data.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945
  1. /*
  2. * fs/f2fs/data.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/mpage.h>
  15. #include <linux/aio.h>
  16. #include <linux/writeback.h>
  17. #include <linux/backing-dev.h>
  18. #include <linux/blkdev.h>
  19. #include <linux/bio.h>
  20. #include <linux/prefetch.h>
  21. #include "f2fs.h"
  22. #include "node.h"
  23. #include "segment.h"
  24. #include <trace/events/f2fs.h>
  25. /*
  26. * Low-level block read/write IO operations.
  27. */
  28. static struct bio *__bio_alloc(struct block_device *bdev, int npages)
  29. {
  30. struct bio *bio;
  31. /* No failure on bio allocation */
  32. bio = bio_alloc(GFP_NOIO, npages);
  33. bio->bi_bdev = bdev;
  34. bio->bi_private = NULL;
  35. return bio;
  36. }
  37. static void f2fs_read_end_io(struct bio *bio, int err)
  38. {
  39. const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  40. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  41. do {
  42. struct page *page = bvec->bv_page;
  43. if (--bvec >= bio->bi_io_vec)
  44. prefetchw(&bvec->bv_page->flags);
  45. if (unlikely(!uptodate)) {
  46. ClearPageUptodate(page);
  47. SetPageError(page);
  48. } else {
  49. SetPageUptodate(page);
  50. }
  51. unlock_page(page);
  52. } while (bvec >= bio->bi_io_vec);
  53. bio_put(bio);
  54. }
  55. static void f2fs_write_end_io(struct bio *bio, int err)
  56. {
  57. const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  58. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  59. struct f2fs_sb_info *sbi = F2FS_SB(bvec->bv_page->mapping->host->i_sb);
  60. do {
  61. struct page *page = bvec->bv_page;
  62. if (--bvec >= bio->bi_io_vec)
  63. prefetchw(&bvec->bv_page->flags);
  64. if (unlikely(!uptodate)) {
  65. SetPageError(page);
  66. set_bit(AS_EIO, &page->mapping->flags);
  67. set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
  68. sbi->sb->s_flags |= MS_RDONLY;
  69. }
  70. end_page_writeback(page);
  71. dec_page_count(sbi, F2FS_WRITEBACK);
  72. } while (bvec >= bio->bi_io_vec);
  73. if (bio->bi_private)
  74. complete(bio->bi_private);
  75. if (!get_pages(sbi, F2FS_WRITEBACK) &&
  76. !list_empty(&sbi->cp_wait.task_list))
  77. wake_up(&sbi->cp_wait);
  78. bio_put(bio);
  79. }
  80. static void __submit_merged_bio(struct f2fs_sb_info *sbi,
  81. struct f2fs_bio_info *io,
  82. enum page_type type, bool sync, int rw)
  83. {
  84. enum page_type btype = PAGE_TYPE_OF_BIO(type);
  85. if (!io->bio)
  86. return;
  87. if (btype == META)
  88. rw |= REQ_META;
  89. if (is_read_io(rw)) {
  90. if (sync)
  91. rw |= READ_SYNC;
  92. submit_bio(rw, io->bio);
  93. trace_f2fs_submit_read_bio(sbi->sb, rw, type, io->bio);
  94. io->bio = NULL;
  95. return;
  96. }
  97. if (sync)
  98. rw |= WRITE_SYNC;
  99. if (type >= META_FLUSH)
  100. rw |= WRITE_FLUSH_FUA;
  101. /*
  102. * META_FLUSH is only from the checkpoint procedure, and we should wait
  103. * this metadata bio for FS consistency.
  104. */
  105. if (type == META_FLUSH) {
  106. DECLARE_COMPLETION_ONSTACK(wait);
  107. io->bio->bi_private = &wait;
  108. submit_bio(rw, io->bio);
  109. wait_for_completion(&wait);
  110. } else {
  111. submit_bio(rw, io->bio);
  112. }
  113. trace_f2fs_submit_write_bio(sbi->sb, rw, btype, io->bio);
  114. io->bio = NULL;
  115. }
  116. void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
  117. enum page_type type, bool sync, int rw)
  118. {
  119. enum page_type btype = PAGE_TYPE_OF_BIO(type);
  120. struct f2fs_bio_info *io;
  121. io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
  122. mutex_lock(&io->io_mutex);
  123. __submit_merged_bio(sbi, io, type, sync, rw);
  124. mutex_unlock(&io->io_mutex);
  125. }
  126. /*
  127. * Fill the locked page with data located in the block address.
