i915_irq.c 118 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224
  1. /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
  2. */
  3. /*
  4. * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
  5. * All Rights Reserved.
  6. *
  7. * Permission is hereby granted, free of charge, to any person obtaining a
  8. * copy of this software and associated documentation files (the
  9. * "Software"), to deal in the Software without restriction, including
  10. * without limitation the rights to use, copy, modify, merge, publish,
  11. * distribute, sub license, and/or sell copies of the Software, and to
  12. * permit persons to whom the Software is furnished to do so, subject to
  13. * the following conditions:
  14. *
  15. * The above copyright notice and this permission notice (including the
  16. * next paragraph) shall be included in all copies or substantial portions
  17. * of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20. * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23. * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24. * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25. * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26. *
  27. */
  28. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29. #include <linux/sysrq.h>
  30. #include <linux/slab.h>
  31. #include <linux/circ_buf.h>
  32. #include <drm/drmP.h>
  33. #include <drm/i915_drm.h>
  34. #include "i915_drv.h"
  35. #include "i915_trace.h"
  36. #include "intel_drv.h"
  37. /**
  38. * DOC: interrupt handling
  39. *
  40. * These functions provide the basic support for enabling and disabling the
  41. * interrupt handling support. There's a lot more functionality in i915_irq.c
  42. * and related files, but that will be described in separate chapters.
  43. */
  44. static const u32 hpd_ibx[HPD_NUM_PINS] = {
  45. [HPD_CRT] = SDE_CRT_HOTPLUG,
  46. [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  47. [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  48. [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  49. [HPD_PORT_D] = SDE_PORTD_HOTPLUG
  50. };
  51. static const u32 hpd_cpt[HPD_NUM_PINS] = {
  52. [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  53. [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  54. [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  55. [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  56. [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  57. };
  58. static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
  59. [HPD_CRT] = CRT_HOTPLUG_INT_EN,
  60. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
  61. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
  62. [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
  63. [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
  64. [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
  65. };
  66. static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
  67. [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  68. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
  69. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
  70. [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  71. [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  72. [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
  73. };
  74. static const u32 hpd_status_i915[HPD_NUM_PINS] = {
  75. [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  76. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
  77. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
  78. [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  79. [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  80. [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
  81. };
  82. /* BXT hpd list */
  83. static const u32 hpd_bxt[HPD_NUM_PINS] = {
  84. [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
  85. [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
  86. };
  87. /* IIR can theoretically queue up two events. Be paranoid. */
  88. #define GEN8_IRQ_RESET_NDX(type, which) do { \
  89. I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
  90. POSTING_READ(GEN8_##type##_IMR(which)); \
  91. I915_WRITE(GEN8_##type##_IER(which), 0); \
  92. I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
  93. POSTING_READ(GEN8_##type##_IIR(which)); \
  94. I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
  95. POSTING_READ(GEN8_##type##_IIR(which)); \
  96. } while (0)
  97. #define GEN5_IRQ_RESET(type) do { \
  98. I915_WRITE(type##IMR, 0xffffffff); \
  99. POSTING_READ(type##IMR); \
  100. I915_WRITE(type##IER, 0); \
  101. I915_WRITE(type##IIR, 0xffffffff); \
  102. POSTING_READ(type##IIR); \
  103. I915_WRITE(type##IIR, 0xffffffff); \
  104. POSTING_READ(type##IIR); \
  105. } while (0)
  106. /*
  107. * We should clear IMR at preinstall/uninstall, and just check at postinstall.
  108. */
  109. #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
  110. u32 val = I915_READ(reg); \
  111. if (val) { \
  112. WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
  113. (reg), val); \
  114. I915_WRITE((reg), 0xffffffff); \
  115. POSTING_READ(reg); \
  116. I915_WRITE((reg), 0xffffffff); \
  117. POSTING_READ(reg); \
  118. } \
  119. } while (0)
  120. #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
  121. GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
  122. I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
  123. I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
  124. POSTING_READ(GEN8_##type##_IMR(which)); \
  125. } while (0)
  126. #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
  127. GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
  128. I915_WRITE(type##IER, (ier_val)); \
  129. I915_WRITE(type##IMR, (imr_val)); \
  130. POSTING_READ(type##IMR); \
  131. } while (0)
  132. static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
  133. /* For display hotplug interrupt */
  134. void
  135. ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
  136. {
  137. assert_spin_locked(&dev_priv->irq_lock);
  138. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  139. return;
  140. if ((dev_priv->irq_mask & mask) != 0) {
  141. dev_priv->irq_mask &= ~mask;
  142. I915_WRITE(DEIMR, dev_priv->irq_mask);
  143. POSTING_READ(DEIMR);
  144. }
  145. }
  146. void
  147. ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
  148. {
  149. assert_spin_locked(&dev_priv->irq_lock);
  150. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  151. return;
  152. if ((dev_priv->irq_mask & mask) != mask) {
  153. dev_priv->irq_mask |= mask;
  154. I915_WRITE(DEIMR, dev_priv->irq_mask);
  155. POSTING_READ(DEIMR);
  156. }
  157. }
  158. /**
  159. * ilk_update_gt_irq - update GTIMR
  160. * @dev_priv: driver private
  161. * @interrupt_mask: mask of interrupt bits to update
  162. * @enabled_irq_mask: mask of interrupt bits to enable
  163. */
  164. static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
  165. uint32_t interrupt_mask,
  166. uint32_t enabled_irq_mask)
  167. {
  168. assert_spin_locked(&dev_priv->irq_lock);
  169. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  170. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  171. return;
  172. dev_priv->gt_irq_mask &= ~interrupt_mask;
  173. dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
  174. I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
  175. POSTING_READ(GTIMR);
  176. }
  177. void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  178. {
  179. ilk_update_gt_irq(dev_priv, mask, mask);
  180. }
  181. void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  182. {
  183. ilk_update_gt_irq(dev_priv, mask, 0);
  184. }
  185. static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
  186. {
  187. return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
  188. }
  189. static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
  190. {
  191. return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
  192. }
  193. static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
  194. {
  195. return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
  196. }
  197. /**
  198. * snb_update_pm_irq - update GEN6_PMIMR
  199. * @dev_priv: driver private
  200. * @interrupt_mask: mask of interrupt bits to update
  201. * @enabled_irq_mask: mask of interrupt bits to enable
  202. */
  203. static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
  204. uint32_t interrupt_mask,
  205. uint32_t enabled_irq_mask)
  206. {
  207. uint32_t new_val;
  208. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  209. assert_spin_locked(&dev_priv->irq_lock);
  210. new_val = dev_priv->pm_irq_mask;
  211. new_val &= ~interrupt_mask;
  212. new_val |= (~enabled_irq_mask & interrupt_mask);
  213. if (new_val != dev_priv->pm_irq_mask) {
  214. dev_priv->pm_irq_mask = new_val;
  215. I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
  216. POSTING_READ(gen6_pm_imr(dev_priv));
  217. }
  218. }
  219. void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  220. {
  221. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  222. return;
  223. snb_update_pm_irq(dev_priv, mask, mask);
  224. }
  225. static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
  226. uint32_t mask)
  227. {
  228. snb_update_pm_irq(dev_priv, mask, 0);
  229. }
  230. void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  231. {
  232. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  233. return;
  234. __gen6_disable_pm_irq(dev_priv, mask);
  235. }
  236. void gen6_reset_rps_interrupts(struct drm_device *dev)
  237. {
  238. struct drm_i915_private *dev_priv = dev->dev_private;
  239. uint32_t reg = gen6_pm_iir(dev_priv);
  240. spin_lock_irq(&dev_priv->irq_lock);
  241. I915_WRITE(reg, dev_priv->pm_rps_events);
  242. I915_WRITE(reg, dev_priv->pm_rps_events);
  243. POSTING_READ(reg);
  244. dev_priv->rps.pm_iir = 0;
  245. spin_unlock_irq(&dev_priv->irq_lock);
  246. }
  247. void gen6_enable_rps_interrupts(struct drm_device *dev)
  248. {
  249. struct drm_i915_private *dev_priv = dev->dev_private;
  250. spin_lock_irq(&dev_priv->irq_lock);
  251. WARN_ON(dev_priv->rps.pm_iir);
  252. WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
  253. dev_priv->rps.interrupts_enabled = true;
  254. I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
  255. dev_priv->pm_rps_events);
  256. gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  257. spin_unlock_irq(&dev_priv->irq_lock);
  258. }
  259. u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
  260. {
  261. /*
  262. * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
  263. * if GEN6_PM_UP_EI_EXPIRED is masked.
  264. *
  265. * TODO: verify if this can be reproduced on VLV,CHV.
  266. */
  267. if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
  268. mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
  269. if (INTEL_INFO(dev_priv)->gen >= 8)
  270. mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
  271. return mask;
  272. }
  273. void gen6_disable_rps_interrupts(struct drm_device *dev)
  274. {
  275. struct drm_i915_private *dev_priv = dev->dev_private;
  276. spin_lock_irq(&dev_priv->irq_lock);
  277. dev_priv->rps.interrupts_enabled = false;
  278. spin_unlock_irq(&dev_priv->irq_lock);
  279. cancel_work_sync(&dev_priv->rps.work);
  280. spin_lock_irq(&dev_priv->irq_lock);
  281. I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
  282. __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  283. I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
  284. ~dev_priv->pm_rps_events);
  285. spin_unlock_irq(&dev_priv->irq_lock);
  286. synchronize_irq(dev->irq);
  287. }
  288. /**
  289. * ibx_display_interrupt_update - update SDEIMR
  290. * @dev_priv: driver private
  291. * @interrupt_mask: mask of interrupt bits to update
  292. * @enabled_irq_mask: mask of interrupt bits to enable
  293. */
  294. void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
  295. uint32_t interrupt_mask,
  296. uint32_t enabled_irq_mask)
  297. {
  298. uint32_t sdeimr = I915_READ(SDEIMR);
  299. sdeimr &= ~interrupt_mask;
  300. sdeimr |= (~enabled_irq_mask & interrupt_mask);
  301. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  302. assert_spin_locked(&dev_priv->irq_lock);
  303. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  304. return;
  305. I915_WRITE(SDEIMR, sdeimr);
  306. POSTING_READ(SDEIMR);
  307. }
  308. static void
  309. __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  310. u32 enable_mask, u32 status_mask)
  311. {
  312. u32 reg = PIPESTAT(pipe);
  313. u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
  314. assert_spin_locked(&dev_priv->irq_lock);
  315. WARN_ON(!intel_irqs_enabled(dev_priv));
  316. if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
  317. status_mask & ~PIPESTAT_INT_STATUS_MASK,
  318. "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
  319. pipe_name(pipe), enable_mask, status_mask))
  320. return;
  321. if ((pipestat & enable_mask) == enable_mask)
  322. return;
  323. dev_priv->pipestat_irq_mask[pipe] |= status_mask;
  324. /* Enable the interrupt, clear any pending status */
  325. pipestat |= enable_mask | status_mask;
  326. I915_WRITE(reg, pipestat);
  327. POSTING_READ(reg);
  328. }
  329. static void
  330. __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  331. u32 enable_mask, u32 status_mask)
  332. {
  333. u32 reg = PIPESTAT(pipe);
  334. u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
  335. assert_spin_locked(&dev_priv->irq_lock);
  336. WARN_ON(!intel_irqs_enabled(dev_priv));
  337. if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
  338. status_mask & ~PIPESTAT_INT_STATUS_MASK,
  339. "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
  340. pipe_name(pipe), enable_mask, status_mask))
  341. return;
  342. if ((pipestat & enable_mask) == 0)
  343. return;
  344. dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
  345. pipestat &= ~enable_mask;
  346. I915_WRITE(reg, pipestat);
  347. POSTING_READ(reg);
  348. }
  349. static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
  350. {
  351. u32 enable_mask = status_mask << 16;
  352. /*
  353. * On pipe A we don't support the PSR interrupt yet,
  354. * on pipe B and C the same bit MBZ.
  355. */
  356. if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
  357. return 0;
  358. /*
  359. * On pipe B and C we don't support the PSR interrupt yet, on pipe
  360. * A the same bit is for perf counters which we don't use either.
  361. */
  362. if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
  363. return 0;
  364. enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
  365. SPRITE0_FLIP_DONE_INT_EN_VLV |
  366. SPRITE1_FLIP_DONE_INT_EN_VLV);
  367. if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
  368. enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
  369. if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
  370. enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
  371. return enable_mask;
  372. }
  373. void
  374. i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  375. u32 status_mask)
  376. {
  377. u32 enable_mask;
  378. if (IS_VALLEYVIEW(dev_priv->dev))
  379. enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
  380. status_mask);
  381. else
  382. enable_mask = status_mask << 16;
  383. __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
  384. }
  385. void
  386. i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  387. u32 status_mask)
  388. {
  389. u32 enable_mask;
  390. if (IS_VALLEYVIEW(dev_priv->dev))
  391. enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
  392. status_mask);
  393. else
  394. enable_mask = status_mask << 16;
  395. __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
  396. }
  397. /**
  398. * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
  399. */
  400. static void i915_enable_asle_pipestat(struct drm_device *dev)
  401. {
  402. struct drm_i915_private *dev_priv = dev->dev_private;
  403. if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
  404. return;
  405. spin_lock_irq(&dev_priv->irq_lock);
  406. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
  407. if (INTEL_INFO(dev)->gen >= 4)
  408. i915_enable_pipestat(dev_priv, PIPE_A,
  409. PIPE_LEGACY_BLC_EVENT_STATUS);
  410. spin_unlock_irq(&dev_priv->irq_lock);
  411. }
  412. /*
  413. * This timing diagram depicts the video signal in and
  414. * around the vertical blanking period.
  415. *
  416. * Assumptions about the fictitious mode used in this example:
  417. * vblank_start >= 3
  418. * vsync_start = vblank_start + 1
  419. * vsync_end = vblank_start + 2
  420. * vtotal = vblank_start + 3
  421. *
  422. * start of vblank:
  423. * latch double buffered registers
  424. * increment frame counter (ctg+)
  425. * generate start of vblank interrupt (gen4+)
  426. * |
  427. * | frame start:
  428. * | generate frame start interrupt (aka. vblank interrupt) (gmch)
  429. * | may be shifted forward 1-3 extra lines via PIPECONF
  430. * | |
  431. * | | start of vsync:
  432. * | | generate vsync interrupt
  433. * | | |
  434. * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
  435. * . \hs/ . \hs/ \hs/ \hs/ . \hs/
  436. * ----va---> <-----------------vb--------------------> <--------va-------------
  437. * | | <----vs-----> |
  438. * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
  439. * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
  440. * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
  441. * | | |
  442. * last visible pixel first visible pixel
  443. * | increment frame counter (gen3/4)
  444. * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
  445. *
  446. * x = horizontal active
  447. * _ = horizontal blanking
  448. * hs = horizontal sync
  449. * va = vertical active
  450. * vb = vertical blanking
  451. * vs = vertical sync
  452. * vbs = vblank_start (number)
  453. *
  454. * Summary:
  455. * - most events happen at the start of horizontal sync
  456. * - frame start happens at the start of horizontal blank, 1-4 lines
  457. * (depending on PIPECONF settings) after the start of vblank
  458. * - gen3/4 pixel and frame counter are synchronized with the start
  459. * of horizontal active on the first line of vertical active
  460. */
  461. static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
  462. {
  463. /* Gen2 doesn't have a hardware frame counter */
  464. return 0;
  465. }
  466. /* Called from drm generic code, passed a 'crtc', which
  467. * we use as a pipe index
  468. */
  469. static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
  470. {
  471. struct drm_i915_private *dev_priv = dev->dev_private;
  472. unsigned long high_frame;
  473. unsigned long low_frame;
  474. u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
  475. struct intel_crtc *intel_crtc =
  476. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  477. const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
  478. htotal = mode->crtc_htotal;
  479. hsync_start = mode->crtc_hsync_start;
  480. vbl_start = mode->crtc_vblank_start;
  481. if (mode->flags & DRM_MODE_FLAG_INTERLACE)
  482. vbl_start = DIV_ROUND_UP(vbl_start, 2);
  483. /* Convert to pixel count */
  484. vbl_start *= htotal;
  485. /* Start of vblank event occurs at start of hsync */
  486. vbl_start -= htotal - hsync_start;
  487. high_frame = PIPEFRAME(pipe);
  488. low_frame = PIPEFRAMEPIXEL(pipe);
  489. /*
  490. * High & low register fields aren't synchronized, so make sure
  491. * we get a low value that's stable across two reads of the high
  492. * register.
  493. */
  494. do {
  495. high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
  496. low = I915_READ(low_frame);
  497. high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
  498. } while (high1 != high2);
  499. high1 >>= PIPE_FRAME_HIGH_SHIFT;
  500. pixel = low & PIPE_PIXEL_MASK;
  501. low >>= PIPE_FRAME_LOW_SHIFT;
  502. /*
  503. * The frame counter increments at beginning of active.
  504. * Cook up a vblank counter by also checking the pixel
  505. * counter against vblank start.
