_space *mapping = META_MAPPING(sbi);
  31. struct page *page = NULL;
  32. repeat:
  33. page = grab_cache_page(mapping, index);
  34. if (!page) {
  35. cond_resched();
  36. goto repeat;
  37. }
  38. f2fs_wait_on_page_writeback(page, META);
  39. SetPageUptodate(page);
  40. return page;
  41. }
  42. /*
  43. * We guarantee no failure on the returned page.
  44. */
  45. struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  46. {
  47. struct address_space *mapping = META_MAPPING(sbi);
  48. struct page *page;
  49. repeat:
  50. page = grab_cache_page(mapping, index);
  51. if (!page) {
  52. cond_resched();
  53. goto repeat;
  54. }
  55. if (PageUptodate(page))
  56. goto out;
  57. if (f2fs_submit_page_bio(sbi, page, index,
  58. READ_SYNC | REQ_META | REQ_PRIO))
  59. goto repeat;
  60. lock_page(page);
  61. if (unlikely(page->mapping != mapping)) {
  62. f2fs_put_page(page, 1);
  63. goto repeat;
  64. }
  65. out:
  66. return page;
  67. }
  68. static inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
  69. {
  70. switch (type) {
  71. case META_NAT:
  72. return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
  73. case META_SIT:
  74. return SIT_BLK_CNT(sbi);
  75. case META_SSA:
  76. case META_CP:
  77. return 0;
  78. default:
  79. BUG();
  80. }
  81. }
  82. /*
  83. * Readahead CP/NAT/SIT/SSA pages
  84. */
  85. int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
  86. {
  87. block_t prev_blk_addr = 0;
  88. struct page *page;
  89. int blkno = start;
  90. int max_blks = get_max_meta_blks(sbi, type);
  91. struct f2fs_io_info fio = {
  92. .type = META,
  93. .rw = READ_SYNC | REQ_META | REQ_PRIO
  94. };
  95. for (; nrpages-- > 0; blkno++) {
  96. block_t blk_addr;
  97. switch (type) {
  98. case META_NAT:
  99. /* get nat block addr */
  100. if (unlikely(blkno >= max_blks))
  101. blkno = 0;
  102. blk_addr = current_nat_addr(sbi,
  103. blkno * NAT_ENTRY_PER_BLOCK);
  104. break;
  105. case META_SIT:
  106. /* get sit block addr */
  107. if (unlikely(blkno >= max_blks))
  108. goto out;
  109. blk_addr = current_sit_addr(sbi,
  110. blkno * SIT_ENTRY_PER_BLOCK);
  111. if (blkno != start && prev_blk_addr + 1 != blk_addr)
  112. goto out;
  113. prev_blk_addr = blk_addr;
  114. break;
  115. case META_SSA:
  116. case META_CP:
  117. /* get ssa/cp block addr */
  118. blk_addr = blkno;
  119. break;
  120. default:
  121. BUG();
  122. }
  123. page = grab_cache_page(META_MAPPING(sbi), blk_addr);
  124. if (!page)
  125. continue;
  126. if (PageUptodate(page)) {
  127. f2fs_put_page(page, 1);
  128. continue;
  129. }
  130. f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
  131. f2fs_put_page(page, 0);
  132. }
  133. out:
  134. f2fs_submit_merged_bio(sbi, META, READ);
  135. return blkno - start;
  136. }
  137. static int f2fs_write_meta_page(struct page *page,
  138. struct writeback_control *wbc)
  139. {
  140. struct inode *inode = page->mapping->host;
  141. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  142. trace_f2fs_writepage(page, META);
  143. if (unlikely(sbi->por_doing))
  144. goto redirty_out;
  145. if (wbc->for_reclaim)
  146. goto redirty_out;
  147. /* Should not write any meta pages, if any IO error was occurred */
  148. if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
  149. goto no_write;
  150. f2fs_wait_on_page_writeback(page, META);
  151. write_meta_page(sbi, page);
  152. no_write:
  153. dec_page_count(sbi, F2FS_DIRTY_META);
  154. unlock_page(page);
  155. return 0;
  156. redirty_out:
  157. redirty_page_for_writepage(wbc, page);
  158. return AOP_WRITEPAGE_ACTIVATE;
  159. }
  160. static int f2fs_write_meta_pages(struct address_space *mapping,
  161. struct writeback_control *wbc)
  162. {
  163. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  164. long diff, written;
  165. trace_f2fs_writepages(mapping->host, wbc, META);
