disk-io.c 118 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/slab.h>
  29. #include <linux/migrate.h>
  30. #include <linux/ratelimit.h>
  31. #include <linux/uuid.h>
  32. #include <linux/semaphore.h>
  33. #include <asm/unaligned.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "hash.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #ifdef CONFIG_X86
  52. #include <asm/cpufeature.h>
  53. #endif
  54. static const struct extent_io_ops btree_extent_io_ops;
  55. static void end_workqueue_fn(struct btrfs_work *work);
  56. static void free_fs_root(struct btrfs_root *root);
  57. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  58. int read_only);
  59. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  60. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  61. struct btrfs_root *root);
  62. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  63. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  64. struct extent_io_tree *dirty_pages,
  65. int mark);
  66. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  67. struct extent_io_tree *pinned_extents);
  68. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  69. static void btrfs_error_commit_super(struct btrfs_root *root);
  70. /*
  71. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  72. * is complete. This is used during reads to verify checksums, and it is used
  73. * by writes to insert metadata for new file extents after IO is complete.
  74. */
  75. struct btrfs_end_io_wq {
  76. struct bio *bio;
  77. bio_end_io_t *end_io;
  78. void *private;
  79. struct btrfs_fs_info *info;
  80. int error;
  81. enum btrfs_wq_endio_type metadata;
  82. struct list_head list;
  83. struct btrfs_work work;
  84. };
  85. static struct kmem_cache *btrfs_end_io_wq_cache;
  86. int __init btrfs_end_io_wq_init(void)
  87. {
  88. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  89. sizeof(struct btrfs_end_io_wq),
  90. 0,
  91. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  92. NULL);
  93. if (!btrfs_end_io_wq_cache)
  94. return -ENOMEM;
  95. return 0;
  96. }
  97. void btrfs_end_io_wq_exit(void)
  98. {
  99. if (btrfs_end_io_wq_cache)
  100. kmem_cache_destroy(btrfs_end_io_wq_cache);
  101. }
  102. /*
  103. * async submit bios are used to offload expensive checksumming
  104. * onto the worker threads. They checksum file and metadata bios
  105. * just before they are sent down the IO stack.
  106. */
  107. struct async_submit_bio {
  108. struct inode *inode;
  109. struct bio *bio;
  110. struct list_head list;
  111. extent_submit_bio_hook_t *submit_bio_start;
  112. extent_submit_bio_hook_t *submit_bio_done;
  113. int rw;
  114. int mirror_num;
  115. unsigned long bio_flags;
  116. /*
  117. * bio_offset is optional, can be used if the pages in the bio
  118. * can't tell us where in the file the bio should go
  119. */
  120. u64 bio_offset;
  121. struct btrfs_work work;
  122. int error;
  123. };
  124. /*
  125. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  126. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  127. * the level the eb occupies in the tree.
  128. *
  129. * Different roots are used for different purposes and may nest inside each
  130. * other and they require separate keysets. As lockdep keys should be
  131. * static, assign keysets according to the purpose of the root as indicated
  132. * by btrfs_root->objectid. This ensures that all special purpose roots
  133. * have separate keysets.
  134. *
  135. * Lock-nesting across peer nodes is always done with the immediate parent
  136. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  137. * subclass to avoid triggering lockdep warning in such cases.
  138. *
  139. * The key is set by the readpage_end_io_hook after the buffer has passed
  140. * csum validation but before the pages are unlocked. It is also set by
  141. * btrfs_init_new_buffer on freshly allocated blocks.
  142. *
  143. * We also add a check to make sure the highest level of the tree is the
  144. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  145. * needs update as well.
  146. */
  147. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  148. # if BTRFS_MAX_LEVEL != 8
  149. # error
  150. # endif
  151. static struct btrfs_lockdep_keyset {
  152. u64 id; /* root objectid */
  153. const char *name_stem; /* lock name stem */
  154. char names[BTRFS_MAX_LEVEL + 1][20];
  155. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  156. } btrfs_lockdep_keysets[] = {
  157. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  158. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  159. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  160. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  161. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  162. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  163. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  164. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  165. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  166. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  167. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  168. { .id = 0, .name_stem = "tree" },
  169. };
  170. void __init btrfs_init_lockdep(void)
  171. {
  172. int i, j;
  173. /* initialize lockdep class names */
  174. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  175. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  176. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  177. snprintf(ks->names[j], sizeof(ks->names[j]),
  178. "btrfs-%s-%02d", ks->name_stem, j);
  179. }
  180. }
  181. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  182. int level)
  183. {
  184. struct btrfs_lockdep_keyset *ks;
  185. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  186. /* find the matching keyset, id 0 is the default entry */
  187. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  188. if (ks->id == objectid)
  189. break;
  190. lockdep_set_class_and_name(&eb->lock,
  191. &ks->keys[level], ks->names[level]);
  192. }
  193. #endif
  194. /*
  195. * extents on the btree inode are pretty simple, there's one extent
  196. * that covers the entire device
  197. */
  198. static struct extent_map *btree_get_extent(struct inode *inode,
  199. struct page *page, size_t pg_offset, u64 start, u64 len,
  200. int create)
  201. {
  202. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  203. struct extent_map *em;
  204. int ret;
  205. read_lock(&em_tree->lock);
  206. em = lookup_extent_mapping(em_tree, start, len);
  207. if (em) {
  208. em->bdev =
  209. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  210. read_unlock(&em_tree->lock);
  211. goto out;
  212. }
  213. read_unlock(&em_tree->lock);
  214. em = alloc_extent_map();
  215. if (!em) {
  216. em = ERR_PTR(-ENOMEM);
  217. goto out;
  218. }
  219. em->start = 0;
  220. em->len = (u64)-1;
  221. em->block_len = (u64)-1;
  222. em->block_start = 0;
  223. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  224. write_lock(&em_tree->lock);
  225. ret = add_extent_mapping(em_tree, em, 0);
  226. if (ret == -EEXIST) {
  227. free_extent_map(em);
  228. em = lookup_extent_mapping(em_tree, start, len);
  229. if (!em)
  230. em = ERR_PTR(-EIO);
  231. } else if (ret) {
  232. free_extent_map(em);
  233. em = ERR_PTR(ret);
  234. }
  235. write_unlock(&em_tree->lock);
  236. out:
  237. return em;
  238. }
  239. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  240. {
  241. return btrfs_crc32c(seed, data, len);
  242. }
  243. void btrfs_csum_final(u32 crc, char *result)
  244. {
  245. put_unaligned_le32(~crc, result);
  246. }
  247. /*
  248. * compute the csum for a btree block, and either verify it or write it
  249. * into the csum field of the block.
  250. */
  251. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  252. struct extent_buffer *buf,
  253. int verify)
  254. {
  255. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  256. char *result = NULL;
  257. unsigned long len;
  258. unsigned long cur_len;
  259. unsigned long offset = BTRFS_CSUM_SIZE;
  260. char *kaddr;
  261. unsigned long map_start;
  262. unsigned long map_len;
  263. int err;
  264. u32 crc = ~(u32)0;
  265. unsigned long inline_result;
  266. len = buf->len - offset;
  267. while (len > 0) {
  268. err = map_private_extent_buffer(buf, offset, 32,
  269. &kaddr, &map_start, &map_len);
  270. if (err)
  271. return 1;
  272. cur_len = min(len, map_len - (offset - map_start));
  273. crc = btrfs_csum_data(kaddr + offset - map_start,
  274. crc, cur_len);
  275. len -= cur_len;
  276. offset += cur_len;
  277. }
  278. if (csum_size > sizeof(inline_result)) {
  279. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  280. if (!result)
  281. return 1;
  282. } else {
  283. result = (char *)&inline_result;
  284. }
  285. btrfs_csum_final(crc, result);
  286. if (verify) {
  287. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  288. u32 val;
  289. u32 found = 0;
  290. memcpy(&found, result, csum_size);
  291. read_extent_buffer(buf, &val, 0, csum_size);
  292. printk_ratelimited(KERN_WARNING
  293. "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
  294. "level %d\n",
  295. fs_info->sb->s_id, buf->start,
  296. val, found, btrfs_header_level(buf));
  297. if (result != (char *)&inline_result)
  298. kfree(result);
  299. return 1;
  300. }
  301. } else {
  302. write_extent_buffer(buf, result, 0, csum_size);
  303. }
  304. if (result != (char *)&inline_result)
  305. kfree(result);
  306. return 0;
  307. }
  308. /*
  309. * we can't consider a given block up to date unless the transid of the
  310. * block matches the transid in the parent node's pointer. This is how we
  311. * detect blocks that either didn't get written at all or got written
  312. * in the wrong place.
  313. */
  314. static int verify_parent_transid(struct extent_io_tree *io_tree,
  315. struct extent_buffer *eb, u64 parent_transid,
  316. int atomic)
  317. {
  318. struct extent_state *cached_state = NULL;
  319. int ret;
  320. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  321. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  322. return 0;
  323. if (atomic)
  324. return -EAGAIN;
  325. if (need_lock) {
  326. btrfs_tree_read_lock(eb);
  327. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  328. }
  329. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  330. 0, &cached_state);
  331. if (extent_buffer_uptodate(eb) &&
  332. btrfs_header_generation(eb) == parent_transid) {
  333. ret = 0;
  334. goto out;
  335. }
  336. printk_ratelimited(KERN_ERR
  337. "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
  338. eb->fs_info->sb->s_id, eb->start,
  339. parent_transid, btrfs_header_generation(eb));
  340. ret = 1;
  341. /*
  342. * Things reading via commit roots that don't have normal protection,
  343. * like send, can have a really old block in cache that may point at a
  344. * block that has been free'd and re-allocated. So don't clear uptodate
  345. * if we find an eb that is under IO (dirty/writeback) because we could
  346. * end up reading in the stale data and then writing it back out and
  347. * making everybody very sad.
  348. */
  349. if (!extent_buffer_under_io(eb))
  350. clear_extent_buffer_uptodate(eb);
  351. out:
  352. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  353. &cached_state, GFP_NOFS);
  354. if (need_lock)
  355. btrfs_tree_read_unlock_blocking(eb);
  356. return ret;
  357. }
  358. /*
  359. * Return 0 if the superblock checksum type matches the checksum value of that
  360. * algorithm. Pass the raw disk superblock data.
  361. */
  362. static int btrfs_check_super_csum(char *raw_disk_sb)
  363. {
  364. struct btrfs_super_block *disk_sb =
  365. (struct btrfs_super_block *)raw_disk_sb;
  366. u16 csum_type = btrfs_super_csum_type(disk_sb);
  367. int ret = 0;
  368. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  369. u32 crc = ~(u32)0;
  370. const int csum_size = sizeof(crc);
  371. char result[csum_size];
  372. /*
  373. * The super_block structure does not span the whole
  374. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  375. * is filled with zeros and is included in the checkum.
  376. */
  377. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  378. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  379. btrfs_csum_final(crc, result);
  380. if (memcmp(raw_disk_sb, result, csum_size))
  381. ret = 1;
  382. if (ret && btrfs_super_generation(disk_sb) < 10) {
  383. printk(KERN_WARNING
  384. "BTRFS: super block crcs don't match, older mkfs detected\n");
  385. ret = 0;
  386. }
  387. }
  388. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  389. printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
  390. csum_type);
  391. ret = 1;
  392. }
  393. return ret;
  394. }
  395. /*
  396. * helper to read a given tree block, doing retries as required when
  397. * the checksums don't match and we have alternate mirrors to try.
  398. */
  399. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  400. struct extent_buffer *eb,
  401. u64 start, u64 parent_transid)
  402. {
  403. struct extent_io_tree *io_tree;
  404. int failed = 0;
  405. int ret;
  406. int num_copies = 0;
  407. int mirror_num = 0;
  408. int failed_mirror = 0;
  409. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  410. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  411. while (1) {
  412. ret = read_extent_buffer_pages(io_tree, eb, start,
  413. WAIT_COMPLETE,
  414. btree_get_extent, mirror_num);
  415. if (!ret) {
  416. if (!verify_parent_transid(io_tree, eb,
  417. parent_transid, 0))
  418. break;
  419. else
  420. ret = -EIO;
  421. }
  422. /*
  423. * This buffer's crc is fine, but its contents are corrupted, so
  424. * there is no reason to read the other copies, they won't be
  425. * any less wrong.
  426. */
  427. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  428. break;
  429. num_copies = btrfs_num_copies(root->fs_info,
  430. eb->start, eb->len);
  431. if (num_copies == 1)
  432. break;
  433. if (!failed_mirror) {
  434. failed = 1;
  435. failed_mirror = eb->read_mirror;
  436. }
  437. mirror_num++;
  438. if (mirror_num == failed_mirror)
  439. mirror_num++;
  440. if (mirror_num > num_copies)
  441. break;
  442. }
  443. if (failed && !ret && failed_mirror)
  444. repair_eb_io_failure(root, eb, failed_mirror);
  445. return ret;
  446. }
  447. /*
  448. * checksum a dirty tree block before IO. This has extra checks to make sure
  449. * we only fill in the checksum field in the first page of a multi-page block
  450. */
  451. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  452. {
  453. u64 start = page_offset(page);
  454. u64 found_start;
  455. struct extent_buffer *eb;
  456. eb = (struct extent_buffer *)page->private;
  457. if (page != eb->pages[0])
  458. return 0;
  459. found_start = btrfs_header_bytenr(eb);
  460. if (WARN_ON(found_start != start || !PageUptodate(page)))
  461. return 0;
  462. csum_tree_block(fs_info, eb, 0);
  463. return 0;
  464. }
  465. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  466. struct extent_buffer *eb)
  467. {
  468. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  469. u8 fsid[BTRFS_UUID_SIZE];
  470. int ret = 1;
  471. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  472. while (fs_devices) {
  473. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  474. ret = 0;
  475. break;
  476. }
  477. fs_devices = fs_devices->seed;
  478. }
  479. return ret;
  480. }
  481. #define CORRUPT(reason, eb, root, slot) \
  482. btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
  483. "root=%llu, slot=%d", reason, \
  484. btrfs_header_bytenr(eb), root->objectid, slot)
  485. static noinline int check_leaf(struct btrfs_root *root,
  486. struct extent_buffer *leaf)
  487. {
  488. struct btrfs_key key;
  489. struct btrfs_key leaf_key;
  490. u32 nritems = btrfs_header_nritems(leaf);
  491. int slot;
  492. if (nritems == 0)
  493. return 0;
  494. /* Check the 0 item */
  495. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  496. BTRFS_LEAF_DATA_SIZE(root)) {
  497. CORRUPT("invalid item offset size pair", leaf, root, 0);
  498. return -EIO;
  499. }
  500. /*
  501. * Check to make sure each items keys are in the correct order and their
  502. * offsets make sense. We only have to loop through nritems-1 because
  503. * we check the current slot against the next slot, which verifies the
  504. * next slot's offset+size makes sense and that the current's slot
  505. * offset is correct.
  506. */
  507. for (slot = 0; slot < nritems - 1; slot++) {
  508. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  509. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  510. /* Make sure the keys are in the right order */
  511. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  512. CORRUPT("bad key order", leaf, root, slot);
  513. return -EIO;
  514. }
  515. /*
  516. * Make sure the offset and ends are right, remember that the
  517. * item data starts at the end of the leaf and grows towards the
  518. * front.
  519. */
  520. if (btrfs_item_offset_nr(leaf, slot) !=
  521. btrfs_item_end_nr(leaf, slot + 1)) {
  522. CORRUPT("slot offset bad", leaf, root, slot);
  523. return -EIO;
  524. }
  525. /*
  526. * Check to make sure that we don't point outside of the leaf,
  527. * just incase all the items are consistent to eachother, but
  528. * all point outside of the leaf.