  506. */
  507. return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
  508. }
  509. static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
  510. {
  511. struct drm_i915_private *dev_priv = dev->dev_private;
  512. int reg = PIPE_FRMCOUNT_GM45(pipe);
  513. return I915_READ(reg);
  514. }
  515. /* raw reads, only for fast reads of display block, no need for forcewake etc. */
  516. #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
  517. static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
  518. {
  519. struct drm_device *dev = crtc->base.dev;
  520. struct drm_i915_private *dev_priv = dev->dev_private;
  521. const struct drm_display_mode *mode = &crtc->base.hwmode;
  522. enum pipe pipe = crtc->pipe;
  523. int position, vtotal;
  524. vtotal = mode->crtc_vtotal;
  525. if (mode->flags & DRM_MODE_FLAG_INTERLACE)
  526. vtotal /= 2;
  527. if (IS_GEN2(dev))
  528. position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
  529. else
  530. position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
  531. /*
  532. * See update_scanline_offset() for the details on the
  533. * scanline_offset adjustment.
  534. */
  535. return (position + crtc->scanline_offset) % vtotal;
  536. }
  537. static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
  538. unsigned int flags, int *vpos, int *hpos,
  539. ktime_t *stime, ktime_t *etime)
  540. {
  541. struct drm_i915_private *dev_priv = dev->dev_private;
  542. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  543. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  544. const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
  545. int position;
  546. int vbl_start, vbl_end, hsync_start, htotal, vtotal;
  547. bool in_vbl = true;
  548. int ret = 0;
  549. unsigned long irqflags;
  550. if (WARN_ON(!mode->crtc_clock)) {
  551. DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
  552. "pipe %c\n", pipe_name(pipe));
  553. return 0;
  554. }
  555. htotal = mode->crtc_htotal;
  556. hsync_start = mode->crtc_hsync_start;
  557. vtotal = mode->crtc_vtotal;
  558. vbl_start = mode->crtc_vblank_start;
  559. vbl_end = mode->crtc_vblank_end;
  560. if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
  561. vbl_start = DIV_ROUND_UP(vbl_start, 2);
  562. vbl_end /= 2;
  563. vtotal /= 2;
  564. }
  565. ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
  566. /*
  567. * Lock uncore.lock, as we will do multiple timing critical raw
  568. * register reads, potentially with preemption disabled, so the
  569. * following code must not block on uncore.lock.
  570. */
  571. spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
  572. /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
  573. /* Get optional system timestamp before query. */
  574. if (stime)
  575. *stime = ktime_get();
  576. if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  577. /* No obvious pixelcount register. Only query vertical
  578. * scanout position from Display scan line register.
  579. */
  580. position = __intel_get_crtc_scanline(intel_crtc);
  581. } else {
  582. /* Have access to pixelcount since start of frame.
  583. * We can split this into vertical and horizontal
  584. * scanout position.
  585. */
  586. position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
  587. /* convert to pixel counts */
  588. vbl_start *= htotal;
  589. vbl_end *= htotal;
  590. vtotal *= htotal;
  591. /*
  592. * In interlaced modes, the pixel counter counts all pixels,
  593. * so one field will have htotal more pixels. In order to avoid
  594. * the reported position from jumping backwards when the pixel
  595. * counter is beyond the length of the shorter field, just
  596. * clamp the position the length of the shorter field. This
  597. * matches how the scanline counter based position works since
  598. * the scanline counter doesn't count the two half lines.
  599. */
  600. if (position >= vtotal)
  601. position = vtotal - 1;
  602. /*
  603. * Start of vblank interrupt is triggered at start of hsync,
  604. * just prior to the first active line of vblank. However we
  605. * consider lines to start at the leading edge of horizontal
  606. * active. So, should we get here before we've crossed into
  607. * the horizontal active of the first line in vblank, we would
  608. * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
  609. * always add htotal-hsync_start to the current pixel position.
  610. */
  611. position = (position + htotal - hsync_start) % vtotal;
  612. }
  613. /* Get optional system timestamp after query. */
  614. if (etime)
  615. *etime = ktime_get();
  616. /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
  617. spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
  618. in_vbl = position >= vbl_start && position < vbl_end;
  619. /*
  620. * While in vblank, position will be negative
  621. * counting up towards 0 at vbl_end. And outside
  622. * vblank, position will be positive counting
  623. * up since vbl_end.
  624. */
  625. if (position >= vbl_start)
  626. position -= vbl_end;
  627. else
  628. position += vtotal - vbl_end;
  629. if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  630. *vpos = position;
  631. *hpos = 0;
  632. } else {
  633. *vpos = position / htotal;
  634. *hpos = position - (*vpos * htotal);
  635. }
  636. /* In vblank? */
  637. if (in_vbl)
  638. ret |= DRM_SCANOUTPOS_IN_VBLANK;
  639. return ret;
  640. }
  641. int intel_get_crtc_scanline(struct intel_crtc *crtc)
  642. {
  643. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  644. unsigned long irqflags;
  645. int position;
  646. spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
  647. position = __intel_get_crtc_scanline(crtc);
  648. spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
  649. return position;
  650. }
  651. static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
  652. int *max_error,
  653. struct timeval *vblank_time,
  654. unsigned flags)
  655. {
  656. struct drm_crtc *crtc;
  657. if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
  658. DRM_ERROR("Invalid crtc %d\n", pipe);
  659. return -EINVAL;
  660. }
  661. /* Get drm_crtc to timestamp: */
  662. crtc = intel_get_crtc_for_pipe(dev, pipe);
  663. if (crtc == NULL) {
  664. DRM_ERROR("Invalid crtc %d\n", pipe);
  665. return -EINVAL;
  666. }
  667. if (!crtc->hwmode.crtc_clock) {
  668. DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
  669. return -EBUSY;
  670. }
  671. /* Helper routine in DRM core does all the work: */
  672. return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
  673. vblank_time, flags,
  674. crtc,
  675. &crtc->hwmode);
  676. }
  677. static void ironlake_rps_change_irq_handler(struct drm_device *dev)
  678. {
  679. struct drm_i915_private *dev_priv = dev->dev_private;
  680. u32 busy_up, busy_down, max_avg, min_avg;
  681. u8 new_delay;
  682. spin_lock(&mchdev_lock);
  683. I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
  684. new_delay = dev_priv->ips.cur_delay;
  685. I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
  686. busy_up = I915_READ(RCPREVBSYTUPAVG);
  687. busy_down = I915_READ(RCPREVBSYTDNAVG);
  688. max_avg = I915_READ(RCBMAXAVG);
  689. min_avg = I915_READ(RCBMINAVG);
  690. /* Handle RCS change request from hw */
  691. if (busy_up > max_avg) {
  692. if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
  693. new_delay = dev_priv->ips.cur_delay - 1;
  694. if (new_delay < dev_priv->ips.max_delay)
  695. new_delay = dev_priv->ips.max_delay;
  696. } else if (busy_down < min_avg) {
  697. if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
  698. new_delay = dev_priv->ips.cur_delay + 1;
  699. if (new_delay > dev_priv->ips.min_delay)
  700. new_delay = dev_priv->ips.min_delay;
  701. }
  702. if (ironlake_set_drps(dev, new_delay))
  703. dev_priv->ips.cur_delay = new_delay;
  704. spin_unlock(&mchdev_lock);
  705. return;
  706. }
  707. static void notify_ring(struct intel_engine_cs *ring)
  708. {
  709. if (!intel_ring_initialized(ring))
  710. return;
  711. trace_i915_gem_request_notify(ring);
  712. wake_up_all(&ring->irq_queue);
  713. }
  714. static void vlv_c0_read(struct drm_i915_private *dev_priv,
  715. struct intel_rps_ei *ei)
  716. {
  717. ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
  718. ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
  719. ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
  720. }
  721. static bool vlv_c0_above(struct drm_i915_private *dev_priv,
  722. const struct intel_rps_ei *old,
  723. const struct intel_rps_ei *now,
  724. int threshold)
  725. {
  726. u64 time, c0;
  727. if (old->cz_clock == 0)
  728. return false;
  729. time = now->cz_clock - old->cz_clock;
  730. time *= threshold * dev_priv->mem_freq;
  731. /* Workload can be split between render + media, e.g. SwapBuffers
  732. * being blitted in X after being rendered in mesa. To account for
  733. * this we need to combine both engines into our activity counter.
  734. */
  735. c0 = now->render_c0 - old->render_c0;
  736. c0 += now->media_c0 - old->media_c0;
  737. c0 *= 100 * VLV_CZ_CLOCK_TO_MILLI_SEC * 4 / 1000;
  738. return c0 >= time;
  739. }
  740. void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
  741. {
  742. vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
  743. dev_priv->rps.up_ei = dev_priv->rps.down_ei;
  744. }
  745. static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
  746. {
  747. struct intel_rps_ei now;
  748. u32 events = 0;
  749. if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
  750. return 0;
  751. vlv_c0_read(dev_priv, &now);
  752. if (now.cz_clock == 0)
  753. return 0;
  754. if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
  755. if (!vlv_c0_above(dev_priv,
  756. &dev_priv->rps.down_ei, &now,
  757. dev_priv->rps.down_threshold))
  758. events |= GEN6_PM_RP_DOWN_THRESHOLD;
  759. dev_priv->rps.down_ei = now;
  760. }
  761. if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
  762. if (vlv_c0_above(dev_priv,
  763. &dev_priv->rps.up_ei, &now,
  764. dev_priv->rps.up_threshold))
  765. events |= GEN6_PM_RP_UP_THRESHOLD;
  766. dev_priv->rps.up_ei = now;
  767. }
  768. return events;
  769. }
  770. static bool any_waiters(struct drm_i915_private *dev_priv)
  771. {
  772. struct intel_engine_cs *ring;
  773. int i;
  774. for_each_ring(ring, dev_priv, i)
  775. if (ring->irq_refcount)
  776. return true;
  777. return false;
  778. }
  779. static void gen6_pm_rps_work(struct work_struct *work)
  780. {
  781. struct drm_i915_private *dev_priv =
  782. container_of(work, struct drm_i915_private, rps.work);
  783. bool client_boost;
  784. int new_delay, adj, min, max;
  785. u32 pm_iir;
  786. spin_lock_irq(&dev_priv->irq_lock);
  787. /* Speed up work cancelation during disabling rps interrupts. */
  788. if (!dev_priv->rps.interrupts_enabled) {
  789. spin_unlock_irq(&dev_priv->irq_lock);
  790. return;
  791. }
  792. pm_iir = dev_priv->rps.pm_iir;
  793. dev_priv->rps.pm_iir = 0;
  794. /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
  795. gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  796. client_boost = dev_priv->rps.client_boost;
  797. dev_priv->rps.client_boost = false;
  798. spin_unlock_irq(&dev_priv->irq_lock);
  799. /* Make sure we didn't queue anything we're not going to process. */
  800. WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
  801. if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
  802. return;
  803. mutex_lock(&dev_priv->rps.hw_lock);
  804. pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
  805. adj = dev_priv->rps.last_adj;
  806. new_delay = dev_priv->rps.cur_freq;
  807. min = dev_priv->rps.min_freq_softlimit;
  808. max = dev_priv->rps.max_freq_softlimit;
  809. if (client_boost) {
  810. new_delay = dev_priv->rps.max_freq_softlimit;
  811. adj = 0;
  812. } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
  813. if (adj > 0)
  814. adj *= 2;
  815. else /* CHV needs even encode values */
  816. adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
  817. /*
  818. * For better performance, jump directly
  819. * to RPe if we're below it.
  820. */
  821. if (new_delay < dev_priv->rps.efficient_freq - adj) {
  822. new_delay = dev_priv->rps.efficient_freq;
  823. adj = 0;
  824. }
  825. } else if (any_waiters(dev_priv)) {
  826. adj = 0;
  827. } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
  828. if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
  829. new_delay = dev_priv->rps.efficient_freq;
  830. else
  831. new_delay = dev_priv->rps.min_freq_softlimit;
  832. adj = 0;
  833. } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
  834. if (adj < 0)
  835. adj *= 2;
  836. else /* CHV needs even encode values */
  837. adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
  838. } else { /* unknown event */
  839. adj = 0;
  840. }
  841. dev_priv->rps.last_adj = adj;
  842. /* sysfs frequency interfaces may have snuck in while servicing the
  843. * interrupt
  844. */
  845. new_delay += adj;
  846. new_delay = clamp_t(int, new_delay, min, max);
  847. intel_set_rps(dev_priv->dev, new_delay);
  848. mutex_unlock(&dev_priv->rps.hw_lock);
  849. }
  850. /**
  851. * ivybridge_parity_work - Workqueue called when a parity error interrupt
  852. * occurred.
  853. * @work: workqueue struct
  854. *
  855. * Doesn't actually do anything except notify userspace. As a consequence of
  856. * this event, userspace should try to remap the bad rows since statistically
  857. * it is likely the same row is more likely to go bad again.
  858. */
  859. static void ivybridge_parity_work(struct work_struct *work)
  860. {
  861. struct drm_i915_private *dev_priv =
  862. container_of(work, struct drm_i915_private, l3_parity.error_work);
  863. u32 error_status, row, bank, subbank;
  864. char *parity_event[6];
  865. uint32_t misccpctl;
  866. uint8_t slice = 0;
  867. /* We must turn off DOP level clock gating to access the L3 registers.
  868. * In order to prevent a get/put style interface, acquire struct mutex
  869. * any time we access those registers.