  166. /* collect a number of dirty meta pages and write together */
  167. if (wbc->for_kupdate ||
  168. get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
  169. goto skip_write;
  170. /* if mounting is failed, skip writing node pages */
  171. mutex_lock(&sbi->cp_mutex);
  172. diff = nr_pages_to_write(sbi, META, wbc);
  173. written = sync_meta_pages(sbi, META, wbc->nr_to_write);
  174. mutex_unlock(&sbi->cp_mutex);
  175. wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
  176. return 0;
  177. skip_write:
  178. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
  179. return 0;
  180. }
  181. long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
  182. long nr_to_write)
  183. {
  184. struct address_space *mapping = META_MAPPING(sbi);
  185. pgoff_t index = 0, end = LONG_MAX;
  186. struct pagevec pvec;
  187. long nwritten = 0;
  188. struct writeback_control wbc = {
  189. .for_reclaim = 0,
  190. };
  191. pagevec_init(&pvec, 0);
  192. while (index <= end) {
  193. int i, nr_pages;
  194. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  195. PAGECACHE_TAG_DIRTY,
  196. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  197. if (unlikely(nr_pages == 0))
  198. break;
  199. for (i = 0; i < nr_pages; i++) {
  200. struct page *page = pvec.pages[i];
  201. lock_page(page);
  202. if (unlikely(page->mapping != mapping)) {
  203. continue_unlock:
  204. unlock_page(page);
  205. continue;
  206. }
  207. if (!PageDirty(page)) {
  208. /* someone wrote it for us */
  209. goto continue_unlock;
  210. }
  211. if (!clear_page_dirty_for_io(page))
  212. goto continue_unlock;
  213. if (f2fs_write_meta_page(page, &wbc)) {
  214. unlock_page(page);
  215. break;
  216. }
  217. nwritten++;
  218. if (unlikely(nwritten >= nr_to_write))
  219. break;
  220. }
  221. pagevec_release(&pvec);
  222. cond_resched();
  223. }
  224. if (nwritten)
  225. f2fs_submit_merged_bio(sbi, type, WRITE);
  226. return nwritten;
  227. }
  228. static int f2fs_set_meta_page_dirty(struct page *page)
  229. {
  230. struct address_space *mapping = page->mapping;
  231. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  232. trace_f2fs_set_page_dirty(page, META);
  233. SetPageUptodate(page);
  234. if (!PageDirty(page)) {
  235. __set_page_dirty_nobuffers(page);
  236. inc_page_count(sbi, F2FS_DIRTY_META);
  237. return 1;
  238. }
  239. return 0;
  240. }
  241. const struct address_space_operations f2fs_meta_aops = {
  242. .writepage = f2fs_write_meta_page,
  243. .writepages = f2fs_write_meta_pages,
  244. .set_page_dirty = f2fs_set_meta_page_dirty,
  245. };
  246. static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  247. {
  248. struct ino_entry *new, *e;
  249. new = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
  250. new->ino = ino;
  251. spin_lock(&sbi->ino_lock[type]);
  252. list_for_each_entry(e, &sbi->ino_list[type], list) {
  253. if (e->ino == ino) {
  254. spin_unlock(&sbi->ino_lock[type]);
  255. kmem_cache_free(ino_entry_slab, new);
  256. return;
  257. }
  258. if (e->ino > ino)
  259. break;
  260. }
  261. /* add new entry into list which is sorted by inode number */
  262. list_add_tail(&new->list, &e->list);
  263. spin_unlock(&sbi->ino_lock[type]);
  264. }
  265. static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  266. {
  267. struct ino_entry *e;
  268. spin_lock(&sbi->ino_lock[type]);
  269. list_for_each_entry(e, &sbi->ino_list[type], list) {
  270. if (e->ino == ino) {
  271. list_del(&e->list);
  272. sbi->n_orphans--;
  273. spin_unlock(&sbi->ino_lock[type]);
  274. kmem_cache_free(ino_entry_slab, e);
  275. return;
  276. }
  277. }
  278. spin_unlock(&sbi->ino_lock[type]);
  279. }
  280. int acquire_orphan_inode(struct f2fs_sb_info *sbi)
  281. {
  282. int err = 0;
  283. spin_lock(&sbi->ino_lock[ORPHAN_INO]);
  284. if (unlikely(sbi->n_orphans >= sbi->max_orphans))
  285. err = -ENOSPC;
  286. else
  287. sbi->n_orphans++;
