intel_ringbuffer.c 73 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - (tail + I915_RING_FREE_SPACE);
  50. if (space < 0)
  51. space += size;
  52. return space;
  53. }
  54. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. return __intel_ring_space(ringbuf->head & HEAD_ADDR,
  57. ringbuf->tail, ringbuf->size);
  58. }
  59. bool intel_ring_stopped(struct intel_engine_cs *ring)
  60. {
  61. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  62. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  63. }
  64. void __intel_ring_advance(struct intel_engine_cs *ring)
  65. {
  66. struct intel_ringbuffer *ringbuf = ring->buffer;
  67. ringbuf->tail &= ringbuf->size - 1;
  68. if (intel_ring_stopped(ring))
  69. return;
  70. ring->write_tail(ring, ringbuf->tail);
  71. }
  72. static int
  73. gen2_render_ring_flush(struct intel_engine_cs *ring,
  74. u32 invalidate_domains,
  75. u32 flush_domains)
  76. {
  77. u32 cmd;
  78. int ret;
  79. cmd = MI_FLUSH;
  80. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  81. cmd |= MI_NO_WRITE_FLUSH;
  82. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  83. cmd |= MI_READ_FLUSH;
  84. ret = intel_ring_begin(ring, 2);
  85. if (ret)
  86. return ret;
  87. intel_ring_emit(ring, cmd);
  88. intel_ring_emit(ring, MI_NOOP);
  89. intel_ring_advance(ring);
  90. return 0;
  91. }
  92. static int
  93. gen4_render_ring_flush(struct intel_engine_cs *ring,
  94. u32 invalidate_domains,
  95. u32 flush_domains)
  96. {
  97. struct drm_device *dev = ring->dev;
  98. u32 cmd;
  99. int ret;
  100. /*
  101. * read/write caches:
  102. *
  103. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  104. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  105. * also flushed at 2d versus 3d pipeline switches.
  106. *
  107. * read-only caches:
  108. *
  109. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  110. * MI_READ_FLUSH is set, and is always flushed on 965.
  111. *
  112. * I915_GEM_DOMAIN_COMMAND may not exist?
  113. *
  114. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  115. * invalidated when MI_EXE_FLUSH is set.
  116. *
  117. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  118. * invalidated with every MI_FLUSH.
  119. *
  120. * TLBs:
  121. *
  122. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  123. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  124. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  125. * are flushed at any MI_FLUSH.
  126. */
  127. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  128. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  129. cmd &= ~MI_NO_WRITE_FLUSH;
  130. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  131. cmd |= MI_EXE_FLUSH;
  132. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  133. (IS_G4X(dev) || IS_GEN5(dev)))
  134. cmd |= MI_INVALIDATE_ISP;
  135. ret = intel_ring_begin(ring, 2);
  136. if (ret)
  137. return ret;
  138. intel_ring_emit(ring, cmd);
  139. intel_ring_emit(ring, MI_NOOP);
  140. intel_ring_advance(ring);
  141. return 0;
  142. }
  143. /**
  144. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  145. * implementing two workarounds on gen6. From section 1.4.7.1
  146. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  147. *
  148. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  149. * produced by non-pipelined state commands), software needs to first
  150. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  151. * 0.
  152. *
  153. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  154. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  155. *
  156. * And the workaround for these two requires this workaround first:
  157. *
  158. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  159. * BEFORE the pipe-control with a post-sync op and no write-cache
  160. * flushes.
  161. *
  162. * And this last workaround is tricky because of the requirements on
  163. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  164. * volume 2 part 1:
  165. *
  166. * "1 of the following must also be set:
  167. * - Render Target Cache Flush Enable ([12] of DW1)
  168. * - Depth Cache Flush Enable ([0] of DW1)
  169. * - Stall at Pixel Scoreboard ([1] of DW1)
  170. * - Depth Stall ([13] of DW1)
  171. * - Post-Sync Operation ([13] of DW1)
  172. * - Notify Enable ([8] of DW1)"
  173. *
  174. * The cache flushes require the workaround flush that triggered this
  175. * one, so we can't use it. Depth stall would trigger the same.
  176. * Post-sync nonzero is what triggered this second workaround, so we
  177. * can't use that one either. Notify enable is IRQs, which aren't
  178. * really our business. That leaves only stall at scoreboard.
  179. */
  180. static int
  181. intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
  182. {
  183. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  184. int ret;
  185. ret = intel_ring_begin(ring, 6);
  186. if (ret)
  187. return ret;
  188. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  189. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  190. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  191. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  192. intel_ring_emit(ring, 0); /* low dword */
  193. intel_ring_emit(ring, 0); /* high dword */
  194. intel_ring_emit(ring, MI_NOOP);
  195. intel_ring_advance(ring);
  196. ret = intel_ring_begin(ring, 6);
  197. if (ret)
  198. return ret;
  199. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  200. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  201. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  202. intel_ring_emit(ring, 0);
  203. intel_ring_emit(ring, 0);
  204. intel_ring_emit(ring, MI_NOOP);
  205. intel_ring_advance(ring);
  206. return 0;
  207. }
  208. static int
  209. gen6_render_ring_flush(struct intel_engine_cs *ring,
  210. u32 invalidate_domains, u32 flush_domains)
  211. {
  212. u32 flags = 0;
  213. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  214. int ret;
  215. /* Force SNB workarounds for PIPE_CONTROL flushes */
  216. ret = intel_emit_post_sync_nonzero_flush(ring);
  217. if (ret)
  218. return ret;
  219. /* Just flush everything. Experiments have shown that reducing the
  220. * number of bits based on the write domains has little performance
  221. * impact.