  870. */
  871. mutex_lock(&dev_priv->dev->struct_mutex);
  872. /* If we've screwed up tracking, just let the interrupt fire again */
  873. if (WARN_ON(!dev_priv->l3_parity.which_slice))
  874. goto out;
  875. misccpctl = I915_READ(GEN7_MISCCPCTL);
  876. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  877. POSTING_READ(GEN7_MISCCPCTL);
  878. while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
  879. u32 reg;
  880. slice--;
  881. if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
  882. break;
  883. dev_priv->l3_parity.which_slice &= ~(1<<slice);
  884. reg = GEN7_L3CDERRST1 + (slice * 0x200);
  885. error_status = I915_READ(reg);
  886. row = GEN7_PARITY_ERROR_ROW(error_status);
  887. bank = GEN7_PARITY_ERROR_BANK(error_status);
  888. subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
  889. I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
  890. POSTING_READ(reg);
  891. parity_event[0] = I915_L3_PARITY_UEVENT "=1";
  892. parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
  893. parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
  894. parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
  895. parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
  896. parity_event[5] = NULL;
  897. kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
  898. KOBJ_CHANGE, parity_event);
  899. DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
  900. slice, row, bank, subbank);
  901. kfree(parity_event[4]);
  902. kfree(parity_event[3]);
  903. kfree(parity_event[2]);
  904. kfree(parity_event[1]);
  905. }
  906. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  907. out:
  908. WARN_ON(dev_priv->l3_parity.which_slice);
  909. spin_lock_irq(&dev_priv->irq_lock);
  910. gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
  911. spin_unlock_irq(&dev_priv->irq_lock);
  912. mutex_unlock(&dev_priv->dev->struct_mutex);
  913. }
  914. static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
  915. {
  916. struct drm_i915_private *dev_priv = dev->dev_private;
  917. if (!HAS_L3_DPF(dev))
  918. return;
  919. spin_lock(&dev_priv->irq_lock);
  920. gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
  921. spin_unlock(&dev_priv->irq_lock);
  922. iir &= GT_PARITY_ERROR(dev);
  923. if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
  924. dev_priv->l3_parity.which_slice |= 1 << 1;
  925. if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
  926. dev_priv->l3_parity.which_slice |= 1 << 0;
  927. queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
  928. }
  929. static void ilk_gt_irq_handler(struct drm_device *dev,
  930. struct drm_i915_private *dev_priv,
  931. u32 gt_iir)
  932. {
  933. if (gt_iir &
  934. (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
  935. notify_ring(&dev_priv->ring[RCS]);
  936. if (gt_iir & ILK_BSD_USER_INTERRUPT)
  937. notify_ring(&dev_priv->ring[VCS]);
  938. }
  939. static void snb_gt_irq_handler(struct drm_device *dev,
  940. struct drm_i915_private *dev_priv,
  941. u32 gt_iir)
  942. {
  943. if (gt_iir &
  944. (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
  945. notify_ring(&dev_priv->ring[RCS]);
  946. if (gt_iir & GT_BSD_USER_INTERRUPT)
  947. notify_ring(&dev_priv->ring[VCS]);
  948. if (gt_iir & GT_BLT_USER_INTERRUPT)
  949. notify_ring(&dev_priv->ring[BCS]);
  950. if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
  951. GT_BSD_CS_ERROR_INTERRUPT |
  952. GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
  953. DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
  954. if (gt_iir & GT_PARITY_ERROR(dev))
  955. ivybridge_parity_error_irq_handler(dev, gt_iir);
  956. }
  957. static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
  958. u32 master_ctl)
  959. {
  960. irqreturn_t ret = IRQ_NONE;
  961. if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
  962. u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
  963. if (tmp) {
  964. I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
  965. ret = IRQ_HANDLED;
  966. if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
  967. intel_lrc_irq_handler(&dev_priv->ring[RCS]);
  968. if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
  969. notify_ring(&dev_priv->ring[RCS]);
  970. if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
  971. intel_lrc_irq_handler(&dev_priv->ring[BCS]);
  972. if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
  973. notify_ring(&dev_priv->ring[BCS]);
  974. } else
  975. DRM_ERROR("The master control interrupt lied (GT0)!\n");
  976. }
  977. if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
  978. u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
  979. if (tmp) {
  980. I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
  981. ret = IRQ_HANDLED;
  982. if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
  983. intel_lrc_irq_handler(&dev_priv->ring[VCS]);
  984. if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
  985. notify_ring(&dev_priv->ring[VCS]);
  986. if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
  987. intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
  988. if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
  989. notify_ring(&dev_priv->ring[VCS2]);
  990. } else
  991. DRM_ERROR("The master control interrupt lied (GT1)!\n");
  992. }
  993. if (master_ctl & GEN8_GT_VECS_IRQ) {
  994. u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
  995. if (tmp) {
  996. I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
  997. ret = IRQ_HANDLED;
  998. if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
  999. intel_lrc_irq_handler(&dev_priv->ring[VECS]);
  1000. if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
  1001. notify_ring(&dev_priv->ring[VECS]);
  1002. } else
  1003. DRM_ERROR("The master control interrupt lied (GT3)!\n");
  1004. }
  1005. if (master_ctl & GEN8_GT_PM_IRQ) {
  1006. u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
  1007. if (tmp & dev_priv->pm_rps_events) {
  1008. I915_WRITE_FW(GEN8_GT_IIR(2),
  1009. tmp & dev_priv->pm_rps_events);
  1010. ret = IRQ_HANDLED;
  1011. gen6_rps_irq_handler(dev_priv, tmp);
  1012. } else
  1013. DRM_ERROR("The master control interrupt lied (PM)!\n");
  1014. }
  1015. return ret;
  1016. }
  1017. static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
  1018. {
  1019. switch (port) {
  1020. case PORT_A:
  1021. return val & BXT_PORTA_HOTPLUG_LONG_DETECT;
  1022. case PORT_B:
  1023. return val & PORTB_HOTPLUG_LONG_DETECT;
  1024. case PORT_C:
  1025. return val & PORTC_HOTPLUG_LONG_DETECT;
  1026. case PORT_D:
  1027. return val & PORTD_HOTPLUG_LONG_DETECT;
  1028. default:
  1029. return false;
  1030. }
  1031. }
  1032. static bool pch_port_hotplug_long_detect(enum port port, u32 val)
  1033. {
  1034. switch (port) {
  1035. case PORT_B:
  1036. return val & PORTB_HOTPLUG_LONG_DETECT;
  1037. case PORT_C:
  1038. return val & PORTC_HOTPLUG_LONG_DETECT;
  1039. case PORT_D:
  1040. return val & PORTD_HOTPLUG_LONG_DETECT;
  1041. default:
  1042. return false;
  1043. }
  1044. }
  1045. static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
  1046. {
  1047. switch (port) {
  1048. case PORT_B:
  1049. return val & PORTB_HOTPLUG_INT_LONG_PULSE;
  1050. case PORT_C:
  1051. return val & PORTC_HOTPLUG_INT_LONG_PULSE;
  1052. case PORT_D:
  1053. return val & PORTD_HOTPLUG_INT_LONG_PULSE;
  1054. default:
  1055. return false;
  1056. }
  1057. }
  1058. /* Get a bit mask of pins that have triggered, and which ones may be long. */
  1059. static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
  1060. u32 hotplug_trigger, u32 dig_hotplug_reg,
  1061. const u32 hpd[HPD_NUM_PINS],
  1062. bool long_pulse_detect(enum port port, u32 val))
  1063. {
  1064. enum port port;
  1065. int i;
  1066. *pin_mask = 0;
  1067. *long_mask = 0;
  1068. for_each_hpd_pin(i) {
  1069. if ((hpd[i] & hotplug_trigger) == 0)
  1070. continue;
  1071. *pin_mask |= BIT(i);
  1072. if (!intel_hpd_pin_to_port(i, &port))
  1073. continue;
  1074. if (long_pulse_detect(port, dig_hotplug_reg))
  1075. *long_mask |= BIT(i);
  1076. }
  1077. DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
  1078. hotplug_trigger, dig_hotplug_reg, *pin_mask);
  1079. }
  1080. static void gmbus_irq_handler(struct drm_device *dev)
  1081. {
  1082. struct drm_i915_private *dev_priv = dev->dev_private;
  1083. wake_up_all(&dev_priv->gmbus_wait_queue);
  1084. }
  1085. static void dp_aux_irq_handler(struct drm_device *dev)
  1086. {
  1087. struct drm_i915_private *dev_priv = dev->dev_private;
  1088. wake_up_all(&dev_priv->gmbus_wait_queue);
  1089. }
  1090. #if defined(CONFIG_DEBUG_FS)
  1091. static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
  1092. uint32_t crc0, uint32_t crc1,
  1093. uint32_t crc2, uint32_t crc3,
  1094. uint32_t crc4)
  1095. {
  1096. struct drm_i915_private *dev_priv = dev->dev_private;
  1097. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  1098. struct intel_pipe_crc_entry *entry;
  1099. int head, tail;
  1100. spin_lock(&pipe_crc->lock);
  1101. if (!pipe_crc->entries) {
  1102. spin_unlock(&pipe_crc->lock);
  1103. DRM_DEBUG_KMS("spurious interrupt\n");
  1104. return;
  1105. }
  1106. head = pipe_crc->head;
  1107. tail = pipe_crc->tail;
  1108. if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
  1109. spin_unlock(&pipe_crc->lock);
  1110. DRM_ERROR("CRC buffer overflowing\n");
  1111. return;
  1112. }
  1113. entry = &pipe_crc->entries[head];
  1114. entry->frame = dev->driver->get_vblank_counter(dev, pipe);
  1115. entry->crc[0] = crc0;
  1116. entry->crc[1] = crc1;
  1117. entry->crc[2] = crc2;
  1118. entry->crc[3] = crc3;
  1119. entry->crc[4] = crc4;
  1120. head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  1121. pipe_crc->head = head;
  1122. spin_unlock(&pipe_crc->lock);
  1123. wake_up_interruptible(&pipe_crc->wq);
  1124. }
  1125. #else
  1126. static inline void
  1127. display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
  1128. uint32_t crc0, uint32_t crc1,
  1129. uint32_t crc2, uint32_t crc3,
  1130. uint32_t crc4) {}
  1131. #endif
  1132. static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
  1133. {
  1134. struct drm_i915_private *dev_priv = dev->dev_private;
  1135. display_pipe_crc_irq_handler(dev, pipe,
  1136. I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
  1137. 0, 0, 0, 0);
  1138. }
  1139. static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
  1140. {
  1141. struct drm_i915_private *dev_priv = dev->dev_private;
  1142. display_pipe_crc_irq_handler(dev, pipe,
  1143. I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
  1144. I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
  1145. I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
  1146. I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
  1147. I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
  1148. }
  1149. static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
  1150. {
  1151. struct drm_i915_private *dev_priv = dev->dev_private;
  1152. uint32_t res1, res2;
  1153. if (INTEL_INFO(dev)->gen >= 3)
  1154. res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
  1155. else
  1156. res1 = 0;
  1157. if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
  1158. res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
  1159. else
  1160. res2 = 0;
  1161. display_pipe_crc_irq_handler(dev, pipe,
  1162. I915_READ(PIPE_CRC_RES_RED(pipe)),
  1163. I915_READ(PIPE_CRC_RES_GREEN(pipe)),
  1164. I915_READ(PIPE_CRC_RES_BLUE(pipe)),
  1165. res1, res2);
  1166. }
  1167. /* The RPS events need forcewake, so we add them to a work queue and mask their
  1168. * IMR bits until the work is done. Other interrupts can be processed without
  1169. * the work queue. */
  1170. static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
  1171. {
  1172. if (pm_iir & dev_priv->pm_rps_events) {
  1173. spin_lock(&dev_priv->irq_lock);
  1174. gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
  1175. if (dev_priv->rps.interrupts_enabled) {
  1176. dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
  1177. queue_work(dev_priv->wq, &dev_priv->rps.work);
  1178. }
  1179. spin_unlock(&dev_priv->irq_lock);
  1180. }
  1181. if (INTEL_INFO(dev_priv)->gen >= 8)
  1182. return;
  1183. if (HAS_VEBOX(dev_priv->dev)) {
  1184. if (pm_iir & PM_VEBOX_USER_INTERRUPT)
  1185. notify_ring(&dev_priv->ring[VECS]);
  1186. if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
  1187. DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
  1188. }
  1189. }
  1190. static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
  1191. {
  1192. if (!drm_handle_vblank(dev, pipe))
  1193. return false;
  1194. return true;
  1195. }
  1196. static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
  1197. {
  1198. struct drm_i915_private *dev_priv = dev->dev_private;
  1199. u32 pipe_stats[I915_MAX_PIPES] = { };
  1200. int pipe;
  1201. spin_lock(&dev_priv->irq_lock);
  1202. for_each_pipe(dev_priv, pipe) {
  1203. int reg;
  1204. u32 mask, iir_bit = 0;
  1205. /*
  1206. * PIPESTAT bits get signalled even when the interrupt is
  1207. * disabled with the mask bits, and some of the status bits do
  1208. * not generate interrupts at all (like the underrun bit). Hence
  1209. * we need to be careful that we only handle what we want to
  1210. * handle.
  1211. */
  1212. /* fifo underruns are filterered in the underrun handler. */
  1213. mask = PIPE_FIFO_UNDERRUN_STATUS;
  1214. switch (pipe) {
  1215. case PIPE_A:
  1216. iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
  1217. break;
  1218. case PIPE_B:
  1219. iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
  1220. break;
  1221. case PIPE_C:
  1222. iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
  1223. break;
  1224. }
  1225. if (iir & iir_bit)
  1226. mask |= dev_priv->pipestat_irq_mask[pipe];
  1227. if (!mask)
  1228. continue;
  1229. reg = PIPESTAT(pipe);
  1230. mask |= PIPESTAT_INT_ENABLE_MASK;
  1231. pipe_stats[pipe] = I915_READ(reg) & mask;
  1232. /*
  1233. * Clear the PIPE*STAT regs before the IIR
  1234. */
  1235. if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
  1236. PIPESTAT_INT_STATUS_MASK))
  1237. I915_WRITE(reg, pipe_stats[pipe]);
  1238. }
  1239. spin_unlock(&dev_priv->irq_lock);
  1240. for_each_pipe(dev_priv, pipe) {
  1241. if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
  1242. intel_pipe_handle_vblank(dev, pipe))
  1243. intel_check_page_flip(dev, pipe);
  1244. if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
  1245. intel_prepare_page_flip(dev, pipe);
  1246. intel_finish_page_flip(dev, pipe);
  1247. }
  1248. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  1249. i9xx_pipe_crc_irq_handler(dev, pipe);
  1250. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  1251. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1252. }
  1253. if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
  1254. gmbus_irq_handler(dev);
  1255. }
  1256. static void i9xx_hpd_irq_handler(struct drm_device *dev)
  1257. {
  1258. struct drm_i915_private *dev_priv = dev->dev_private;
  1259. u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
  1260. u32 pin_mask, long_mask;
  1261. if (!hotplug_status)
  1262. return;
  1263. I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
  1264. /*
  1265. * Make sure hotplug status is cleared before we clear IIR, or else we
  1266. * may miss hotplug events.
  1267. */
  1268. POSTING_READ(PORT_HOTPLUG_STAT);
  1269. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  1270. u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
  1271. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1272. hotplug_trigger, hpd_status_g4x,
  1273. i9xx_port_hotplug_long_detect);
  1274. intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1275. if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
  1276. dp_aux_irq_handler(dev);
  1277. } else {
  1278. u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
  1279. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1280. hotplug_trigger, hpd_status_g4x,
  1281. i9xx_port_hotplug_long_detect);
  1282. intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1283. }
  1284. }
  1285. static irqreturn_t valleyview_irq_handler(int irq, void *arg)
  1286. {
  1287. struct drm_device *dev = arg;
  1288. struct drm_i915_private *dev_priv = dev->dev_private;
  1289. u32 iir, gt_iir, pm_iir;
  1290. irqreturn_t ret = IRQ_NONE;
  1291. if (!intel_irqs_enabled(dev_priv))
  1292. return IRQ_NONE;
  1293. while (true) {
  1294. /* Find, clear, then process each source of interrupt */
  1295. gt_iir = I915_READ(GTIIR);
  1296. if (gt_iir)
  1297. I915_WRITE(GTIIR, gt_iir);
  1298. pm_iir = I915_READ(GEN6_PMIIR);
  1299. if (pm_iir)
  1300. I915_WRITE(GEN6_PMIIR, pm_iir);
  1301. iir = I915_READ(VLV_IIR);
  1302. if (iir) {
  1303. /* Consume port before clearing IIR or we'll miss events */
  1304. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  1305. i9xx_hpd_irq_handler(dev);
  1306. I915_WRITE(VLV_IIR, iir);
  1307. }
  1308. if (gt_iir == 0 && pm_iir == 0 && iir == 0)
  1309. goto out;
  1310. ret = IRQ_HANDLED;
  1311. if (gt_iir)
  1312. snb_gt_irq_handler(dev, dev_priv, gt_iir);
  1313. if (pm_iir)
  1314. gen6_rps_irq_handler(dev_priv, pm_iir);
  1315. /* Call regardless, as some status bits might not be
  1316. * signalled in iir */
  1317. valleyview_pipestat_irq_handler(dev, iir);
  1318. }
  1319. out:
  1320. return ret;
  1321. }
  1322. static irqreturn_t cherryview_irq_handler(int irq, void *arg)
  1323. {
  1324. struct drm_device *dev = arg;
  1325. struct drm_i915_private *dev_priv = dev->dev_private;
  1326. u32 master_ctl, iir;
  1327. irqreturn_t ret = IRQ_NONE;
  1328. if (!intel_irqs_enabled(dev_priv))
  1329. return IRQ_NONE;
  1330. for (;;) {
  1331. master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
  1332. iir = I915_READ(VLV_IIR);
  1333. if (master_ctl == 0 && iir == 0)
  1334. break;
  1335. ret = IRQ_HANDLED;
  1336. I915_WRITE(GEN8_MASTER_IRQ, 0);
  1337. /* Find, clear, then process each source of interrupt */
  1338. if (iir) {
  1339. /* Consume port before clearing IIR or we'll miss events */
  1340. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  1341. i9xx_hpd_irq_handler(dev);
  1342. I915_WRITE(VLV_IIR, iir);
  1343. }
  1344. gen8_gt_irq_handler(dev_priv, master_ctl);
  1345. /* Call regardless, as some status bits might not be
  1346. * signalled in iir */
  1347. valleyview_pipestat_irq_handler(dev, iir);
  1348. I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
  1349. POSTING_READ(GEN8_MASTER_IRQ);
  1350. }