  288. spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
  289. return err;
  290. }
  291. void release_orphan_inode(struct f2fs_sb_info *sbi)
  292. {
  293. spin_lock(&sbi->ino_lock[ORPHAN_INO]);
  294. f2fs_bug_on(sbi->n_orphans == 0);
  295. sbi->n_orphans--;
  296. spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
  297. }
  298. void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  299. {
  300. /* add new orphan entry into list which is sorted by inode number */
  301. __add_ino_entry(sbi, ino, ORPHAN_INO);
  302. }
  303. void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  304. {
  305. /* remove orphan entry from orphan list */
  306. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  307. }
  308. static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  309. {
  310. struct inode *inode = f2fs_iget(sbi->sb, ino);
  311. f2fs_bug_on(IS_ERR(inode));
  312. clear_nlink(inode);
  313. /* truncate all the data during iput */
  314. iput(inode);
  315. }
  316. void recover_orphan_inodes(struct f2fs_sb_info *sbi)
  317. {
  318. block_t start_blk, orphan_blkaddr, i, j;
  319. if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
  320. return;
  321. sbi->por_doing = true;
  322. start_blk = __start_cp_addr(sbi) + 1 +
  323. le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
  324. orphan_blkaddr = __start_sum_addr(sbi) - 1;
  325. ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
  326. for (i = 0; i < orphan_blkaddr; i++) {
  327. struct page *page = get_meta_page(sbi, start_blk + i);
  328. struct f2fs_orphan_block *orphan_blk;
  329. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  330. for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
  331. nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
  332. recover_orphan_inode(sbi, ino);
  333. }
  334. f2fs_put_page(page, 1);
  335. }
  336. /* clear Orphan Flag */
  337. clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
  338. sbi->por_doing = false;
  339. return;
  340. }
  341. static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
  342. {
  343. struct list_head *head;
  344. struct f2fs_orphan_block *orphan_blk = NULL;
  345. unsigned int nentries = 0;
  346. unsigned short index;
  347. unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
  348. (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
  349. struct page *page = NULL;
  350. struct ino_entry *orphan = NULL;
  351. for (index = 0; index < orphan_blocks; index++)
  352. grab_meta_page(sbi, start_blk + index);
  353. index = 1;
  354. spin_lock(&sbi->ino_lock[ORPHAN_INO]);
  355. head = &sbi->ino_list[ORPHAN_INO];
  356. /* loop for each orphan inode entry and write them in Jornal block */
  357. list_for_each_entry(orphan, head, list) {
  358. if (!page) {
  359. page = find_get_page(META_MAPPING(sbi), start_blk++);
  360. f2fs_bug_on(!page);
  361. orphan_blk =
  362. (struct f2fs_orphan_block *)page_address(page);
  363. memset(orphan_blk, 0, sizeof(*orphan_blk));
  364. f2fs_put_page(page, 0);
  365. }
  366. orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
  367. if (nentries == F2FS_ORPHANS_PER_BLOCK) {
  368. /*
  369. * an orphan block is full of 1020 entries,
  370. * then we need to flush current orphan blocks
  371. * and bring another one in memory
  372. */
  373. orphan_blk->blk_addr = cpu_to_le16(index);
  374. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  375. orphan_blk->entry_count = cpu_to_le32(nentries);
  376. set_page_dirty(page);
  377. f2fs_put_page(page, 1);
  378. index++;
  379. nentries = 0;
  380. page = NULL;
  381. }
  382. }
  383. if (page) {
  384. orphan_blk->blk_addr = cpu_to_le16(index);
  385. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  386. orphan_blk->entry_count = cpu_to_le32(nentries);
  387. set_page_dirty(page);
  388. f2fs_put_page(page, 1);
  389. }
  390. spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