  529. */
  530. if (btrfs_item_end_nr(leaf, slot) >
  531. BTRFS_LEAF_DATA_SIZE(root)) {
  532. CORRUPT("slot end outside of leaf", leaf, root, slot);
  533. return -EIO;
  534. }
  535. }
  536. return 0;
  537. }
  538. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  539. u64 phy_offset, struct page *page,
  540. u64 start, u64 end, int mirror)
  541. {
  542. u64 found_start;
  543. int found_level;
  544. struct extent_buffer *eb;
  545. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  546. int ret = 0;
  547. int reads_done;
  548. if (!page->private)
  549. goto out;
  550. eb = (struct extent_buffer *)page->private;
  551. /* the pending IO might have been the only thing that kept this buffer
  552. * in memory. Make sure we have a ref for all this other checks
  553. */
  554. extent_buffer_get(eb);
  555. reads_done = atomic_dec_and_test(&eb->io_pages);
  556. if (!reads_done)
  557. goto err;
  558. eb->read_mirror = mirror;
  559. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  560. ret = -EIO;
  561. goto err;
  562. }
  563. found_start = btrfs_header_bytenr(eb);
  564. if (found_start != eb->start) {
  565. printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start "
  566. "%llu %llu\n",
  567. eb->fs_info->sb->s_id, found_start, eb->start);
  568. ret = -EIO;
  569. goto err;
  570. }
  571. if (check_tree_block_fsid(root->fs_info, eb)) {
  572. printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n",
  573. eb->fs_info->sb->s_id, eb->start);
  574. ret = -EIO;
  575. goto err;
  576. }
  577. found_level = btrfs_header_level(eb);
  578. if (found_level >= BTRFS_MAX_LEVEL) {
  579. btrfs_err(root->fs_info, "bad tree block level %d",
  580. (int)btrfs_header_level(eb));
  581. ret = -EIO;
  582. goto err;
  583. }
  584. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  585. eb, found_level);
  586. ret = csum_tree_block(root->fs_info, eb, 1);
  587. if (ret) {
  588. ret = -EIO;
  589. goto err;
  590. }
  591. /*
  592. * If this is a leaf block and it is corrupt, set the corrupt bit so
  593. * that we don't try and read the other copies of this block, just
  594. * return -EIO.
  595. */
  596. if (found_level == 0 && check_leaf(root, eb)) {
  597. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  598. ret = -EIO;
  599. }
  600. if (!ret)
  601. set_extent_buffer_uptodate(eb);
  602. err:
  603. if (reads_done &&
  604. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  605. btree_readahead_hook(root, eb, eb->start, ret);
  606. if (ret) {
  607. /*
  608. * our io error hook is going to dec the io pages
  609. * again, we have to make sure it has something
  610. * to decrement
  611. */
  612. atomic_inc(&eb->io_pages);
  613. clear_extent_buffer_uptodate(eb);
  614. }
  615. free_extent_buffer(eb);
  616. out:
  617. return ret;
  618. }
  619. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  620. {
  621. struct extent_buffer *eb;
  622. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  623. eb = (struct extent_buffer *)page->private;
  624. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  625. eb->read_mirror = failed_mirror;
  626. atomic_dec(&eb->io_pages);
  627. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  628. btree_readahead_hook(root, eb, eb->start, -EIO);
  629. return -EIO; /* we fixed nothing */
  630. }
  631. static void end_workqueue_bio(struct bio *bio, int err)
  632. {
  633. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  634. struct btrfs_fs_info *fs_info;
  635. struct btrfs_workqueue *wq;
  636. btrfs_work_func_t func;
  637. fs_info = end_io_wq->info;
  638. end_io_wq->error = err;
  639. if (bio->bi_rw & REQ_WRITE) {
  640. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  641. wq = fs_info->endio_meta_write_workers;
  642. func = btrfs_endio_meta_write_helper;
  643. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  644. wq = fs_info->endio_freespace_worker;
  645. func = btrfs_freespace_write_helper;
  646. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  647. wq = fs_info->endio_raid56_workers;
  648. func = btrfs_endio_raid56_helper;
  649. } else {
  650. wq = fs_info->endio_write_workers;
  651. func = btrfs_endio_write_helper;
  652. }
  653. } else {
  654. if (unlikely(end_io_wq->metadata ==
  655. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  656. wq = fs_info->endio_repair_workers;
  657. func = btrfs_endio_repair_helper;
  658. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  659. wq = fs_info->endio_raid56_workers;
  660. func = btrfs_endio_raid56_helper;
  661. } else if (end_io_wq->metadata) {
  662. wq = fs_info->endio_meta_workers;
  663. func = btrfs_endio_meta_helper;
  664. } else {
  665. wq = fs_info->endio_workers;
  666. func = btrfs_endio_helper;
  667. }
  668. }
  669. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  670. btrfs_queue_work(wq, &end_io_wq->work);
  671. }
  672. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  673. enum btrfs_wq_endio_type metadata)
  674. {
  675. struct btrfs_end_io_wq *end_io_wq;
  676. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  677. if (!end_io_wq)
  678. return -ENOMEM;
  679. end_io_wq->private = bio->bi_private;
  680. end_io_wq->end_io = bio->bi_end_io;
  681. end_io_wq->info = info;
  682. end_io_wq->error = 0;
  683. end_io_wq->bio = bio;
  684. end_io_wq->metadata = metadata;
  685. bio->bi_private = end_io_wq;
  686. bio->bi_end_io = end_workqueue_bio;
  687. return 0;
  688. }
  689. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  690. {
  691. unsigned long limit = min_t(unsigned long,
  692. info->thread_pool_size,
  693. info->fs_devices->open_devices);
  694. return 256 * limit;
  695. }
  696. static void run_one_async_start(struct btrfs_work *work)
  697. {
  698. struct async_submit_bio *async;
  699. int ret;
  700. async = container_of(work, struct async_submit_bio, work);
  701. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  702. async->mirror_num, async->bio_flags,
  703. async->bio_offset);
  704. if (ret)
  705. async->error = ret;
  706. }
  707. static void run_one_async_done(struct btrfs_work *work)
  708. {
  709. struct btrfs_fs_info *fs_info;
  710. struct async_submit_bio *async;
  711. int limit;
  712. async = container_of(work, struct async_submit_bio, work);
  713. fs_info = BTRFS_I(async->inode)->root->fs_info;
  714. limit = btrfs_async_submit_limit(fs_info);
  715. limit = limit * 2 / 3;
  716. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  717. waitqueue_active(&fs_info->async_submit_wait))
  718. wake_up(&fs_info->async_submit_wait);
  719. /* If an error occured we just want to clean up the bio and move on */
  720. if (async->error) {
  721. bio_endio(async->bio, async->error);
  722. return;
  723. }
  724. async->submit_bio_done(async->inode, async->rw, async->bio,
  725. async->mirror_num, async->bio_flags,
  726. async->bio_offset);
  727. }
  728. static void run_one_async_free(struct btrfs_work *work)
  729. {
  730. struct async_submit_bio *async;
  731. async = container_of(work, struct async_submit_bio, work);
  732. kfree(async);
  733. }
  734. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  735. int rw, struct bio *bio, int mirror_num,
  736. unsigned long bio_flags,
  737. u64 bio_offset,
  738. extent_submit_bio_hook_t *submit_bio_start,
  739. extent_submit_bio_hook_t *submit_bio_done)
  740. {
  741. struct async_submit_bio *async;
  742. async = kmalloc(sizeof(*async), GFP_NOFS);
  743. if (!async)
  744. return -ENOMEM;
  745. async->inode = inode;
  746. async->rw = rw;
  747. async->bio = bio;
  748. async->mirror_num = mirror_num;
  749. async->submit_bio_start = submit_bio_start;
  750. async->submit_bio_done = submit_bio_done;
  751. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  752. run_one_async_done, run_one_async_free);
  753. async->bio_flags = bio_flags;
  754. async->bio_offset = bio_offset;
  755. async->error = 0;
  756. atomic_inc(&fs_info->nr_async_submits);
  757. if (rw & REQ_SYNC)
  758. btrfs_set_work_high_priority(&async->work);
  759. btrfs_queue_work(fs_info->workers, &async->work);
  760. while (atomic_read(&fs_info->async_submit_draining) &&
  761. atomic_read(&fs_info->nr_async_submits)) {
  762. wait_event(fs_info->async_submit_wait,
  763. (atomic_read(&fs_info->nr_async_submits) == 0));
  764. }
  765. return 0;
  766. }
  767. static int btree_csum_one_bio(struct bio *bio)
  768. {
  769. struct bio_vec *bvec;
  770. struct btrfs_root *root;
  771. int i, ret = 0;
  772. bio_for_each_segment_all(bvec, bio, i) {
  773. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  774. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  775. if (ret)
  776. break;
  777. }
  778. return ret;
  779. }
  780. static int __btree_submit_bio_start(struct inode *inode, int rw,
  781. struct bio *bio, int mirror_num,
  782. unsigned long bio_flags,
  783. u64 bio_offset)
  784. {
  785. /*
  786. * when we're called for a write, we're already in the async
  787. * submission context. Just jump into btrfs_map_bio
  788. */
  789. return btree_csum_one_bio(bio);
  790. }
  791. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  792. int mirror_num, unsigned long bio_flags,
  793. u64 bio_offset)
  794. {
  795. int ret;
  796. /*
  797. * when we're called for a write, we're already in the async
  798. * submission context. Just jump into btrfs_map_bio
  799. */
  800. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  801. if (ret)
  802. bio_endio(bio, ret);
  803. return ret;
  804. }
  805. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  806. {
  807. if (bio_flags & EXTENT_BIO_TREE_LOG)
  808. return 0;
  809. #ifdef CONFIG_X86
  810. if (cpu_has_xmm4_2)
  811. return 0;
  812. #endif
  813. return 1;
  814. }
  815. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  816. int mirror_num, unsigned long bio_flags,
  817. u64 bio_offset)
  818. {
  819. int async = check_async_write(inode, bio_flags);
  820. int ret;
  821. if (!(rw & REQ_WRITE)) {
  822. /*
  823. * called for a read, do the setup so that checksum validation
  824. * can happen in the async kernel threads
  825. */
  826. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  827. bio, BTRFS_WQ_ENDIO_METADATA);
  828. if (ret)
  829. goto out_w_error;
  830. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  831. mirror_num, 0);
  832. } else if (!async) {
  833. ret = btree_csum_one_bio(bio);
  834. if (ret)
  835. goto out_w_error;
  836. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  837. mirror_num, 0);
  838. } else {
  839. /*
  840. * kthread helpers are used to submit writes so that
  841. * checksumming can happen in parallel across all CPUs
  842. */
  843. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  844. inode, rw, bio, mirror_num, 0,
  845. bio_offset,
  846. __btree_submit_bio_start,
  847. __btree_submit_bio_done);
  848. }
  849. if (ret) {
  850. out_w_error:
  851. bio_endio(bio, ret);
  852. }
  853. return ret;
  854. }
  855. #ifdef CONFIG_MIGRATION
  856. static int btree_migratepage(struct address_space *mapping,
  857. struct page *newpage, struct page *page,
  858. enum migrate_mode mode)
  859. {
  860. /*
  861. * we can't safely write a btree page from here,
  862. * we haven't done the locking hook
  863. */
  864. if (PageDirty(page))
  865. return -EAGAIN;
  866. /*
  867. * Buffers may be managed in a filesystem specific way.
  868. * We must have no buffers or drop them.
  869. */
  870. if (page_has_private(page) &&
  871. !try_to_release_page(page, GFP_KERNEL))
  872. return -EAGAIN;
  873. return migrate_page(mapping, newpage, page, mode);
  874. }
  875. #endif
  876. static int btree_writepages(struct address_space *mapping,
  877. struct writeback_control *wbc)
  878. {
  879. struct btrfs_fs_info *fs_info;
  880. int ret;
  881. if (wbc->sync_mode == WB_SYNC_NONE) {
  882. if (wbc->for_kupdate)
  883. return 0;
  884. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  885. /* this is a bit racy, but that's ok */
  886. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  887. BTRFS_DIRTY_METADATA_THRESH);
  888. if (ret < 0)
  889. return 0;
  890. }
  891. return btree_write_cache_pages(mapping, wbc);
  892. }
  893. static int btree_readpage(struct file *file, struct page *page)
  894. {
  895. struct extent_io_tree *tree;
  896. tree = &BTRFS_I(page->mapping->host)->io_tree;
  897. return extent_read_full_page(tree, page, btree_get_extent, 0);
  898. }
  899. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  900. {
  901. if (PageWriteback(page) || PageDirty(page))
  902. return 0;
  903. return try_release_extent_buffer(page);
  904. }
  905. static void btree_invalidatepage(struct page *page, unsigned int offset,
  906. unsigned int length)
  907. {
  908. struct extent_io_tree *tree;
  909. tree = &BTRFS_I(page->mapping->host)->io_tree;
  910. extent_invalidatepage(tree, page, offset);
  911. btree_releasepage(page, GFP_NOFS);
  912. if (PagePrivate(page)) {
  913. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  914. "page private not zero on page %llu",
  915. (unsigned long long)page_offset(page));
  916. ClearPagePrivate(page);
  917. set_page_private(page, 0);
  918. page_cache_release(page);
  919. }
  920. }
  921. static int btree_set_page_dirty(struct page *page)
  922. {
  923. #ifdef DEBUG
  924. struct extent_buffer *eb;
  925. BUG_ON(!PagePrivate(page));
  926. eb = (struct extent_buffer *)page->private;
  927. BUG_ON(!eb);
  928. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  929. BUG_ON(!atomic_read(&eb->refs));
  930. btrfs_assert_tree_locked(eb);
  931. #endif
  932. return __set_page_dirty_nobuffers(page);
  933. }
  934. static const struct address_space_operations btree_aops = {
  935. .readpage = btree_readpage,
  936. .writepages = btree_writepages,
  937. .releasepage = btree_releasepage,
  938. .invalidatepage = btree_invalidatepage,
  939. #ifdef CONFIG_MIGRATION
  940. .migratepage = btree_migratepage,
  941. #endif
  942. .set_page_dirty = btree_set_page_dirty,
  943. };
  944. void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
  945. {
  946. struct extent_buffer *buf = NULL;
  947. struct inode *btree_inode = root->fs_info->btree_inode;
  948. buf = btrfs_find_create_tree_block(root, bytenr);
  949. if (!buf)
  950. return;
  951. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  952. buf, 0, WAIT_NONE, btree_get_extent, 0);
  953. free_extent_buffer(buf);
  954. }
  955. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
  956. int mirror_num, struct extent_buffer **eb)
  957. {
  958. struct extent_buffer *buf = NULL;
  959. struct inode *btree_inode = root->fs_info->btree_inode;
  960. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  961. int ret;
  962. buf = btrfs_find_create_tree_block(root, bytenr);
  963. if (!buf)
  964. return 0;
  965. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  966. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  967. btree_get_extent, mirror_num);
  968. if (ret) {
  969. free_extent_buffer(buf);
  970. return ret;
  971. }
  972. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  973. free_extent_buffer(buf);
  974. return -EIO;
  975. } else if (extent_buffer_uptodate(buf)) {
  976. *eb = buf;
  977. } else {
  978. free_extent_buffer(buf);
  979. }
  980. return 0;
  981. }
  982. struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
  983. u64 bytenr)
  984. {
  985. return find_extent_buffer(fs_info, bytenr);
  986. }
  987. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  988. u64 bytenr)
  989. {
  990. if (btrfs_test_is_dummy_root(root))
  991. return alloc_test_extent_buffer(root->fs_info, bytenr);
  992. return alloc_extent_buffer(root->fs_info, bytenr);
  993. }
  994. int btrfs_write_tree_block(struct extent_buffer *buf)
  995. {
  996. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  997. buf->start + buf->len - 1);
  998. }
  999. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  1000. {
  1001. return filemap_fdatawait_range(buf->pages[0]->mapping,
  1002. buf->start, buf->start + buf->len - 1);
  1003. }
  1004. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1005. u64 parent_transid)
  1006. {
  1007. struct extent_buffer *buf = NULL;
  1008. int ret;
  1009. buf = btrfs_find_create_tree_block(root, bytenr);
  1010. if (!buf)
  1011. return NULL;
  1012. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1013. if (ret) {
  1014. free_extent_buffer(buf);
  1015. return NULL;
  1016. }
  1017. return buf;
  1018. }
  1019. void clean_tree_block(struct btrfs_trans_handle *trans,
  1020. struct btrfs_fs_info *fs_info,
  1021. struct extent_buffer *buf)
  1022. {
  1023. if (btrfs_header_generation(buf) ==
  1024. fs_info->running_transaction->transid) {
  1025. btrfs_assert_tree_locked(buf);
  1026. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1027. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1028. -buf->len,
  1029. fs_info->dirty_metadata_batch);
  1030. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1031. btrfs_set_lock_blocking(buf);
  1032. clear_extent_buffer_dirty(buf);
  1033. }
  1034. }
  1035. }
  1036. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1037. {
  1038. struct btrfs_subvolume_writers *writers;
  1039. int ret;
  1040. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1041. if (!writers)
  1042. return ERR_PTR(-ENOMEM);
  1043. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  1044. if (ret < 0) {
  1045. kfree(writers);