  1351. return ret;
  1352. }
  1353. static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
  1354. {
  1355. struct drm_i915_private *dev_priv = dev->dev_private;
  1356. int pipe;
  1357. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
  1358. if (hotplug_trigger) {
  1359. u32 dig_hotplug_reg, pin_mask, long_mask;
  1360. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1361. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1362. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1363. dig_hotplug_reg, hpd_ibx,
  1364. pch_port_hotplug_long_detect);
  1365. intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1366. }
  1367. if (pch_iir & SDE_AUDIO_POWER_MASK) {
  1368. int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
  1369. SDE_AUDIO_POWER_SHIFT);
  1370. DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
  1371. port_name(port));
  1372. }
  1373. if (pch_iir & SDE_AUX_MASK)
  1374. dp_aux_irq_handler(dev);
  1375. if (pch_iir & SDE_GMBUS)
  1376. gmbus_irq_handler(dev);
  1377. if (pch_iir & SDE_AUDIO_HDCP_MASK)
  1378. DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
  1379. if (pch_iir & SDE_AUDIO_TRANS_MASK)
  1380. DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
  1381. if (pch_iir & SDE_POISON)
  1382. DRM_ERROR("PCH poison interrupt\n");
  1383. if (pch_iir & SDE_FDI_MASK)
  1384. for_each_pipe(dev_priv, pipe)
  1385. DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
  1386. pipe_name(pipe),
  1387. I915_READ(FDI_RX_IIR(pipe)));
  1388. if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
  1389. DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
  1390. if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
  1391. DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
  1392. if (pch_iir & SDE_TRANSA_FIFO_UNDER)
  1393. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
  1394. if (pch_iir & SDE_TRANSB_FIFO_UNDER)
  1395. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
  1396. }
  1397. static void ivb_err_int_handler(struct drm_device *dev)
  1398. {
  1399. struct drm_i915_private *dev_priv = dev->dev_private;
  1400. u32 err_int = I915_READ(GEN7_ERR_INT);
  1401. enum pipe pipe;
  1402. if (err_int & ERR_INT_POISON)
  1403. DRM_ERROR("Poison interrupt\n");
  1404. for_each_pipe(dev_priv, pipe) {
  1405. if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
  1406. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1407. if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
  1408. if (IS_IVYBRIDGE(dev))
  1409. ivb_pipe_crc_irq_handler(dev, pipe);
  1410. else
  1411. hsw_pipe_crc_irq_handler(dev, pipe);
  1412. }
  1413. }
  1414. I915_WRITE(GEN7_ERR_INT, err_int);
  1415. }
  1416. static void cpt_serr_int_handler(struct drm_device *dev)
  1417. {
  1418. struct drm_i915_private *dev_priv = dev->dev_private;
  1419. u32 serr_int = I915_READ(SERR_INT);
  1420. if (serr_int & SERR_INT_POISON)
  1421. DRM_ERROR("PCH poison interrupt\n");
  1422. if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
  1423. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
  1424. if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
  1425. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
  1426. if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
  1427. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
  1428. I915_WRITE(SERR_INT, serr_int);
  1429. }
  1430. static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
  1431. {
  1432. struct drm_i915_private *dev_priv = dev->dev_private;
  1433. int pipe;
  1434. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
  1435. if (hotplug_trigger) {
  1436. u32 dig_hotplug_reg, pin_mask, long_mask;
  1437. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1438. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1439. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1440. dig_hotplug_reg, hpd_cpt,
  1441. pch_port_hotplug_long_detect);
  1442. intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1443. }
  1444. if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
  1445. int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
  1446. SDE_AUDIO_POWER_SHIFT_CPT);
  1447. DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
  1448. port_name(port));
  1449. }
  1450. if (pch_iir & SDE_AUX_MASK_CPT)
  1451. dp_aux_irq_handler(dev);
  1452. if (pch_iir & SDE_GMBUS_CPT)
  1453. gmbus_irq_handler(dev);
  1454. if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
  1455. DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
  1456. if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
  1457. DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
  1458. if (pch_iir & SDE_FDI_MASK_CPT)
  1459. for_each_pipe(dev_priv, pipe)
  1460. DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
  1461. pipe_name(pipe),
  1462. I915_READ(FDI_RX_IIR(pipe)));
  1463. if (pch_iir & SDE_ERROR_CPT)
  1464. cpt_serr_int_handler(dev);
  1465. }
  1466. static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
  1467. {
  1468. struct drm_i915_private *dev_priv = dev->dev_private;
  1469. enum pipe pipe;
  1470. if (de_iir & DE_AUX_CHANNEL_A)
  1471. dp_aux_irq_handler(dev);
  1472. if (de_iir & DE_GSE)
  1473. intel_opregion_asle_intr(dev);
  1474. if (de_iir & DE_POISON)
  1475. DRM_ERROR("Poison interrupt\n");
  1476. for_each_pipe(dev_priv, pipe) {
  1477. if (de_iir & DE_PIPE_VBLANK(pipe) &&
  1478. intel_pipe_handle_vblank(dev, pipe))
  1479. intel_check_page_flip(dev, pipe);
  1480. if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
  1481. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1482. if (de_iir & DE_PIPE_CRC_DONE(pipe))
  1483. i9xx_pipe_crc_irq_handler(dev, pipe);
  1484. /* plane/pipes map 1:1 on ilk+ */
  1485. if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
  1486. intel_prepare_page_flip(dev, pipe);
  1487. intel_finish_page_flip_plane(dev, pipe);
  1488. }
  1489. }
  1490. /* check event from PCH */
  1491. if (de_iir & DE_PCH_EVENT) {
  1492. u32 pch_iir = I915_READ(SDEIIR);
  1493. if (HAS_PCH_CPT(dev))
  1494. cpt_irq_handler(dev, pch_iir);
  1495. else
  1496. ibx_irq_handler(dev, pch_iir);
  1497. /* should clear PCH hotplug event before clear CPU irq */
  1498. I915_WRITE(SDEIIR, pch_iir);
  1499. }
  1500. if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
  1501. ironlake_rps_change_irq_handler(dev);
  1502. }
  1503. static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
  1504. {
  1505. struct drm_i915_private *dev_priv = dev->dev_private;
  1506. enum pipe pipe;
  1507. if (de_iir & DE_ERR_INT_IVB)
  1508. ivb_err_int_handler(dev);
  1509. if (de_iir & DE_AUX_CHANNEL_A_IVB)
  1510. dp_aux_irq_handler(dev);
  1511. if (de_iir & DE_GSE_IVB)
  1512. intel_opregion_asle_intr(dev);
  1513. for_each_pipe(dev_priv, pipe) {
  1514. if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
  1515. intel_pipe_handle_vblank(dev, pipe))
  1516. intel_check_page_flip(dev, pipe);
  1517. /* plane/pipes map 1:1 on ilk+ */
  1518. if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
  1519. intel_prepare_page_flip(dev, pipe);
  1520. intel_finish_page_flip_plane(dev, pipe);
  1521. }
  1522. }
  1523. /* check event from PCH */
  1524. if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
  1525. u32 pch_iir = I915_READ(SDEIIR);
  1526. cpt_irq_handler(dev, pch_iir);
  1527. /* clear PCH hotplug event before clear CPU irq */
  1528. I915_WRITE(SDEIIR, pch_iir);
  1529. }
  1530. }
  1531. /*
  1532. * To handle irqs with the minimum potential races with fresh interrupts, we:
  1533. * 1 - Disable Master Interrupt Control.
  1534. * 2 - Find the source(s) of the interrupt.
  1535. * 3 - Clear the Interrupt Identity bits (IIR).
  1536. * 4 - Process the interrupt(s) that had bits set in the IIRs.
  1537. * 5 - Re-enable Master Interrupt Control.
  1538. */
  1539. static irqreturn_t ironlake_irq_handler(int irq, void *arg)
  1540. {
  1541. struct drm_device *dev = arg;
  1542. struct drm_i915_private *dev_priv = dev->dev_private;
  1543. u32 de_iir, gt_iir, de_ier, sde_ier = 0;
  1544. irqreturn_t ret = IRQ_NONE;
  1545. if (!intel_irqs_enabled(dev_priv))
  1546. return IRQ_NONE;
  1547. /* We get interrupts on unclaimed registers, so check for this before we
  1548. * do any I915_{READ,WRITE}. */
  1549. intel_uncore_check_errors(dev);
  1550. /* disable master interrupt before clearing iir */
  1551. de_ier = I915_READ(DEIER);
  1552. I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
  1553. POSTING_READ(DEIER);
  1554. /* Disable south interrupts. We'll only write to SDEIIR once, so further
  1555. * interrupts will will be stored on its back queue, and then we'll be
  1556. * able to process them after we restore SDEIER (as soon as we restore
  1557. * it, we'll get an interrupt if SDEIIR still has something to process
  1558. * due to its back queue). */
  1559. if (!HAS_PCH_NOP(dev)) {
  1560. sde_ier = I915_READ(SDEIER);
  1561. I915_WRITE(SDEIER, 0);
  1562. POSTING_READ(SDEIER);
  1563. }
  1564. /* Find, clear, then process each source of interrupt */
  1565. gt_iir = I915_READ(GTIIR);
  1566. if (gt_iir) {
  1567. I915_WRITE(GTIIR, gt_iir);
  1568. ret = IRQ_HANDLED;
  1569. if (INTEL_INFO(dev)->gen >= 6)
  1570. snb_gt_irq_handler(dev, dev_priv, gt_iir);
  1571. else
  1572. ilk_gt_irq_handler(dev, dev_priv, gt_iir);
  1573. }
  1574. de_iir = I915_READ(DEIIR);
  1575. if (de_iir) {
  1576. I915_WRITE(DEIIR, de_iir);
  1577. ret = IRQ_HANDLED;
  1578. if (INTEL_INFO(dev)->gen >= 7)
  1579. ivb_display_irq_handler(dev, de_iir);
  1580. else
  1581. ilk_display_irq_handler(dev, de_iir);
  1582. }
  1583. if (INTEL_INFO(dev)->gen >= 6) {
  1584. u32 pm_iir = I915_READ(GEN6_PMIIR);
  1585. if (pm_iir) {
  1586. I915_WRITE(GEN6_PMIIR, pm_iir);
  1587. ret = IRQ_HANDLED;
  1588. gen6_rps_irq_handler(dev_priv, pm_iir);
  1589. }
  1590. }
  1591. I915_WRITE(DEIER, de_ier);
  1592. POSTING_READ(DEIER);
  1593. if (!HAS_PCH_NOP(dev)) {
  1594. I915_WRITE(SDEIER, sde_ier);
  1595. POSTING_READ(SDEIER);
  1596. }
  1597. return ret;
  1598. }
  1599. static void bxt_hpd_handler(struct drm_device *dev, uint32_t iir_status)
  1600. {
  1601. struct drm_i915_private *dev_priv = dev->dev_private;
  1602. u32 hp_control, hp_trigger;
  1603. u32 pin_mask, long_mask;
  1604. /* Get the status */
  1605. hp_trigger = iir_status & BXT_DE_PORT_HOTPLUG_MASK;
  1606. hp_control = I915_READ(BXT_HOTPLUG_CTL);
  1607. /* Hotplug not enabled ? */
  1608. if (!(hp_control & BXT_HOTPLUG_CTL_MASK)) {
  1609. DRM_ERROR("Interrupt when HPD disabled\n");
  1610. return;
  1611. }
  1612. /* Clear sticky bits in hpd status */
  1613. I915_WRITE(BXT_HOTPLUG_CTL, hp_control);
  1614. intel_get_hpd_pins(&pin_mask, &long_mask, hp_trigger, hp_control,
  1615. hpd_bxt, bxt_port_hotplug_long_detect);
  1616. intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1617. }
  1618. static irqreturn_t gen8_irq_handler(int irq, void *arg)
  1619. {
  1620. struct drm_device *dev = arg;
  1621. struct drm_i915_private *dev_priv = dev->dev_private;
  1622. u32 master_ctl;
  1623. irqreturn_t ret = IRQ_NONE;
  1624. uint32_t tmp = 0;
  1625. enum pipe pipe;
  1626. u32 aux_mask = GEN8_AUX_CHANNEL_A;
  1627. if (!intel_irqs_enabled(dev_priv))
  1628. return IRQ_NONE;
  1629. if (IS_GEN9(dev))
  1630. aux_mask |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
  1631. GEN9_AUX_CHANNEL_D;
  1632. master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
  1633. master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
  1634. if (!master_ctl)
  1635. return IRQ_NONE;
  1636. I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
  1637. /* Find, clear, then process each source of interrupt */
  1638. ret = gen8_gt_irq_handler(dev_priv, master_ctl);
  1639. if (master_ctl & GEN8_DE_MISC_IRQ) {
  1640. tmp = I915_READ(GEN8_DE_MISC_IIR);
  1641. if (tmp) {
  1642. I915_WRITE(GEN8_DE_MISC_IIR, tmp);
  1643. ret = IRQ_HANDLED;
  1644. if (tmp & GEN8_DE_MISC_GSE)
  1645. intel_opregion_asle_intr(dev);
  1646. else
  1647. DRM_ERROR("Unexpected DE Misc interrupt\n");
  1648. }
  1649. else
  1650. DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
  1651. }
  1652. if (master_ctl & GEN8_DE_PORT_IRQ) {
  1653. tmp = I915_READ(GEN8_DE_PORT_IIR);
  1654. if (tmp) {
  1655. bool found = false;
  1656. I915_WRITE(GEN8_DE_PORT_IIR, tmp);
  1657. ret = IRQ_HANDLED;
  1658. if (tmp & aux_mask) {
  1659. dp_aux_irq_handler(dev);
  1660. found = true;
  1661. }
  1662. if (IS_BROXTON(dev) && tmp & BXT_DE_PORT_HOTPLUG_MASK) {
  1663. bxt_hpd_handler(dev, tmp);
  1664. found = true;
  1665. }
  1666. if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
  1667. gmbus_irq_handler(dev);
  1668. found = true;
  1669. }
  1670. if (!found)
  1671. DRM_ERROR("Unexpected DE Port interrupt\n");
  1672. }
  1673. else
  1674. DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
  1675. }
  1676. for_each_pipe(dev_priv, pipe) {
  1677. uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
  1678. if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
  1679. continue;
  1680. pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
  1681. if (pipe_iir) {
  1682. ret = IRQ_HANDLED;
  1683. I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
  1684. if (pipe_iir & GEN8_PIPE_VBLANK &&
  1685. intel_pipe_handle_vblank(dev, pipe))
  1686. intel_check_page_flip(dev, pipe);
  1687. if (IS_GEN9(dev))
  1688. flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
  1689. else
  1690. flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
  1691. if (flip_done) {
  1692. intel_prepare_page_flip(dev, pipe);
  1693. intel_finish_page_flip_plane(dev, pipe);
  1694. }
  1695. if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
  1696. hsw_pipe_crc_irq_handler(dev, pipe);
  1697. if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
  1698. intel_cpu_fifo_underrun_irq_handler(dev_priv,
  1699. pipe);
  1700. if (IS_GEN9(dev))
  1701. fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
  1702. else
  1703. fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
  1704. if (fault_errors)
  1705. DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
  1706. pipe_name(pipe),
  1707. pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
  1708. } else
  1709. DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
  1710. }
  1711. if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
  1712. master_ctl & GEN8_DE_PCH_IRQ) {
  1713. /*
  1714. * FIXME(BDW): Assume for now that the new interrupt handling
  1715. * scheme also closed the SDE interrupt handling race we've seen
  1716. * on older pch-split platforms. But this needs testing.
  1717. */
  1718. u32 pch_iir = I915_READ(SDEIIR);
  1719. if (pch_iir) {
  1720. I915_WRITE(SDEIIR, pch_iir);
  1721. ret = IRQ_HANDLED;
  1722. cpt_irq_handler(dev, pch_iir);
  1723. } else
  1724. DRM_ERROR("The master control interrupt lied (SDE)!\n");
  1725. }
  1726. I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  1727. POSTING_READ_FW(GEN8_MASTER_IRQ);
  1728. return ret;
  1729. }
  1730. static void i915_error_wake_up(struct drm_i915_private *dev_priv,
  1731. bool reset_completed)
  1732. {
  1733. struct intel_engine_cs *ring;
  1734. int i;
  1735. /*
  1736. * Notify all waiters for GPU completion events that reset state has
  1737. * been changed, and that they need to restart their wait after
  1738. * checking for potential errors (and bail out to drop locks if there is
  1739. * a gpu reset pending so that i915_error_work_func can acquire them).
  1740. */
  1741. /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
  1742. for_each_ring(ring, dev_priv, i)
  1743. wake_up_all(&ring->irq_queue);
  1744. /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
  1745. wake_up_all(&dev_priv->pending_flip_queue);
  1746. /*
  1747. * Signal tasks blocked in i915_gem_wait_for_error that the pending
  1748. * reset state is cleared.
  1749. */
  1750. if (reset_completed)
  1751. wake_up_all(&dev_priv->gpu_error.reset_queue);
  1752. }
  1753. /**
  1754. * i915_reset_and_wakeup - do process context error handling work
  1755. *
  1756. * Fire an error uevent so userspace can see that a hang or error
  1757. * was detected.
  1758. */
  1759. static void i915_reset_and_wakeup(struct drm_device *dev)
  1760. {
  1761. struct drm_i915_private *dev_priv = to_i915(dev);
  1762. struct i915_gpu_error *error = &dev_priv->gpu_error;
  1763. char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
  1764. char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
  1765. char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
  1766. int ret;
  1767. kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
  1768. /*
  1769. * Note that there's only one work item which does gpu resets, so we
  1770. * need not worry about concurrent gpu resets potentially incrementing
  1771. * error->reset_counter twice. We only need to take care of another
  1772. * racing irq/hangcheck declaring the gpu dead for a second time. A
  1773. * quick check for that is good enough: schedule_work ensures the
  1774. * correct ordering between hang detection and this work item, and since
  1775. * the reset in-progress bit is only ever set by code outside of this
  1776. * work we don't need to worry about any other races.
  1777. */
  1778. if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
  1779. DRM_DEBUG_DRIVER("resetting chip\n");
  1780. kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
  1781. reset_event);
  1782. /*
  1783. * In most cases it's guaranteed that we get here with an RPM
  1784. * reference held, for example because there is a pending GPU
  1785. * request that won't finish until the reset is done. This
  1786. * isn't the case at least when we get here by doing a
  1787. * simulated reset via debugs, so get an RPM reference.
  1788. */
  1789. intel_runtime_pm_get(dev_priv);
  1790. intel_prepare_reset(dev);
  1791. /*
  1792. * All state reset _must_ be completed before we update the
  1793. * reset counter, for otherwise waiters might miss the reset
  1794. * pending state and not properly drop locks, resulting in
  1795. * deadlocks with the reset work.
  1796. */
  1797. ret = i915_reset(dev);
  1798. intel_finish_reset(dev);
  1799. intel_runtime_pm_put(dev_priv);
  1800. if (ret == 0) {
  1801. /*
  1802. * After all the gem state is reset, increment the reset
  1803. * counter and wake up everyone waiting for the reset to
  1804. * complete.
  1805. *
  1806. * Since unlock operations are a one-sided barrier only,
  1807. * we need to insert a barrier here to order any seqno
  1808. * updates before
  1809. * the counter increment.