  391. }
  392. static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
  393. block_t cp_addr, unsigned long long *version)
  394. {
  395. struct page *cp_page_1, *cp_page_2 = NULL;
  396. unsigned long blk_size = sbi->blocksize;
  397. struct f2fs_checkpoint *cp_block;
  398. unsigned long long cur_version = 0, pre_version = 0;
  399. size_t crc_offset;
  400. __u32 crc = 0;
  401. /* Read the 1st cp block in this CP pack */
  402. cp_page_1 = get_meta_page(sbi, cp_addr);
  403. /* get the version number */
  404. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
  405. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  406. if (crc_offset >= blk_size)
  407. goto invalid_cp1;
  408. crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
  409. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  410. goto invalid_cp1;
  411. pre_version = cur_cp_version(cp_block);
  412. /* Read the 2nd cp block in this CP pack */
  413. cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
  414. cp_page_2 = get_meta_page(sbi, cp_addr);
  415. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
  416. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  417. if (crc_offset >= blk_size)
  418. goto invalid_cp2;
  419. crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
  420. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  421. goto invalid_cp2;
  422. cur_version = cur_cp_version(cp_block);
  423. if (cur_version == pre_version) {
  424. *version = cur_version;
  425. f2fs_put_page(cp_page_2, 1);
  426. return cp_page_1;
  427. }
  428. invalid_cp2:
  429. f2fs_put_page(cp_page_2, 1);
  430. invalid_cp1:
  431. f2fs_put_page(cp_page_1, 1);
  432. return NULL;
  433. }
  434. int get_valid_checkpoint(struct f2fs_sb_info *sbi)
  435. {
  436. struct f2fs_checkpoint *cp_block;
  437. struct f2fs_super_block *fsb = sbi->raw_super;
  438. struct page *cp1, *cp2, *cur_page;
  439. unsigned long blk_size = sbi->blocksize;
  440. unsigned long long cp1_version = 0, cp2_version = 0;
  441. unsigned long long cp_start_blk_no;
  442. unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
  443. block_t cp_blk_no;
  444. int i;
  445. sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
  446. if (!sbi->ckpt)
  447. return -ENOMEM;
  448. /*
  449. * Finding out valid cp block involves read both
  450. * sets( cp pack1 and cp pack 2)
  451. */
  452. cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  453. cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
  454. /* The second checkpoint pack should start at the next segment */
  455. cp_start_blk_no += ((unsigned long long)1) <<
  456. le32_to_cpu(fsb->log_blocks_per_seg);
  457. cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
  458. if (cp1 && cp2) {
  459. if (ver_after(cp2_version, cp1_version))
  460. cur_page = cp2;
  461. else
  462. cur_page = cp1;
  463. } else if (cp1) {
  464. cur_page = cp1;
  465. } else if (cp2) {
  466. cur_page = cp2;
  467. } else {
  468. goto fail_no_cp;
  469. }
  470. cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
  471. memcpy(sbi->ckpt, cp_block, blk_size);
  472. if (cp_blks <= 1)
  473. goto done;
  474. cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  475. if (cur_page == cp2)
  476. cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
  477. for (i = 1; i < cp_blks; i++) {
  478. void *sit_bitmap_ptr;
  479. unsigned char *ckpt = (unsigned char *)sbi->ckpt;
  480. cur_page = get_meta_page(sbi, cp_blk_no + i);
  481. sit_bitmap_ptr = page_address(cur_page);
  482. memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
  483. f2fs_put_page(cur_page, 1);
  484. }
  485. done:
  486. f2fs_put_page(cp1, 1);
  487. f2fs_put_page(cp2, 1);
  488. return 0;
  489. fail_no_cp:
  490. kfree(sbi->ckpt);
  491. return -EINVAL;
  492. }
  493. static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
  494. {