  1046. return ERR_PTR(ret);
  1047. }
  1048. init_waitqueue_head(&writers->wait);
  1049. return writers;
  1050. }
  1051. static void
  1052. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1053. {
  1054. percpu_counter_destroy(&writers->counter);
  1055. kfree(writers);
  1056. }
  1057. static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
  1058. struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1059. u64 objectid)
  1060. {
  1061. root->node = NULL;
  1062. root->commit_root = NULL;
  1063. root->sectorsize = sectorsize;
  1064. root->nodesize = nodesize;
  1065. root->stripesize = stripesize;
  1066. root->state = 0;
  1067. root->orphan_cleanup_state = 0;
  1068. root->objectid = objectid;
  1069. root->last_trans = 0;
  1070. root->highest_objectid = 0;
  1071. root->nr_delalloc_inodes = 0;
  1072. root->nr_ordered_extents = 0;
  1073. root->name = NULL;
  1074. root->inode_tree = RB_ROOT;
  1075. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1076. root->block_rsv = NULL;
  1077. root->orphan_block_rsv = NULL;
  1078. INIT_LIST_HEAD(&root->dirty_list);
  1079. INIT_LIST_HEAD(&root->root_list);
  1080. INIT_LIST_HEAD(&root->delalloc_inodes);
  1081. INIT_LIST_HEAD(&root->delalloc_root);
  1082. INIT_LIST_HEAD(&root->ordered_extents);
  1083. INIT_LIST_HEAD(&root->ordered_root);
  1084. INIT_LIST_HEAD(&root->logged_list[0]);
  1085. INIT_LIST_HEAD(&root->logged_list[1]);
  1086. spin_lock_init(&root->orphan_lock);
  1087. spin_lock_init(&root->inode_lock);
  1088. spin_lock_init(&root->delalloc_lock);
  1089. spin_lock_init(&root->ordered_extent_lock);
  1090. spin_lock_init(&root->accounting_lock);
  1091. spin_lock_init(&root->log_extents_lock[0]);
  1092. spin_lock_init(&root->log_extents_lock[1]);
  1093. mutex_init(&root->objectid_mutex);
  1094. mutex_init(&root->log_mutex);
  1095. mutex_init(&root->ordered_extent_mutex);
  1096. mutex_init(&root->delalloc_mutex);
  1097. init_waitqueue_head(&root->log_writer_wait);
  1098. init_waitqueue_head(&root->log_commit_wait[0]);
  1099. init_waitqueue_head(&root->log_commit_wait[1]);
  1100. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1101. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1102. atomic_set(&root->log_commit[0], 0);
  1103. atomic_set(&root->log_commit[1], 0);
  1104. atomic_set(&root->log_writers, 0);
  1105. atomic_set(&root->log_batch, 0);
  1106. atomic_set(&root->orphan_inodes, 0);
  1107. atomic_set(&root->refs, 1);
  1108. atomic_set(&root->will_be_snapshoted, 0);
  1109. root->log_transid = 0;
  1110. root->log_transid_committed = -1;
  1111. root->last_log_commit = 0;
  1112. if (fs_info)
  1113. extent_io_tree_init(&root->dirty_log_pages,
  1114. fs_info->btree_inode->i_mapping);
  1115. memset(&root->root_key, 0, sizeof(root->root_key));
  1116. memset(&root->root_item, 0, sizeof(root->root_item));
  1117. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1118. if (fs_info)
  1119. root->defrag_trans_start = fs_info->generation;
  1120. else
  1121. root->defrag_trans_start = 0;
  1122. root->root_key.objectid = objectid;
  1123. root->anon_dev = 0;
  1124. spin_lock_init(&root->root_item_lock);
  1125. }
  1126. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1127. {
  1128. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1129. if (root)
  1130. root->fs_info = fs_info;
  1131. return root;
  1132. }
  1133. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1134. /* Should only be used by the testing infrastructure */
  1135. struct btrfs_root *btrfs_alloc_dummy_root(void)
  1136. {
  1137. struct btrfs_root *root;
  1138. root = btrfs_alloc_root(NULL);
  1139. if (!root)
  1140. return ERR_PTR(-ENOMEM);
  1141. __setup_root(4096, 4096, 4096, root, NULL, 1);
  1142. set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
  1143. root->alloc_bytenr = 0;
  1144. return root;
  1145. }
  1146. #endif
  1147. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1148. struct btrfs_fs_info *fs_info,
  1149. u64 objectid)
  1150. {
  1151. struct extent_buffer *leaf;
  1152. struct btrfs_root *tree_root = fs_info->tree_root;
  1153. struct btrfs_root *root;
  1154. struct btrfs_key key;
  1155. int ret = 0;
  1156. uuid_le uuid;
  1157. root = btrfs_alloc_root(fs_info);
  1158. if (!root)
  1159. return ERR_PTR(-ENOMEM);
  1160. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1161. tree_root->stripesize, root, fs_info, objectid);
  1162. root->root_key.objectid = objectid;
  1163. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1164. root->root_key.offset = 0;
  1165. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1166. if (IS_ERR(leaf)) {
  1167. ret = PTR_ERR(leaf);
  1168. leaf = NULL;
  1169. goto fail;
  1170. }
  1171. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1172. btrfs_set_header_bytenr(leaf, leaf->start);
  1173. btrfs_set_header_generation(leaf, trans->transid);
  1174. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1175. btrfs_set_header_owner(leaf, objectid);
  1176. root->node = leaf;
  1177. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1178. BTRFS_FSID_SIZE);
  1179. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1180. btrfs_header_chunk_tree_uuid(leaf),
  1181. BTRFS_UUID_SIZE);
  1182. btrfs_mark_buffer_dirty(leaf);
  1183. root->commit_root = btrfs_root_node(root);
  1184. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1185. root->root_item.flags = 0;
  1186. root->root_item.byte_limit = 0;
  1187. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1188. btrfs_set_root_generation(&root->root_item, trans->transid);
  1189. btrfs_set_root_level(&root->root_item, 0);
  1190. btrfs_set_root_refs(&root->root_item, 1);
  1191. btrfs_set_root_used(&root->root_item, leaf->len);
  1192. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1193. btrfs_set_root_dirid(&root->root_item, 0);
  1194. uuid_le_gen(&uuid);
  1195. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1196. root->root_item.drop_level = 0;
  1197. key.objectid = objectid;
  1198. key.type = BTRFS_ROOT_ITEM_KEY;
  1199. key.offset = 0;
  1200. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1201. if (ret)
  1202. goto fail;
  1203. btrfs_tree_unlock(leaf);
  1204. return root;
  1205. fail:
  1206. if (leaf) {
  1207. btrfs_tree_unlock(leaf);
  1208. free_extent_buffer(root->commit_root);
  1209. free_extent_buffer(leaf);
  1210. }
  1211. kfree(root);
  1212. return ERR_PTR(ret);
  1213. }
  1214. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1215. struct btrfs_fs_info *fs_info)
  1216. {
  1217. struct btrfs_root *root;
  1218. struct btrfs_root *tree_root = fs_info->tree_root;
  1219. struct extent_buffer *leaf;
  1220. root = btrfs_alloc_root(fs_info);
  1221. if (!root)
  1222. return ERR_PTR(-ENOMEM);
  1223. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1224. tree_root->stripesize, root, fs_info,
  1225. BTRFS_TREE_LOG_OBJECTID);
  1226. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1227. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1228. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1229. /*
  1230. * DON'T set REF_COWS for log trees
  1231. *
  1232. * log trees do not get reference counted because they go away
  1233. * before a real commit is actually done. They do store pointers
  1234. * to file data extents, and those reference counts still get
  1235. * updated (along with back refs to the log tree).
  1236. */
  1237. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1238. NULL, 0, 0, 0);
  1239. if (IS_ERR(leaf)) {
  1240. kfree(root);
  1241. return ERR_CAST(leaf);
  1242. }
  1243. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1244. btrfs_set_header_bytenr(leaf, leaf->start);
  1245. btrfs_set_header_generation(leaf, trans->transid);
  1246. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1247. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1248. root->node = leaf;
  1249. write_extent_buffer(root->node, root->fs_info->fsid,
  1250. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1251. btrfs_mark_buffer_dirty(root->node);
  1252. btrfs_tree_unlock(root->node);
  1253. return root;
  1254. }
  1255. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1256. struct btrfs_fs_info *fs_info)
  1257. {
  1258. struct btrfs_root *log_root;
  1259. log_root = alloc_log_tree(trans, fs_info);
  1260. if (IS_ERR(log_root))
  1261. return PTR_ERR(log_root);
  1262. WARN_ON(fs_info->log_root_tree);
  1263. fs_info->log_root_tree = log_root;
  1264. return 0;
  1265. }
  1266. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1267. struct btrfs_root *root)
  1268. {
  1269. struct btrfs_root *log_root;
  1270. struct btrfs_inode_item *inode_item;
  1271. log_root = alloc_log_tree(trans, root->fs_info);
  1272. if (IS_ERR(log_root))
  1273. return PTR_ERR(log_root);
  1274. log_root->last_trans = trans->transid;
  1275. log_root->root_key.offset = root->root_key.objectid;
  1276. inode_item = &log_root->root_item.inode;
  1277. btrfs_set_stack_inode_generation(inode_item, 1);
  1278. btrfs_set_stack_inode_size(inode_item, 3);
  1279. btrfs_set_stack_inode_nlink(inode_item, 1);
  1280. btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
  1281. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1282. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1283. WARN_ON(root->log_root);
  1284. root->log_root = log_root;
  1285. root->log_transid = 0;
  1286. root->log_transid_committed = -1;
  1287. root->last_log_commit = 0;
  1288. return 0;
  1289. }
  1290. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1291. struct btrfs_key *key)
  1292. {
  1293. struct btrfs_root *root;
  1294. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1295. struct btrfs_path *path;
  1296. u64 generation;
  1297. int ret;
  1298. path = btrfs_alloc_path();
  1299. if (!path)
  1300. return ERR_PTR(-ENOMEM);
  1301. root = btrfs_alloc_root(fs_info);
  1302. if (!root) {
  1303. ret = -ENOMEM;
  1304. goto alloc_fail;
  1305. }
  1306. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1307. tree_root->stripesize, root, fs_info, key->objectid);
  1308. ret = btrfs_find_root(tree_root, key, path,
  1309. &root->root_item, &root->root_key);
  1310. if (ret) {
  1311. if (ret > 0)
  1312. ret = -ENOENT;
  1313. goto find_fail;
  1314. }
  1315. generation = btrfs_root_generation(&root->root_item);
  1316. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1317. generation);
  1318. if (!root->node) {
  1319. ret = -ENOMEM;
  1320. goto find_fail;
  1321. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1322. ret = -EIO;
  1323. goto read_fail;
  1324. }
  1325. root->commit_root = btrfs_root_node(root);
  1326. out:
  1327. btrfs_free_path(path);
  1328. return root;
  1329. read_fail:
  1330. free_extent_buffer(root->node);
  1331. find_fail:
  1332. kfree(root);
  1333. alloc_fail:
  1334. root = ERR_PTR(ret);
  1335. goto out;
  1336. }
  1337. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1338. struct btrfs_key *location)
  1339. {
  1340. struct btrfs_root *root;
  1341. root = btrfs_read_tree_root(tree_root, location);
  1342. if (IS_ERR(root))
  1343. return root;
  1344. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1345. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1346. btrfs_check_and_init_root_item(&root->root_item);
  1347. }
  1348. return root;
  1349. }
  1350. int btrfs_init_fs_root(struct btrfs_root *root)
  1351. {
  1352. int ret;
  1353. struct btrfs_subvolume_writers *writers;
  1354. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1355. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1356. GFP_NOFS);
  1357. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1358. ret = -ENOMEM;
  1359. goto fail;
  1360. }
  1361. writers = btrfs_alloc_subvolume_writers();
  1362. if (IS_ERR(writers)) {
  1363. ret = PTR_ERR(writers);
  1364. goto fail;
  1365. }
  1366. root->subv_writers = writers;
  1367. btrfs_init_free_ino_ctl(root);
  1368. spin_lock_init(&root->ino_cache_lock);
  1369. init_waitqueue_head(&root->ino_cache_wait);
  1370. ret = get_anon_bdev(&root->anon_dev);
  1371. if (ret)
  1372. goto free_writers;
  1373. return 0;
  1374. free_writers:
  1375. btrfs_free_subvolume_writers(root->subv_writers);
  1376. fail:
  1377. kfree(root->free_ino_ctl);
  1378. kfree(root->free_ino_pinned);
  1379. return ret;
  1380. }
  1381. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1382. u64 root_id)
  1383. {
  1384. struct btrfs_root *root;
  1385. spin_lock(&fs_info->fs_roots_radix_lock);
  1386. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1387. (unsigned long)root_id);
  1388. spin_unlock(&fs_info->fs_roots_radix_lock);
  1389. return root;
  1390. }
  1391. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1392. struct btrfs_root *root)
  1393. {
  1394. int ret;
  1395. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1396. if (ret)
  1397. return ret;
  1398. spin_lock(&fs_info->fs_roots_radix_lock);
  1399. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1400. (unsigned long)root->root_key.objectid,
  1401. root);
  1402. if (ret == 0)
  1403. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1404. spin_unlock(&fs_info->fs_roots_radix_lock);
  1405. radix_tree_preload_end();
  1406. return ret;
  1407. }
  1408. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1409. struct btrfs_key *location,
  1410. bool check_ref)
  1411. {
  1412. struct btrfs_root *root;
  1413. struct btrfs_path *path;
  1414. struct btrfs_key key;
  1415. int ret;
  1416. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1417. return fs_info->tree_root;
  1418. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1419. return fs_info->extent_root;
  1420. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1421. return fs_info->chunk_root;
  1422. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1423. return fs_info->dev_root;
  1424. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1425. return fs_info->csum_root;
  1426. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1427. return fs_info->quota_root ? fs_info->quota_root :
  1428. ERR_PTR(-ENOENT);
  1429. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1430. return fs_info->uuid_root ? fs_info->uuid_root :
  1431. ERR_PTR(-ENOENT);
  1432. again:
  1433. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1434. if (root) {
  1435. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1436. return ERR_PTR(-ENOENT);
  1437. return root;
  1438. }
  1439. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1440. if (IS_ERR(root))
  1441. return root;
  1442. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1443. ret = -ENOENT;
  1444. goto fail;
  1445. }
  1446. ret = btrfs_init_fs_root(root);
  1447. if (ret)
  1448. goto fail;
  1449. path = btrfs_alloc_path();
  1450. if (!path) {
  1451. ret = -ENOMEM;
  1452. goto fail;
  1453. }
  1454. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1455. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1456. key.offset = location->objectid;
  1457. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1458. btrfs_free_path(path);
  1459. if (ret < 0)
  1460. goto fail;
  1461. if (ret == 0)
  1462. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1463. ret = btrfs_insert_fs_root(fs_info, root);
  1464. if (ret) {
  1465. if (ret == -EEXIST) {
  1466. free_fs_root(root);
  1467. goto again;
  1468. }
  1469. goto fail;
  1470. }
  1471. return root;
  1472. fail:
  1473. free_fs_root(root);
  1474. return ERR_PTR(ret);
  1475. }
  1476. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1477. {
  1478. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1479. int ret = 0;
  1480. struct btrfs_device *device;
  1481. struct backing_dev_info *bdi;
  1482. rcu_read_lock();
  1483. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1484. if (!device->bdev)
  1485. continue;
  1486. bdi = blk_get_backing_dev_info(device->bdev);
  1487. if (bdi_congested(bdi, bdi_bits)) {
  1488. ret = 1;
  1489. break;
  1490. }
  1491. }
  1492. rcu_read_unlock();
  1493. return ret;
  1494. }
  1495. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1496. {
  1497. int err;
  1498. bdi->capabilities = BDI_CAP_MAP_COPY;
  1499. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1500. if (err)
  1501. return err;
  1502. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1503. bdi->congested_fn = btrfs_congested_fn;
  1504. bdi->congested_data = info;
  1505. return 0;
  1506. }
  1507. /*
  1508. * called by the kthread helper functions to finally call the bio end_io
  1509. * functions. This is where read checksum verification actually happens
  1510. */
  1511. static void end_workqueue_fn(struct btrfs_work *work)
  1512. {
  1513. struct bio *bio;
  1514. struct btrfs_end_io_wq *end_io_wq;
  1515. int error;
  1516. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1517. bio = end_io_wq->bio;
  1518. error = end_io_wq->error;
  1519. bio->bi_private = end_io_wq->private;
  1520. bio->bi_end_io = end_io_wq->end_io;
  1521. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1522. bio_endio_nodec(bio, error);
  1523. }
  1524. static int cleaner_kthread(void *arg)
  1525. {
  1526. struct btrfs_root *root = arg;
  1527. int again;
  1528. do {
  1529. again = 0;
  1530. /* Make the cleaner go to sleep early. */
  1531. if (btrfs_need_cleaner_sleep(root))
  1532. goto sleep;
  1533. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1534. goto sleep;
  1535. /*
  1536. * Avoid the problem that we change the status of the fs
  1537. * during the above check and trylock.