  128. * Return unlocked page.
  129. */
  130. int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
  131. block_t blk_addr, int rw)
  132. {
  133. struct block_device *bdev = sbi->sb->s_bdev;
  134. struct bio *bio;
  135. trace_f2fs_submit_page_bio(page, blk_addr, rw);
  136. /* Allocate a new bio */
  137. bio = __bio_alloc(bdev, 1);
  138. /* Initialize the bio */
  139. bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
  140. bio->bi_end_io = is_read_io(rw) ? f2fs_read_end_io : f2fs_write_end_io;
  141. if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
  142. bio_put(bio);
  143. f2fs_put_page(page, 1);
  144. return -EFAULT;
  145. }
  146. submit_bio(rw, bio);
  147. return 0;
  148. }
  149. void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
  150. block_t blk_addr, enum page_type type, int rw)
  151. {
  152. enum page_type btype = PAGE_TYPE_OF_BIO(type);
  153. struct block_device *bdev = sbi->sb->s_bdev;
  154. struct f2fs_bio_info *io;
  155. int bio_blocks;
  156. io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
  157. verify_block_addr(sbi, blk_addr);
  158. mutex_lock(&io->io_mutex);
  159. if (!is_read_io(rw))
  160. inc_page_count(sbi, F2FS_WRITEBACK);
  161. if (io->bio && (io->last_block_in_bio != blk_addr - 1 ||
  162. io->rw_flag != rw))
  163. __submit_merged_bio(sbi, io, type, false, io->rw_flag);
  164. alloc_new:
  165. if (io->bio == NULL) {
  166. bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
  167. io->bio = __bio_alloc(bdev, bio_blocks);
  168. io->bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
  169. io->bio->bi_end_io = is_read_io(rw) ? f2fs_read_end_io :
  170. f2fs_write_end_io;
  171. io->rw_flag = rw;
  172. /*
  173. * The end_io will be assigned at the sumbission phase.
  174. * Until then, let bio_add_page() merge consecutive IOs as much
  175. * as possible.
  176. */
  177. }
  178. if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
  179. PAGE_CACHE_SIZE) {
  180. __submit_merged_bio(sbi, io, type, false, rw);
  181. goto alloc_new;
  182. }
  183. io->last_block_in_bio = blk_addr;
  184. mutex_unlock(&io->io_mutex);
  185. trace_f2fs_submit_page_mbio(page, rw, type, blk_addr);
  186. }
  187. /*
  188. * Lock ordering for the change of data block address:
  189. * ->data_page
  190. * ->node_page
  191. * update block addresses in the node page
  192. */
  193. static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
  194. {
  195. struct f2fs_node *rn;
  196. __le32 *addr_array;
  197. struct page *node_page = dn->node_page;
  198. unsigned int ofs_in_node = dn->ofs_in_node;
  199. f2fs_wait_on_page_writeback(node_page, NODE, false);
  200. rn = F2FS_NODE(node_page);
  201. /* Get physical address of data block */
  202. addr_array = blkaddr_in_node(rn);
  203. addr_array[ofs_in_node] = cpu_to_le32(new_addr);
  204. set_page_dirty(node_page);
  205. }
  206. int reserve_new_block(struct dnode_of_data *dn)
  207. {
  208. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  209. if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
  210. return -EPERM;
  211. if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
  212. return -ENOSPC;
  213. trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
  214. __set_data_blkaddr(dn, NEW_ADDR);
  215. dn->data_blkaddr = NEW_ADDR;
  216. sync_inode_page(dn);
  217. return 0;
  218. }
  219. int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
  220. {
  221. bool need_put = dn->inode_page ? false : true;
  222. int err;
  223. err = get_dnode_of_data(dn, index, ALLOC_NODE);
  224. if (err)
  225. return err;
  226. if (dn->data_blkaddr == NULL_ADDR)
  227. err = reserve_new_block(dn);
  228. if (need_put)
  229. f2fs_put_dnode(dn);
  230. return err;
  231. }
  232. static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
  233. struct buffer_head *bh_result)
  234. {
  235. struct f2fs_inode_info *fi = F2FS_I(inode);
  236. pgoff_t start_fofs, end_fofs;
  237. block_t start_blkaddr;
  238. if (is_inode_flag_set(fi, FI_NO_EXTENT))
  239. return 0;
  240. read_lock(&fi->ext.ext_lock);
  241. if (fi->ext.len == 0) {