  495. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  496. if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
  497. return -EEXIST;
  498. set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
  499. F2FS_I(inode)->dirty_dir = new;
  500. list_add_tail(&new->list, &sbi->dir_inode_list);
  501. stat_inc_dirty_dir(sbi);
  502. return 0;
  503. }
  504. void set_dirty_dir_page(struct inode *inode, struct page *page)
  505. {
  506. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  507. struct dir_inode_entry *new;
  508. int ret = 0;
  509. if (!S_ISDIR(inode->i_mode))
  510. return;
  511. new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  512. new->inode = inode;
  513. INIT_LIST_HEAD(&new->list);
  514. spin_lock(&sbi->dir_inode_lock);
  515. ret = __add_dirty_inode(inode, new);
  516. inode_inc_dirty_dents(inode);
  517. SetPagePrivate(page);
  518. spin_unlock(&sbi->dir_inode_lock);
  519. if (ret)
  520. kmem_cache_free(inode_entry_slab, new);
  521. }
  522. void add_dirty_dir_inode(struct inode *inode)
  523. {
  524. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  525. struct dir_inode_entry *new =
  526. f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  527. int ret = 0;
  528. new->inode = inode;
  529. INIT_LIST_HEAD(&new->list);
  530. spin_lock(&sbi->dir_inode_lock);
  531. ret = __add_dirty_inode(inode, new);
  532. spin_unlock(&sbi->dir_inode_lock);
  533. if (ret)
  534. kmem_cache_free(inode_entry_slab, new);
  535. }
  536. void remove_dirty_dir_inode(struct inode *inode)
  537. {
  538. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  539. struct dir_inode_entry *entry;
  540. if (!S_ISDIR(inode->i_mode))
  541. return;
  542. spin_lock(&sbi->dir_inode_lock);
  543. if (get_dirty_dents(inode) ||
  544. !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
  545. spin_unlock(&sbi->dir_inode_lock);
  546. return;
  547. }
  548. entry = F2FS_I(inode)->dirty_dir;
  549. list_del(&entry->list);
  550. F2FS_I(inode)->dirty_dir = NULL;
  551. clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
  552. stat_dec_dirty_dir(sbi);
  553. spin_unlock(&sbi->dir_inode_lock);
  554. kmem_cache_free(inode_entry_slab, entry);
  555. /* Only from the recovery routine */
  556. if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
  557. clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
  558. iput(inode);
  559. }
  560. }
  561. void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
  562. {
  563. struct list_head *head;
  564. struct dir_inode_entry *entry;
  565. struct inode *inode;
  566. retry:
  567. spin_lock(&sbi->dir_inode_lock);
  568. head = &sbi->dir_inode_list;
  569. if (list_empty(head)) {
  570. spin_unlock(&sbi->dir_inode_lock);
  571. return;
  572. }
  573. entry = list_entry(head->next, struct dir_inode_entry, list);
  574. inode = igrab(entry->inode);
  575. spin_unlock(&sbi->dir_inode_lock);
  576. if (inode) {
  577. filemap_fdatawrite(inode->i_mapping);
  578. iput(inode);
  579. } else {
  580. /*
  581. * We should submit bio, since it exists several
  582. * wribacking dentry pages in the freeing inode.
  583. */
  584. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  585. }
  586. goto retry;
  587. }
  588. /*
  589. * Freeze all the FS-operations for checkpoint.
  590. */
  591. static void block_operations(struct f2fs_sb_info *sbi)
  592. {
  593. struct writeback_control wbc = {
  594. .sync_mode = WB_SYNC_ALL,
  595. .nr_to_write = LONG_MAX,
  596. .for_reclaim = 0,
  597. };
  598. struct blk_plug plug;
  599. blk_start_plug(&plug);
  600. retry_flush_dents:
  601. f2fs_lock_all(sbi);
  602. /* write all the dirty dentry pages */
  603. if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
  604. f2fs_unlock_all(sbi);
  605. sync_dirty_dir_inodes(sbi);
  606. goto retry_flush_dents;
  607. }
  608. /*
  609. * POR: we should ensure that there is no dirty node pages
  610. * until finishing nat/sit flush.