  1538. */
  1539. if (btrfs_need_cleaner_sleep(root)) {
  1540. mutex_unlock(&root->fs_info->cleaner_mutex);
  1541. goto sleep;
  1542. }
  1543. btrfs_run_delayed_iputs(root);
  1544. btrfs_delete_unused_bgs(root->fs_info);
  1545. again = btrfs_clean_one_deleted_snapshot(root);
  1546. mutex_unlock(&root->fs_info->cleaner_mutex);
  1547. /*
  1548. * The defragger has dealt with the R/O remount and umount,
  1549. * needn't do anything special here.
  1550. */
  1551. btrfs_run_defrag_inodes(root->fs_info);
  1552. sleep:
  1553. if (!try_to_freeze() && !again) {
  1554. set_current_state(TASK_INTERRUPTIBLE);
  1555. if (!kthread_should_stop())
  1556. schedule();
  1557. __set_current_state(TASK_RUNNING);
  1558. }
  1559. } while (!kthread_should_stop());
  1560. return 0;
  1561. }
  1562. static int transaction_kthread(void *arg)
  1563. {
  1564. struct btrfs_root *root = arg;
  1565. struct btrfs_trans_handle *trans;
  1566. struct btrfs_transaction *cur;
  1567. u64 transid;
  1568. unsigned long now;
  1569. unsigned long delay;
  1570. bool cannot_commit;
  1571. do {
  1572. cannot_commit = false;
  1573. delay = HZ * root->fs_info->commit_interval;
  1574. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1575. spin_lock(&root->fs_info->trans_lock);
  1576. cur = root->fs_info->running_transaction;
  1577. if (!cur) {
  1578. spin_unlock(&root->fs_info->trans_lock);
  1579. goto sleep;
  1580. }
  1581. now = get_seconds();
  1582. if (cur->state < TRANS_STATE_BLOCKED &&
  1583. (now < cur->start_time ||
  1584. now - cur->start_time < root->fs_info->commit_interval)) {
  1585. spin_unlock(&root->fs_info->trans_lock);
  1586. delay = HZ * 5;
  1587. goto sleep;
  1588. }
  1589. transid = cur->transid;
  1590. spin_unlock(&root->fs_info->trans_lock);
  1591. /* If the file system is aborted, this will always fail. */
  1592. trans = btrfs_attach_transaction(root);
  1593. if (IS_ERR(trans)) {
  1594. if (PTR_ERR(trans) != -ENOENT)
  1595. cannot_commit = true;
  1596. goto sleep;
  1597. }
  1598. if (transid == trans->transid) {
  1599. btrfs_commit_transaction(trans, root);
  1600. } else {
  1601. btrfs_end_transaction(trans, root);
  1602. }
  1603. sleep:
  1604. wake_up_process(root->fs_info->cleaner_kthread);
  1605. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1606. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1607. &root->fs_info->fs_state)))
  1608. btrfs_cleanup_transaction(root);
  1609. if (!try_to_freeze()) {
  1610. set_current_state(TASK_INTERRUPTIBLE);
  1611. if (!kthread_should_stop() &&
  1612. (!btrfs_transaction_blocked(root->fs_info) ||
  1613. cannot_commit))
  1614. schedule_timeout(delay);
  1615. __set_current_state(TASK_RUNNING);
  1616. }
  1617. } while (!kthread_should_stop());
  1618. return 0;
  1619. }
  1620. /*
  1621. * this will find the highest generation in the array of
  1622. * root backups. The index of the highest array is returned,
  1623. * or -1 if we can't find anything.
  1624. *
  1625. * We check to make sure the array is valid by comparing the
  1626. * generation of the latest root in the array with the generation
  1627. * in the super block. If they don't match we pitch it.
  1628. */
  1629. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1630. {
  1631. u64 cur;
  1632. int newest_index = -1;
  1633. struct btrfs_root_backup *root_backup;
  1634. int i;
  1635. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1636. root_backup = info->super_copy->super_roots + i;
  1637. cur = btrfs_backup_tree_root_gen(root_backup);
  1638. if (cur == newest_gen)
  1639. newest_index = i;
  1640. }
  1641. /* check to see if we actually wrapped around */
  1642. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1643. root_backup = info->super_copy->super_roots;
  1644. cur = btrfs_backup_tree_root_gen(root_backup);
  1645. if (cur == newest_gen)
  1646. newest_index = 0;
  1647. }
  1648. return newest_index;
  1649. }
  1650. /*
  1651. * find the oldest backup so we know where to store new entries
  1652. * in the backup array. This will set the backup_root_index
  1653. * field in the fs_info struct
  1654. */
  1655. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1656. u64 newest_gen)
  1657. {
  1658. int newest_index = -1;
  1659. newest_index = find_newest_super_backup(info, newest_gen);
  1660. /* if there was garbage in there, just move along */
  1661. if (newest_index == -1) {
  1662. info->backup_root_index = 0;
  1663. } else {
  1664. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1665. }
  1666. }
  1667. /*
  1668. * copy all the root pointers into the super backup array.
  1669. * this will bump the backup pointer by one when it is
  1670. * done
  1671. */
  1672. static void backup_super_roots(struct btrfs_fs_info *info)
  1673. {
  1674. int next_backup;
  1675. struct btrfs_root_backup *root_backup;
  1676. int last_backup;
  1677. next_backup = info->backup_root_index;
  1678. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1679. BTRFS_NUM_BACKUP_ROOTS;
  1680. /*
  1681. * just overwrite the last backup if we're at the same generation
  1682. * this happens only at umount
  1683. */
  1684. root_backup = info->super_for_commit->super_roots + last_backup;
  1685. if (btrfs_backup_tree_root_gen(root_backup) ==
  1686. btrfs_header_generation(info->tree_root->node))
  1687. next_backup = last_backup;
  1688. root_backup = info->super_for_commit->super_roots + next_backup;
  1689. /*
  1690. * make sure all of our padding and empty slots get zero filled
  1691. * regardless of which ones we use today
  1692. */
  1693. memset(root_backup, 0, sizeof(*root_backup));
  1694. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1695. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1696. btrfs_set_backup_tree_root_gen(root_backup,
  1697. btrfs_header_generation(info->tree_root->node));
  1698. btrfs_set_backup_tree_root_level(root_backup,
  1699. btrfs_header_level(info->tree_root->node));
  1700. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1701. btrfs_set_backup_chunk_root_gen(root_backup,
  1702. btrfs_header_generation(info->chunk_root->node));
  1703. btrfs_set_backup_chunk_root_level(root_backup,
  1704. btrfs_header_level(info->chunk_root->node));
  1705. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1706. btrfs_set_backup_extent_root_gen(root_backup,
  1707. btrfs_header_generation(info->extent_root->node));
  1708. btrfs_set_backup_extent_root_level(root_backup,
  1709. btrfs_header_level(info->extent_root->node));
  1710. /*
  1711. * we might commit during log recovery, which happens before we set
  1712. * the fs_root. Make sure it is valid before we fill it in.
  1713. */
  1714. if (info->fs_root && info->fs_root->node) {
  1715. btrfs_set_backup_fs_root(root_backup,
  1716. info->fs_root->node->start);
  1717. btrfs_set_backup_fs_root_gen(root_backup,
  1718. btrfs_header_generation(info->fs_root->node));
  1719. btrfs_set_backup_fs_root_level(root_backup,
  1720. btrfs_header_level(info->fs_root->node));
  1721. }
  1722. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1723. btrfs_set_backup_dev_root_gen(root_backup,
  1724. btrfs_header_generation(info->dev_root->node));
  1725. btrfs_set_backup_dev_root_level(root_backup,
  1726. btrfs_header_level(info->dev_root->node));
  1727. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1728. btrfs_set_backup_csum_root_gen(root_backup,
  1729. btrfs_header_generation(info->csum_root->node));
  1730. btrfs_set_backup_csum_root_level(root_backup,
  1731. btrfs_header_level(info->csum_root->node));
  1732. btrfs_set_backup_total_bytes(root_backup,
  1733. btrfs_super_total_bytes(info->super_copy));
  1734. btrfs_set_backup_bytes_used(root_backup,
  1735. btrfs_super_bytes_used(info->super_copy));
  1736. btrfs_set_backup_num_devices(root_backup,
  1737. btrfs_super_num_devices(info->super_copy));
  1738. /*
  1739. * if we don't copy this out to the super_copy, it won't get remembered
  1740. * for the next commit
  1741. */
  1742. memcpy(&info->super_copy->super_roots,
  1743. &info->super_for_commit->super_roots,
  1744. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1745. }
  1746. /*
  1747. * this copies info out of the root backup array and back into
  1748. * the in-memory super block. It is meant to help iterate through
  1749. * the array, so you send it the number of backups you've already
  1750. * tried and the last backup index you used.
  1751. *
  1752. * this returns -1 when it has tried all the backups
  1753. */
  1754. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1755. struct btrfs_super_block *super,
  1756. int *num_backups_tried, int *backup_index)
  1757. {
  1758. struct btrfs_root_backup *root_backup;
  1759. int newest = *backup_index;
  1760. if (*num_backups_tried == 0) {
  1761. u64 gen = btrfs_super_generation(super);
  1762. newest = find_newest_super_backup(info, gen);
  1763. if (newest == -1)
  1764. return -1;
  1765. *backup_index = newest;
  1766. *num_backups_tried = 1;
  1767. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1768. /* we've tried all the backups, all done */
  1769. return -1;
  1770. } else {
  1771. /* jump to the next oldest backup */
  1772. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1773. BTRFS_NUM_BACKUP_ROOTS;
  1774. *backup_index = newest;
  1775. *num_backups_tried += 1;
  1776. }
  1777. root_backup = super->super_roots + newest;
  1778. btrfs_set_super_generation(super,
  1779. btrfs_backup_tree_root_gen(root_backup));
  1780. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1781. btrfs_set_super_root_level(super,
  1782. btrfs_backup_tree_root_level(root_backup));
  1783. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1784. /*
  1785. * fixme: the total bytes and num_devices need to match or we should
  1786. * need a fsck
  1787. */
  1788. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1789. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1790. return 0;
  1791. }
  1792. /* helper to cleanup workers */
  1793. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1794. {
  1795. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1796. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1797. btrfs_destroy_workqueue(fs_info->workers);
  1798. btrfs_destroy_workqueue(fs_info->endio_workers);
  1799. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1800. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1801. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1802. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1803. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1804. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1805. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1806. btrfs_destroy_workqueue(fs_info->submit_workers);
  1807. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1808. btrfs_destroy_workqueue(fs_info->caching_workers);
  1809. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1810. btrfs_destroy_workqueue(fs_info->flush_workers);
  1811. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1812. btrfs_destroy_workqueue(fs_info->extent_workers);
  1813. }
  1814. static void free_root_extent_buffers(struct btrfs_root *root)
  1815. {
  1816. if (root) {
  1817. free_extent_buffer(root->node);
  1818. free_extent_buffer(root->commit_root);
  1819. root->node = NULL;
  1820. root->commit_root = NULL;
  1821. }
  1822. }
  1823. /* helper to cleanup tree roots */
  1824. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1825. {
  1826. free_root_extent_buffers(info->tree_root);
  1827. free_root_extent_buffers(info->dev_root);
  1828. free_root_extent_buffers(info->extent_root);
  1829. free_root_extent_buffers(info->csum_root);
  1830. free_root_extent_buffers(info->quota_root);
  1831. free_root_extent_buffers(info->uuid_root);
  1832. if (chunk_root)
  1833. free_root_extent_buffers(info->chunk_root);
  1834. }
  1835. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1836. {
  1837. int ret;
  1838. struct btrfs_root *gang[8];
  1839. int i;
  1840. while (!list_empty(&fs_info->dead_roots)) {
  1841. gang[0] = list_entry(fs_info->dead_roots.next,
  1842. struct btrfs_root, root_list);
  1843. list_del(&gang[0]->root_list);
  1844. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1845. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1846. } else {
  1847. free_extent_buffer(gang[0]->node);
  1848. free_extent_buffer(gang[0]->commit_root);
  1849. btrfs_put_fs_root(gang[0]);
  1850. }
  1851. }
  1852. while (1) {
  1853. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1854. (void **)gang, 0,
  1855. ARRAY_SIZE(gang));
  1856. if (!ret)
  1857. break;
  1858. for (i = 0; i < ret; i++)
  1859. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1860. }
  1861. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1862. btrfs_free_log_root_tree(NULL, fs_info);
  1863. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1864. fs_info->pinned_extents);
  1865. }
  1866. }
  1867. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1868. {
  1869. mutex_init(&fs_info->scrub_lock);
  1870. atomic_set(&fs_info->scrubs_running, 0);
  1871. atomic_set(&fs_info->scrub_pause_req, 0);
  1872. atomic_set(&fs_info->scrubs_paused, 0);
  1873. atomic_set(&fs_info->scrub_cancel_req, 0);
  1874. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1875. fs_info->scrub_workers_refcnt = 0;
  1876. }
  1877. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1878. {
  1879. spin_lock_init(&fs_info->balance_lock);
  1880. mutex_init(&fs_info->balance_mutex);
  1881. atomic_set(&fs_info->balance_running, 0);
  1882. atomic_set(&fs_info->balance_pause_req, 0);
  1883. atomic_set(&fs_info->balance_cancel_req, 0);
  1884. fs_info->balance_ctl = NULL;
  1885. init_waitqueue_head(&fs_info->balance_wait_q);
  1886. }
  1887. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
  1888. struct btrfs_root *tree_root)
  1889. {
  1890. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1891. set_nlink(fs_info->btree_inode, 1);
  1892. /*
  1893. * we set the i_size on the btree inode to the max possible int.