  1810. */
  1811. smp_mb__before_atomic();
  1812. atomic_inc(&dev_priv->gpu_error.reset_counter);
  1813. kobject_uevent_env(&dev->primary->kdev->kobj,
  1814. KOBJ_CHANGE, reset_done_event);
  1815. } else {
  1816. atomic_set_mask(I915_WEDGED, &error->reset_counter);
  1817. }
  1818. /*
  1819. * Note: The wake_up also serves as a memory barrier so that
  1820. * waiters see the update value of the reset counter atomic_t.
  1821. */
  1822. i915_error_wake_up(dev_priv, true);
  1823. }
  1824. }
  1825. static void i915_report_and_clear_eir(struct drm_device *dev)
  1826. {
  1827. struct drm_i915_private *dev_priv = dev->dev_private;
  1828. uint32_t instdone[I915_NUM_INSTDONE_REG];
  1829. u32 eir = I915_READ(EIR);
  1830. int pipe, i;
  1831. if (!eir)
  1832. return;
  1833. pr_err("render error detected, EIR: 0x%08x\n", eir);
  1834. i915_get_extra_instdone(dev, instdone);
  1835. if (IS_G4X(dev)) {
  1836. if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
  1837. u32 ipeir = I915_READ(IPEIR_I965);
  1838. pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
  1839. pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
  1840. for (i = 0; i < ARRAY_SIZE(instdone); i++)
  1841. pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
  1842. pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
  1843. pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
  1844. I915_WRITE(IPEIR_I965, ipeir);
  1845. POSTING_READ(IPEIR_I965);
  1846. }
  1847. if (eir & GM45_ERROR_PAGE_TABLE) {
  1848. u32 pgtbl_err = I915_READ(PGTBL_ER);
  1849. pr_err("page table error\n");
  1850. pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
  1851. I915_WRITE(PGTBL_ER, pgtbl_err);
  1852. POSTING_READ(PGTBL_ER);
  1853. }
  1854. }
  1855. if (!IS_GEN2(dev)) {
  1856. if (eir & I915_ERROR_PAGE_TABLE) {
  1857. u32 pgtbl_err = I915_READ(PGTBL_ER);
  1858. pr_err("page table error\n");
  1859. pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
  1860. I915_WRITE(PGTBL_ER, pgtbl_err);
  1861. POSTING_READ(PGTBL_ER);
  1862. }
  1863. }
  1864. if (eir & I915_ERROR_MEMORY_REFRESH) {
  1865. pr_err("memory refresh error:\n");
  1866. for_each_pipe(dev_priv, pipe)
  1867. pr_err("pipe %c stat: 0x%08x\n",
  1868. pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
  1869. /* pipestat has already been acked */
  1870. }
  1871. if (eir & I915_ERROR_INSTRUCTION) {
  1872. pr_err("instruction error\n");
  1873. pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
  1874. for (i = 0; i < ARRAY_SIZE(instdone); i++)
  1875. pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
  1876. if (INTEL_INFO(dev)->gen < 4) {
  1877. u32 ipeir = I915_READ(IPEIR);
  1878. pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
  1879. pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
  1880. pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
  1881. I915_WRITE(IPEIR, ipeir);
  1882. POSTING_READ(IPEIR);
  1883. } else {
  1884. u32 ipeir = I915_READ(IPEIR_I965);
  1885. pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
  1886. pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
  1887. pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
  1888. pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
  1889. I915_WRITE(IPEIR_I965, ipeir);
  1890. POSTING_READ(IPEIR_I965);
  1891. }
  1892. }
  1893. I915_WRITE(EIR, eir);
  1894. POSTING_READ(EIR);
  1895. eir = I915_READ(EIR);
  1896. if (eir) {
  1897. /*
  1898. * some errors might have become stuck,
  1899. * mask them.
  1900. */
  1901. DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
  1902. I915_WRITE(EMR, I915_READ(EMR) | eir);
  1903. I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
  1904. }
  1905. }
  1906. /**
  1907. * i915_handle_error - handle a gpu error
  1908. * @dev: drm device
  1909. *
  1910. * Do some basic checking of regsiter state at error time and
  1911. * dump it to the syslog. Also call i915_capture_error_state() to make
  1912. * sure we get a record and make it available in debugfs. Fire a uevent
  1913. * so userspace knows something bad happened (should trigger collection
  1914. * of a ring dump etc.).
  1915. */
  1916. void i915_handle_error(struct drm_device *dev, bool wedged,
  1917. const char *fmt, ...)
  1918. {
  1919. struct drm_i915_private *dev_priv = dev->dev_private;
  1920. va_list args;
  1921. char error_msg[80];
  1922. va_start(args, fmt);
  1923. vscnprintf(error_msg, sizeof(error_msg), fmt, args);
  1924. va_end(args);
  1925. i915_capture_error_state(dev, wedged, error_msg);
  1926. i915_report_and_clear_eir(dev);
  1927. if (wedged) {
  1928. atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
  1929. &dev_priv->gpu_error.reset_counter);
  1930. /*
  1931. * Wakeup waiting processes so that the reset function
  1932. * i915_reset_and_wakeup doesn't deadlock trying to grab
  1933. * various locks. By bumping the reset counter first, the woken
  1934. * processes will see a reset in progress and back off,
  1935. * releasing their locks and then wait for the reset completion.
  1936. * We must do this for _all_ gpu waiters that might hold locks
  1937. * that the reset work needs to acquire.
  1938. *
  1939. * Note: The wake_up serves as the required memory barrier to
  1940. * ensure that the waiters see the updated value of the reset
  1941. * counter atomic_t.
  1942. */
  1943. i915_error_wake_up(dev_priv, false);
  1944. }
  1945. i915_reset_and_wakeup(dev);
  1946. }
  1947. /* Called from drm generic code, passed 'crtc' which
  1948. * we use as a pipe index
  1949. */
  1950. static int i915_enable_vblank(struct drm_device *dev, int pipe)
  1951. {
  1952. struct drm_i915_private *dev_priv = dev->dev_private;
  1953. unsigned long irqflags;
  1954. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  1955. if (INTEL_INFO(dev)->gen >= 4)
  1956. i915_enable_pipestat(dev_priv, pipe,
  1957. PIPE_START_VBLANK_INTERRUPT_STATUS);
  1958. else
  1959. i915_enable_pipestat(dev_priv, pipe,
  1960. PIPE_VBLANK_INTERRUPT_STATUS);
  1961. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  1962. return 0;
  1963. }
  1964. static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
  1965. {
  1966. struct drm_i915_private *dev_priv = dev->dev_private;
  1967. unsigned long irqflags;
  1968. uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
  1969. DE_PIPE_VBLANK(pipe);
  1970. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  1971. ironlake_enable_display_irq(dev_priv, bit);
  1972. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  1973. return 0;
  1974. }
  1975. static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
  1976. {
  1977. struct drm_i915_private *dev_priv = dev->dev_private;
  1978. unsigned long irqflags;
  1979. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  1980. i915_enable_pipestat(dev_priv, pipe,
  1981. PIPE_START_VBLANK_INTERRUPT_STATUS);
  1982. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  1983. return 0;
  1984. }
  1985. static int gen8_enable_vblank(struct drm_device *dev, int pipe)
  1986. {
  1987. struct drm_i915_private *dev_priv = dev->dev_private;
  1988. unsigned long irqflags;
  1989. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  1990. dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
  1991. I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
  1992. POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
  1993. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  1994. return 0;
  1995. }
  1996. /* Called from drm generic code, passed 'crtc' which
  1997. * we use as a pipe index
  1998. */
  1999. static void i915_disable_vblank(struct drm_device *dev, int pipe)
  2000. {
  2001. struct drm_i915_private *dev_priv = dev->dev_private;
  2002. unsigned long irqflags;
  2003. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2004. i915_disable_pipestat(dev_priv, pipe,
  2005. PIPE_VBLANK_INTERRUPT_STATUS |
  2006. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2007. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2008. }
  2009. static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
  2010. {
  2011. struct drm_i915_private *dev_priv = dev->dev_private;
  2012. unsigned long irqflags;
  2013. uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
  2014. DE_PIPE_VBLANK(pipe);
  2015. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2016. ironlake_disable_display_irq(dev_priv, bit);
  2017. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2018. }
  2019. static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
  2020. {
  2021. struct drm_i915_private *dev_priv = dev->dev_private;
  2022. unsigned long irqflags;
  2023. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2024. i915_disable_pipestat(dev_priv, pipe,
  2025. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2026. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2027. }
  2028. static void gen8_disable_vblank(struct drm_device *dev, int pipe)
  2029. {
  2030. struct drm_i915_private *dev_priv = dev->dev_private;
  2031. unsigned long irqflags;
  2032. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2033. dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
  2034. I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
  2035. POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
  2036. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2037. }
  2038. static bool
  2039. ring_idle(struct intel_engine_cs *ring, u32 seqno)
  2040. {
  2041. return (list_empty(&ring->request_list) ||
  2042. i915_seqno_passed(seqno, ring->last_submitted_seqno));
  2043. }
  2044. static bool
  2045. ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
  2046. {
  2047. if (INTEL_INFO(dev)->gen >= 8) {
  2048. return (ipehr >> 23) == 0x1c;
  2049. } else {
  2050. ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
  2051. return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
  2052. MI_SEMAPHORE_REGISTER);
  2053. }
  2054. }
  2055. static struct intel_engine_cs *
  2056. semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
  2057. {
  2058. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  2059. struct intel_engine_cs *signaller;
  2060. int i;
  2061. if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
  2062. for_each_ring(signaller, dev_priv, i) {
  2063. if (ring == signaller)
  2064. continue;
  2065. if (offset == signaller->semaphore.signal_ggtt[ring->id])
  2066. return signaller;
  2067. }
  2068. } else {
  2069. u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
  2070. for_each_ring(signaller, dev_priv, i) {
  2071. if(ring == signaller)
  2072. continue;
  2073. if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
  2074. return signaller;
  2075. }
  2076. }
  2077. DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
  2078. ring->id, ipehr, offset);
  2079. return NULL;
  2080. }
  2081. static struct intel_engine_cs *
  2082. semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
  2083. {
  2084. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  2085. u32 cmd, ipehr, head;
  2086. u64 offset = 0;
  2087. int i, backwards;
  2088. ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
  2089. if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
  2090. return NULL;
  2091. /*
  2092. * HEAD is likely pointing to the dword after the actual command,
  2093. * so scan backwards until we find the MBOX. But limit it to just 3
  2094. * or 4 dwords depending on the semaphore wait command size.
  2095. * Note that we don't care about ACTHD here since that might
  2096. * point at at batch, and semaphores are always emitted into the
  2097. * ringbuffer itself.
  2098. */
  2099. head = I915_READ_HEAD(ring) & HEAD_ADDR;
  2100. backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
  2101. for (i = backwards; i; --i) {
  2102. /*
  2103. * Be paranoid and presume the hw has gone off into the wild -
  2104. * our ring is smaller than what the hardware (and hence
  2105. * HEAD_ADDR) allows. Also handles wrap-around.
  2106. */
  2107. head &= ring->buffer->size - 1;
  2108. /* This here seems to blow up */
  2109. cmd = ioread32(ring->buffer->virtual_start + head);
  2110. if (cmd == ipehr)
  2111. break;
  2112. head -= 4;
  2113. }
  2114. if (!i)
  2115. return NULL;
  2116. *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
  2117. if (INTEL_INFO(ring->dev)->gen >= 8) {
  2118. offset = ioread32(ring->buffer->virtual_start + head + 12);
  2119. offset <<= 32;
  2120. offset = ioread32(ring->buffer->virtual_start + head + 8);
  2121. }
  2122. return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
  2123. }
  2124. static int semaphore_passed(struct intel_engine_cs *ring)
  2125. {
  2126. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  2127. struct intel_engine_cs *signaller;
  2128. u32 seqno;
  2129. ring->hangcheck.deadlock++;
  2130. signaller = semaphore_waits_for(ring, &seqno);
  2131. if (signaller == NULL)
  2132. return -1;
  2133. /* Prevent pathological recursion due to driver bugs */
  2134. if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
  2135. return -1;
  2136. if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
  2137. return 1;
  2138. /* cursory check for an unkickable deadlock */
  2139. if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
  2140. semaphore_passed(signaller) < 0)
  2141. return -1;
  2142. return 0;
  2143. }
  2144. static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
  2145. {
  2146. struct intel_engine_cs *ring;
  2147. int i;
  2148. for_each_ring(ring, dev_priv, i)
  2149. ring->hangcheck.deadlock = 0;
  2150. }
  2151. static enum intel_ring_hangcheck_action
  2152. ring_stuck(struct intel_engine_cs *ring, u64 acthd)
  2153. {
  2154. struct drm_device *dev = ring->dev;
  2155. struct drm_i915_private *dev_priv = dev->dev_private;
  2156. u32 tmp;
  2157. if (acthd != ring->hangcheck.acthd) {
  2158. if (acthd > ring->hangcheck.max_acthd) {
  2159. ring->hangcheck.max_acthd = acthd;
  2160. return HANGCHECK_ACTIVE;
  2161. }
  2162. return HANGCHECK_ACTIVE_LOOP;
  2163. }
  2164. if (IS_GEN2(dev))
  2165. return HANGCHECK_HUNG;
  2166. /* Is the chip hanging on a WAIT_FOR_EVENT?
  2167. * If so we can simply poke the RB_WAIT bit
  2168. * and break the hang. This should work on
  2169. * all but the second generation chipsets.
  2170. */
  2171. tmp = I915_READ_CTL(ring);
  2172. if (tmp & RING_WAIT) {
  2173. i915_handle_error(dev, false,
  2174. "Kicking stuck wait on %s",
  2175. ring->name);
  2176. I915_WRITE_CTL(ring, tmp);
  2177. return HANGCHECK_KICK;
  2178. }
  2179. if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
  2180. switch (semaphore_passed(ring)) {
  2181. default:
  2182. return HANGCHECK_HUNG;
  2183. case 1:
  2184. i915_handle_error(dev, false,
  2185. "Kicking stuck semaphore on %s",
  2186. ring->name);
  2187. I915_WRITE_CTL(ring, tmp);
  2188. return HANGCHECK_KICK;
  2189. case 0:
  2190. return HANGCHECK_WAIT;
  2191. }
  2192. }
  2193. return HANGCHECK_HUNG;
  2194. }
  2195. /*
  2196. * This is called when the chip hasn't reported back with completed
  2197. * batchbuffers in a long time. We keep track per ring seqno progress and
  2198. * if there are no progress, hangcheck score for that ring is increased.
  2199. * Further, acthd is inspected to see if the ring is stuck. On stuck case
  2200. * we kick the ring. If we see no progress on three subsequent calls
  2201. * we assume chip is wedged and try to fix it by resetting the chip.
  2202. */
  2203. static void i915_hangcheck_elapsed(struct work_struct *work)
  2204. {
  2205. struct drm_i915_private *dev_priv =
  2206. container_of(work, typeof(*dev_priv),
  2207. gpu_error.hangcheck_work.work);
  2208. struct drm_device *dev = dev_priv->dev;
  2209. struct intel_engine_cs *ring;
  2210. int i;
  2211. int busy_count = 0, rings_hung = 0;
  2212. bool stuck[I915_NUM_RINGS] = { 0 };
  2213. #define BUSY 1
  2214. #define KICK 5
  2215. #define HUNG 20
  2216. if (!i915.enable_hangcheck)
  2217. return;
  2218. for_each_ring(ring, dev_priv, i) {
  2219. u64 acthd;
  2220. u32 seqno;
  2221. bool busy = true;
  2222. semaphore_clear_deadlocks(dev_priv);
  2223. seqno = ring->get_seqno(ring, false);
  2224. acthd = intel_ring_get_active_head(ring);
  2225. if (ring->hangcheck.seqno == seqno) {
  2226. if (ring_idle(ring, seqno)) {
  2227. ring->hangcheck.action = HANGCHECK_IDLE;
  2228. if (waitqueue_active(&ring->irq_queue)) {
  2229. /* Issue a wake-up to catch stuck h/w. */
  2230. if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
  2231. if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
  2232. DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
  2233. ring->name);
  2234. else
  2235. DRM_INFO("Fake missed irq on %s\n",
  2236. ring->name);
  2237. wake_up_all(&ring->irq_queue);
  2238. }
  2239. /* Safeguard against driver failure */
  2240. ring->hangcheck.score += BUSY;
  2241. } else
  2242. busy = false;
  2243. } else {
  2244. /* We always increment the hangcheck score
  2245. * if the ring is busy and still processing
  2246. * the same request, so that no single request
  2247. * can run indefinitely (such as a chain of
  2248. * batches). The only time we do not increment
  2249. * the hangcheck score on this ring, if this
  2250. * ring is in a legitimate wait for another
  2251. * ring. In that case the waiting ring is a
  2252. * victim and we want to be sure we catch the
  2253. * right culprit. Then every time we do kick
  2254. * the ring, add a small increment to the
  2255. * score so that we can catch a batch that is
  2256. * being repeatedly kicked and so responsible
  2257. * for stalling the machine.