  611. */
  612. retry_flush_nodes:
  613. mutex_lock(&sbi->node_write);
  614. if (get_pages(sbi, F2FS_DIRTY_NODES)) {
  615. mutex_unlock(&sbi->node_write);
  616. sync_node_pages(sbi, 0, &wbc);
  617. goto retry_flush_nodes;
  618. }
  619. blk_finish_plug(&plug);
  620. }
  621. static void unblock_operations(struct f2fs_sb_info *sbi)
  622. {
  623. mutex_unlock(&sbi->node_write);
  624. f2fs_unlock_all(sbi);
  625. }
  626. static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
  627. {
  628. DEFINE_WAIT(wait);
  629. for (;;) {
  630. prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
  631. if (!get_pages(sbi, F2FS_WRITEBACK))
  632. break;
  633. io_schedule();
  634. }
  635. finish_wait(&sbi->cp_wait, &wait);
  636. }
  637. static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
  638. {
  639. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  640. nid_t last_nid = 0;
  641. block_t start_blk;
  642. struct page *cp_page;
  643. unsigned int data_sum_blocks, orphan_blocks;
  644. __u32 crc32 = 0;
  645. void *kaddr;
  646. int i;
  647. int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
  648. /*
  649. * This avoids to conduct wrong roll-forward operations and uses
  650. * metapages, so should be called prior to sync_meta_pages below.
  651. */
  652. discard_next_dnode(sbi);
  653. /* Flush all the NAT/SIT pages */
  654. while (get_pages(sbi, F2FS_DIRTY_META))
  655. sync_meta_pages(sbi, META, LONG_MAX);
  656. next_free_nid(sbi, &last_nid);
  657. /*
  658. * modify checkpoint
  659. * version number is already updated
  660. */
  661. ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
  662. ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
  663. ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
  664. for (i = 0; i < 3; i++) {
  665. ckpt->cur_node_segno[i] =
  666. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
  667. ckpt->cur_node_blkoff[i] =
  668. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
  669. ckpt->alloc_type[i + CURSEG_HOT_NODE] =
  670. curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
  671. }
  672. for (i = 0; i < 3; i++) {
  673. ckpt->cur_data_segno[i] =
  674. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
  675. ckpt->cur_data_blkoff[i] =
  676. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
  677. ckpt->alloc_type[i + CURSEG_HOT_DATA] =
  678. curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
  679. }
  680. ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
  681. ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
  682. ckpt->next_free_nid = cpu_to_le32(last_nid);
  683. /* 2 cp + n data seg summary + orphan inode blocks */
  684. data_sum_blocks = npages_for_summary_flush(sbi);
  685. if (data_sum_blocks < 3)
  686. set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  687. else
  688. clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  689. orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
  690. / F2FS_ORPHANS_PER_BLOCK;
  691. ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
  692. orphan_blocks);
  693. if (is_umount) {
  694. set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  695. ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
  696. cp_payload_blks + data_sum_blocks +
  697. orphan_blocks + NR_CURSEG_NODE_TYPE);
  698. } else {
  699. clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  700. ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
  701. cp_payload_blks + data_sum_blocks +
  702. orphan_blocks);
  703. }
  704. if (sbi->n_orphans)
  705. set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  706. else
  707. clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  708. /* update SIT/NAT bitmap */
  709. get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
  710. get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
  711. crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
  712. *((__le32 *)((unsigned char *)ckpt +
  713. le32_to_cpu(ckpt->checksum_offset)))
  714. = cpu_to_le32(crc32);
  715. start_blk = __start_cp_addr(sbi);
  716. /* write out checkpoint buffer at block 0 */
  717. cp_page = grab_meta_page(sbi, start_blk++);