  222. */
  223. if (flush_domains) {
  224. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  225. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  226. /*
  227. * Ensure that any following seqno writes only happen
  228. * when the render cache is indeed flushed.
  229. */
  230. flags |= PIPE_CONTROL_CS_STALL;
  231. }
  232. if (invalidate_domains) {
  233. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  234. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  235. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  236. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  237. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  238. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  239. /*
  240. * TLB invalidate requires a post-sync write.
  241. */
  242. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  243. }
  244. ret = intel_ring_begin(ring, 4);
  245. if (ret)
  246. return ret;
  247. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  248. intel_ring_emit(ring, flags);
  249. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  250. intel_ring_emit(ring, 0);
  251. intel_ring_advance(ring);
  252. return 0;
  253. }
  254. static int
  255. gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
  256. {
  257. int ret;
  258. ret = intel_ring_begin(ring, 4);
  259. if (ret)
  260. return ret;
  261. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  262. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  263. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  264. intel_ring_emit(ring, 0);
  265. intel_ring_emit(ring, 0);
  266. intel_ring_advance(ring);
  267. return 0;
  268. }
  269. static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
  270. {
  271. int ret;
  272. if (!ring->fbc_dirty)
  273. return 0;
  274. ret = intel_ring_begin(ring, 6);
  275. if (ret)
  276. return ret;
  277. /* WaFbcNukeOn3DBlt:ivb/hsw */
  278. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  279. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  280. intel_ring_emit(ring, value);
  281. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  282. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  283. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  284. intel_ring_advance(ring);
  285. ring->fbc_dirty = false;
  286. return 0;
  287. }
  288. static int
  289. gen7_render_ring_flush(struct intel_engine_cs *ring,
  290. u32 invalidate_domains, u32 flush_domains)
  291. {
  292. u32 flags = 0;
  293. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  294. int ret;
  295. /*
  296. * Ensure that any following seqno writes only happen when the render
  297. * cache is indeed flushed.
  298. *
  299. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  300. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  301. * don't try to be clever and just set it unconditionally.
  302. */
  303. flags |= PIPE_CONTROL_CS_STALL;
  304. /* Just flush everything. Experiments have shown that reducing the
  305. * number of bits based on the write domains has little performance
  306. * impact.
  307. */
  308. if (flush_domains) {
  309. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  310. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  311. }
  312. if (invalidate_domains) {
  313. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  314. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  315. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  316. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  317. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  318. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  319. /*
  320. * TLB invalidate requires a post-sync write.
  321. */
  322. flags |= PIPE_CONTROL_QW_WRITE;
  323. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  324. /* Workaround: we must issue a pipe_control with CS-stall bit
  325. * set before a pipe_control command that has the state cache
  326. * invalidate bit set. */
  327. gen7_render_ring_cs_stall_wa(ring);
  328. }
  329. ret = intel_ring_begin(ring, 4);
  330. if (ret)
  331. return ret;
  332. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  333. intel_ring_emit(ring, flags);
  334. intel_ring_emit(ring, scratch_addr);
  335. intel_ring_emit(ring, 0);
  336. intel_ring_advance(ring);
  337. if (!invalidate_domains && flush_domains)
  338. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  339. return 0;
  340. }
  341. static int
  342. gen8_emit_pipe_control(struct intel_engine_cs *ring,
  343. u32 flags, u32 scratch_addr)
  344. {
  345. int ret;
  346. ret = intel_ring_begin(ring, 6);
  347. if (ret)
  348. return ret;
  349. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  350. intel_ring_emit(ring, flags);
  351. intel_ring_emit(ring, scratch_addr);
  352. intel_ring_emit(ring, 0);
  353. intel_ring_emit(ring, 0);
  354. intel_ring_emit(ring, 0);
  355. intel_ring_advance(ring);
  356. return 0;
  357. }
  358. static int
  359. gen8_render_ring_flush(struct intel_engine_cs *ring,
  360. u32 invalidate_domains, u32 flush_domains)
  361. {
  362. u32 flags = 0;
  363. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  364. int ret;
  365. flags |= PIPE_CONTROL_CS_STALL;
  366. if (flush_domains) {
  367. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  368. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  369. }
  370. if (invalidate_domains) {
  371. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  372. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  373. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  374. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  375. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  376. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  377. flags |= PIPE_CONTROL_QW_WRITE;
  378. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  379. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  380. ret = gen8_emit_pipe_control(ring,
  381. PIPE_CONTROL_CS_STALL |
  382. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  383. 0);
  384. if (ret)
  385. return ret;
  386. }
  387. ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
  388. if (ret)
  389. return ret;
  390. if (!invalidate_domains && flush_domains)
  391. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  392. return 0;
  393. }
  394. static void ring_write_tail(struct intel_engine_cs *ring,
  395. u32 value)
  396. {
  397. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  398. I915_WRITE_TAIL(ring, value);
  399. }
  400. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  401. {
  402. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  403. u64 acthd;
  404. if (INTEL_INFO(ring->dev)->gen >= 8)
  405. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  406. RING_ACTHD_UDW(ring->mmio_base));
  407. else if (INTEL_INFO(ring->dev)->gen >= 4)
  408. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  409. else
  410. acthd = I915_READ(ACTHD);
  411. return acthd;
  412. }
  413. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  414. {
  415. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  416. u32 addr;
  417. addr = dev_priv->status_page_dmah->busaddr;
  418. if (INTEL_INFO(ring->dev)->gen >= 4)
  419. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  420. I915_WRITE(HWS_PGA, addr);
  421. }
  422. static bool stop_ring(struct intel_engine_cs *ring)
  423. {
  424. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  425. if (!IS_GEN2(ring->dev)) {
  426. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  427. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  428. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  429. /* Sometimes we observe that the idle flag is not
  430. * set even though the ring is empty. So double
  431. * check before giving up.