  242. read_unlock(&fi->ext.ext_lock);
  243. return 0;
  244. }
  245. stat_inc_total_hit(inode->i_sb);
  246. start_fofs = fi->ext.fofs;
  247. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  248. start_blkaddr = fi->ext.blk_addr;
  249. if (pgofs >= start_fofs && pgofs <= end_fofs) {
  250. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  251. size_t count;
  252. clear_buffer_new(bh_result);
  253. map_bh(bh_result, inode->i_sb,
  254. start_blkaddr + pgofs - start_fofs);
  255. count = end_fofs - pgofs + 1;
  256. if (count < (UINT_MAX >> blkbits))
  257. bh_result->b_size = (count << blkbits);
  258. else
  259. bh_result->b_size = UINT_MAX;
  260. stat_inc_read_hit(inode->i_sb);
  261. read_unlock(&fi->ext.ext_lock);
  262. return 1;
  263. }
  264. read_unlock(&fi->ext.ext_lock);
  265. return 0;
  266. }
  267. void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
  268. {
  269. struct f2fs_inode_info *fi = F2FS_I(dn->inode);
  270. pgoff_t fofs, start_fofs, end_fofs;
  271. block_t start_blkaddr, end_blkaddr;
  272. int need_update = true;
  273. f2fs_bug_on(blk_addr == NEW_ADDR);
  274. fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
  275. dn->ofs_in_node;
  276. /* Update the page address in the parent node */
  277. __set_data_blkaddr(dn, blk_addr);
  278. if (is_inode_flag_set(fi, FI_NO_EXTENT))
  279. return;
  280. write_lock(&fi->ext.ext_lock);
  281. start_fofs = fi->ext.fofs;
  282. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  283. start_blkaddr = fi->ext.blk_addr;
  284. end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
  285. /* Drop and initialize the matched extent */
  286. if (fi->ext.len == 1 && fofs == start_fofs)
  287. fi->ext.len = 0;
  288. /* Initial extent */
  289. if (fi->ext.len == 0) {
  290. if (blk_addr != NULL_ADDR) {
  291. fi->ext.fofs = fofs;
  292. fi->ext.blk_addr = blk_addr;
  293. fi->ext.len = 1;
  294. }
  295. goto end_update;
  296. }
  297. /* Front merge */
  298. if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
  299. fi->ext.fofs--;
  300. fi->ext.blk_addr--;
  301. fi->ext.len++;
  302. goto end_update;
  303. }
  304. /* Back merge */
  305. if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
  306. fi->ext.len++;
  307. goto end_update;
  308. }
  309. /* Split the existing extent */
  310. if (fi->ext.len > 1 &&
  311. fofs >= start_fofs && fofs <= end_fofs) {
  312. if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
  313. fi->ext.len = fofs - start_fofs;
  314. } else {
  315. fi->ext.fofs = fofs + 1;
  316. fi->ext.blk_addr = start_blkaddr +
  317. fofs - start_fofs + 1;
  318. fi->ext.len -= fofs - start_fofs + 1;
  319. }
  320. } else {
  321. need_update = false;
  322. }
  323. /* Finally, if the extent is very fragmented, let's drop the cache. */
  324. if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
  325. fi->ext.len = 0;
  326. set_inode_flag(fi, FI_NO_EXTENT);
  327. need_update = true;
  328. }
  329. end_update:
  330. write_unlock(&fi->ext.ext_lock);
  331. if (need_update)
  332. sync_inode_page(dn);
  333. return;
  334. }
  335. struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
  336. {
  337. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  338. struct address_space *mapping = inode->i_mapping;
  339. struct dnode_of_data dn;
  340. struct page *page;
  341. int err;
  342. page = find_get_page(mapping, index);
  343. if (page && PageUptodate(page))
  344. return page;
  345. f2fs_put_page(page, 0);
  346. set_new_dnode(&dn, inode, NULL, NULL, 0);
  347. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  348. if (err)
  349. return ERR_PTR(err);
  350. f2fs_put_dnode(&dn);
  351. if (dn.data_blkaddr == NULL_ADDR)
  352. return ERR_PTR(-ENOENT);
  353. /* By fallocate(), there is no cached page, but with NEW_ADDR */
  354. if (unlikely(dn.data_blkaddr == NEW_ADDR))
  355. return ERR_PTR(-EINVAL);
  356. page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
  357. if (!page)
  358. return ERR_PTR(-ENOMEM);
  359. if (PageUptodate(page)) {
  360. unlock_page(page);
  361. return page;
  362. }