  718. kaddr = page_address(cp_page);
  719. memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
  720. set_page_dirty(cp_page);
  721. f2fs_put_page(cp_page, 1);
  722. for (i = 1; i < 1 + cp_payload_blks; i++) {
  723. cp_page = grab_meta_page(sbi, start_blk++);
  724. kaddr = page_address(cp_page);
  725. memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
  726. (1 << sbi->log_blocksize));
  727. set_page_dirty(cp_page);
  728. f2fs_put_page(cp_page, 1);
  729. }
  730. if (sbi->n_orphans) {
  731. write_orphan_inodes(sbi, start_blk);
  732. start_blk += orphan_blocks;
  733. }
  734. write_data_summaries(sbi, start_blk);
  735. start_blk += data_sum_blocks;
  736. if (is_umount) {
  737. write_node_summaries(sbi, start_blk);
  738. start_blk += NR_CURSEG_NODE_TYPE;
  739. }
  740. /* writeout checkpoint block */
  741. cp_page = grab_meta_page(sbi, start_blk);
  742. kaddr = page_address(cp_page);
  743. memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
  744. set_page_dirty(cp_page);
  745. f2fs_put_page(cp_page, 1);
  746. /* wait for previous submitted node/meta pages writeback */
  747. wait_on_all_pages_writeback(sbi);
  748. filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
  749. filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
  750. /* update user_block_counts */
  751. sbi->last_valid_block_count = sbi->total_valid_block_count;
  752. sbi->alloc_valid_block_count = 0;
  753. /* Here, we only have one bio having CP pack */
  754. sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
  755. if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
  756. clear_prefree_segments(sbi);
  757. F2FS_RESET_SB_DIRT(sbi);
  758. }
  759. }
  760. /*
  761. * We guarantee that this checkpoint procedure should not fail.
  762. */
  763. void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
  764. {
  765. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  766. unsigned long long ckpt_ver;
  767. trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
  768. mutex_lock(&sbi->cp_mutex);
  769. block_operations(sbi);
  770. trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
  771. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  772. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  773. f2fs_submit_merged_bio(sbi, META, WRITE);
  774. /*
  775. * update checkpoint pack index
  776. * Increase the version number so that
  777. * SIT entries and seg summaries are written at correct place
  778. */
  779. ckpt_ver = cur_cp_version(ckpt);
  780. ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
  781. /* write cached NAT/SIT entries to NAT/SIT area */
  782. flush_nat_entries(sbi);
  783. flush_sit_entries(sbi);
  784. /* unlock all the fs_lock[] in do_checkpoint() */
  785. do_checkpoint(sbi, is_umount);
  786. unblock_operations(sbi);
  787. mutex_unlock(&sbi->cp_mutex);
  788. stat_inc_cp_count(sbi->stat_info);
  789. trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
  790. }
  791. void init_ino_entry_info(struct f2fs_sb_info *sbi)
  792. {
  793. int i;
  794. for (i = 0; i < MAX_INO_ENTRY; i++) {
  795. spin_lock_init(&sbi->ino_lock[i]);
  796. INIT_LIST_HEAD(&sbi->ino_list[i]);
  797. }
  798. /*
  799. * considering 512 blocks in a segment 8 blocks are needed for cp
  800. * and log segment summaries. Remaining blocks are used to keep
  801. * orphan entries with the limitation one reserved segment
  802. * for cp pack we can have max 1020*504 orphan entries
  803. */
  804. sbi->n_orphans = 0;
  805. sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
  806. * F2FS_ORPHANS_PER_BLOCK;
  807. }
  808. int __init create_checkpoint_caches(void)
  809. {
  810. ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
  811. sizeof(struct ino_entry));
  812. if (!ino_entry_slab)
  813. return -ENOMEM;
  814. inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
  815. sizeof(struct dir_inode_entry));
  816. if (!inode_entry_slab) {
  817. kmem_cache_destroy(ino_entry_slab);
  818. return -ENOMEM;
  819. }
  820. return 0;
  821. }
  822. void destroy_checkpoint_caches(void)
  823. {
  824. kmem_cache_destroy(ino_entry_slab);
  825. kmem_cache_destroy(inode_entry_slab);
  826. }