  1894. * the real end of the address space is determined by all of
  1895. * the devices in the system
  1896. */
  1897. fs_info->btree_inode->i_size = OFFSET_MAX;
  1898. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1899. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1900. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1901. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1902. fs_info->btree_inode->i_mapping);
  1903. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1904. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1905. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1906. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1907. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1908. sizeof(struct btrfs_key));
  1909. set_bit(BTRFS_INODE_DUMMY,
  1910. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1911. btrfs_insert_inode_hash(fs_info->btree_inode);
  1912. }
  1913. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  1914. {
  1915. fs_info->dev_replace.lock_owner = 0;
  1916. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1917. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1918. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1919. mutex_init(&fs_info->dev_replace.lock);
  1920. init_waitqueue_head(&fs_info->replace_wait);
  1921. }
  1922. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  1923. {
  1924. spin_lock_init(&fs_info->qgroup_lock);
  1925. mutex_init(&fs_info->qgroup_ioctl_lock);
  1926. fs_info->qgroup_tree = RB_ROOT;
  1927. fs_info->qgroup_op_tree = RB_ROOT;
  1928. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1929. fs_info->qgroup_seq = 1;
  1930. fs_info->quota_enabled = 0;
  1931. fs_info->pending_quota_state = 0;
  1932. fs_info->qgroup_ulist = NULL;
  1933. mutex_init(&fs_info->qgroup_rescan_lock);
  1934. }
  1935. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  1936. struct btrfs_fs_devices *fs_devices)
  1937. {
  1938. int max_active = fs_info->thread_pool_size;
  1939. int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  1940. fs_info->workers =
  1941. btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
  1942. max_active, 16);
  1943. fs_info->delalloc_workers =
  1944. btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
  1945. fs_info->flush_workers =
  1946. btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
  1947. fs_info->caching_workers =
  1948. btrfs_alloc_workqueue("cache", flags, max_active, 0);
  1949. /*
  1950. * a higher idle thresh on the submit workers makes it much more
  1951. * likely that bios will be send down in a sane order to the
  1952. * devices
  1953. */
  1954. fs_info->submit_workers =
  1955. btrfs_alloc_workqueue("submit", flags,
  1956. min_t(u64, fs_devices->num_devices,
  1957. max_active), 64);
  1958. fs_info->fixup_workers =
  1959. btrfs_alloc_workqueue("fixup", flags, 1, 0);
  1960. /*
  1961. * endios are largely parallel and should have a very
  1962. * low idle thresh
  1963. */
  1964. fs_info->endio_workers =
  1965. btrfs_alloc_workqueue("endio", flags, max_active, 4);
  1966. fs_info->endio_meta_workers =
  1967. btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
  1968. fs_info->endio_meta_write_workers =
  1969. btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
  1970. fs_info->endio_raid56_workers =
  1971. btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
  1972. fs_info->endio_repair_workers =
  1973. btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
  1974. fs_info->rmw_workers =
  1975. btrfs_alloc_workqueue("rmw", flags, max_active, 2);
  1976. fs_info->endio_write_workers =
  1977. btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
  1978. fs_info->endio_freespace_worker =
  1979. btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
  1980. fs_info->delayed_workers =
  1981. btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
  1982. fs_info->readahead_workers =
  1983. btrfs_alloc_workqueue("readahead", flags, max_active, 2);
  1984. fs_info->qgroup_rescan_workers =
  1985. btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
  1986. fs_info->extent_workers =
  1987. btrfs_alloc_workqueue("extent-refs", flags,
  1988. min_t(u64, fs_devices->num_devices,
  1989. max_active), 8);
  1990. if (!(fs_info->workers && fs_info->delalloc_workers &&
  1991. fs_info->submit_workers && fs_info->flush_workers &&
  1992. fs_info->endio_workers && fs_info->endio_meta_workers &&
  1993. fs_info->endio_meta_write_workers &&
  1994. fs_info->endio_repair_workers &&
  1995. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  1996. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  1997. fs_info->caching_workers && fs_info->readahead_workers &&
  1998. fs_info->fixup_workers && fs_info->delayed_workers &&
  1999. fs_info->extent_workers &&
  2000. fs_info->qgroup_rescan_workers)) {
  2001. return -ENOMEM;
  2002. }
  2003. return 0;
  2004. }
  2005. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2006. struct btrfs_fs_devices *fs_devices)
  2007. {
  2008. int ret;
  2009. struct btrfs_root *tree_root = fs_info->tree_root;
  2010. struct btrfs_root *log_tree_root;
  2011. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2012. u64 bytenr = btrfs_super_log_root(disk_super);
  2013. if (fs_devices->rw_devices == 0) {
  2014. printk(KERN_WARNING "BTRFS: log replay required "
  2015. "on RO media\n");
  2016. return -EIO;
  2017. }
  2018. log_tree_root = btrfs_alloc_root(fs_info);
  2019. if (!log_tree_root)
  2020. return -ENOMEM;
  2021. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  2022. tree_root->stripesize, log_tree_root, fs_info,
  2023. BTRFS_TREE_LOG_OBJECTID);
  2024. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2025. fs_info->generation + 1);
  2026. if (!log_tree_root->node ||
  2027. !extent_buffer_uptodate(log_tree_root->node)) {
  2028. printk(KERN_ERR "BTRFS: failed to read log tree\n");
  2029. free_extent_buffer(log_tree_root->node);
  2030. kfree(log_tree_root);
  2031. return -EIO;
  2032. }
  2033. /* returns with log_tree_root freed on success */
  2034. ret = btrfs_recover_log_trees(log_tree_root);
  2035. if (ret) {
  2036. btrfs_error(tree_root->fs_info, ret,
  2037. "Failed to recover log tree");
  2038. free_extent_buffer(log_tree_root->node);
  2039. kfree(log_tree_root);
  2040. return ret;
  2041. }
  2042. if (fs_info->sb->s_flags & MS_RDONLY) {
  2043. ret = btrfs_commit_super(tree_root);
  2044. if (ret)
  2045. return ret;
  2046. }
  2047. return 0;
  2048. }
  2049. int open_ctree(struct super_block *sb,
  2050. struct btrfs_fs_devices *fs_devices,
  2051. char *options)
  2052. {
  2053. u32 sectorsize;
  2054. u32 nodesize;
  2055. u32 stripesize;
  2056. u64 generation;
  2057. u64 features;
  2058. struct btrfs_key location;
  2059. struct buffer_head *bh;
  2060. struct btrfs_super_block *disk_super;
  2061. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2062. struct btrfs_root *tree_root;
  2063. struct btrfs_root *extent_root;
  2064. struct btrfs_root *csum_root;
  2065. struct btrfs_root *chunk_root;
  2066. struct btrfs_root *dev_root;
  2067. struct btrfs_root *quota_root;
  2068. struct btrfs_root *uuid_root;
  2069. int ret;
  2070. int err = -EINVAL;
  2071. int num_backups_tried = 0;
  2072. int backup_index = 0;
  2073. int max_active;
  2074. bool create_uuid_tree;
  2075. bool check_uuid_tree;
  2076. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  2077. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  2078. if (!tree_root || !chunk_root) {
  2079. err = -ENOMEM;
  2080. goto fail;
  2081. }
  2082. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2083. if (ret) {
  2084. err = ret;
  2085. goto fail;
  2086. }
  2087. ret = setup_bdi(fs_info, &fs_info->bdi);
  2088. if (ret) {
  2089. err = ret;
  2090. goto fail_srcu;
  2091. }
  2092. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2093. if (ret) {
  2094. err = ret;
  2095. goto fail_bdi;
  2096. }
  2097. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  2098. (1 + ilog2(nr_cpu_ids));
  2099. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2100. if (ret) {
  2101. err = ret;
  2102. goto fail_dirty_metadata_bytes;
  2103. }
  2104. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2105. if (ret) {
  2106. err = ret;
  2107. goto fail_delalloc_bytes;
  2108. }
  2109. fs_info->btree_inode = new_inode(sb);
  2110. if (!fs_info->btree_inode) {
  2111. err = -ENOMEM;
  2112. goto fail_bio_counter;
  2113. }
  2114. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2115. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2116. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2117. INIT_LIST_HEAD(&fs_info->trans_list);
  2118. INIT_LIST_HEAD(&fs_info->dead_roots);
  2119. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2120. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2121. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2122. spin_lock_init(&fs_info->delalloc_root_lock);
  2123. spin_lock_init(&fs_info->trans_lock);
  2124. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2125. spin_lock_init(&fs_info->delayed_iput_lock);
  2126. spin_lock_init(&fs_info->defrag_inodes_lock);
  2127. spin_lock_init(&fs_info->free_chunk_lock);
  2128. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2129. spin_lock_init(&fs_info->super_lock);
  2130. spin_lock_init(&fs_info->qgroup_op_lock);
  2131. spin_lock_init(&fs_info->buffer_lock);
  2132. spin_lock_init(&fs_info->unused_bgs_lock);
  2133. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2134. rwlock_init(&fs_info->tree_mod_log_lock);
  2135. mutex_init(&fs_info->reloc_mutex);
  2136. mutex_init(&fs_info->delalloc_root_mutex);
  2137. seqlock_init(&fs_info->profiles_lock);
  2138. init_completion(&fs_info->kobj_unregister);
  2139. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2140. INIT_LIST_HEAD(&fs_info->space_info);
  2141. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2142. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2143. btrfs_mapping_init(&fs_info->mapping_tree);
  2144. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2145. BTRFS_BLOCK_RSV_GLOBAL);
  2146. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  2147. BTRFS_BLOCK_RSV_DELALLOC);
  2148. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2149. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2150. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2151. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2152. BTRFS_BLOCK_RSV_DELOPS);
  2153. atomic_set(&fs_info->nr_async_submits, 0);
  2154. atomic_set(&fs_info->async_delalloc_pages, 0);
  2155. atomic_set(&fs_info->async_submit_draining, 0);
  2156. atomic_set(&fs_info->nr_async_bios, 0);
  2157. atomic_set(&fs_info->defrag_running, 0);
  2158. atomic_set(&fs_info->qgroup_op_seq, 0);
  2159. atomic64_set(&fs_info->tree_mod_seq, 0);
  2160. fs_info->sb = sb;
  2161. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2162. fs_info->metadata_ratio = 0;
  2163. fs_info->defrag_inodes = RB_ROOT;
  2164. fs_info->free_chunk_space = 0;
  2165. fs_info->tree_mod_log = RB_ROOT;
  2166. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2167. fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
  2168. /* readahead state */
  2169. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  2170. spin_lock_init(&fs_info->reada_lock);
  2171. fs_info->thread_pool_size = min_t(unsigned long,
  2172. num_online_cpus() + 2, 8);
  2173. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2174. spin_lock_init(&fs_info->ordered_root_lock);
  2175. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2176. GFP_NOFS);
  2177. if (!fs_info->delayed_root) {
  2178. err = -ENOMEM;
  2179. goto fail_iput;
  2180. }
  2181. btrfs_init_delayed_root(fs_info->delayed_root);
  2182. btrfs_init_scrub(fs_info);
  2183. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2184. fs_info->check_integrity_print_mask = 0;
  2185. #endif
  2186. btrfs_init_balance(fs_info);
  2187. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2188. sb->s_blocksize = 4096;
  2189. sb->s_blocksize_bits = blksize_bits(4096);
  2190. sb->s_bdi = &fs_info->bdi;
  2191. btrfs_init_btree_inode(fs_info, tree_root);
  2192. spin_lock_init(&fs_info->block_group_cache_lock);
  2193. fs_info->block_group_cache_tree = RB_ROOT;
  2194. fs_info->first_logical_byte = (u64)-1;
  2195. extent_io_tree_init(&fs_info->freed_extents[0],
  2196. fs_info->btree_inode->i_mapping);
  2197. extent_io_tree_init(&fs_info->freed_extents[1],
  2198. fs_info->btree_inode->i_mapping);
  2199. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2200. fs_info->do_barriers = 1;
  2201. mutex_init(&fs_info->ordered_operations_mutex);
  2202. mutex_init(&fs_info->ordered_extent_flush_mutex);
  2203. mutex_init(&fs_info->tree_log_mutex);
  2204. mutex_init(&fs_info->chunk_mutex);
  2205. mutex_init(&fs_info->transaction_kthread_mutex);
  2206. mutex_init(&fs_info->cleaner_mutex);
  2207. mutex_init(&fs_info->volume_mutex);
  2208. init_rwsem(&fs_info->commit_root_sem);
  2209. init_rwsem(&fs_info->cleanup_work_sem);
  2210. init_rwsem(&fs_info->subvol_sem);
  2211. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2212. btrfs_init_dev_replace_locks(fs_info);
  2213. btrfs_init_qgroup(fs_info);
  2214. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2215. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2216. init_waitqueue_head(&fs_info->transaction_throttle);
  2217. init_waitqueue_head(&fs_info->transaction_wait);
  2218. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2219. init_waitqueue_head(&fs_info->async_submit_wait);
  2220. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2221. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2222. if (ret) {
  2223. err = ret;
  2224. goto fail_alloc;
  2225. }
  2226. __setup_root(4096, 4096, 4096, tree_root,
  2227. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2228. invalidate_bdev(fs_devices->latest_bdev);
  2229. /*
  2230. * Read super block and check the signature bytes only
  2231. */
  2232. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2233. if (!bh) {
  2234. err = -EINVAL;
  2235. goto fail_alloc;
  2236. }
  2237. /*
  2238. * We want to check superblock checksum, the type is stored inside.
  2239. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2240. */
  2241. if (btrfs_check_super_csum(bh->b_data)) {
  2242. printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
  2243. err = -EINVAL;
  2244. goto fail_alloc;
  2245. }
  2246. /*
  2247. * super_copy is zeroed at allocation time and we never touch the
  2248. * following bytes up to INFO_SIZE, the checksum is calculated from
  2249. * the whole block of INFO_SIZE
  2250. */
  2251. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2252. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2253. sizeof(*fs_info->super_for_commit));
  2254. brelse(bh);
  2255. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2256. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2257. if (ret) {
  2258. printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
  2259. err = -EINVAL;
  2260. goto fail_alloc;
  2261. }
  2262. disk_super = fs_info->super_copy;
  2263. if (!btrfs_super_root(disk_super))
  2264. goto fail_alloc;
  2265. /* check FS state, whether FS is broken. */
  2266. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2267. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2268. /*
  2269. * run through our array of backup supers and setup
  2270. * our ring pointer to the oldest one
  2271. */
  2272. generation = btrfs_super_generation(disk_super);
  2273. find_oldest_super_backup(fs_info, generation);
  2274. /*
  2275. * In the long term, we'll store the compression type in the super
  2276. * block, and it'll be used for per file compression control.
  2277. */
  2278. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2279. ret = btrfs_parse_options(tree_root, options);
  2280. if (ret) {
  2281. err = ret;
  2282. goto fail_alloc;
  2283. }
  2284. features = btrfs_super_incompat_flags(disk_super) &
  2285. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2286. if (features) {
  2287. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2288. "unsupported optional features (%Lx).\n",
  2289. features);
  2290. err = -EINVAL;
  2291. goto fail_alloc;
  2292. }
  2293. /*
  2294. * Leafsize and nodesize were always equal, this is only a sanity check.
  2295. */
  2296. if (le32_to_cpu(disk_super->__unused_leafsize) !=
  2297. btrfs_super_nodesize(disk_super)) {
  2298. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2299. "blocksizes don't match. node %d leaf %d\n",
  2300. btrfs_super_nodesize(disk_super),
  2301. le32_to_cpu(disk_super->__unused_leafsize));
  2302. err = -EINVAL;
  2303. goto fail_alloc;
  2304. }
  2305. if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2306. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2307. "blocksize (%d) was too large\n",
  2308. btrfs_super_nodesize(disk_super));
  2309. err = -EINVAL;
  2310. goto fail_alloc;
  2311. }
  2312. features = btrfs_super_incompat_flags(disk_super);
  2313. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2314. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2315. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2316. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2317. printk(KERN_INFO "BTRFS: has skinny extents\n");
  2318. /*
  2319. * flag our filesystem as having big metadata blocks if
  2320. * they are bigger than the page size
  2321. */
  2322. if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
  2323. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2324. printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
  2325. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2326. }
  2327. nodesize = btrfs_super_nodesize(disk_super);
  2328. sectorsize = btrfs_super_sectorsize(disk_super);
  2329. stripesize = btrfs_super_stripesize(disk_super);
  2330. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2331. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2332. /*
  2333. * mixed block groups end up with duplicate but slightly offset
  2334. * extent buffers for the same range. It leads to corruptions
  2335. */
  2336. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2337. (sectorsize != nodesize)) {
  2338. printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
  2339. "are not allowed for mixed block groups on %s\n",
  2340. sb->s_id);
  2341. goto fail_alloc;
  2342. }
  2343. /*
  2344. * Needn't use the lock because there is no other task which will
  2345. * update the flag.