  432. */
  433. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  434. return false;
  435. }
  436. }
  437. I915_WRITE_CTL(ring, 0);
  438. I915_WRITE_HEAD(ring, 0);
  439. ring->write_tail(ring, 0);
  440. if (!IS_GEN2(ring->dev)) {
  441. (void)I915_READ_CTL(ring);
  442. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  443. }
  444. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  445. }
  446. static int init_ring_common(struct intel_engine_cs *ring)
  447. {
  448. struct drm_device *dev = ring->dev;
  449. struct drm_i915_private *dev_priv = dev->dev_private;
  450. struct intel_ringbuffer *ringbuf = ring->buffer;
  451. struct drm_i915_gem_object *obj = ringbuf->obj;
  452. int ret = 0;
  453. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  454. if (!stop_ring(ring)) {
  455. /* G45 ring initialization often fails to reset head to zero */
  456. DRM_DEBUG_KMS("%s head not reset to zero "
  457. "ctl %08x head %08x tail %08x start %08x\n",
  458. ring->name,
  459. I915_READ_CTL(ring),
  460. I915_READ_HEAD(ring),
  461. I915_READ_TAIL(ring),
  462. I915_READ_START(ring));
  463. if (!stop_ring(ring)) {
  464. DRM_ERROR("failed to set %s head to zero "
  465. "ctl %08x head %08x tail %08x start %08x\n",
  466. ring->name,
  467. I915_READ_CTL(ring),
  468. I915_READ_HEAD(ring),
  469. I915_READ_TAIL(ring),
  470. I915_READ_START(ring));
  471. ret = -EIO;
  472. goto out;
  473. }
  474. }
  475. if (I915_NEED_GFX_HWS(dev))
  476. intel_ring_setup_status_page(ring);
  477. else
  478. ring_setup_phys_status_page(ring);
  479. /* Enforce ordering by reading HEAD register back */
  480. I915_READ_HEAD(ring);
  481. /* Initialize the ring. This must happen _after_ we've cleared the ring
  482. * registers with the above sequence (the readback of the HEAD registers
  483. * also enforces ordering), otherwise the hw might lose the new ring
  484. * register values. */
  485. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  486. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  487. if (I915_READ_HEAD(ring))
  488. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  489. ring->name, I915_READ_HEAD(ring));
  490. I915_WRITE_HEAD(ring, 0);
  491. (void)I915_READ_HEAD(ring);
  492. I915_WRITE_CTL(ring,
  493. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  494. | RING_VALID);
  495. /* If the head is still not zero, the ring is dead */
  496. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  497. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  498. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  499. DRM_ERROR("%s initialization failed "
  500. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  501. ring->name,
  502. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  503. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  504. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  505. ret = -EIO;
  506. goto out;
  507. }
  508. ringbuf->head = I915_READ_HEAD(ring);
  509. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  510. ringbuf->space = intel_ring_space(ringbuf);
  511. ringbuf->last_retired_head = -1;
  512. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  513. out:
  514. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  515. return ret;
  516. }
  517. void
  518. intel_fini_pipe_control(struct intel_engine_cs *ring)
  519. {
  520. struct drm_device *dev = ring->dev;
  521. if (ring->scratch.obj == NULL)
  522. return;
  523. if (INTEL_INFO(dev)->gen >= 5) {
  524. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  525. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  526. }
  527. drm_gem_object_unreference(&ring->scratch.obj->base);
  528. ring->scratch.obj = NULL;
  529. }
  530. int
  531. intel_init_pipe_control(struct intel_engine_cs *ring)
  532. {
  533. int ret;
  534. if (ring->scratch.obj)
  535. return 0;
  536. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  537. if (ring->scratch.obj == NULL) {
  538. DRM_ERROR("Failed to allocate seqno page\n");
  539. ret = -ENOMEM;
  540. goto err;
  541. }
  542. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  543. if (ret)
  544. goto err_unref;
  545. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  546. if (ret)
  547. goto err_unref;
  548. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  549. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  550. if (ring->scratch.cpu_page == NULL) {
  551. ret = -ENOMEM;
  552. goto err_unpin;
  553. }
  554. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  555. ring->name, ring->scratch.gtt_offset);
  556. return 0;
  557. err_unpin:
  558. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  559. err_unref:
  560. drm_gem_object_unreference(&ring->scratch.obj->base);
  561. err:
  562. return ret;
  563. }
  564. static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
  565. struct intel_context *ctx)
  566. {
  567. int ret, i;
  568. struct drm_device *dev = ring->dev;
  569. struct drm_i915_private *dev_priv = dev->dev_private;
  570. struct i915_workarounds *w = &dev_priv->workarounds;
  571. if (WARN_ON(w->count == 0))
  572. return 0;
  573. ring->gpu_caches_dirty = true;
  574. ret = intel_ring_flush_all_caches(ring);