  363. err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
  364. sync ? READ_SYNC : READA);
  365. if (err)
  366. return ERR_PTR(err);
  367. if (sync) {
  368. wait_on_page_locked(page);
  369. if (unlikely(!PageUptodate(page))) {
  370. f2fs_put_page(page, 0);
  371. return ERR_PTR(-EIO);
  372. }
  373. }
  374. return page;
  375. }
  376. /*
  377. * If it tries to access a hole, return an error.
  378. * Because, the callers, functions in dir.c and GC, should be able to know
  379. * whether this page exists or not.
  380. */
  381. struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
  382. {
  383. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  384. struct address_space *mapping = inode->i_mapping;
  385. struct dnode_of_data dn;
  386. struct page *page;
  387. int err;
  388. repeat:
  389. page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
  390. if (!page)
  391. return ERR_PTR(-ENOMEM);
  392. set_new_dnode(&dn, inode, NULL, NULL, 0);
  393. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  394. if (err) {
  395. f2fs_put_page(page, 1);
  396. return ERR_PTR(err);
  397. }
  398. f2fs_put_dnode(&dn);
  399. if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
  400. f2fs_put_page(page, 1);
  401. return ERR_PTR(-ENOENT);
  402. }
  403. if (PageUptodate(page))
  404. return page;
  405. /*
  406. * A new dentry page is allocated but not able to be written, since its
  407. * new inode page couldn't be allocated due to -ENOSPC.
  408. * In such the case, its blkaddr can be remained as NEW_ADDR.
  409. * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
  410. */
  411. if (dn.data_blkaddr == NEW_ADDR) {
  412. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  413. SetPageUptodate(page);
  414. return page;
  415. }
  416. err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr, READ_SYNC);
  417. if (err)
  418. return ERR_PTR(err);
  419. lock_page(page);
  420. if (unlikely(!PageUptodate(page))) {
  421. f2fs_put_page(page, 1);
  422. return ERR_PTR(-EIO);
  423. }
  424. if (unlikely(page->mapping != mapping)) {
  425. f2fs_put_page(page, 1);
  426. goto repeat;
  427. }
  428. return page;
  429. }
  430. /*
  431. * Caller ensures that this data page is never allocated.
  432. * A new zero-filled data page is allocated in the page cache.
  433. *
  434. * Also, caller should grab and release a mutex by calling mutex_lock_op() and
  435. * mutex_unlock_op().
  436. * Note that, npage is set only by make_empty_dir.
  437. */
  438. struct page *get_new_data_page(struct inode *inode,
  439. struct page *npage, pgoff_t index, bool new_i_size)
  440. {
  441. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  442. struct address_space *mapping = inode->i_mapping;
  443. struct page *page;
  444. struct dnode_of_data dn;
  445. int err;
  446. set_new_dnode(&dn, inode, npage, npage, 0);
  447. err = f2fs_reserve_block(&dn, index);
  448. if (err)
  449. return ERR_PTR(err);
  450. repeat:
  451. page = grab_cache_page(mapping, index);
  452. if (!page)
  453. return ERR_PTR(-ENOMEM);
  454. if (PageUptodate(page))
  455. return page;
  456. if (dn.data_blkaddr == NEW_ADDR) {
  457. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  458. SetPageUptodate(page);
  459. } else {
  460. err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
  461. READ_SYNC);
  462. if (err)
  463. return ERR_PTR(err);
  464. lock_page(page);
  465. if (unlikely(!PageUptodate(page))) {
  466. f2fs_put_page(page, 1);
  467. return ERR_PTR(-EIO);
  468. }
  469. if (unlikely(page->mapping != mapping)) {
  470. f2fs_put_page(page, 1);
  471. goto repeat;
  472. }
  473. }
  474. if (new_i_size &&
  475. i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
  476. i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
  477. /* Only the directory inode sets new_i_size */
  478. set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
  479. mark_inode_dirty_sync(inode);
  480. }
  481. return page;
  482. }
  483. /*
  484. * This function should be used by the data read flow only where it
  485. * does not check the "create" flag that indicates block allocation.