  2346. */
  2347. btrfs_set_super_incompat_flags(disk_super, features);
  2348. features = btrfs_super_compat_ro_flags(disk_super) &
  2349. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2350. if (!(sb->s_flags & MS_RDONLY) && features) {
  2351. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2352. "unsupported option features (%Lx).\n",
  2353. features);
  2354. err = -EINVAL;
  2355. goto fail_alloc;
  2356. }
  2357. max_active = fs_info->thread_pool_size;
  2358. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2359. if (ret) {
  2360. err = ret;
  2361. goto fail_sb_buffer;
  2362. }
  2363. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2364. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2365. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2366. tree_root->nodesize = nodesize;
  2367. tree_root->sectorsize = sectorsize;
  2368. tree_root->stripesize = stripesize;
  2369. sb->s_blocksize = sectorsize;
  2370. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2371. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2372. printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
  2373. goto fail_sb_buffer;
  2374. }
  2375. if (sectorsize != PAGE_SIZE) {
  2376. printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
  2377. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2378. goto fail_sb_buffer;
  2379. }
  2380. mutex_lock(&fs_info->chunk_mutex);
  2381. ret = btrfs_read_sys_array(tree_root);
  2382. mutex_unlock(&fs_info->chunk_mutex);
  2383. if (ret) {
  2384. printk(KERN_ERR "BTRFS: failed to read the system "
  2385. "array on %s\n", sb->s_id);
  2386. goto fail_sb_buffer;
  2387. }
  2388. generation = btrfs_super_chunk_root_generation(disk_super);
  2389. __setup_root(nodesize, sectorsize, stripesize, chunk_root,
  2390. fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2391. chunk_root->node = read_tree_block(chunk_root,
  2392. btrfs_super_chunk_root(disk_super),
  2393. generation);
  2394. if (!chunk_root->node ||
  2395. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2396. printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
  2397. sb->s_id);
  2398. goto fail_tree_roots;
  2399. }
  2400. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2401. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2402. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2403. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2404. ret = btrfs_read_chunk_tree(chunk_root);
  2405. if (ret) {
  2406. printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
  2407. sb->s_id);
  2408. goto fail_tree_roots;
  2409. }
  2410. /*
  2411. * keep the device that is marked to be the target device for the
  2412. * dev_replace procedure
  2413. */
  2414. btrfs_close_extra_devices(fs_devices, 0);
  2415. if (!fs_devices->latest_bdev) {
  2416. printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
  2417. sb->s_id);
  2418. goto fail_tree_roots;
  2419. }
  2420. retry_root_backup:
  2421. generation = btrfs_super_generation(disk_super);
  2422. tree_root->node = read_tree_block(tree_root,
  2423. btrfs_super_root(disk_super),
  2424. generation);
  2425. if (!tree_root->node ||
  2426. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2427. printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
  2428. sb->s_id);
  2429. goto recovery_tree_root;
  2430. }
  2431. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2432. tree_root->commit_root = btrfs_root_node(tree_root);
  2433. btrfs_set_root_refs(&tree_root->root_item, 1);
  2434. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2435. location.type = BTRFS_ROOT_ITEM_KEY;
  2436. location.offset = 0;
  2437. extent_root = btrfs_read_tree_root(tree_root, &location);
  2438. if (IS_ERR(extent_root)) {
  2439. ret = PTR_ERR(extent_root);
  2440. goto recovery_tree_root;
  2441. }
  2442. set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
  2443. fs_info->extent_root = extent_root;
  2444. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2445. dev_root = btrfs_read_tree_root(tree_root, &location);
  2446. if (IS_ERR(dev_root)) {
  2447. ret = PTR_ERR(dev_root);
  2448. goto recovery_tree_root;
  2449. }
  2450. set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
  2451. fs_info->dev_root = dev_root;
  2452. btrfs_init_devices_late(fs_info);
  2453. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2454. csum_root = btrfs_read_tree_root(tree_root, &location);
  2455. if (IS_ERR(csum_root)) {
  2456. ret = PTR_ERR(csum_root);
  2457. goto recovery_tree_root;
  2458. }
  2459. set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
  2460. fs_info->csum_root = csum_root;
  2461. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2462. quota_root = btrfs_read_tree_root(tree_root, &location);
  2463. if (!IS_ERR(quota_root)) {
  2464. set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
  2465. fs_info->quota_enabled = 1;
  2466. fs_info->pending_quota_state = 1;
  2467. fs_info->quota_root = quota_root;
  2468. }
  2469. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2470. uuid_root = btrfs_read_tree_root(tree_root, &location);
  2471. if (IS_ERR(uuid_root)) {
  2472. ret = PTR_ERR(uuid_root);
  2473. if (ret != -ENOENT)
  2474. goto recovery_tree_root;
  2475. create_uuid_tree = true;
  2476. check_uuid_tree = false;
  2477. } else {
  2478. set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
  2479. fs_info->uuid_root = uuid_root;
  2480. create_uuid_tree = false;
  2481. check_uuid_tree =
  2482. generation != btrfs_super_uuid_tree_generation(disk_super);
  2483. }
  2484. fs_info->generation = generation;
  2485. fs_info->last_trans_committed = generation;
  2486. ret = btrfs_recover_balance(fs_info);
  2487. if (ret) {
  2488. printk(KERN_ERR "BTRFS: failed to recover balance\n");
  2489. goto fail_block_groups;
  2490. }
  2491. ret = btrfs_init_dev_stats(fs_info);
  2492. if (ret) {
  2493. printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
  2494. ret);
  2495. goto fail_block_groups;
  2496. }
  2497. ret = btrfs_init_dev_replace(fs_info);
  2498. if (ret) {
  2499. pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
  2500. goto fail_block_groups;
  2501. }
  2502. btrfs_close_extra_devices(fs_devices, 1);
  2503. ret = btrfs_sysfs_add_one(fs_info);
  2504. if (ret) {
  2505. pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
  2506. goto fail_block_groups;
  2507. }
  2508. ret = btrfs_init_space_info(fs_info);
  2509. if (ret) {
  2510. printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
  2511. goto fail_sysfs;
  2512. }
  2513. ret = btrfs_read_block_groups(extent_root);
  2514. if (ret) {
  2515. printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
  2516. goto fail_sysfs;
  2517. }
  2518. fs_info->num_tolerated_disk_barrier_failures =
  2519. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2520. if (fs_info->fs_devices->missing_devices >
  2521. fs_info->num_tolerated_disk_barrier_failures &&
  2522. !(sb->s_flags & MS_RDONLY)) {
  2523. printk(KERN_WARNING "BTRFS: "
  2524. "too many missing devices, writeable mount is not allowed\n");
  2525. goto fail_sysfs;
  2526. }
  2527. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2528. "btrfs-cleaner");
  2529. if (IS_ERR(fs_info->cleaner_kthread))
  2530. goto fail_sysfs;
  2531. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2532. tree_root,
  2533. "btrfs-transaction");
  2534. if (IS_ERR(fs_info->transaction_kthread))
  2535. goto fail_cleaner;
  2536. if (!btrfs_test_opt(tree_root, SSD) &&
  2537. !btrfs_test_opt(tree_root, NOSSD) &&
  2538. !fs_info->fs_devices->rotating) {
  2539. printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
  2540. "mode\n");
  2541. btrfs_set_opt(fs_info->mount_opt, SSD);
  2542. }
  2543. /*
  2544. * Mount does not set all options immediatelly, we can do it now and do
  2545. * not have to wait for transaction commit
  2546. */
  2547. btrfs_apply_pending_changes(fs_info);
  2548. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2549. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2550. ret = btrfsic_mount(tree_root, fs_devices,
  2551. btrfs_test_opt(tree_root,
  2552. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2553. 1 : 0,
  2554. fs_info->check_integrity_print_mask);
  2555. if (ret)
  2556. printk(KERN_WARNING "BTRFS: failed to initialize"
  2557. " integrity check module %s\n", sb->s_id);
  2558. }
  2559. #endif
  2560. ret = btrfs_read_qgroup_config(fs_info);
  2561. if (ret)
  2562. goto fail_trans_kthread;
  2563. /* do not make disk changes in broken FS */
  2564. if (btrfs_super_log_root(disk_super) != 0) {
  2565. ret = btrfs_replay_log(fs_info, fs_devices);
  2566. if (ret) {
  2567. err = ret;
  2568. goto fail_qgroup;
  2569. }
  2570. }
  2571. ret = btrfs_find_orphan_roots(tree_root);
  2572. if (ret)
  2573. goto fail_qgroup;
  2574. if (!(sb->s_flags & MS_RDONLY)) {
  2575. ret = btrfs_cleanup_fs_roots(fs_info);
  2576. if (ret)
  2577. goto fail_qgroup;
  2578. mutex_lock(&fs_info->cleaner_mutex);
  2579. ret = btrfs_recover_relocation(tree_root);
  2580. mutex_unlock(&fs_info->cleaner_mutex);
  2581. if (ret < 0) {
  2582. printk(KERN_WARNING
  2583. "BTRFS: failed to recover relocation\n");
  2584. err = -EINVAL;
  2585. goto fail_qgroup;
  2586. }
  2587. }
  2588. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2589. location.type = BTRFS_ROOT_ITEM_KEY;
  2590. location.offset = 0;
  2591. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2592. if (IS_ERR(fs_info->fs_root)) {
  2593. err = PTR_ERR(fs_info->fs_root);
  2594. goto fail_qgroup;
  2595. }
  2596. if (sb->s_flags & MS_RDONLY)
  2597. return 0;
  2598. down_read(&fs_info->cleanup_work_sem);
  2599. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2600. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2601. up_read(&fs_info->cleanup_work_sem);
  2602. close_ctree(tree_root);
  2603. return ret;
  2604. }
  2605. up_read(&fs_info->cleanup_work_sem);
  2606. ret = btrfs_resume_balance_async(fs_info);
  2607. if (ret) {
  2608. printk(KERN_WARNING "BTRFS: failed to resume balance\n");
  2609. close_ctree(tree_root);
  2610. return ret;
  2611. }
  2612. ret = btrfs_resume_dev_replace_async(fs_info);
  2613. if (ret) {
  2614. pr_warn("BTRFS: failed to resume dev_replace\n");
  2615. close_ctree(tree_root);
  2616. return ret;
  2617. }
  2618. btrfs_qgroup_rescan_resume(fs_info);
  2619. if (create_uuid_tree) {
  2620. pr_info("BTRFS: creating UUID tree\n");
  2621. ret = btrfs_create_uuid_tree(fs_info);
  2622. if (ret) {
  2623. pr_warn("BTRFS: failed to create the UUID tree %d\n",
  2624. ret);
  2625. close_ctree(tree_root);
  2626. return ret;
  2627. }
  2628. } else if (check_uuid_tree ||
  2629. btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
  2630. pr_info("BTRFS: checking UUID tree\n");
  2631. ret = btrfs_check_uuid_tree(fs_info);
  2632. if (ret) {
  2633. pr_warn("BTRFS: failed to check the UUID tree %d\n",
  2634. ret);
  2635. close_ctree(tree_root);
  2636. return ret;
  2637. }
  2638. } else {
  2639. fs_info->update_uuid_tree_gen = 1;
  2640. }
  2641. fs_info->open = 1;
  2642. return 0;
  2643. fail_qgroup:
  2644. btrfs_free_qgroup_config(fs_info);
  2645. fail_trans_kthread:
  2646. kthread_stop(fs_info->transaction_kthread);
  2647. btrfs_cleanup_transaction(fs_info->tree_root);
  2648. btrfs_free_fs_roots(fs_info);
  2649. fail_cleaner:
  2650. kthread_stop(fs_info->cleaner_kthread);
  2651. /*
  2652. * make sure we're done with the btree inode before we stop our
  2653. * kthreads
  2654. */
  2655. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2656. fail_sysfs:
  2657. btrfs_sysfs_remove_one(fs_info);
  2658. fail_block_groups:
  2659. btrfs_put_block_group_cache(fs_info);
  2660. btrfs_free_block_groups(fs_info);
  2661. fail_tree_roots:
  2662. free_root_pointers(fs_info, 1);
  2663. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2664. fail_sb_buffer:
  2665. btrfs_stop_all_workers(fs_info);
  2666. fail_alloc:
  2667. fail_iput:
  2668. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2669. iput(fs_info->btree_inode);
  2670. fail_bio_counter:
  2671. percpu_counter_destroy(&fs_info->bio_counter);
  2672. fail_delalloc_bytes:
  2673. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2674. fail_dirty_metadata_bytes:
  2675. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2676. fail_bdi:
  2677. bdi_destroy(&fs_info->bdi);
  2678. fail_srcu:
  2679. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2680. fail:
  2681. btrfs_free_stripe_hash_table(fs_info);
  2682. btrfs_close_devices(fs_info->fs_devices);
  2683. return err;
  2684. recovery_tree_root:
  2685. if (!btrfs_test_opt(tree_root, RECOVERY))
  2686. goto fail_tree_roots;
  2687. free_root_pointers(fs_info, 0);
  2688. /* don't use the log in recovery mode, it won't be valid */
  2689. btrfs_set_super_log_root(disk_super, 0);
  2690. /* we can't trust the free space cache either */
  2691. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2692. ret = next_root_backup(fs_info, fs_info->super_copy,
  2693. &num_backups_tried, &backup_index);
  2694. if (ret == -1)
  2695. goto fail_block_groups;
  2696. goto retry_root_backup;
  2697. }
  2698. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2699. {
  2700. if (uptodate) {
  2701. set_buffer_uptodate(bh);
  2702. } else {
  2703. struct btrfs_device *device = (struct btrfs_device *)
  2704. bh->b_private;
  2705. printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
  2706. "I/O error on %s\n",
  2707. rcu_str_deref(device->name));
  2708. /* note, we dont' set_buffer_write_io_error because we have
  2709. * our own ways of dealing with the IO errors
  2710. */
  2711. clear_buffer_uptodate(bh);
  2712. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2713. }
  2714. unlock_buffer(bh);
  2715. put_bh(bh);
  2716. }
  2717. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2718. {
  2719. struct buffer_head *bh;
  2720. struct buffer_head *latest = NULL;
  2721. struct btrfs_super_block *super;
  2722. int i;
  2723. u64 transid = 0;
  2724. u64 bytenr;
  2725. /* we would like to check all the supers, but that would make
  2726. * a btrfs mount succeed after a mkfs from a different FS.
  2727. * So, we need to add a special mount option to scan for
  2728. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2729. */
  2730. for (i = 0; i < 1; i++) {
  2731. bytenr = btrfs_sb_offset(i);
  2732. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2733. i_size_read(bdev->bd_inode))
  2734. break;
  2735. bh = __bread(bdev, bytenr / 4096,
  2736. BTRFS_SUPER_INFO_SIZE);
  2737. if (!bh)
  2738. continue;
  2739. super = (struct btrfs_super_block *)bh->b_data;
  2740. if (btrfs_super_bytenr(super) != bytenr ||
  2741. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2742. brelse(bh);
  2743. continue;
  2744. }
  2745. if (!latest || btrfs_super_generation(super) > transid) {
  2746. brelse(latest);
  2747. latest = bh;
  2748. transid = btrfs_super_generation(super);
  2749. } else {
  2750. brelse(bh);
  2751. }
  2752. }
  2753. return latest;
  2754. }
  2755. /*
  2756. * this should be called twice, once with wait == 0 and
  2757. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2758. * we write are pinned.
  2759. *
  2760. * They are released when wait == 1 is done.
  2761. * max_mirrors must be the same for both runs, and it indicates how
  2762. * many supers on this one device should be written.
  2763. *
  2764. * max_mirrors == 0 means to write them all.
  2765. */
  2766. static int write_dev_supers(struct btrfs_device *device,
  2767. struct btrfs_super_block *sb,
  2768. int do_barriers, int wait, int max_mirrors)
  2769. {
  2770. struct buffer_head *bh;
  2771. int i;
  2772. int ret;
  2773. int errors = 0;
  2774. u32 crc;
  2775. u64 bytenr;
  2776. if (max_mirrors == 0)
  2777. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2778. for (i = 0; i < max_mirrors; i++) {
  2779. bytenr = btrfs_sb_offset(i);
  2780. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2781. device->commit_total_bytes)
  2782. break;
  2783. if (wait) {
  2784. bh = __find_get_block(device->bdev, bytenr / 4096,
  2785. BTRFS_SUPER_INFO_SIZE);
  2786. if (!bh) {
  2787. errors++;
  2788. continue;
  2789. }
  2790. wait_on_buffer(bh);
  2791. if (!buffer_uptodate(bh))
  2792. errors++;
  2793. /* drop our reference */
  2794. brelse(bh);
  2795. /* drop the reference from the wait == 0 run */
  2796. brelse(bh);
  2797. continue;
  2798. } else {
  2799. btrfs_set_super_bytenr(sb, bytenr);
  2800. crc = ~(u32)0;
  2801. crc = btrfs_csum_data((char *)sb +
  2802. BTRFS_CSUM_SIZE, crc,
  2803. BTRFS_SUPER_INFO_SIZE -
  2804. BTRFS_CSUM_SIZE);
  2805. btrfs_csum_final(crc, sb->csum);
  2806. /*
  2807. * one reference for us, and we leave it for the
  2808. * caller
  2809. */
  2810. bh = __getblk(device->bdev, bytenr / 4096,
  2811. BTRFS_SUPER_INFO_SIZE);
  2812. if (!bh) {
  2813. printk(KERN_ERR "BTRFS: couldn't get super "
  2814. "buffer head for bytenr %Lu\n", bytenr);
  2815. errors++;
  2816. continue;
  2817. }
  2818. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2819. /* one reference for submit_bh */
  2820. get_bh(bh);
  2821. set_buffer_uptodate(bh);
  2822. lock_buffer(bh);
  2823. bh->b_end_io = btrfs_end_buffer_write_sync;
  2824. bh->b_private = device;
  2825. }
  2826. /*
  2827. * we fua the first super. The others we allow
  2828. * to go down lazy.