  575. if (ret)
  576. return ret;
  577. ret = intel_ring_begin(ring, (w->count * 2 + 2));
  578. if (ret)
  579. return ret;
  580. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  581. for (i = 0; i < w->count; i++) {
  582. intel_ring_emit(ring, w->reg[i].addr);
  583. intel_ring_emit(ring, w->reg[i].value);
  584. }
  585. intel_ring_emit(ring, MI_NOOP);
  586. intel_ring_advance(ring);
  587. ring->gpu_caches_dirty = true;
  588. ret = intel_ring_flush_all_caches(ring);
  589. if (ret)
  590. return ret;
  591. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  592. return 0;
  593. }
  594. static int wa_add(struct drm_i915_private *dev_priv,
  595. const u32 addr, const u32 val, const u32 mask)
  596. {
  597. const u32 idx = dev_priv->workarounds.count;
  598. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  599. return -ENOSPC;
  600. dev_priv->workarounds.reg[idx].addr = addr;
  601. dev_priv->workarounds.reg[idx].value = val;
  602. dev_priv->workarounds.reg[idx].mask = mask;
  603. dev_priv->workarounds.count++;
  604. return 0;
  605. }
  606. #define WA_REG(addr, val, mask) { \
  607. const int r = wa_add(dev_priv, (addr), (val), (mask)); \
  608. if (r) \
  609. return r; \
  610. }
  611. #define WA_SET_BIT_MASKED(addr, mask) \
  612. WA_REG(addr, _MASKED_BIT_ENABLE(mask), (mask) & 0xffff)
  613. #define WA_CLR_BIT_MASKED(addr, mask) \
  614. WA_REG(addr, _MASKED_BIT_DISABLE(mask), (mask) & 0xffff)
  615. #define WA_SET_BIT(addr, mask) WA_REG(addr, I915_READ(addr) | (mask), mask)
  616. #define WA_CLR_BIT(addr, mask) WA_REG(addr, I915_READ(addr) & ~(mask), mask)
  617. #define WA_WRITE(addr, val) WA_REG(addr, val, 0xffffffff)
  618. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  619. {
  620. struct drm_device *dev = ring->dev;
  621. struct drm_i915_private *dev_priv = dev->dev_private;
  622. /* WaDisablePartialInstShootdown:bdw */
  623. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  624. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  625. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  626. STALL_DOP_GATING_DISABLE);
  627. /* WaDisableDopClockGating:bdw */
  628. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  629. DOP_CLOCK_GATING_DISABLE);
  630. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  631. GEN8_SAMPLER_POWER_BYPASS_DIS);
  632. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  633. * workaround for for a possible hang in the unlikely event a TLB
  634. * invalidation occurs during a PSD flush.
  635. */
  636. /* WaDisableFenceDestinationToSLM:bdw (GT3 pre-production) */
  637. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  638. HDC_FORCE_NON_COHERENT |
  639. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  640. /* Wa4x4STCOptimizationDisable:bdw */
  641. WA_SET_BIT_MASKED(CACHE_MODE_1,
  642. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  643. /*
  644. * BSpec recommends 8x4 when MSAA is used,
  645. * however in practice 16x4 seems fastest.
  646. *
  647. * Note that PS/WM thread counts depend on the WIZ hashing
  648. * disable bit, which we don't touch here, but it's good
  649. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  650. */
  651. WA_SET_BIT_MASKED(GEN7_GT_MODE,
  652. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  653. return 0;
  654. }
  655. static int chv_init_workarounds(struct intel_engine_cs *ring)
  656. {
  657. struct drm_device *dev = ring->dev;
  658. struct drm_i915_private *dev_priv = dev->dev_private;
  659. /* WaDisablePartialInstShootdown:chv */
  660. /* WaDisableThreadStallDopClockGating:chv */
  661. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  662. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  663. STALL_DOP_GATING_DISABLE);
  664. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  665. * workaround for a possible hang in the unlikely event a TLB
  666. * invalidation occurs during a PSD flush.
  667. */
  668. /* WaForceEnableNonCoherent:chv */
  669. /* WaHdcDisableFetchWhenMasked:chv */
  670. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  671. HDC_FORCE_NON_COHERENT |
  672. HDC_DONOT_FETCH_MEM_WHEN_MASKED);
  673. return 0;
  674. }
  675. int init_workarounds_ring(struct intel_engine_cs *ring)
  676. {
  677. struct drm_device *dev = ring->dev;
  678. struct drm_i915_private *dev_priv = dev->dev_private;
  679. WARN_ON(ring->id != RCS);
  680. dev_priv->workarounds.count = 0;
  681. if (IS_BROADWELL(dev))
  682. return bdw_init_workarounds(ring);
  683. if (IS_CHERRYVIEW(dev))
  684. return chv_init_workarounds(ring);
  685. return 0;
  686. }
  687. static int init_render_ring(struct intel_engine_cs *ring)
  688. {
  689. struct drm_device *dev = ring->dev;
  690. struct drm_i915_private *dev_priv = dev->dev_private;
  691. int ret = init_ring_common(ring);
  692. if (ret)
  693. return ret;
  694. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  695. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  696. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  697. /* We need to disable the AsyncFlip performance optimisations in order
  698. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  699. * programmed to '1' on all products.