  2258. */
  2259. ring->hangcheck.action = ring_stuck(ring,
  2260. acthd);
  2261. switch (ring->hangcheck.action) {
  2262. case HANGCHECK_IDLE:
  2263. case HANGCHECK_WAIT:
  2264. case HANGCHECK_ACTIVE:
  2265. break;
  2266. case HANGCHECK_ACTIVE_LOOP:
  2267. ring->hangcheck.score += BUSY;
  2268. break;
  2269. case HANGCHECK_KICK:
  2270. ring->hangcheck.score += KICK;
  2271. break;
  2272. case HANGCHECK_HUNG:
  2273. ring->hangcheck.score += HUNG;
  2274. stuck[i] = true;
  2275. break;
  2276. }
  2277. }
  2278. } else {
  2279. ring->hangcheck.action = HANGCHECK_ACTIVE;
  2280. /* Gradually reduce the count so that we catch DoS
  2281. * attempts across multiple batches.
  2282. */
  2283. if (ring->hangcheck.score > 0)
  2284. ring->hangcheck.score--;
  2285. ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
  2286. }
  2287. ring->hangcheck.seqno = seqno;
  2288. ring->hangcheck.acthd = acthd;
  2289. busy_count += busy;
  2290. }
  2291. for_each_ring(ring, dev_priv, i) {
  2292. if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
  2293. DRM_INFO("%s on %s\n",
  2294. stuck[i] ? "stuck" : "no progress",
  2295. ring->name);
  2296. rings_hung++;
  2297. }
  2298. }
  2299. if (rings_hung)
  2300. return i915_handle_error(dev, true, "Ring hung");
  2301. if (busy_count)
  2302. /* Reset timer case chip hangs without another request
  2303. * being added */
  2304. i915_queue_hangcheck(dev);
  2305. }
  2306. void i915_queue_hangcheck(struct drm_device *dev)
  2307. {
  2308. struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
  2309. if (!i915.enable_hangcheck)
  2310. return;
  2311. /* Don't continually defer the hangcheck so that it is always run at
  2312. * least once after work has been scheduled on any ring. Otherwise,
  2313. * we will ignore a hung ring if a second ring is kept busy.
  2314. */
  2315. queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
  2316. round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
  2317. }
  2318. static void ibx_irq_reset(struct drm_device *dev)
  2319. {
  2320. struct drm_i915_private *dev_priv = dev->dev_private;
  2321. if (HAS_PCH_NOP(dev))
  2322. return;
  2323. GEN5_IRQ_RESET(SDE);
  2324. if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
  2325. I915_WRITE(SERR_INT, 0xffffffff);
  2326. }
  2327. /*
  2328. * SDEIER is also touched by the interrupt handler to work around missed PCH
  2329. * interrupts. Hence we can't update it after the interrupt handler is enabled -
  2330. * instead we unconditionally enable all PCH interrupt sources here, but then
  2331. * only unmask them as needed with SDEIMR.
  2332. *
  2333. * This function needs to be called before interrupts are enabled.
  2334. */
  2335. static void ibx_irq_pre_postinstall(struct drm_device *dev)
  2336. {
  2337. struct drm_i915_private *dev_priv = dev->dev_private;
  2338. if (HAS_PCH_NOP(dev))
  2339. return;
  2340. WARN_ON(I915_READ(SDEIER) != 0);
  2341. I915_WRITE(SDEIER, 0xffffffff);
  2342. POSTING_READ(SDEIER);
  2343. }
  2344. static void gen5_gt_irq_reset(struct drm_device *dev)
  2345. {
  2346. struct drm_i915_private *dev_priv = dev->dev_private;
  2347. GEN5_IRQ_RESET(GT);
  2348. if (INTEL_INFO(dev)->gen >= 6)
  2349. GEN5_IRQ_RESET(GEN6_PM);
  2350. }
  2351. /* drm_dma.h hooks
  2352. */
  2353. static void ironlake_irq_reset(struct drm_device *dev)
  2354. {
  2355. struct drm_i915_private *dev_priv = dev->dev_private;
  2356. I915_WRITE(HWSTAM, 0xffffffff);
  2357. GEN5_IRQ_RESET(DE);
  2358. if (IS_GEN7(dev))
  2359. I915_WRITE(GEN7_ERR_INT, 0xffffffff);
  2360. gen5_gt_irq_reset(dev);
  2361. ibx_irq_reset(dev);
  2362. }
  2363. static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
  2364. {
  2365. enum pipe pipe;
  2366. I915_WRITE(PORT_HOTPLUG_EN, 0);
  2367. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  2368. for_each_pipe(dev_priv, pipe)
  2369. I915_WRITE(PIPESTAT(pipe), 0xffff);
  2370. GEN5_IRQ_RESET(VLV_);
  2371. }
  2372. static void valleyview_irq_preinstall(struct drm_device *dev)
  2373. {
  2374. struct drm_i915_private *dev_priv = dev->dev_private;
  2375. /* VLV magic */
  2376. I915_WRITE(VLV_IMR, 0);
  2377. I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
  2378. I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
  2379. I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
  2380. gen5_gt_irq_reset(dev);
  2381. I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
  2382. vlv_display_irq_reset(dev_priv);
  2383. }
  2384. static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
  2385. {
  2386. GEN8_IRQ_RESET_NDX(GT, 0);
  2387. GEN8_IRQ_RESET_NDX(GT, 1);
  2388. GEN8_IRQ_RESET_NDX(GT, 2);
  2389. GEN8_IRQ_RESET_NDX(GT, 3);
  2390. }
  2391. static void gen8_irq_reset(struct drm_device *dev)
  2392. {
  2393. struct drm_i915_private *dev_priv = dev->dev_private;
  2394. int pipe;
  2395. I915_WRITE(GEN8_MASTER_IRQ, 0);
  2396. POSTING_READ(GEN8_MASTER_IRQ);
  2397. gen8_gt_irq_reset(dev_priv);
  2398. for_each_pipe(dev_priv, pipe)
  2399. if (intel_display_power_is_enabled(dev_priv,
  2400. POWER_DOMAIN_PIPE(pipe)))
  2401. GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
  2402. GEN5_IRQ_RESET(GEN8_DE_PORT_);
  2403. GEN5_IRQ_RESET(GEN8_DE_MISC_);
  2404. GEN5_IRQ_RESET(GEN8_PCU_);
  2405. if (HAS_PCH_SPLIT(dev))
  2406. ibx_irq_reset(dev);
  2407. }
  2408. void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
  2409. unsigned int pipe_mask)
  2410. {
  2411. uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
  2412. spin_lock_irq(&dev_priv->irq_lock);
  2413. if (pipe_mask & 1 << PIPE_A)
  2414. GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
  2415. dev_priv->de_irq_mask[PIPE_A],
  2416. ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
  2417. if (pipe_mask & 1 << PIPE_B)
  2418. GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
  2419. dev_priv->de_irq_mask[PIPE_B],
  2420. ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
  2421. if (pipe_mask & 1 << PIPE_C)
  2422. GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
  2423. dev_priv->de_irq_mask[PIPE_C],
  2424. ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
  2425. spin_unlock_irq(&dev_priv->irq_lock);
  2426. }
  2427. static void cherryview_irq_preinstall(struct drm_device *dev)
  2428. {
  2429. struct drm_i915_private *dev_priv = dev->dev_private;
  2430. I915_WRITE(GEN8_MASTER_IRQ, 0);
  2431. POSTING_READ(GEN8_MASTER_IRQ);
  2432. gen8_gt_irq_reset(dev_priv);
  2433. GEN5_IRQ_RESET(GEN8_PCU_);
  2434. I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
  2435. vlv_display_irq_reset(dev_priv);
  2436. }
  2437. static void ibx_hpd_irq_setup(struct drm_device *dev)
  2438. {
  2439. struct drm_i915_private *dev_priv = dev->dev_private;
  2440. struct intel_encoder *intel_encoder;
  2441. u32 hotplug_irqs, hotplug, enabled_irqs = 0;
  2442. if (HAS_PCH_IBX(dev)) {
  2443. hotplug_irqs = SDE_HOTPLUG_MASK;
  2444. for_each_intel_encoder(dev, intel_encoder)
  2445. if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
  2446. enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
  2447. } else {
  2448. hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
  2449. for_each_intel_encoder(dev, intel_encoder)
  2450. if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
  2451. enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
  2452. }
  2453. ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
  2454. /*
  2455. * Enable digital hotplug on the PCH, and configure the DP short pulse
  2456. * duration to 2ms (which is the minimum in the Display Port spec)
  2457. *
  2458. * This register is the same on all known PCH chips.
  2459. */
  2460. hotplug = I915_READ(PCH_PORT_HOTPLUG);
  2461. hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
  2462. hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
  2463. hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
  2464. hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
  2465. I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  2466. }
  2467. static void bxt_hpd_irq_setup(struct drm_device *dev)
  2468. {
  2469. struct drm_i915_private *dev_priv = dev->dev_private;
  2470. struct intel_encoder *intel_encoder;
  2471. u32 hotplug_port = 0;
  2472. u32 hotplug_ctrl;
  2473. /* Now, enable HPD */
  2474. for_each_intel_encoder(dev, intel_encoder) {
  2475. if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state
  2476. == HPD_ENABLED)
  2477. hotplug_port |= hpd_bxt[intel_encoder->hpd_pin];
  2478. }
  2479. /* Mask all HPD control bits */
  2480. hotplug_ctrl = I915_READ(BXT_HOTPLUG_CTL) & ~BXT_HOTPLUG_CTL_MASK;
  2481. /* Enable requested port in hotplug control */
  2482. /* TODO: implement (short) HPD support on port A */
  2483. WARN_ON_ONCE(hotplug_port & BXT_DE_PORT_HP_DDIA);
  2484. if (hotplug_port & BXT_DE_PORT_HP_DDIB)
  2485. hotplug_ctrl |= BXT_DDIB_HPD_ENABLE;
  2486. if (hotplug_port & BXT_DE_PORT_HP_DDIC)
  2487. hotplug_ctrl |= BXT_DDIC_HPD_ENABLE;
  2488. I915_WRITE(BXT_HOTPLUG_CTL, hotplug_ctrl);
  2489. /* Unmask DDI hotplug in IMR */
  2490. hotplug_ctrl = I915_READ(GEN8_DE_PORT_IMR) & ~hotplug_port;
  2491. I915_WRITE(GEN8_DE_PORT_IMR, hotplug_ctrl);
  2492. /* Enable DDI hotplug in IER */
  2493. hotplug_ctrl = I915_READ(GEN8_DE_PORT_IER) | hotplug_port;
  2494. I915_WRITE(GEN8_DE_PORT_IER, hotplug_ctrl);
  2495. POSTING_READ(GEN8_DE_PORT_IER);
  2496. }
  2497. static void ibx_irq_postinstall(struct drm_device *dev)
  2498. {
  2499. struct drm_i915_private *dev_priv = dev->dev_private;
  2500. u32 mask;
  2501. if (HAS_PCH_NOP(dev))
  2502. return;
  2503. if (HAS_PCH_IBX(dev))
  2504. mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
  2505. else
  2506. mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
  2507. GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
  2508. I915_WRITE(SDEIMR, ~mask);
  2509. }
  2510. static void gen5_gt_irq_postinstall(struct drm_device *dev)
  2511. {
  2512. struct drm_i915_private *dev_priv = dev->dev_private;
  2513. u32 pm_irqs, gt_irqs;
  2514. pm_irqs = gt_irqs = 0;
  2515. dev_priv->gt_irq_mask = ~0;
  2516. if (HAS_L3_DPF(dev)) {
  2517. /* L3 parity interrupt is always unmasked. */
  2518. dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
  2519. gt_irqs |= GT_PARITY_ERROR(dev);
  2520. }
  2521. gt_irqs |= GT_RENDER_USER_INTERRUPT;
  2522. if (IS_GEN5(dev)) {
  2523. gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
  2524. ILK_BSD_USER_INTERRUPT;
  2525. } else {
  2526. gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
  2527. }
  2528. GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
  2529. if (INTEL_INFO(dev)->gen >= 6) {
  2530. /*
  2531. * RPS interrupts will get enabled/disabled on demand when RPS
  2532. * itself is enabled/disabled.
  2533. */
  2534. if (HAS_VEBOX(dev))
  2535. pm_irqs |= PM_VEBOX_USER_INTERRUPT;
  2536. dev_priv->pm_irq_mask = 0xffffffff;
  2537. GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
  2538. }
  2539. }
  2540. static int ironlake_irq_postinstall(struct drm_device *dev)
  2541. {
  2542. struct drm_i915_private *dev_priv = dev->dev_private;
  2543. u32 display_mask, extra_mask;
  2544. if (INTEL_INFO(dev)->gen >= 7) {
  2545. display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
  2546. DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
  2547. DE_PLANEB_FLIP_DONE_IVB |
  2548. DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
  2549. extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
  2550. DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
  2551. } else {
  2552. display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
  2553. DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
  2554. DE_AUX_CHANNEL_A |
  2555. DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
  2556. DE_POISON);
  2557. extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
  2558. DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
  2559. }
  2560. dev_priv->irq_mask = ~display_mask;
  2561. I915_WRITE(HWSTAM, 0xeffe);
  2562. ibx_irq_pre_postinstall(dev);
  2563. GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
  2564. gen5_gt_irq_postinstall(dev);
  2565. ibx_irq_postinstall(dev);
  2566. if (IS_IRONLAKE_M(dev)) {
  2567. /* Enable PCU event interrupts
  2568. *
  2569. * spinlocking not required here for correctness since interrupt
  2570. * setup is guaranteed to run in single-threaded context. But we
  2571. * need it to make the assert_spin_locked happy. */
  2572. spin_lock_irq(&dev_priv->irq_lock);
  2573. ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
  2574. spin_unlock_irq(&dev_priv->irq_lock);
  2575. }
  2576. return 0;
  2577. }
  2578. static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
  2579. {
  2580. u32 pipestat_mask;
  2581. u32 iir_mask;
  2582. enum pipe pipe;
  2583. pipestat_mask = PIPESTAT_INT_STATUS_MASK |
  2584. PIPE_FIFO_UNDERRUN_STATUS;
  2585. for_each_pipe(dev_priv, pipe)
  2586. I915_WRITE(PIPESTAT(pipe), pipestat_mask);
  2587. POSTING_READ(PIPESTAT(PIPE_A));
  2588. pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
  2589. PIPE_CRC_DONE_INTERRUPT_STATUS;
  2590. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  2591. for_each_pipe(dev_priv, pipe)
  2592. i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
  2593. iir_mask = I915_DISPLAY_PORT_INTERRUPT |
  2594. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  2595. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
  2596. if (IS_CHERRYVIEW(dev_priv))
  2597. iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
  2598. dev_priv->irq_mask &= ~iir_mask;
  2599. I915_WRITE(VLV_IIR, iir_mask);
  2600. I915_WRITE(VLV_IIR, iir_mask);
  2601. I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
  2602. I915_WRITE(VLV_IMR, dev_priv->irq_mask);
  2603. POSTING_READ(VLV_IMR);
  2604. }
  2605. static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
  2606. {
  2607. u32 pipestat_mask;
  2608. u32 iir_mask;
  2609. enum pipe pipe;
  2610. iir_mask = I915_DISPLAY_PORT_INTERRUPT |
  2611. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  2612. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
  2613. if (IS_CHERRYVIEW(dev_priv))
  2614. iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
  2615. dev_priv->irq_mask |= iir_mask;
  2616. I915_WRITE(VLV_IMR, dev_priv->irq_mask);
  2617. I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
  2618. I915_WRITE(VLV_IIR, iir_mask);
  2619. I915_WRITE(VLV_IIR, iir_mask);
  2620. POSTING_READ(VLV_IIR);
  2621. pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
  2622. PIPE_CRC_DONE_INTERRUPT_STATUS;
  2623. i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  2624. for_each_pipe(dev_priv, pipe)
  2625. i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
  2626. pipestat_mask = PIPESTAT_INT_STATUS_MASK |
  2627. PIPE_FIFO_UNDERRUN_STATUS;
  2628. for_each_pipe(dev_priv, pipe)
  2629. I915_WRITE(PIPESTAT(pipe), pipestat_mask);
  2630. POSTING_READ(PIPESTAT(PIPE_A));
  2631. }
  2632. void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
  2633. {
  2634. assert_spin_locked(&dev_priv->irq_lock);
  2635. if (dev_priv->display_irqs_enabled)
  2636. return;
  2637. dev_priv->display_irqs_enabled = true;
  2638. if (intel_irqs_enabled(dev_priv))
  2639. valleyview_display_irqs_install(dev_priv);
  2640. }
  2641. void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
  2642. {
  2643. assert_spin_locked(&dev_priv->irq_lock);
  2644. if (!dev_priv->display_irqs_enabled)
  2645. return;
  2646. dev_priv->display_irqs_enabled = false;
  2647. if (intel_irqs_enabled(dev_priv))
  2648. valleyview_display_irqs_uninstall(dev_priv);
  2649. }
  2650. static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
  2651. {
  2652. dev_priv->irq_mask = ~0;
  2653. I915_WRITE(PORT_HOTPLUG_EN, 0);
  2654. POSTING_READ(PORT_HOTPLUG_EN);
  2655. I915_WRITE(VLV_IIR, 0xffffffff);
  2656. I915_WRITE(VLV_IIR, 0xffffffff);
  2657. I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
  2658. I915_WRITE(VLV_IMR, dev_priv->irq_mask);
  2659. POSTING_READ(VLV_IMR);
  2660. /* Interrupt setup is already guaranteed to be single-threaded, this is
  2661. * just to make the assert_spin_locked check happy. */
  2662. spin_lock_irq(&dev_priv->irq_lock);
  2663. if (dev_priv->display_irqs_enabled)
  2664. valleyview_display_irqs_install(dev_priv);
  2665. spin_unlock_irq(&dev_priv->irq_lock);
  2666. }
  2667. static int valleyview_irq_postinstall(struct drm_device *dev)
  2668. {
  2669. struct drm_i915_private *dev_priv = dev->dev_private;
  2670. vlv_display_irq_postinstall(dev_priv);
  2671. gen5_gt_irq_postinstall(dev);
  2672. /* ack & enable invalid PTE error interrupts */
  2673. #if 0 /* FIXME: add support to irq handler for checking these bits */
  2674. I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
  2675. I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
  2676. #endif
  2677. I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
  2678. return 0;
  2679. }
  2680. static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
  2681. {
  2682. /* These are interrupts we'll toggle with the ring mask register */
  2683. uint32_t gt_interrupts[] = {
  2684. GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
  2685. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
  2686. GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
  2687. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
  2688. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
  2689. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
  2690. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
  2691. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
  2692. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
  2693. 0,
  2694. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
  2695. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
  2696. };
  2697. dev_priv->pm_irq_mask = 0xffffffff;
  2698. GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
  2699. GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
  2700. /*
  2701. * RPS interrupts will get enabled/disabled on demand when RPS itself
  2702. * is enabled/disabled.