  486. * The reason for this special functionality is to exploit VFS readahead
  487. * mechanism.
  488. */
  489. static int get_data_block_ro(struct inode *inode, sector_t iblock,
  490. struct buffer_head *bh_result, int create)
  491. {
  492. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  493. unsigned maxblocks = bh_result->b_size >> blkbits;
  494. struct dnode_of_data dn;
  495. pgoff_t pgofs;
  496. int err;
  497. /* Get the page offset from the block offset(iblock) */
  498. pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
  499. if (check_extent_cache(inode, pgofs, bh_result)) {
  500. trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
  501. return 0;
  502. }
  503. /* When reading holes, we need its node page */
  504. set_new_dnode(&dn, inode, NULL, NULL, 0);
  505. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
  506. if (err) {
  507. trace_f2fs_get_data_block(inode, iblock, bh_result, err);
  508. return (err == -ENOENT) ? 0 : err;
  509. }
  510. /* It does not support data allocation */
  511. f2fs_bug_on(create);
  512. if (dn.data_blkaddr != NEW_ADDR && dn.data_blkaddr != NULL_ADDR) {
  513. int i;
  514. unsigned int end_offset;
  515. end_offset = IS_INODE(dn.node_page) ?
  516. ADDRS_PER_INODE(F2FS_I(inode)) :
  517. ADDRS_PER_BLOCK;
  518. clear_buffer_new(bh_result);
  519. /* Give more consecutive addresses for the read ahead */
  520. for (i = 0; i < end_offset - dn.ofs_in_node; i++)
  521. if (((datablock_addr(dn.node_page,
  522. dn.ofs_in_node + i))
  523. != (dn.data_blkaddr + i)) || maxblocks == i)
  524. break;
  525. map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
  526. bh_result->b_size = (((size_t)i) << blkbits);
  527. }
  528. f2fs_put_dnode(&dn);
  529. trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
  530. return 0;
  531. }
  532. static int f2fs_read_data_page(struct file *file, struct page *page)
  533. {
  534. return mpage_readpage(page, get_data_block_ro);
  535. }
  536. static int f2fs_read_data_pages(struct file *file,
  537. struct address_space *mapping,
  538. struct list_head *pages, unsigned nr_pages)
  539. {
  540. return mpage_readpages(mapping, pages, nr_pages, get_data_block_ro);
  541. }
  542. int do_write_data_page(struct page *page, struct writeback_control *wbc)
  543. {
  544. struct inode *inode = page->mapping->host;
  545. block_t old_blk_addr, new_blk_addr;
  546. struct dnode_of_data dn;
  547. int err = 0;
  548. set_new_dnode(&dn, inode, NULL, NULL, 0);
  549. err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  550. if (err)
  551. return err;
  552. old_blk_addr = dn.data_blkaddr;
  553. /* This page is already truncated */
  554. if (old_blk_addr == NULL_ADDR)
  555. goto out_writepage;
  556. set_page_writeback(page);
  557. /*
  558. * If current allocation needs SSR,
  559. * it had better in-place writes for updated data.