  700. *
  701. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
  702. */
  703. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
  704. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  705. /* Required for the hardware to program scanline values for waiting */
  706. /* WaEnableFlushTlbInvalidationMode:snb */
  707. if (INTEL_INFO(dev)->gen == 6)
  708. I915_WRITE(GFX_MODE,
  709. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  710. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  711. if (IS_GEN7(dev))
  712. I915_WRITE(GFX_MODE_GEN7,
  713. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  714. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  715. if (INTEL_INFO(dev)->gen >= 5) {
  716. ret = intel_init_pipe_control(ring);
  717. if (ret)
  718. return ret;
  719. }
  720. if (IS_GEN6(dev)) {
  721. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  722. * "If this bit is set, STCunit will have LRA as replacement
  723. * policy. [...] This bit must be reset. LRA replacement
  724. * policy is not supported."
  725. */
  726. I915_WRITE(CACHE_MODE_0,
  727. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  728. }
  729. if (INTEL_INFO(dev)->gen >= 6)
  730. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  731. if (HAS_L3_DPF(dev))
  732. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  733. return init_workarounds_ring(ring);
  734. }
  735. static void render_ring_cleanup(struct intel_engine_cs *ring)
  736. {
  737. struct drm_device *dev = ring->dev;
  738. struct drm_i915_private *dev_priv = dev->dev_private;
  739. if (dev_priv->semaphore_obj) {
  740. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  741. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  742. dev_priv->semaphore_obj = NULL;
  743. }
  744. intel_fini_pipe_control(ring);
  745. }
  746. static int gen8_rcs_signal(struct intel_engine_cs *signaller,
  747. unsigned int num_dwords)
  748. {
  749. #define MBOX_UPDATE_DWORDS 8
  750. struct drm_device *dev = signaller->dev;
  751. struct drm_i915_private *dev_priv = dev->dev_private;
  752. struct intel_engine_cs *waiter;
  753. int i, ret, num_rings;
  754. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  755. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  756. #undef MBOX_UPDATE_DWORDS
  757. ret = intel_ring_begin(signaller, num_dwords);
  758. if (ret)
  759. return ret;
  760. for_each_ring(waiter, dev_priv, i) {
  761. u32 seqno;
  762. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  763. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  764. continue;
  765. seqno = i915_gem_request_get_seqno(
  766. signaller->outstanding_lazy_request);
  767. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  768. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  769. PIPE_CONTROL_QW_WRITE |
  770. PIPE_CONTROL_FLUSH_ENABLE);
  771. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  772. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  773. intel_ring_emit(signaller, seqno);
  774. intel_ring_emit(signaller, 0);
  775. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  776. MI_SEMAPHORE_TARGET(waiter->id));
  777. intel_ring_emit(signaller, 0);
  778. }
  779. return 0;
  780. }
  781. static int gen8_xcs_signal(struct intel_engine_cs *signaller,
  782. unsigned int num_dwords)
  783. {
  784. #define MBOX_UPDATE_DWORDS 6
  785. struct drm_device *dev = signaller->dev;
  786. struct drm_i915_private *dev_priv = dev->dev_private;
  787. struct intel_engine_cs *waiter;
  788. int i, ret, num_rings;
  789. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  790. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  791. #undef MBOX_UPDATE_DWORDS
  792. ret = intel_ring_begin(signaller, num_dwords);
  793. if (ret)
  794. return ret;
  795. for_each_ring(waiter, dev_priv, i) {
  796. u32 seqno;
  797. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  798. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  799. continue;
  800. seqno = i915_gem_request_get_seqno(
  801. signaller->outstanding_lazy_request);
  802. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  803. MI_FLUSH_DW_OP_STOREDW);
  804. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  805. MI_FLUSH_DW_USE_GTT);
  806. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  807. intel_ring_emit(signaller, seqno);
  808. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  809. MI_SEMAPHORE_TARGET(waiter->id));
  810. intel_ring_emit(signaller, 0);
  811. }
  812. return 0;
  813. }
  814. static int gen6_signal(struct intel_engine_cs *signaller,
  815. unsigned int num_dwords)
  816. {
  817. struct drm_device *dev = signaller->dev;
  818. struct drm_i915_private *dev_priv = dev->dev_private;
  819. struct intel_engine_cs *useless;
  820. int i, ret, num_rings;
  821. #define MBOX_UPDATE_DWORDS 3
  822. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  823. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  824. #undef MBOX_UPDATE_DWORDS
  825. ret = intel_ring_begin(signaller, num_dwords);
  826. if (ret)
  827. return ret;
  828. for_each_ring(useless, dev_priv, i) {
  829. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  830. if (mbox_reg != GEN6_NOSYNC) {
  831. u32 seqno = i915_gem_request_get_seqno(
  832. signaller->outstanding_lazy_request);
  833. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  834. intel_ring_emit(signaller, mbox_reg);
  835. intel_ring_emit(signaller, seqno);
  836. }
  837. }
  838. /* If num_dwords was rounded, make sure the tail pointer is correct */
  839. if (num_rings % 2 == 0)
  840. intel_ring_emit(signaller, MI_NOOP);
  841. return 0;
  842. }
  843. /**
  844. * gen6_add_request - Update the semaphore mailbox registers
  845. *
  846. * @ring - ring that is adding a request
  847. * @seqno - return seqno stuck into the ring
  848. *
  849. * Update the mailbox registers in the *other* rings with the current seqno.