  2703. */
  2704. GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
  2705. GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
  2706. }
  2707. static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
  2708. {
  2709. uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
  2710. uint32_t de_pipe_enables;
  2711. int pipe;
  2712. u32 de_port_en = GEN8_AUX_CHANNEL_A;
  2713. if (IS_GEN9(dev_priv)) {
  2714. de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
  2715. GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
  2716. de_port_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
  2717. GEN9_AUX_CHANNEL_D;
  2718. if (IS_BROXTON(dev_priv))
  2719. de_port_en |= BXT_DE_PORT_GMBUS;
  2720. } else
  2721. de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
  2722. GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
  2723. de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
  2724. GEN8_PIPE_FIFO_UNDERRUN;
  2725. dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
  2726. dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
  2727. dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
  2728. for_each_pipe(dev_priv, pipe)
  2729. if (intel_display_power_is_enabled(dev_priv,
  2730. POWER_DOMAIN_PIPE(pipe)))
  2731. GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
  2732. dev_priv->de_irq_mask[pipe],
  2733. de_pipe_enables);
  2734. GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_en, de_port_en);
  2735. }
  2736. static int gen8_irq_postinstall(struct drm_device *dev)
  2737. {
  2738. struct drm_i915_private *dev_priv = dev->dev_private;
  2739. if (HAS_PCH_SPLIT(dev))
  2740. ibx_irq_pre_postinstall(dev);
  2741. gen8_gt_irq_postinstall(dev_priv);
  2742. gen8_de_irq_postinstall(dev_priv);
  2743. if (HAS_PCH_SPLIT(dev))
  2744. ibx_irq_postinstall(dev);
  2745. I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
  2746. POSTING_READ(GEN8_MASTER_IRQ);
  2747. return 0;
  2748. }
  2749. static int cherryview_irq_postinstall(struct drm_device *dev)
  2750. {
  2751. struct drm_i915_private *dev_priv = dev->dev_private;
  2752. vlv_display_irq_postinstall(dev_priv);
  2753. gen8_gt_irq_postinstall(dev_priv);
  2754. I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
  2755. POSTING_READ(GEN8_MASTER_IRQ);
  2756. return 0;
  2757. }
  2758. static void gen8_irq_uninstall(struct drm_device *dev)
  2759. {
  2760. struct drm_i915_private *dev_priv = dev->dev_private;
  2761. if (!dev_priv)
  2762. return;
  2763. gen8_irq_reset(dev);
  2764. }
  2765. static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
  2766. {
  2767. /* Interrupt setup is already guaranteed to be single-threaded, this is
  2768. * just to make the assert_spin_locked check happy. */
  2769. spin_lock_irq(&dev_priv->irq_lock);
  2770. if (dev_priv->display_irqs_enabled)
  2771. valleyview_display_irqs_uninstall(dev_priv);
  2772. spin_unlock_irq(&dev_priv->irq_lock);
  2773. vlv_display_irq_reset(dev_priv);
  2774. dev_priv->irq_mask = ~0;
  2775. }
  2776. static void valleyview_irq_uninstall(struct drm_device *dev)
  2777. {
  2778. struct drm_i915_private *dev_priv = dev->dev_private;
  2779. if (!dev_priv)
  2780. return;
  2781. I915_WRITE(VLV_MASTER_IER, 0);
  2782. gen5_gt_irq_reset(dev);
  2783. I915_WRITE(HWSTAM, 0xffffffff);
  2784. vlv_display_irq_uninstall(dev_priv);
  2785. }
  2786. static void cherryview_irq_uninstall(struct drm_device *dev)
  2787. {
  2788. struct drm_i915_private *dev_priv = dev->dev_private;
  2789. if (!dev_priv)
  2790. return;
  2791. I915_WRITE(GEN8_MASTER_IRQ, 0);
  2792. POSTING_READ(GEN8_MASTER_IRQ);
  2793. gen8_gt_irq_reset(dev_priv);
  2794. GEN5_IRQ_RESET(GEN8_PCU_);
  2795. vlv_display_irq_uninstall(dev_priv);
  2796. }
  2797. static void ironlake_irq_uninstall(struct drm_device *dev)
  2798. {
  2799. struct drm_i915_private *dev_priv = dev->dev_private;
  2800. if (!dev_priv)
  2801. return;
  2802. ironlake_irq_reset(dev);
  2803. }
  2804. static void i8xx_irq_preinstall(struct drm_device * dev)
  2805. {
  2806. struct drm_i915_private *dev_priv = dev->dev_private;
  2807. int pipe;
  2808. for_each_pipe(dev_priv, pipe)
  2809. I915_WRITE(PIPESTAT(pipe), 0);
  2810. I915_WRITE16(IMR, 0xffff);
  2811. I915_WRITE16(IER, 0x0);
  2812. POSTING_READ16(IER);
  2813. }
  2814. static int i8xx_irq_postinstall(struct drm_device *dev)
  2815. {
  2816. struct drm_i915_private *dev_priv = dev->dev_private;
  2817. I915_WRITE16(EMR,
  2818. ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
  2819. /* Unmask the interrupts that we always want on. */
  2820. dev_priv->irq_mask =
  2821. ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  2822. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  2823. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  2824. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
  2825. I915_WRITE16(IMR, dev_priv->irq_mask);
  2826. I915_WRITE16(IER,
  2827. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  2828. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  2829. I915_USER_INTERRUPT);
  2830. POSTING_READ16(IER);
  2831. /* Interrupt setup is already guaranteed to be single-threaded, this is
  2832. * just to make the assert_spin_locked check happy. */
  2833. spin_lock_irq(&dev_priv->irq_lock);
  2834. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  2835. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  2836. spin_unlock_irq(&dev_priv->irq_lock);
  2837. return 0;
  2838. }
  2839. /*
  2840. * Returns true when a page flip has completed.
  2841. */
  2842. static bool i8xx_handle_vblank(struct drm_device *dev,
  2843. int plane, int pipe, u32 iir)
  2844. {
  2845. struct drm_i915_private *dev_priv = dev->dev_private;
  2846. u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
  2847. if (!intel_pipe_handle_vblank(dev, pipe))
  2848. return false;
  2849. if ((iir & flip_pending) == 0)
  2850. goto check_page_flip;
  2851. /* We detect FlipDone by looking for the change in PendingFlip from '1'
  2852. * to '0' on the following vblank, i.e. IIR has the Pendingflip
  2853. * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
  2854. * the flip is completed (no longer pending). Since this doesn't raise
  2855. * an interrupt per se, we watch for the change at vblank.
  2856. */
  2857. if (I915_READ16(ISR) & flip_pending)
  2858. goto check_page_flip;
  2859. intel_prepare_page_flip(dev, plane);
  2860. intel_finish_page_flip(dev, pipe);
  2861. return true;
  2862. check_page_flip:
  2863. intel_check_page_flip(dev, pipe);
  2864. return false;
  2865. }
  2866. static irqreturn_t i8xx_irq_handler(int irq, void *arg)
  2867. {
  2868. struct drm_device *dev = arg;
  2869. struct drm_i915_private *dev_priv = dev->dev_private;
  2870. u16 iir, new_iir;
  2871. u32 pipe_stats[2];
  2872. int pipe;
  2873. u16 flip_mask =
  2874. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  2875. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  2876. if (!intel_irqs_enabled(dev_priv))
  2877. return IRQ_NONE;
  2878. iir = I915_READ16(IIR);
  2879. if (iir == 0)
  2880. return IRQ_NONE;
  2881. while (iir & ~flip_mask) {
  2882. /* Can't rely on pipestat interrupt bit in iir as it might
  2883. * have been cleared after the pipestat interrupt was received.
  2884. * It doesn't set the bit in iir again, but it still produces
  2885. * interrupts (for non-MSI).
  2886. */
  2887. spin_lock(&dev_priv->irq_lock);
  2888. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  2889. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  2890. for_each_pipe(dev_priv, pipe) {
  2891. int reg = PIPESTAT(pipe);
  2892. pipe_stats[pipe] = I915_READ(reg);
  2893. /*
  2894. * Clear the PIPE*STAT regs before the IIR
  2895. */
  2896. if (pipe_stats[pipe] & 0x8000ffff)
  2897. I915_WRITE(reg, pipe_stats[pipe]);
  2898. }
  2899. spin_unlock(&dev_priv->irq_lock);
  2900. I915_WRITE16(IIR, iir & ~flip_mask);
  2901. new_iir = I915_READ16(IIR); /* Flush posted writes */
  2902. if (iir & I915_USER_INTERRUPT)
  2903. notify_ring(&dev_priv->ring[RCS]);
  2904. for_each_pipe(dev_priv, pipe) {
  2905. int plane = pipe;
  2906. if (HAS_FBC(dev))
  2907. plane = !plane;
  2908. if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
  2909. i8xx_handle_vblank(dev, plane, pipe, iir))
  2910. flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
  2911. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  2912. i9xx_pipe_crc_irq_handler(dev, pipe);
  2913. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  2914. intel_cpu_fifo_underrun_irq_handler(dev_priv,
  2915. pipe);
  2916. }
  2917. iir = new_iir;
  2918. }
  2919. return IRQ_HANDLED;
  2920. }
  2921. static void i8xx_irq_uninstall(struct drm_device * dev)
  2922. {
  2923. struct drm_i915_private *dev_priv = dev->dev_private;
  2924. int pipe;
  2925. for_each_pipe(dev_priv, pipe) {
  2926. /* Clear enable bits; then clear status bits */
  2927. I915_WRITE(PIPESTAT(pipe), 0);
  2928. I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
  2929. }
  2930. I915_WRITE16(IMR, 0xffff);
  2931. I915_WRITE16(IER, 0x0);
  2932. I915_WRITE16(IIR, I915_READ16(IIR));
  2933. }
  2934. static void i915_irq_preinstall(struct drm_device * dev)
  2935. {
  2936. struct drm_i915_private *dev_priv = dev->dev_private;
  2937. int pipe;
  2938. if (I915_HAS_HOTPLUG(dev)) {
  2939. I915_WRITE(PORT_HOTPLUG_EN, 0);
  2940. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  2941. }
  2942. I915_WRITE16(HWSTAM, 0xeffe);
  2943. for_each_pipe(dev_priv, pipe)
  2944. I915_WRITE(PIPESTAT(pipe), 0);
  2945. I915_WRITE(IMR, 0xffffffff);
  2946. I915_WRITE(IER, 0x0);
  2947. POSTING_READ(IER);
  2948. }
  2949. static int i915_irq_postinstall(struct drm_device *dev)
  2950. {
  2951. struct drm_i915_private *dev_priv = dev->dev_private;
  2952. u32 enable_mask;
  2953. I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
  2954. /* Unmask the interrupts that we always want on. */
  2955. dev_priv->irq_mask =
  2956. ~(I915_ASLE_INTERRUPT |
  2957. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  2958. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  2959. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  2960. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
  2961. enable_mask =
  2962. I915_ASLE_INTERRUPT |
  2963. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  2964. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  2965. I915_USER_INTERRUPT;
  2966. if (I915_HAS_HOTPLUG(dev)) {
  2967. I915_WRITE(PORT_HOTPLUG_EN, 0);
  2968. POSTING_READ(PORT_HOTPLUG_EN);
  2969. /* Enable in IER... */
  2970. enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
  2971. /* and unmask in IMR */
  2972. dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
  2973. }
  2974. I915_WRITE(IMR, dev_priv->irq_mask);
  2975. I915_WRITE(IER, enable_mask);
  2976. POSTING_READ(IER);
  2977. i915_enable_asle_pipestat(dev);
  2978. /* Interrupt setup is already guaranteed to be single-threaded, this is
  2979. * just to make the assert_spin_locked check happy. */
  2980. spin_lock_irq(&dev_priv->irq_lock);
  2981. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  2982. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  2983. spin_unlock_irq(&dev_priv->irq_lock);
  2984. return 0;
  2985. }
  2986. /*
  2987. * Returns true when a page flip has completed.
  2988. */
  2989. static bool i915_handle_vblank(struct drm_device *dev,
  2990. int plane, int pipe, u32 iir)
  2991. {
  2992. struct drm_i915_private *dev_priv = dev->dev_private;
  2993. u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
  2994. if (!intel_pipe_handle_vblank(dev, pipe))
  2995. return false;
  2996. if ((iir & flip_pending) == 0)
  2997. goto check_page_flip;
  2998. /* We detect FlipDone by looking for the change in PendingFlip from '1'
  2999. * to '0' on the following vblank, i.e. IIR has the Pendingflip
  3000. * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
  3001. * the flip is completed (no longer pending). Since this doesn't raise
  3002. * an interrupt per se, we watch for the change at vblank.
  3003. */
  3004. if (I915_READ(ISR) & flip_pending)
  3005. goto check_page_flip;
  3006. intel_prepare_page_flip(dev, plane);
  3007. intel_finish_page_flip(dev, pipe);
  3008. return true;
  3009. check_page_flip:
  3010. intel_check_page_flip(dev, pipe);
  3011. return false;
  3012. }
  3013. static irqreturn_t i915_irq_handler(int irq, void *arg)
  3014. {
  3015. struct drm_device *dev = arg;
  3016. struct drm_i915_private *dev_priv = dev->dev_private;
  3017. u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
  3018. u32 flip_mask =
  3019. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3020. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  3021. int pipe, ret = IRQ_NONE;
  3022. if (!intel_irqs_enabled(dev_priv))
  3023. return IRQ_NONE;
  3024. iir = I915_READ(IIR);
  3025. do {
  3026. bool irq_received = (iir & ~flip_mask) != 0;
  3027. bool blc_event = false;
  3028. /* Can't rely on pipestat interrupt bit in iir as it might
  3029. * have been cleared after the pipestat interrupt was received.
  3030. * It doesn't set the bit in iir again, but it still produces
  3031. * interrupts (for non-MSI).
  3032. */
  3033. spin_lock(&dev_priv->irq_lock);
  3034. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3035. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3036. for_each_pipe(dev_priv, pipe) {
  3037. int reg = PIPESTAT(pipe);
  3038. pipe_stats[pipe] = I915_READ(reg);
  3039. /* Clear the PIPE*STAT regs before the IIR */
  3040. if (pipe_stats[pipe] & 0x8000ffff) {
  3041. I915_WRITE(reg, pipe_stats[pipe]);
  3042. irq_received = true;
  3043. }
  3044. }
  3045. spin_unlock(&dev_priv->irq_lock);
  3046. if (!irq_received)
  3047. break;
  3048. /* Consume port. Then clear IIR or we'll miss events */
  3049. if (I915_HAS_HOTPLUG(dev) &&
  3050. iir & I915_DISPLAY_PORT_INTERRUPT)
  3051. i9xx_hpd_irq_handler(dev);
  3052. I915_WRITE(IIR, iir & ~flip_mask);
  3053. new_iir = I915_READ(IIR); /* Flush posted writes */
  3054. if (iir & I915_USER_INTERRUPT)
  3055. notify_ring(&dev_priv->ring[RCS]);
  3056. for_each_pipe(dev_priv, pipe) {
  3057. int plane = pipe;
  3058. if (HAS_FBC(dev))
  3059. plane = !plane;
  3060. if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
  3061. i915_handle_vblank(dev, plane, pipe, iir))
  3062. flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
  3063. if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
  3064. blc_event = true;
  3065. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  3066. i9xx_pipe_crc_irq_handler(dev, pipe);
  3067. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  3068. intel_cpu_fifo_underrun_irq_handler(dev_priv,
  3069. pipe);
  3070. }
  3071. if (blc_event || (iir & I915_ASLE_INTERRUPT))
  3072. intel_opregion_asle_intr(dev);
  3073. /* With MSI, interrupts are only generated when iir
  3074. * transitions from zero to nonzero. If another bit got
  3075. * set while we were handling the existing iir bits, then
  3076. * we would never get another interrupt.