  560. */
  561. if (unlikely(old_blk_addr != NEW_ADDR &&
  562. !is_cold_data(page) &&
  563. need_inplace_update(inode))) {
  564. rewrite_data_page(F2FS_SB(inode->i_sb), page,
  565. old_blk_addr, wbc);
  566. } else {
  567. write_data_page(inode, page, &dn,
  568. old_blk_addr, &new_blk_addr, wbc);
  569. update_extent_cache(new_blk_addr, &dn);
  570. }
  571. out_writepage:
  572. f2fs_put_dnode(&dn);
  573. return err;
  574. }
  575. static int f2fs_write_data_page(struct page *page,
  576. struct writeback_control *wbc)
  577. {
  578. struct inode *inode = page->mapping->host;
  579. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  580. loff_t i_size = i_size_read(inode);
  581. const pgoff_t end_index = ((unsigned long long) i_size)
  582. >> PAGE_CACHE_SHIFT;
  583. unsigned offset;
  584. bool need_balance_fs = false;
  585. int err = 0;
  586. if (page->index < end_index)
  587. goto write;
  588. /*
  589. * If the offset is out-of-range of file size,
  590. * this page does not have to be written to disk.
  591. */
  592. offset = i_size & (PAGE_CACHE_SIZE - 1);
  593. if ((page->index >= end_index + 1) || !offset) {
  594. if (S_ISDIR(inode->i_mode)) {
  595. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  596. inode_dec_dirty_dents(inode);
  597. }
  598. goto out;
  599. }
  600. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  601. write:
  602. if (unlikely(sbi->por_doing)) {
  603. err = AOP_WRITEPAGE_ACTIVATE;
  604. goto redirty_out;
  605. }
  606. /* Dentry blocks are controlled by checkpoint */
  607. if (S_ISDIR(inode->i_mode)) {
  608. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  609. inode_dec_dirty_dents(inode);
  610. err = do_write_data_page(page, wbc);
  611. } else {
  612. f2fs_lock_op(sbi);
  613. err = do_write_data_page(page, wbc);
  614. f2fs_unlock_op(sbi);
  615. need_balance_fs = true;
  616. }
  617. if (err == -ENOENT)
  618. goto out;
  619. else if (err)
  620. goto redirty_out;
  621. if (wbc->for_reclaim)
  622. f2fs_submit_merged_bio(sbi, DATA, true, WRITE);
  623. clear_cold_data(page);
  624. out:
  625. unlock_page(page);
  626. if (need_balance_fs)
  627. f2fs_balance_fs(sbi);
  628. return 0;
  629. redirty_out:
  630. wbc->pages_skipped++;
  631. set_page_dirty(page);
  632. return err;
  633. }
  634. #define MAX_DESIRED_PAGES_WP 4096
  635. static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
  636. void *data)
  637. {
  638. struct address_space *mapping = data;
  639. int ret = mapping->a_ops->writepage(page, wbc);
  640. mapping_set_error(mapping, ret);
  641. return ret;
  642. }
  643. static int f2fs_write_data_pages(struct address_space *mapping,
  644. struct writeback_control *wbc)
  645. {
  646. struct inode *inode = mapping->host;
  647. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  648. bool locked = false;
  649. int ret;
  650. long excess_nrtw = 0, desired_nrtw;
  651. /* deal with chardevs and other special file */
  652. if (!mapping->a_ops->writepage)
  653. return 0;
  654. if (wbc->nr_to_write < MAX_DESIRED_PAGES_WP) {
  655. desired_nrtw = MAX_DESIRED_PAGES_WP;
  656. excess_nrtw = desired_nrtw - wbc->nr_to_write;
  657. wbc->nr_to_write = desired_nrtw;
  658. }
  659. if (!S_ISDIR(inode->i_mode)) {
  660. mutex_lock(&sbi->writepages);
  661. locked = true;
  662. }
  663. ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
  664. if (locked)
  665. mutex_unlock(&sbi->writepages);
  666. f2fs_submit_merged_bio(sbi, DATA, wbc->sync_mode == WB_SYNC_ALL, WRITE);
  667. remove_dirty_dir_inode(inode);
  668. wbc->nr_to_write -= excess_nrtw;
  669. return ret;
  670. }
  671. static int f2fs_write_begin(struct file *file, struct address_space *mapping,
  672. loff_t pos, unsigned len, unsigned flags,
  673. struct page **pagep, void **fsdata)
  674. {
  675. struct inode *inode = mapping->host;
  676. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  677. struct page *page;
  678. pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