  850. * This acts like a signal in the canonical semaphore.
  851. */
  852. static int
  853. gen6_add_request(struct intel_engine_cs *ring)
  854. {
  855. int ret;
  856. if (ring->semaphore.signal)
  857. ret = ring->semaphore.signal(ring, 4);
  858. else
  859. ret = intel_ring_begin(ring, 4);
  860. if (ret)
  861. return ret;
  862. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  863. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  864. intel_ring_emit(ring,
  865. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  866. intel_ring_emit(ring, MI_USER_INTERRUPT);
  867. __intel_ring_advance(ring);
  868. return 0;
  869. }
  870. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  871. u32 seqno)
  872. {
  873. struct drm_i915_private *dev_priv = dev->dev_private;
  874. return dev_priv->last_seqno < seqno;
  875. }
  876. /**
  877. * intel_ring_sync - sync the waiter to the signaller on seqno
  878. *
  879. * @waiter - ring that is waiting
  880. * @signaller - ring which has, or will signal
  881. * @seqno - seqno which the waiter will block on
  882. */
  883. static int
  884. gen8_ring_sync(struct intel_engine_cs *waiter,
  885. struct intel_engine_cs *signaller,
  886. u32 seqno)
  887. {
  888. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  889. int ret;
  890. ret = intel_ring_begin(waiter, 4);
  891. if (ret)
  892. return ret;
  893. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  894. MI_SEMAPHORE_GLOBAL_GTT |
  895. MI_SEMAPHORE_POLL |
  896. MI_SEMAPHORE_SAD_GTE_SDD);
  897. intel_ring_emit(waiter, seqno);
  898. intel_ring_emit(waiter,
  899. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  900. intel_ring_emit(waiter,
  901. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  902. intel_ring_advance(waiter);
  903. return 0;
  904. }
  905. static int
  906. gen6_ring_sync(struct intel_engine_cs *waiter,
  907. struct intel_engine_cs *signaller,
  908. u32 seqno)
  909. {
  910. u32 dw1 = MI_SEMAPHORE_MBOX |
  911. MI_SEMAPHORE_COMPARE |
  912. MI_SEMAPHORE_REGISTER;
  913. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  914. int ret;
  915. /* Throughout all of the GEM code, seqno passed implies our current
  916. * seqno is >= the last seqno executed. However for hardware the
  917. * comparison is strictly greater than.
  918. */
  919. seqno -= 1;
  920. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  921. ret = intel_ring_begin(waiter, 4);
  922. if (ret)
  923. return ret;
  924. /* If seqno wrap happened, omit the wait with no-ops */
  925. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  926. intel_ring_emit(waiter, dw1 | wait_mbox);
  927. intel_ring_emit(waiter, seqno);
  928. intel_ring_emit(waiter, 0);
  929. intel_ring_emit(waiter, MI_NOOP);
  930. } else {
  931. intel_ring_emit(waiter, MI_NOOP);
  932. intel_ring_emit(waiter, MI_NOOP);
  933. intel_ring_emit(waiter, MI_NOOP);
  934. intel_ring_emit(waiter, MI_NOOP);
  935. }
  936. intel_ring_advance(waiter);
  937. return 0;
  938. }
  939. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  940. do { \
  941. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  942. PIPE_CONTROL_DEPTH_STALL); \
  943. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  944. intel_ring_emit(ring__, 0); \
  945. intel_ring_emit(ring__, 0); \
  946. } while (0)
  947. static int
  948. pc_render_add_request(struct intel_engine_cs *ring)
  949. {
  950. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  951. int ret;
  952. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  953. * incoherent with writes to memory, i.e. completely fubar,
  954. * so we need to use PIPE_NOTIFY instead.
  955. *
  956. * However, we also need to workaround the qword write
  957. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  958. * memory before requesting an interrupt.