  2829. */
  2830. if (i == 0)
  2831. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2832. else
  2833. ret = btrfsic_submit_bh(WRITE_SYNC, bh);
  2834. if (ret)
  2835. errors++;
  2836. }
  2837. return errors < i ? 0 : -1;
  2838. }
  2839. /*
  2840. * endio for the write_dev_flush, this will wake anyone waiting
  2841. * for the barrier when it is done
  2842. */
  2843. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2844. {
  2845. if (err) {
  2846. if (err == -EOPNOTSUPP)
  2847. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2848. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2849. }
  2850. if (bio->bi_private)
  2851. complete(bio->bi_private);
  2852. bio_put(bio);
  2853. }
  2854. /*
  2855. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2856. * sent down. With wait == 1, it waits for the previous flush.
  2857. *
  2858. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2859. * capable
  2860. */
  2861. static int write_dev_flush(struct btrfs_device *device, int wait)
  2862. {
  2863. struct bio *bio;
  2864. int ret = 0;
  2865. if (device->nobarriers)
  2866. return 0;
  2867. if (wait) {
  2868. bio = device->flush_bio;
  2869. if (!bio)
  2870. return 0;
  2871. wait_for_completion(&device->flush_wait);
  2872. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2873. printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
  2874. rcu_str_deref(device->name));
  2875. device->nobarriers = 1;
  2876. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2877. ret = -EIO;
  2878. btrfs_dev_stat_inc_and_print(device,
  2879. BTRFS_DEV_STAT_FLUSH_ERRS);
  2880. }
  2881. /* drop the reference from the wait == 0 run */
  2882. bio_put(bio);
  2883. device->flush_bio = NULL;
  2884. return ret;
  2885. }
  2886. /*
  2887. * one reference for us, and we leave it for the
  2888. * caller
  2889. */
  2890. device->flush_bio = NULL;
  2891. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2892. if (!bio)
  2893. return -ENOMEM;
  2894. bio->bi_end_io = btrfs_end_empty_barrier;
  2895. bio->bi_bdev = device->bdev;
  2896. init_completion(&device->flush_wait);
  2897. bio->bi_private = &device->flush_wait;
  2898. device->flush_bio = bio;
  2899. bio_get(bio);
  2900. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2901. return 0;
  2902. }
  2903. /*
  2904. * send an empty flush down to each device in parallel,
  2905. * then wait for them
  2906. */
  2907. static int barrier_all_devices(struct btrfs_fs_info *info)
  2908. {
  2909. struct list_head *head;
  2910. struct btrfs_device *dev;
  2911. int errors_send = 0;
  2912. int errors_wait = 0;
  2913. int ret;
  2914. /* send down all the barriers */
  2915. head = &info->fs_devices->devices;
  2916. list_for_each_entry_rcu(dev, head, dev_list) {
  2917. if (dev->missing)
  2918. continue;
  2919. if (!dev->bdev) {
  2920. errors_send++;
  2921. continue;
  2922. }
  2923. if (!dev->in_fs_metadata || !dev->writeable)
  2924. continue;
  2925. ret = write_dev_flush(dev, 0);
  2926. if (ret)
  2927. errors_send++;
  2928. }
  2929. /* wait for all the barriers */
  2930. list_for_each_entry_rcu(dev, head, dev_list) {
  2931. if (dev->missing)
  2932. continue;
  2933. if (!dev->bdev) {
  2934. errors_wait++;
  2935. continue;
  2936. }
  2937. if (!dev->in_fs_metadata || !dev->writeable)
  2938. continue;
  2939. ret = write_dev_flush(dev, 1);
  2940. if (ret)
  2941. errors_wait++;
  2942. }
  2943. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2944. errors_wait > info->num_tolerated_disk_barrier_failures)
  2945. return -EIO;
  2946. return 0;
  2947. }
  2948. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2949. struct btrfs_fs_info *fs_info)
  2950. {
  2951. struct btrfs_ioctl_space_info space;
  2952. struct btrfs_space_info *sinfo;
  2953. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2954. BTRFS_BLOCK_GROUP_SYSTEM,
  2955. BTRFS_BLOCK_GROUP_METADATA,
  2956. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2957. int num_types = 4;
  2958. int i;
  2959. int c;
  2960. int num_tolerated_disk_barrier_failures =
  2961. (int)fs_info->fs_devices->num_devices;
  2962. for (i = 0; i < num_types; i++) {
  2963. struct btrfs_space_info *tmp;
  2964. sinfo = NULL;
  2965. rcu_read_lock();
  2966. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2967. if (tmp->flags == types[i]) {
  2968. sinfo = tmp;
  2969. break;
  2970. }
  2971. }
  2972. rcu_read_unlock();
  2973. if (!sinfo)
  2974. continue;
  2975. down_read(&sinfo->groups_sem);
  2976. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2977. if (!list_empty(&sinfo->block_groups[c])) {
  2978. u64 flags;
  2979. btrfs_get_block_group_info(
  2980. &sinfo->block_groups[c], &space);
  2981. if (space.total_bytes == 0 ||
  2982. space.used_bytes == 0)
  2983. continue;
  2984. flags = space.flags;
  2985. /*
  2986. * return
  2987. * 0: if dup, single or RAID0 is configured for
  2988. * any of metadata, system or data, else
  2989. * 1: if RAID5 is configured, or if RAID1 or
  2990. * RAID10 is configured and only two mirrors
  2991. * are used, else
  2992. * 2: if RAID6 is configured, else
  2993. * num_mirrors - 1: if RAID1 or RAID10 is
  2994. * configured and more than
  2995. * 2 mirrors are used.
  2996. */
  2997. if (num_tolerated_disk_barrier_failures > 0 &&
  2998. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2999. BTRFS_BLOCK_GROUP_RAID0)) ||
  3000. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  3001. == 0)))
  3002. num_tolerated_disk_barrier_failures = 0;
  3003. else if (num_tolerated_disk_barrier_failures > 1) {
  3004. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  3005. BTRFS_BLOCK_GROUP_RAID5 |
  3006. BTRFS_BLOCK_GROUP_RAID10)) {
  3007. num_tolerated_disk_barrier_failures = 1;
  3008. } else if (flags &
  3009. BTRFS_BLOCK_GROUP_RAID6) {
  3010. num_tolerated_disk_barrier_failures = 2;
  3011. }
  3012. }
  3013. }
  3014. }
  3015. up_read(&sinfo->groups_sem);
  3016. }
  3017. return num_tolerated_disk_barrier_failures;
  3018. }
  3019. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  3020. {
  3021. struct list_head *head;
  3022. struct btrfs_device *dev;
  3023. struct btrfs_super_block *sb;
  3024. struct btrfs_dev_item *dev_item;
  3025. int ret;
  3026. int do_barriers;
  3027. int max_errors;
  3028. int total_errors = 0;
  3029. u64 flags;
  3030. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  3031. backup_super_roots(root->fs_info);
  3032. sb = root->fs_info->super_for_commit;
  3033. dev_item = &sb->dev_item;
  3034. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  3035. head = &root->fs_info->fs_devices->devices;
  3036. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  3037. if (do_barriers) {
  3038. ret = barrier_all_devices(root->fs_info);
  3039. if (ret) {
  3040. mutex_unlock(
  3041. &root->fs_info->fs_devices->device_list_mutex);
  3042. btrfs_error(root->fs_info, ret,
  3043. "errors while submitting device barriers.");
  3044. return ret;
  3045. }
  3046. }
  3047. list_for_each_entry_rcu(dev, head, dev_list) {
  3048. if (!dev->bdev) {
  3049. total_errors++;
  3050. continue;
  3051. }
  3052. if (!dev->in_fs_metadata || !dev->writeable)
  3053. continue;
  3054. btrfs_set_stack_device_generation(dev_item, 0);
  3055. btrfs_set_stack_device_type(dev_item, dev->type);
  3056. btrfs_set_stack_device_id(dev_item, dev->devid);
  3057. btrfs_set_stack_device_total_bytes(dev_item,
  3058. dev->commit_total_bytes);
  3059. btrfs_set_stack_device_bytes_used(dev_item,
  3060. dev->commit_bytes_used);
  3061. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3062. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3063. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3064. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3065. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3066. flags = btrfs_super_flags(sb);
  3067. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3068. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  3069. if (ret)
  3070. total_errors++;
  3071. }
  3072. if (total_errors > max_errors) {
  3073. btrfs_err(root->fs_info, "%d errors while writing supers",
  3074. total_errors);
  3075. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3076. /* FUA is masked off if unsupported and can't be the reason */
  3077. btrfs_error(root->fs_info, -EIO,
  3078. "%d errors while writing supers", total_errors);
  3079. return -EIO;
  3080. }
  3081. total_errors = 0;
  3082. list_for_each_entry_rcu(dev, head, dev_list) {
  3083. if (!dev->bdev)
  3084. continue;
  3085. if (!dev->in_fs_metadata || !dev->writeable)
  3086. continue;
  3087. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3088. if (ret)
  3089. total_errors++;
  3090. }
  3091. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3092. if (total_errors > max_errors) {
  3093. btrfs_error(root->fs_info, -EIO,
  3094. "%d errors while writing supers", total_errors);
  3095. return -EIO;
  3096. }
  3097. return 0;
  3098. }
  3099. int write_ctree_super(struct btrfs_trans_handle *trans,
  3100. struct btrfs_root *root, int max_mirrors)
  3101. {
  3102. return write_all_supers(root, max_mirrors);
  3103. }
  3104. /* Drop a fs root from the radix tree and free it. */
  3105. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3106. struct btrfs_root *root)
  3107. {
  3108. spin_lock(&fs_info->fs_roots_radix_lock);
  3109. radix_tree_delete(&fs_info->fs_roots_radix,
  3110. (unsigned long)root->root_key.objectid);
  3111. spin_unlock(&fs_info->fs_roots_radix_lock);
  3112. if (btrfs_root_refs(&root->root_item) == 0)
  3113. synchronize_srcu(&fs_info->subvol_srcu);
  3114. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3115. btrfs_free_log(NULL, root);
  3116. if (root->free_ino_pinned)
  3117. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3118. if (root->free_ino_ctl)
  3119. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3120. free_fs_root(root);
  3121. }
  3122. static void free_fs_root(struct btrfs_root *root)
  3123. {
  3124. iput(root->ino_cache_inode);
  3125. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3126. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3127. root->orphan_block_rsv = NULL;
  3128. if (root->anon_dev)
  3129. free_anon_bdev(root->anon_dev);
  3130. if (root->subv_writers)
  3131. btrfs_free_subvolume_writers(root->subv_writers);
  3132. free_extent_buffer(root->node);
  3133. free_extent_buffer(root->commit_root);
  3134. kfree(root->free_ino_ctl);
  3135. kfree(root->free_ino_pinned);
  3136. kfree(root->name);
  3137. btrfs_put_fs_root(root);
  3138. }
  3139. void btrfs_free_fs_root(struct btrfs_root *root)
  3140. {
  3141. free_fs_root(root);
  3142. }
  3143. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3144. {
  3145. u64 root_objectid = 0;
  3146. struct btrfs_root *gang[8];
  3147. int i = 0;
  3148. int err = 0;
  3149. unsigned int ret = 0;
  3150. int index;
  3151. while (1) {
  3152. index = srcu_read_lock(&fs_info->subvol_srcu);
  3153. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3154. (void **)gang, root_objectid,
  3155. ARRAY_SIZE(gang));
  3156. if (!ret) {
  3157. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3158. break;
  3159. }
  3160. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3161. for (i = 0; i < ret; i++) {
  3162. /* Avoid to grab roots in dead_roots */
  3163. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3164. gang[i] = NULL;
  3165. continue;
  3166. }
  3167. /* grab all the search result for later use */
  3168. gang[i] = btrfs_grab_fs_root(gang[i]);
  3169. }
  3170. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3171. for (i = 0; i < ret; i++) {
  3172. if (!gang[i])
  3173. continue;
  3174. root_objectid = gang[i]->root_key.objectid;
  3175. err = btrfs_orphan_cleanup(gang[i]);
  3176. if (err)
  3177. break;
  3178. btrfs_put_fs_root(gang[i]);
  3179. }
  3180. root_objectid++;
  3181. }
  3182. /* release the uncleaned roots due to error */
  3183. for (; i < ret; i++) {
  3184. if (gang[i])
  3185. btrfs_put_fs_root(gang[i]);
  3186. }
  3187. return err;
  3188. }
  3189. int btrfs_commit_super(struct btrfs_root *root)
  3190. {
  3191. struct btrfs_trans_handle *trans;
  3192. mutex_lock(&root->fs_info->cleaner_mutex);
  3193. btrfs_run_delayed_iputs(root);
  3194. mutex_unlock(&root->fs_info->cleaner_mutex);
  3195. wake_up_process(root->fs_info->cleaner_kthread);
  3196. /* wait until ongoing cleanup work done */
  3197. down_write(&root->fs_info->cleanup_work_sem);
  3198. up_write(&root->fs_info->cleanup_work_sem);
  3199. trans = btrfs_join_transaction(root);
  3200. if (IS_ERR(trans))
  3201. return PTR_ERR(trans);
  3202. return btrfs_commit_transaction(trans, root);
  3203. }
  3204. void close_ctree(struct btrfs_root *root)
  3205. {
  3206. struct btrfs_fs_info *fs_info = root->fs_info;
  3207. int ret;
  3208. fs_info->closing = 1;
  3209. smp_mb();
  3210. /* wait for the uuid_scan task to finish */
  3211. down(&fs_info->uuid_tree_rescan_sem);
  3212. /* avoid complains from lockdep et al., set sem back to initial state */
  3213. up(&fs_info->uuid_tree_rescan_sem);
  3214. /* pause restriper - we want to resume on mount */
  3215. btrfs_pause_balance(fs_info);
  3216. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3217. btrfs_scrub_cancel(fs_info);
  3218. /* wait for any defraggers to finish */
  3219. wait_event(fs_info->transaction_wait,
  3220. (atomic_read(&fs_info->defrag_running) == 0));
  3221. /* clear out the rbtree of defraggable inodes */
  3222. btrfs_cleanup_defrag_inodes(fs_info);
  3223. cancel_work_sync(&fs_info->async_reclaim_work);
  3224. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3225. ret = btrfs_commit_super(root);
  3226. if (ret)
  3227. btrfs_err(fs_info, "commit super ret %d", ret);
  3228. }
  3229. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3230. btrfs_error_commit_super(root);
  3231. kthread_stop(fs_info->transaction_kthread);
  3232. kthread_stop(fs_info->cleaner_kthread);
  3233. fs_info->closing = 2;
  3234. smp_mb();
  3235. btrfs_free_qgroup_config(fs_info);
  3236. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3237. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3238. percpu_counter_sum(&fs_info->delalloc_bytes));
  3239. }
  3240. btrfs_sysfs_remove_one(fs_info);
  3241. btrfs_free_fs_roots(fs_info);
  3242. btrfs_put_block_group_cache(fs_info);
  3243. btrfs_free_block_groups(fs_info);
  3244. /*
  3245. * we must make sure there is not any read request to
  3246. * submit after we stopping all workers.
  3247. */
  3248. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3249. btrfs_stop_all_workers(fs_info);
  3250. fs_info->open = 0;
  3251. free_root_pointers(fs_info, 1);
  3252. iput(fs_info->btree_inode);
  3253. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3254. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3255. btrfsic_unmount(root, fs_info->fs_devices);
  3256. #endif
  3257. btrfs_close_devices(fs_info->fs_devices);
  3258. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3259. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3260. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3261. percpu_counter_destroy(&fs_info->bio_counter);
  3262. bdi_destroy(&fs_info->bdi);
  3263. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3264. btrfs_free_stripe_hash_table(fs_info);
  3265. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3266. root->orphan_block_rsv = NULL;
  3267. lock_chunks(root);
  3268. while (!list_empty(&fs_info->pinned_chunks)) {
  3269. struct extent_map *em;
  3270. em = list_first_entry(&fs_info->pinned_chunks,
  3271. struct extent_map, list);
  3272. list_del_init(&em->list);
  3273. free_extent_map(em);
  3274. }
  3275. unlock_chunks(root);
  3276. }
  3277. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3278. int atomic)
  3279. {
  3280. int ret;
  3281. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3282. ret = extent_buffer_uptodate(buf);
  3283. if (!ret)
  3284. return ret;
  3285. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3286. parent_transid, atomic);
  3287. if (ret == -EAGAIN)
  3288. return ret;
  3289. return !ret;
  3290. }
  3291. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3292. {
  3293. return set_extent_buffer_uptodate(buf);
  3294. }
  3295. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3296. {
  3297. struct btrfs_root *root;
  3298. u64 transid = btrfs_header_generation(buf);
  3299. int was_dirty;
  3300. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3301. /*
  3302. * This is a fast path so only do this check if we have sanity tests
  3303. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3304. * outside of the sanity tests.
