sched_clock.c 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274
  1. /*
  2. * sched_clock for unstable cpu clocks
  3. *
  4. * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  5. *
  6. * Updates and enhancements:
  7. * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
  8. *
  9. * Based on code by:
  10. * Ingo Molnar <mingo@redhat.com>
  11. * Guillaume Chazarain <guichaz@gmail.com>
  12. *
  13. * Create a semi stable clock from a mixture of other events, including:
  14. * - gtod
  15. * - sched_clock()
  16. * - explicit idle events
  17. *
  18. * We use gtod as base and the unstable clock deltas. The deltas are filtered,
  19. * making it monotonic and keeping it within an expected window.
  20. *
  21. * Furthermore, explicit sleep and wakeup hooks allow us to account for time
  22. * that is otherwise invisible (TSC gets stopped).
  23. *
  24. * The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat
  25. * consistent between cpus (never more than 2 jiffies difference).
  26. */
  27. #include <linux/sched.h>
  28. #include <linux/percpu.h>
  29. #include <linux/spinlock.h>
  30. #include <linux/ktime.h>
  31. #include <linux/module.h>
  32. #include <linux/hardirq.h>
  33. /*
  34. * Scheduler clock - returns current time in nanosec units.
  35. * This is default implementation.
  36. * Architectures and sub-architectures can override this.
  37. */
  38. unsigned long long __attribute__((weak)) sched_clock(void)
  39. {
  40. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  41. }
  42. static __read_mostly int sched_clock_running;
  43. #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  44. struct sched_clock_data {
  45. /*
  46. * Raw spinlock - this is a special case: this might be called
  47. * from within instrumentation code so we dont want to do any
  48. * instrumentation ourselves.
  49. */
  50. raw_spinlock_t lock;
  51. u64 tick_raw;
  52. u64 tick_gtod;
  53. u64 clock;
  54. };
  55. static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
  56. static inline struct sched_clock_data *this_scd(void)
  57. {
  58. return &__get_cpu_var(sched_clock_data);
  59. }
  60. static inline struct sched_clock_data *cpu_sdc(int cpu)
  61. {
  62. return &per_cpu(sched_clock_data, cpu);
  63. }
  64. void sched_clock_init(void)
  65. {
  66. u64 ktime_now = ktime_to_ns(ktime_get());
  67. int cpu;
  68. for_each_possible_cpu(cpu) {
  69. struct sched_clock_data *scd = cpu_sdc(cpu);
  70. scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
  71. scd->tick_raw = 0;
  72. scd->tick_gtod = ktime_now;
  73. scd->clock = ktime_now;
  74. }
  75. sched_clock_running = 1;
  76. }
  77. /*
  78. * min,max except they take wrapping into account
  79. */
  80. static inline u64 wrap_min(u64 x, u64 y)
  81. {
  82. return (s64)(x - y) < 0 ? x : y;
  83. }
  84. static inline u64 wrap_max(u64 x, u64 y)
  85. {
  86. return (s64)(x - y) > 0 ? x : y;
  87. }
  88. /*
  89. * update the percpu scd from the raw @now value
  90. *
  91. * - filter out backward motion
  92. * - use the GTOD tick value to create a window to filter crazy TSC values
  93. */
  94. static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now)
  95. {
  96. s64 delta = now - scd->tick_raw;
  97. u64 clock, min_clock, max_clock;
  98. WARN_ON_ONCE(!irqs_disabled());
  99. if (unlikely(delta < 0))
  100. delta = 0;
  101. /*
  102. * scd->clock = clamp(scd->tick_gtod + delta,
  103. * max(scd->tick_gtod, scd->clock),
  104. * scd->tick_gtod + TICK_NSEC);
  105. */
  106. clock = scd->tick_gtod + delta;
  107. min_clock = wrap_max(scd->tick_gtod, scd->clock);
  108. max_clock = wrap_max(scd->clock, scd->tick_gtod + TICK_NSEC);
  109. clock = wrap_max(clock, min_clock);
  110. clock = wrap_min(clock, max_clock);
  111. scd->clock = clock;
  112. return scd->clock;
  113. }
  114. static void lock_double_clock(struct sched_clock_data *data1,
  115. struct sched_clock_data *data2)
  116. {
  117. if (data1 < data2) {
  118. __raw_spin_lock(&data1->lock);
  119. __raw_spin_lock(&data2->lock);
  120. } else {
  121. __raw_spin_lock(&data2->lock);
  122. __raw_spin_lock(&data1->lock);
  123. }
  124. }
  125. u64 sched_clock_cpu(int cpu)
  126. {
  127. struct sched_clock_data *scd = cpu_sdc(cpu);
  128. u64 now, clock, this_clock, remote_clock;
  129. /*
  130. * Normally this is not called in NMI context - but if it is,
  131. * trying to do any locking here is totally lethal.