  3077. *
  3078. * This is fine on non-MSI as well, as if we hit this path
  3079. * we avoid exiting the interrupt handler only to generate
  3080. * another one.
  3081. *
  3082. * Note that for MSI this could cause a stray interrupt report
  3083. * if an interrupt landed in the time between writing IIR and
  3084. * the posting read. This should be rare enough to never
  3085. * trigger the 99% of 100,000 interrupts test for disabling
  3086. * stray interrupts.
  3087. */
  3088. ret = IRQ_HANDLED;
  3089. iir = new_iir;
  3090. } while (iir & ~flip_mask);
  3091. return ret;
  3092. }
  3093. static void i915_irq_uninstall(struct drm_device * dev)
  3094. {
  3095. struct drm_i915_private *dev_priv = dev->dev_private;
  3096. int pipe;
  3097. if (I915_HAS_HOTPLUG(dev)) {
  3098. I915_WRITE(PORT_HOTPLUG_EN, 0);
  3099. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3100. }
  3101. I915_WRITE16(HWSTAM, 0xffff);
  3102. for_each_pipe(dev_priv, pipe) {
  3103. /* Clear enable bits; then clear status bits */
  3104. I915_WRITE(PIPESTAT(pipe), 0);
  3105. I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
  3106. }
  3107. I915_WRITE(IMR, 0xffffffff);
  3108. I915_WRITE(IER, 0x0);
  3109. I915_WRITE(IIR, I915_READ(IIR));
  3110. }
  3111. static void i965_irq_preinstall(struct drm_device * dev)
  3112. {
  3113. struct drm_i915_private *dev_priv = dev->dev_private;
  3114. int pipe;
  3115. I915_WRITE(PORT_HOTPLUG_EN, 0);
  3116. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3117. I915_WRITE(HWSTAM, 0xeffe);
  3118. for_each_pipe(dev_priv, pipe)
  3119. I915_WRITE(PIPESTAT(pipe), 0);
  3120. I915_WRITE(IMR, 0xffffffff);
  3121. I915_WRITE(IER, 0x0);
  3122. POSTING_READ(IER);
  3123. }
  3124. static int i965_irq_postinstall(struct drm_device *dev)
  3125. {
  3126. struct drm_i915_private *dev_priv = dev->dev_private;
  3127. u32 enable_mask;
  3128. u32 error_mask;
  3129. /* Unmask the interrupts that we always want on. */
  3130. dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
  3131. I915_DISPLAY_PORT_INTERRUPT |
  3132. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3133. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3134. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3135. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
  3136. I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
  3137. enable_mask = ~dev_priv->irq_mask;
  3138. enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3139. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
  3140. enable_mask |= I915_USER_INTERRUPT;
  3141. if (IS_G4X(dev))
  3142. enable_mask |= I915_BSD_USER_INTERRUPT;
  3143. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3144. * just to make the assert_spin_locked check happy. */
  3145. spin_lock_irq(&dev_priv->irq_lock);
  3146. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  3147. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3148. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3149. spin_unlock_irq(&dev_priv->irq_lock);
  3150. /*
  3151. * Enable some error detection, note the instruction error mask
  3152. * bit is reserved, so we leave it masked.
  3153. */
  3154. if (IS_G4X(dev)) {
  3155. error_mask = ~(GM45_ERROR_PAGE_TABLE |
  3156. GM45_ERROR_MEM_PRIV |
  3157. GM45_ERROR_CP_PRIV |
  3158. I915_ERROR_MEMORY_REFRESH);
  3159. } else {
  3160. error_mask = ~(I915_ERROR_PAGE_TABLE |
  3161. I915_ERROR_MEMORY_REFRESH);
  3162. }
  3163. I915_WRITE(EMR, error_mask);
  3164. I915_WRITE(IMR, dev_priv->irq_mask);
  3165. I915_WRITE(IER, enable_mask);
  3166. POSTING_READ(IER);
  3167. I915_WRITE(PORT_HOTPLUG_EN, 0);
  3168. POSTING_READ(PORT_HOTPLUG_EN);
  3169. i915_enable_asle_pipestat(dev);
  3170. return 0;
  3171. }
  3172. static void i915_hpd_irq_setup(struct drm_device *dev)
  3173. {
  3174. struct drm_i915_private *dev_priv = dev->dev_private;
  3175. struct intel_encoder *intel_encoder;
  3176. u32 hotplug_en;
  3177. assert_spin_locked(&dev_priv->irq_lock);
  3178. hotplug_en = I915_READ(PORT_HOTPLUG_EN);
  3179. hotplug_en &= ~HOTPLUG_INT_EN_MASK;
  3180. /* Note HDMI and DP share hotplug bits */
  3181. /* enable bits are the same for all generations */
  3182. for_each_intel_encoder(dev, intel_encoder)
  3183. if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
  3184. hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
  3185. /* Programming the CRT detection parameters tends
  3186. to generate a spurious hotplug event about three
  3187. seconds later. So just do it once.
  3188. */
  3189. if (IS_G4X(dev))
  3190. hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
  3191. hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
  3192. hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
  3193. /* Ignore TV since it's buggy */
  3194. I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
  3195. }
  3196. static irqreturn_t i965_irq_handler(int irq, void *arg)
  3197. {
  3198. struct drm_device *dev = arg;
  3199. struct drm_i915_private *dev_priv = dev->dev_private;
  3200. u32 iir, new_iir;
  3201. u32 pipe_stats[I915_MAX_PIPES];
  3202. int ret = IRQ_NONE, pipe;
  3203. u32 flip_mask =
  3204. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3205. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  3206. if (!intel_irqs_enabled(dev_priv))
  3207. return IRQ_NONE;
  3208. iir = I915_READ(IIR);
  3209. for (;;) {
  3210. bool irq_received = (iir & ~flip_mask) != 0;
  3211. bool blc_event = false;
  3212. /* Can't rely on pipestat interrupt bit in iir as it might
  3213. * have been cleared after the pipestat interrupt was received.
  3214. * It doesn't set the bit in iir again, but it still produces
  3215. * interrupts (for non-MSI).
  3216. */
  3217. spin_lock(&dev_priv->irq_lock);
  3218. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3219. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3220. for_each_pipe(dev_priv, pipe) {
  3221. int reg = PIPESTAT(pipe);
  3222. pipe_stats[pipe] = I915_READ(reg);
  3223. /*
  3224. * Clear the PIPE*STAT regs before the IIR
  3225. */
  3226. if (pipe_stats[pipe] & 0x8000ffff) {
  3227. I915_WRITE(reg, pipe_stats[pipe]);
  3228. irq_received = true;
  3229. }
  3230. }
  3231. spin_unlock(&dev_priv->irq_lock);
  3232. if (!irq_received)
  3233. break;
  3234. ret = IRQ_HANDLED;
  3235. /* Consume port. Then clear IIR or we'll miss events */
  3236. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  3237. i9xx_hpd_irq_handler(dev);
  3238. I915_WRITE(IIR, iir & ~flip_mask);
  3239. new_iir = I915_READ(IIR); /* Flush posted writes */
  3240. if (iir & I915_USER_INTERRUPT)
  3241. notify_ring(&dev_priv->ring[RCS]);
  3242. if (iir & I915_BSD_USER_INTERRUPT)
  3243. notify_ring(&dev_priv->ring[VCS]);
  3244. for_each_pipe(dev_priv, pipe) {
  3245. if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
  3246. i915_handle_vblank(dev, pipe, pipe, iir))
  3247. flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
  3248. if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
  3249. blc_event = true;
  3250. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  3251. i9xx_pipe_crc_irq_handler(dev, pipe);
  3252. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  3253. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  3254. }
  3255. if (blc_event || (iir & I915_ASLE_INTERRUPT))
  3256. intel_opregion_asle_intr(dev);
  3257. if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
  3258. gmbus_irq_handler(dev);
  3259. /* With MSI, interrupts are only generated when iir
  3260. * transitions from zero to nonzero. If another bit got
  3261. * set while we were handling the existing iir bits, then
  3262. * we would never get another interrupt.
  3263. *
  3264. * This is fine on non-MSI as well, as if we hit this path
  3265. * we avoid exiting the interrupt handler only to generate
  3266. * another one.
  3267. *
  3268. * Note that for MSI this could cause a stray interrupt report
  3269. * if an interrupt landed in the time between writing IIR and
  3270. * the posting read. This should be rare enough to never
  3271. * trigger the 99% of 100,000 interrupts test for disabling
  3272. * stray interrupts.
  3273. */
  3274. iir = new_iir;
  3275. }
  3276. return ret;
  3277. }
  3278. static void i965_irq_uninstall(struct drm_device * dev)
  3279. {
  3280. struct drm_i915_private *dev_priv = dev->dev_private;
  3281. int pipe;
  3282. if (!dev_priv)
  3283. return;
  3284. I915_WRITE(PORT_HOTPLUG_EN, 0);
  3285. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3286. I915_WRITE(HWSTAM, 0xffffffff);
  3287. for_each_pipe(dev_priv, pipe)
  3288. I915_WRITE(PIPESTAT(pipe), 0);
  3289. I915_WRITE(IMR, 0xffffffff);
  3290. I915_WRITE(IER, 0x0);
  3291. for_each_pipe(dev_priv, pipe)
  3292. I915_WRITE(PIPESTAT(pipe),
  3293. I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
  3294. I915_WRITE(IIR, I915_READ(IIR));
  3295. }
  3296. /**
  3297. * intel_irq_init - initializes irq support
  3298. * @dev_priv: i915 device instance
  3299. *
  3300. * This function initializes all the irq support including work items, timers
  3301. * and all the vtables. It does not setup the interrupt itself though.
  3302. */
  3303. void intel_irq_init(struct drm_i915_private *dev_priv)
  3304. {
  3305. struct drm_device *dev = dev_priv->dev;
  3306. intel_hpd_init_work(dev_priv);
  3307. INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
  3308. INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
  3309. /* Let's track the enabled rps events */
  3310. if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
  3311. /* WaGsvRC0ResidencyMethod:vlv */
  3312. dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
  3313. else
  3314. dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
  3315. INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
  3316. i915_hangcheck_elapsed);
  3317. pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
  3318. if (IS_GEN2(dev_priv)) {
  3319. dev->max_vblank_count = 0;
  3320. dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
  3321. } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
  3322. dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
  3323. dev->driver->get_vblank_counter = gm45_get_vblank_counter;
  3324. } else {
  3325. dev->driver->get_vblank_counter = i915_get_vblank_counter;
  3326. dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
  3327. }
  3328. /*
  3329. * Opt out of the vblank disable timer on everything except gen2.
  3330. * Gen2 doesn't have a hardware frame counter and so depends on
  3331. * vblank interrupts to produce sane vblank seuquence numbers.
  3332. */
  3333. if (!IS_GEN2(dev_priv))
  3334. dev->vblank_disable_immediate = true;
  3335. dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
  3336. dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
  3337. if (IS_CHERRYVIEW(dev_priv)) {
  3338. dev->driver->irq_handler = cherryview_irq_handler;
  3339. dev->driver->irq_preinstall = cherryview_irq_preinstall;
  3340. dev->driver->irq_postinstall = cherryview_irq_postinstall;
  3341. dev->driver->irq_uninstall = cherryview_irq_uninstall;
  3342. dev->driver->enable_vblank = valleyview_enable_vblank;
  3343. dev->driver->disable_vblank = valleyview_disable_vblank;
  3344. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3345. } else if (IS_VALLEYVIEW(dev_priv)) {
  3346. dev->driver->irq_handler = valleyview_irq_handler;
  3347. dev->driver->irq_preinstall = valleyview_irq_preinstall;
  3348. dev->driver->irq_postinstall = valleyview_irq_postinstall;
  3349. dev->driver->irq_uninstall = valleyview_irq_uninstall;
  3350. dev->driver->enable_vblank = valleyview_enable_vblank;
  3351. dev->driver->disable_vblank = valleyview_disable_vblank;
  3352. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3353. } else if (INTEL_INFO(dev_priv)->gen >= 8) {
  3354. dev->driver->irq_handler = gen8_irq_handler;
  3355. dev->driver->irq_preinstall = gen8_irq_reset;
  3356. dev->driver->irq_postinstall = gen8_irq_postinstall;
  3357. dev->driver->irq_uninstall = gen8_irq_uninstall;
  3358. dev->driver->enable_vblank = gen8_enable_vblank;
  3359. dev->driver->disable_vblank = gen8_disable_vblank;
  3360. if (HAS_PCH_SPLIT(dev))
  3361. dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
  3362. else
  3363. dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
  3364. } else if (HAS_PCH_SPLIT(dev)) {
  3365. dev->driver->irq_handler = ironlake_irq_handler;
  3366. dev->driver->irq_preinstall = ironlake_irq_reset;
  3367. dev->driver->irq_postinstall = ironlake_irq_postinstall;
  3368. dev->driver->irq_uninstall = ironlake_irq_uninstall;
  3369. dev->driver->enable_vblank = ironlake_enable_vblank;
  3370. dev->driver->disable_vblank = ironlake_disable_vblank;
  3371. dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
  3372. } else {
  3373. if (INTEL_INFO(dev_priv)->gen == 2) {
  3374. dev->driver->irq_preinstall = i8xx_irq_preinstall;
  3375. dev->driver->irq_postinstall = i8xx_irq_postinstall;
  3376. dev->driver->irq_handler = i8xx_irq_handler;
  3377. dev->driver->irq_uninstall = i8xx_irq_uninstall;
  3378. } else if (INTEL_INFO(dev_priv)->gen == 3) {
  3379. dev->driver->irq_preinstall = i915_irq_preinstall;
  3380. dev->driver->irq_postinstall = i915_irq_postinstall;
  3381. dev->driver->irq_uninstall = i915_irq_uninstall;
  3382. dev->driver->irq_handler = i915_irq_handler;
  3383. } else {
  3384. dev->driver->irq_preinstall = i965_irq_preinstall;
  3385. dev->driver->irq_postinstall = i965_irq_postinstall;
  3386. dev->driver->irq_uninstall = i965_irq_uninstall;
  3387. dev->driver->irq_handler = i965_irq_handler;
  3388. }
  3389. if (I915_HAS_HOTPLUG(dev_priv))
  3390. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3391. dev->driver->enable_vblank = i915_enable_vblank;
  3392. dev->driver->disable_vblank = i915_disable_vblank;
  3393. }
  3394. }
  3395. /**
  3396. * intel_irq_install - enables the hardware interrupt
  3397. * @dev_priv: i915 device instance
  3398. *
  3399. * This function enables the hardware interrupt handling, but leaves the hotplug
  3400. * handling still disabled. It is called after intel_irq_init().
  3401. *
  3402. * In the driver load and resume code we need working interrupts in a few places
  3403. * but don't want to deal with the hassle of concurrent probe and hotplug
  3404. * workers. Hence the split into this two-stage approach.
  3405. */
  3406. int intel_irq_install(struct drm_i915_private *dev_priv)
  3407. {
  3408. /*
  3409. * We enable some interrupt sources in our postinstall hooks, so mark
  3410. * interrupts as enabled _before_ actually enabling them to avoid
  3411. * special cases in our ordering checks.
  3412. */
  3413. dev_priv->pm.irqs_enabled = true;
  3414. return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
  3415. }
  3416. /**
  3417. * intel_irq_uninstall - finilizes all irq handling
  3418. * @dev_priv: i915 device instance
  3419. *
  3420. * This stops interrupt and hotplug handling and unregisters and frees all
  3421. * resources acquired in the init functions.
  3422. */
  3423. void intel_irq_uninstall(struct drm_i915_private *dev_priv)
  3424. {
  3425. drm_irq_uninstall(dev_priv->dev);
  3426. intel_hpd_cancel_work(dev_priv);
  3427. dev_priv->pm.irqs_enabled = false;
  3428. }
  3429. /**
  3430. * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
  3431. * @dev_priv: i915 device instance
  3432. *
  3433. * This function is used to disable interrupts at runtime, both in the runtime
  3434. * pm and the system suspend/resume code.
  3435. */
  3436. void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
  3437. {
  3438. dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
  3439. dev_priv->pm.irqs_enabled = false;
  3440. synchronize_irq(dev_priv->dev->irq);
  3441. }
  3442. /**
  3443. * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
  3444. * @dev_priv: i915 device instance
  3445. *
  3446. * This function is used to enable interrupts at runtime, both in the runtime
  3447. * pm and the system suspend/resume code.
  3448. */
  3449. void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
  3450. {
  3451. dev_priv->pm.irqs_enabled = true;
  3452. dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
  3453. dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
  3454. }