  679. struct dnode_of_data dn;
  680. int err = 0;
  681. f2fs_balance_fs(sbi);
  682. repeat:
  683. page = grab_cache_page_write_begin(mapping, index, flags);
  684. if (!page)
  685. return -ENOMEM;
  686. *pagep = page;
  687. f2fs_lock_op(sbi);
  688. set_new_dnode(&dn, inode, NULL, NULL, 0);
  689. err = f2fs_reserve_block(&dn, index);
  690. f2fs_unlock_op(sbi);
  691. if (err) {
  692. f2fs_put_page(page, 1);
  693. return err;
  694. }
  695. if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
  696. return 0;
  697. if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
  698. unsigned start = pos & (PAGE_CACHE_SIZE - 1);
  699. unsigned end = start + len;
  700. /* Reading beyond i_size is simple: memset to zero */
  701. zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
  702. goto out;
  703. }
  704. if (dn.data_blkaddr == NEW_ADDR) {
  705. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  706. } else {
  707. err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
  708. READ_SYNC);
  709. if (err)
  710. return err;
  711. lock_page(page);
  712. if (unlikely(!PageUptodate(page))) {
  713. f2fs_put_page(page, 1);
  714. return -EIO;
  715. }
  716. if (unlikely(page->mapping != mapping)) {
  717. f2fs_put_page(page, 1);
  718. goto repeat;
  719. }
  720. }
  721. out:
  722. SetPageUptodate(page);
  723. clear_cold_data(page);
  724. return 0;
  725. }
  726. static int f2fs_write_end(struct file *file,
  727. struct address_space *mapping,
  728. loff_t pos, unsigned len, unsigned copied,
  729. struct page *page, void *fsdata)
  730. {
  731. struct inode *inode = page->mapping->host;
  732. SetPageUptodate(page);
  733. set_page_dirty(page);
  734. if (pos + copied > i_size_read(inode)) {
  735. i_size_write(inode, pos + copied);
  736. mark_inode_dirty(inode);
  737. update_inode_page(inode);
  738. }
  739. f2fs_put_page(page, 1);
  740. return copied;
  741. }
  742. static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
  743. const struct iovec *iov, loff_t offset, unsigned long nr_segs)
  744. {
  745. struct file *file = iocb->ki_filp;
  746. struct inode *inode = file->f_mapping->host;
  747. if (rw == WRITE)
  748. return 0;
  749. /* Needs synchronization with the cleaner */
  750. return blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
  751. get_data_block_ro);
  752. }
  753. static void f2fs_invalidate_data_page(struct page *page, unsigned int offset,
  754. unsigned int length)
  755. {
  756. struct inode *inode = page->mapping->host;
  757. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  758. if (S_ISDIR(inode->i_mode) && PageDirty(page)) {
  759. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  760. inode_dec_dirty_dents(inode);
  761. }
  762. ClearPagePrivate(page);
  763. }
  764. static int f2fs_release_data_page(struct page *page, gfp_t wait)
  765. {
  766. ClearPagePrivate(page);
  767. return 1;
  768. }
  769. static int f2fs_set_data_page_dirty(struct page *page)
  770. {
  771. struct address_space *mapping = page->mapping;
  772. struct inode *inode = mapping->host;
  773. trace_f2fs_set_page_dirty(page, DATA);
  774. SetPageUptodate(page);
  775. if (!PageDirty(page)) {
  776. __set_page_dirty_nobuffers(page);
  777. set_dirty_dir_page(inode, page);
  778. return 1;
  779. }
  780. return 0;
  781. }
  782. static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
  783. {
  784. return generic_block_bmap(mapping, block, get_data_block_ro);
  785. }
  786. const struct address_space_operations f2fs_dblock_aops = {
  787. .readpage = f2fs_read_data_page,
  788. .readpages = f2fs_read_data_pages,
  789. .writepage = f2fs_write_data_page,
  790. .writepages = f2fs_write_data_pages,
  791. .write_begin = f2fs_write_begin,
  792. .write_end = f2fs_write_end,
  793. .set_page_dirty = f2fs_set_data_page_dirty,
  794. .invalidatepage = f2fs_invalidate_data_page,
  795. .releasepage = f2fs_release_data_page,
  796. .direct_IO = f2fs_direct_IO,
  797. .bmap = f2fs_bmap,
  798. };