  132. */
  133. if (unlikely(in_nmi()))
  134. return scd->clock;
  135. if (unlikely(!sched_clock_running))
  136. return 0ull;
  137. WARN_ON_ONCE(!irqs_disabled());
  138. now = sched_clock();
  139. if (cpu != raw_smp_processor_id()) {
  140. struct sched_clock_data *my_scd = this_scd();
  141. lock_double_clock(scd, my_scd);
  142. this_clock = __update_sched_clock(my_scd, now);
  143. remote_clock = scd->clock;
  144. /*
  145. * Use the opportunity that we have both locks
  146. * taken to couple the two clocks: we take the
  147. * larger time as the latest time for both
  148. * runqueues. (this creates monotonic movement)
  149. */
  150. if (likely((s64)(remote_clock - this_clock) < 0)) {
  151. clock = this_clock;
  152. scd->clock = clock;
  153. } else {
  154. /*
  155. * Should be rare, but possible:
  156. */
  157. clock = remote_clock;
  158. my_scd->clock = remote_clock;
  159. }
  160. __raw_spin_unlock(&my_scd->lock);
  161. } else {
  162. __raw_spin_lock(&scd->lock);
  163. clock = __update_sched_clock(scd, now);
  164. }
  165. __raw_spin_unlock(&scd->lock);
  166. return clock;
  167. }
  168. void sched_clock_tick(void)
  169. {
  170. struct sched_clock_data *scd = this_scd();
  171. u64 now, now_gtod;
  172. if (unlikely(!sched_clock_running))
  173. return;
  174. WARN_ON_ONCE(!irqs_disabled());
  175. now_gtod = ktime_to_ns(ktime_get());
  176. now = sched_clock();
  177. __raw_spin_lock(&scd->lock);
  178. scd->tick_raw = now;
  179. scd->tick_gtod = now_gtod;
  180. __update_sched_clock(scd, now);
  181. __raw_spin_unlock(&scd->lock);
  182. }
  183. /*
  184. * We are going deep-idle (irqs are disabled):
  185. */
  186. void sched_clock_idle_sleep_event(void)
  187. {
  188. sched_clock_cpu(smp_processor_id());
  189. }
  190. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  191. /*
  192. * We just idled delta nanoseconds (called with irqs disabled):
  193. */
  194. void sched_clock_idle_wakeup_event(u64 delta_ns)
  195. {
  196. if (timekeeping_suspended)
  197. return;
  198. sched_clock_tick();
  199. touch_softlockup_watchdog();
  200. }
  201. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  202. #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
  203. void sched_clock_init(void)
  204. {
  205. sched_clock_running = 1;
  206. }
  207. u64 sched_clock_cpu(int cpu)
  208. {
  209. if (unlikely(!sched_clock_running))
  210. return 0;
  211. return sched_clock();
  212. }
  213. #endif
  214. unsigned long long cpu_clock(int cpu)
  215. {
  216. unsigned long long clock;
  217. unsigned long flags;
  218. local_irq_save(flags);
  219. clock = sched_clock_cpu(cpu);
  220. local_irq_restore(flags);
  221. return clock;
  222. }
  223. EXPORT_SYMBOL_GPL(cpu_clock);