  3305. */
  3306. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3307. return;
  3308. #endif
  3309. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3310. btrfs_assert_tree_locked(buf);
  3311. if (transid != root->fs_info->generation)
  3312. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3313. "found %llu running %llu\n",
  3314. buf->start, transid, root->fs_info->generation);
  3315. was_dirty = set_extent_buffer_dirty(buf);
  3316. if (!was_dirty)
  3317. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3318. buf->len,
  3319. root->fs_info->dirty_metadata_batch);
  3320. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3321. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3322. btrfs_print_leaf(root, buf);
  3323. ASSERT(0);
  3324. }
  3325. #endif
  3326. }
  3327. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3328. int flush_delayed)
  3329. {
  3330. /*
  3331. * looks as though older kernels can get into trouble with
  3332. * this code, they end up stuck in balance_dirty_pages forever
  3333. */
  3334. int ret;
  3335. if (current->flags & PF_MEMALLOC)
  3336. return;
  3337. if (flush_delayed)
  3338. btrfs_balance_delayed_items(root);
  3339. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3340. BTRFS_DIRTY_METADATA_THRESH);
  3341. if (ret > 0) {
  3342. balance_dirty_pages_ratelimited(
  3343. root->fs_info->btree_inode->i_mapping);
  3344. }
  3345. return;
  3346. }
  3347. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3348. {
  3349. __btrfs_btree_balance_dirty(root, 1);
  3350. }
  3351. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3352. {
  3353. __btrfs_btree_balance_dirty(root, 0);
  3354. }
  3355. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3356. {
  3357. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3358. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3359. }
  3360. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3361. int read_only)
  3362. {
  3363. struct btrfs_super_block *sb = fs_info->super_copy;
  3364. int ret = 0;
  3365. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3366. printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
  3367. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3368. ret = -EINVAL;
  3369. }
  3370. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3371. printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
  3372. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3373. ret = -EINVAL;
  3374. }
  3375. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3376. printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
  3377. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3378. ret = -EINVAL;
  3379. }
  3380. /*
  3381. * The common minimum, we don't know if we can trust the nodesize/sectorsize
  3382. * items yet, they'll be verified later. Issue just a warning.
  3383. */
  3384. if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
  3385. printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
  3386. btrfs_super_root(sb));
  3387. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
  3388. printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
  3389. btrfs_super_chunk_root(sb));
  3390. if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
  3391. printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
  3392. btrfs_super_log_root(sb));
  3393. /*
  3394. * Check the lower bound, the alignment and other constraints are
  3395. * checked later.
  3396. */
  3397. if (btrfs_super_nodesize(sb) < 4096) {
  3398. printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
  3399. btrfs_super_nodesize(sb));
  3400. ret = -EINVAL;
  3401. }
  3402. if (btrfs_super_sectorsize(sb) < 4096) {
  3403. printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
  3404. btrfs_super_sectorsize(sb));
  3405. ret = -EINVAL;
  3406. }
  3407. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
  3408. printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
  3409. fs_info->fsid, sb->dev_item.fsid);
  3410. ret = -EINVAL;
  3411. }
  3412. /*
  3413. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3414. * done later
  3415. */
  3416. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3417. printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
  3418. btrfs_super_num_devices(sb));
  3419. if (btrfs_super_num_devices(sb) == 0) {
  3420. printk(KERN_ERR "BTRFS: number of devices is 0\n");
  3421. ret = -EINVAL;
  3422. }
  3423. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3424. printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
  3425. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3426. ret = -EINVAL;
  3427. }
  3428. /*
  3429. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3430. * and one chunk
  3431. */
  3432. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3433. printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
  3434. btrfs_super_sys_array_size(sb),
  3435. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3436. ret = -EINVAL;
  3437. }
  3438. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3439. + sizeof(struct btrfs_chunk)) {
  3440. printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
  3441. btrfs_super_sys_array_size(sb),
  3442. sizeof(struct btrfs_disk_key)
  3443. + sizeof(struct btrfs_chunk));
  3444. ret = -EINVAL;
  3445. }
  3446. /*
  3447. * The generation is a global counter, we'll trust it more than the others
  3448. * but it's still possible that it's the one that's wrong.
  3449. */
  3450. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3451. printk(KERN_WARNING
  3452. "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
  3453. btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
  3454. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3455. && btrfs_super_cache_generation(sb) != (u64)-1)
  3456. printk(KERN_WARNING
  3457. "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
  3458. btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
  3459. return ret;
  3460. }
  3461. static void btrfs_error_commit_super(struct btrfs_root *root)
  3462. {
  3463. mutex_lock(&root->fs_info->cleaner_mutex);
  3464. btrfs_run_delayed_iputs(root);
  3465. mutex_unlock(&root->fs_info->cleaner_mutex);
  3466. down_write(&root->fs_info->cleanup_work_sem);
  3467. up_write(&root->fs_info->cleanup_work_sem);
  3468. /* cleanup FS via transaction */
  3469. btrfs_cleanup_transaction(root);
  3470. }
  3471. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3472. {
  3473. struct btrfs_ordered_extent *ordered;
  3474. spin_lock(&root->ordered_extent_lock);
  3475. /*
  3476. * This will just short circuit the ordered completion stuff which will
  3477. * make sure the ordered extent gets properly cleaned up.
  3478. */
  3479. list_for_each_entry(ordered, &root->ordered_extents,
  3480. root_extent_list)
  3481. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3482. spin_unlock(&root->ordered_extent_lock);
  3483. }
  3484. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3485. {
  3486. struct btrfs_root *root;
  3487. struct list_head splice;
  3488. INIT_LIST_HEAD(&splice);
  3489. spin_lock(&fs_info->ordered_root_lock);
  3490. list_splice_init(&fs_info->ordered_roots, &splice);
  3491. while (!list_empty(&splice)) {
  3492. root = list_first_entry(&splice, struct btrfs_root,
  3493. ordered_root);
  3494. list_move_tail(&root->ordered_root,
  3495. &fs_info->ordered_roots);
  3496. spin_unlock(&fs_info->ordered_root_lock);
  3497. btrfs_destroy_ordered_extents(root);
  3498. cond_resched();
  3499. spin_lock(&fs_info->ordered_root_lock);
  3500. }
  3501. spin_unlock(&fs_info->ordered_root_lock);
  3502. }
  3503. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3504. struct btrfs_root *root)
  3505. {
  3506. struct rb_node *node;
  3507. struct btrfs_delayed_ref_root *delayed_refs;
  3508. struct btrfs_delayed_ref_node *ref;
  3509. int ret = 0;
  3510. delayed_refs = &trans->delayed_refs;
  3511. spin_lock(&delayed_refs->lock);
  3512. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3513. spin_unlock(&delayed_refs->lock);
  3514. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3515. return ret;
  3516. }
  3517. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3518. struct btrfs_delayed_ref_head *head;
  3519. bool pin_bytes = false;
  3520. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3521. href_node);
  3522. if (!mutex_trylock(&head->mutex)) {
  3523. atomic_inc(&head->node.refs);
  3524. spin_unlock(&delayed_refs->lock);
  3525. mutex_lock(&head->mutex);
  3526. mutex_unlock(&head->mutex);
  3527. btrfs_put_delayed_ref(&head->node);
  3528. spin_lock(&delayed_refs->lock);
  3529. continue;
  3530. }
  3531. spin_lock(&head->lock);
  3532. while ((node = rb_first(&head->ref_root)) != NULL) {
  3533. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  3534. rb_node);
  3535. ref->in_tree = 0;
  3536. rb_erase(&ref->rb_node, &head->ref_root);
  3537. atomic_dec(&delayed_refs->num_entries);
  3538. btrfs_put_delayed_ref(ref);
  3539. }
  3540. if (head->must_insert_reserved)
  3541. pin_bytes = true;
  3542. btrfs_free_delayed_extent_op(head->extent_op);
  3543. delayed_refs->num_heads--;
  3544. if (head->processing == 0)
  3545. delayed_refs->num_heads_ready--;
  3546. atomic_dec(&delayed_refs->num_entries);
  3547. head->node.in_tree = 0;
  3548. rb_erase(&head->href_node, &delayed_refs->href_root);
  3549. spin_unlock(&head->lock);
  3550. spin_unlock(&delayed_refs->lock);
  3551. mutex_unlock(&head->mutex);
  3552. if (pin_bytes)
  3553. btrfs_pin_extent(root, head->node.bytenr,
  3554. head->node.num_bytes, 1);
  3555. btrfs_put_delayed_ref(&head->node);
  3556. cond_resched();
  3557. spin_lock(&delayed_refs->lock);
  3558. }
  3559. spin_unlock(&delayed_refs->lock);
  3560. return ret;
  3561. }
  3562. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3563. {
  3564. struct btrfs_inode *btrfs_inode;
  3565. struct list_head splice;
  3566. INIT_LIST_HEAD(&splice);
  3567. spin_lock(&root->delalloc_lock);
  3568. list_splice_init(&root->delalloc_inodes, &splice);
  3569. while (!list_empty(&splice)) {
  3570. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3571. delalloc_inodes);
  3572. list_del_init(&btrfs_inode->delalloc_inodes);
  3573. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3574. &btrfs_inode->runtime_flags);
  3575. spin_unlock(&root->delalloc_lock);
  3576. btrfs_invalidate_inodes(btrfs_inode->root);
  3577. spin_lock(&root->delalloc_lock);
  3578. }
  3579. spin_unlock(&root->delalloc_lock);
  3580. }
  3581. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3582. {
  3583. struct btrfs_root *root;
  3584. struct list_head splice;
  3585. INIT_LIST_HEAD(&splice);
  3586. spin_lock(&fs_info->delalloc_root_lock);
  3587. list_splice_init(&fs_info->delalloc_roots, &splice);
  3588. while (!list_empty(&splice)) {
  3589. root = list_first_entry(&splice, struct btrfs_root,
  3590. delalloc_root);
  3591. list_del_init(&root->delalloc_root);
  3592. root = btrfs_grab_fs_root(root);
  3593. BUG_ON(!root);
  3594. spin_unlock(&fs_info->delalloc_root_lock);
  3595. btrfs_destroy_delalloc_inodes(root);
  3596. btrfs_put_fs_root(root);
  3597. spin_lock(&fs_info->delalloc_root_lock);
  3598. }
  3599. spin_unlock(&fs_info->delalloc_root_lock);
  3600. }
  3601. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3602. struct extent_io_tree *dirty_pages,
  3603. int mark)
  3604. {
  3605. int ret;
  3606. struct extent_buffer *eb;
  3607. u64 start = 0;
  3608. u64 end;
  3609. while (1) {
  3610. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3611. mark, NULL);
  3612. if (ret)
  3613. break;
  3614. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3615. while (start <= end) {
  3616. eb = btrfs_find_tree_block(root->fs_info, start);
  3617. start += root->nodesize;
  3618. if (!eb)
  3619. continue;
  3620. wait_on_extent_buffer_writeback(eb);
  3621. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3622. &eb->bflags))
  3623. clear_extent_buffer_dirty(eb);
  3624. free_extent_buffer_stale(eb);
  3625. }
  3626. }
  3627. return ret;
  3628. }
  3629. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3630. struct extent_io_tree *pinned_extents)
  3631. {
  3632. struct extent_io_tree *unpin;
  3633. u64 start;
  3634. u64 end;
  3635. int ret;
  3636. bool loop = true;
  3637. unpin = pinned_extents;
  3638. again:
  3639. while (1) {
  3640. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3641. EXTENT_DIRTY, NULL);
  3642. if (ret)
  3643. break;
  3644. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3645. btrfs_error_unpin_extent_range(root, start, end);
  3646. cond_resched();
  3647. }
  3648. if (loop) {
  3649. if (unpin == &root->fs_info->freed_extents[0])
  3650. unpin = &root->fs_info->freed_extents[1];
  3651. else
  3652. unpin = &root->fs_info->freed_extents[0];
  3653. loop = false;
  3654. goto again;
  3655. }
  3656. return 0;
  3657. }
  3658. static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
  3659. struct btrfs_fs_info *fs_info)
  3660. {
  3661. struct btrfs_ordered_extent *ordered;
  3662. spin_lock(&fs_info->trans_lock);
  3663. while (!list_empty(&cur_trans->pending_ordered)) {
  3664. ordered = list_first_entry(&cur_trans->pending_ordered,
  3665. struct btrfs_ordered_extent,
  3666. trans_list);
  3667. list_del_init(&ordered->trans_list);
  3668. spin_unlock(&fs_info->trans_lock);
  3669. btrfs_put_ordered_extent(ordered);
  3670. spin_lock(&fs_info->trans_lock);
  3671. }
  3672. spin_unlock(&fs_info->trans_lock);
  3673. }
  3674. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3675. struct btrfs_root *root)
  3676. {
  3677. btrfs_destroy_delayed_refs(cur_trans, root);
  3678. cur_trans->state = TRANS_STATE_COMMIT_START;
  3679. wake_up(&root->fs_info->transaction_blocked_wait);
  3680. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3681. wake_up(&root->fs_info->transaction_wait);
  3682. btrfs_free_pending_ordered(cur_trans, root->fs_info);
  3683. btrfs_destroy_delayed_inodes(root);
  3684. btrfs_assert_delayed_root_empty(root);
  3685. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3686. EXTENT_DIRTY);
  3687. btrfs_destroy_pinned_extent(root,
  3688. root->fs_info->pinned_extents);
  3689. cur_trans->state =TRANS_STATE_COMPLETED;
  3690. wake_up(&cur_trans->commit_wait);
  3691. /*
  3692. memset(cur_trans, 0, sizeof(*cur_trans));
  3693. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3694. */
  3695. }
  3696. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3697. {
  3698. struct btrfs_transaction *t;
  3699. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3700. spin_lock(&root->fs_info->trans_lock);
  3701. while (!list_empty(&root->fs_info->trans_list)) {
  3702. t = list_first_entry(&root->fs_info->trans_list,
  3703. struct btrfs_transaction, list);
  3704. if (t->state >= TRANS_STATE_COMMIT_START) {
  3705. atomic_inc(&t->use_count);
  3706. spin_unlock(&root->fs_info->trans_lock);
  3707. btrfs_wait_for_commit(root, t->transid);
  3708. btrfs_put_transaction(t);
  3709. spin_lock(&root->fs_info->trans_lock);
  3710. continue;
  3711. }
  3712. if (t == root->fs_info->running_transaction) {
  3713. t->state = TRANS_STATE_COMMIT_DOING;
  3714. spin_unlock(&root->fs_info->trans_lock);
  3715. /*
  3716. * We wait for 0 num_writers since we don't hold a trans
  3717. * handle open currently for this transaction.
  3718. */
  3719. wait_event(t->writer_wait,
  3720. atomic_read(&t->num_writers) == 0);
  3721. } else {
  3722. spin_unlock(&root->fs_info->trans_lock);
  3723. }
  3724. btrfs_cleanup_one_transaction(t, root);
  3725. spin_lock(&root->fs_info->trans_lock);
  3726. if (t == root->fs_info->running_transaction)
  3727. root->fs_info->running_transaction = NULL;
  3728. list_del_init(&t->list);
  3729. spin_unlock(&root->fs_info->trans_lock);
  3730. btrfs_put_transaction(t);
  3731. trace_btrfs_transaction_commit(root);
  3732. spin_lock(&root->fs_info->trans_lock);
  3733. }
  3734. spin_unlock(&root->fs_info->trans_lock);
  3735. btrfs_destroy_all_ordered_extents(root->fs_info);
  3736. btrfs_destroy_delayed_inodes(root);
  3737. btrfs_assert_delayed_root_empty(root);
  3738. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3739. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3740. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3741. return 0;
  3742. }
  3743. static const struct extent_io_ops btree_extent_io_ops = {
  3744. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3745. .readpage_io_failed_hook = btree_io_failed_hook,
  3746. .submit_bio_hook = btree_submit_bio_hook,
  3747. /* note we're sharing with inode.c for the merge bio hook */
  3748. .merge_bio_hook = btrfs_merge_bio_hook,
  3749. };