  959. */
  960. ret = intel_ring_begin(ring, 32);
  961. if (ret)
  962. return ret;
  963. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  964. PIPE_CONTROL_WRITE_FLUSH |
  965. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  966. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  967. intel_ring_emit(ring,
  968. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  969. intel_ring_emit(ring, 0);
  970. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  971. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  972. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  973. scratch_addr += 2 * CACHELINE_BYTES;
  974. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  975. scratch_addr += 2 * CACHELINE_BYTES;
  976. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  977. scratch_addr += 2 * CACHELINE_BYTES;
  978. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  979. scratch_addr += 2 * CACHELINE_BYTES;
  980. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  981. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  982. PIPE_CONTROL_WRITE_FLUSH |
  983. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  984. PIPE_CONTROL_NOTIFY);
  985. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  986. intel_ring_emit(ring,
  987. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  988. intel_ring_emit(ring, 0);
  989. __intel_ring_advance(ring);
  990. return 0;
  991. }
  992. static u32
  993. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  994. {
  995. /* Workaround to force correct ordering between irq and seqno writes on
  996. * ivb (and maybe also on snb) by reading from a CS register (like
  997. * ACTHD) before reading the status page. */
  998. if (!lazy_coherency) {
  999. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1000. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1001. }
  1002. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1003. }
  1004. static u32
  1005. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1006. {
  1007. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1008. }
  1009. static void
  1010. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1011. {
  1012. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1013. }
  1014. static u32
  1015. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1016. {
  1017. return ring->scratch.cpu_page[0];
  1018. }
  1019. static void
  1020. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1021. {
  1022. ring->scratch.cpu_page[0] = seqno;
  1023. }
  1024. static bool
  1025. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1026. {
  1027. struct drm_device *dev = ring->dev;
  1028. struct drm_i915_private *dev_priv = dev->dev_private;
  1029. unsigned long flags;
  1030. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1031. return false;
  1032. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1033. if (ring->irq_refcount++ == 0)
  1034. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1035. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1036. return true;
  1037. }
  1038. static void
  1039. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1040. {
  1041. struct drm_device *dev = ring->dev;
  1042. struct drm_i915_private *dev_priv = dev->dev_private;
  1043. unsigned long flags;
  1044. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1045. if (--ring->irq_refcount == 0)
  1046. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1047. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1048. }
  1049. static bool
  1050. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1051. {
  1052. struct drm_device *dev = ring->dev;
  1053. struct drm_i915_private *dev_priv = dev->dev_private;
  1054. unsigned long flags;
  1055. if (!intel_irqs_enabled(dev_priv))
  1056. return false;
  1057. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1058. if (ring->irq_refcount++ == 0) {
  1059. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1060. I915_WRITE(IMR, dev_priv->irq_mask);
  1061. POSTING_READ(IMR);
  1062. }
  1063. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1064. return true;
  1065. }
  1066. static void
  1067. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1068. {
  1069. struct drm_device *dev = ring->dev;
  1070. struct drm_i915_private *dev_priv = dev->dev_private;
  1071. unsigned long flags;
  1072. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1073. if (--ring->irq_refcount == 0) {
  1074. dev_priv->irq_mask |= ring->irq_enable_mask;
  1075. I915_WRITE(IMR, dev_priv->irq_mask);
  1076. POSTING_READ(IMR);
  1077. }
  1078. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1079. }
  1080. static bool
  1081. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1082. {
  1083. struct drm_device *dev = ring->dev;
  1084. struct drm_i915_private *dev_priv = dev->dev_private;
  1085. unsigned long flags;
  1086. if (!intel_irqs_enabled(dev_priv))
  1087. return false;
  1088. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1089. if (ring->irq_refcount++ == 0) {
  1090. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1091. I915_WRITE16(IMR, dev_priv->irq_mask);
  1092. POSTING_READ16(IMR);
  1093. }
  1094. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1095. return true;
  1096. }
  1097. static void
  1098. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1099. {
  1100. struct drm_device *dev = ring->dev;
  1101. struct drm_i915_private *dev_priv = dev->dev_private;
  1102. unsigned long flags;
  1103. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1104. if (--ring->irq_refcount == 0) {
  1105. dev_priv->irq_mask |= ring->irq_enable_mask;
  1106. I915_WRITE16(IMR, dev_priv->irq_mask);
  1107. POSTING_READ16(IMR);
  1108. }
  1109. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1110. }
  1111. void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  1112. {
  1113. struct drm_device *dev = ring->dev;
  1114. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1115. u32 mmio = 0;
  1116. /* The ring status page addresses are no longer next to the rest of
  1117. * the ring registers as of gen7.
  1118. */
  1119. if (IS_GEN7(dev)) {
  1120. switch (ring->id) {
  1121. case RCS:
  1122. mmio = RENDER_HWS_PGA_GEN7;
  1123. break;
  1124. case BCS:
  1125. mmio = BLT_HWS_PGA_GEN7;
  1126. break;
  1127. /*
  1128. * VCS2 actually doesn't exist on Gen7. Only shut up
  1129. * gcc switch check warning
  1130. */
  1131. case VCS2:
  1132. case VCS:
  1133. mmio = BSD_HWS_PGA_GEN7;
  1134. break;
  1135. case VECS:
  1136. mmio = VEBOX_HWS_PGA_GEN7;
  1137. break;
  1138. }
  1139. } else if (IS_GEN6(ring->dev)) {
  1140. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  1141. } else {
  1142. /* XXX: gen8 returns to sanity */
  1143. mmio = RING_HWS_PGA(ring->mmio_base);
  1144. }
  1145. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  1146. POSTING_READ(mmio);
  1147. /*
  1148. * Flush the TLB for this page
  1149. *
  1150. * FIXME: These two bits have disappeared on gen8, so a question
  1151. * arises: do we still need this and if so how should we go about
  1152. * invalidating the TLB?
  1153. */
  1154. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  1155. u32 reg = RING_INSTPM(ring->mmio_base);
  1156. /* ring should be idle before issuing a sync flush*/
  1157. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1158. I915_WRITE(reg,
  1159. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  1160. INSTPM_SYNC_FLUSH));
  1161. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  1162. 1000))
  1163. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  1164. ring->name);
  1165. }
  1166. }
  1167. static int
  1168. bsd_ring_flush(struct intel_engine_cs *ring,
  1169. u32 invalidate_domains,
  1170. u32 flush_domains)
  1171. {
  1172. int ret;
  1173. ret = intel_ring_begin(ring, 2);
  1174. if (ret)
  1175. return ret;
  1176. intel_ring_emit(ring, MI_FLUSH);
  1177. intel_ring_emit(ring, MI_NOOP);
  1178. intel_ring_advance(ring);
  1179. return 0;
  1180. }
  1181. static int
  1182. i9xx_add_request(struct intel_engine_cs *ring)
  1183. {
  1184. int ret;
  1185. ret = intel_ring_begin(ring, 4);
  1186. if (ret)
  1187. return ret;
  1188. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1189. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1190. intel_ring_emit(ring,
  1191. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1192. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1193. __intel_ring_advance(ring);
  1194. return 0;
  1195. }
  1196. static bool
  1197. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1198. {
  1199. struct drm_device *dev = ring->dev;
  1200. struct drm_i915_private *dev_priv = dev->dev_private;
  1201. unsigned long flags;
  1202. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1203. return false;
  1204. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1205. if (ring->irq_refcount++ == 0) {
  1206. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1207. I915_WRITE_IMR(ring,
  1208. ~(ring->irq_enable_mask |
  1209. GT_PARITY_ERROR(dev)));
  1210. else
  1211. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1212. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1213. }
  1214. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1215. return true;
  1216. }
  1217. static void
  1218. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1219. {
  1220. struct drm_device *dev = ring->dev;
  1221. struct drm_i915_private *dev_priv = dev->dev_private;
  1222. unsigned long flags;
  1223. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1224. if (--ring->irq_refcount == 0) {
  1225. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1226. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1227. else
  1228. I915_WRITE_IMR(ring, ~0);
  1229. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1230. }
  1231. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1232. }
  1233. static bool
  1234. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1235. {
  1236. struct drm_device *dev = ring->dev;
  1237. struct drm_i915_private *dev_priv = dev->dev_private;
  1238. unsigned long flags;
  1239. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1240. return false;
  1241. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1242. if (ring->irq_refcount++ == 0) {
  1243. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1244. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1245. }
  1246. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1247. return true;
  1248. }
  1249. static void
  1250. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1251. {
  1252. struct drm_device *dev = ring->dev;
  1253. struct drm_i915_private *dev_priv = dev->dev_private;
  1254. unsigned long flags;
  1255. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1256. if (--ring->irq_refcount == 0) {
  1257. I915_WRITE_IMR(ring, ~0);
  1258. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1259. }
  1260. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1261. }
  1262. static bool
  1263. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1264. {
  1265. struct drm_device *dev = ring->dev;
  1266. struct drm_i915_private *dev_priv = dev->dev_private;
  1267. unsigned long flags;
  1268. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1269. return false;
  1270. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1271. if (ring->irq_refcount++ == 0) {
  1272. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1273. I915_WRITE_IMR(ring,
  1274. ~(ring->irq_enable_mask |
  1275. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1276. } else {
  1277. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1278. }
  1279. POSTING_READ(RING_IMR(ring->mmio_base));
  1280. }
  1281. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1282. return true;
  1283. }
  1284. static void
  1285. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1286. {
  1287. struct drm_device *dev = ring->dev;
  1288. struct drm_i915_private *dev_priv = dev->dev_private;
  1289. unsigned long flags;
  1290. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1291. if (--ring->irq_refcount == 0) {
  1292. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1293. I915_WRITE_IMR(ring,
  1294. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1295. } else {
  1296. I915_WRITE_IMR(ring, ~0);
  1297. }
  1298. POSTING_READ(RING_IMR(ring->mmio_base));
  1299. }
  1300. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1301. }
  1302. static int
  1303. i965_dispatch_execbuffer(struct intel_engine_cs *ring,
  1304. u64 offset, u32 length,
  1305. unsigned flags)
  1306. {
  1307. int ret;
  1308. ret = intel_ring_begin(ring, 2);
  1309. if (ret)
  1310. return ret;
  1311. intel_ring_emit(ring,
  1312. MI_BATCH_BUFFER_START |
  1313. MI_BATCH_GTT |
  1314. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1315. intel_ring_emit(ring, offset);
  1316. intel_ring_advance(ring);
  1317. return 0;
  1318. }
  1319. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1320. #define I830_BATCH_LIMIT (256*1024)
  1321. #define I830_TLB_ENTRIES (2)
  1322. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1323. static int
  1324. i830_dispatch_execbuffer(struct intel_engine_cs *ring,
  1325. u64 offset, u32 len,
  1326. unsigned flags)
  1327. {
  1328. u32 cs_offset = ring->scratch.gtt_offset;
  1329. int ret;
  1330. ret = intel_ring_begin(ring, 6);
  1331. if (ret)
  1332. return ret;
  1333. /* Evict the invalid PTE TLBs */
  1334. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1335. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1336. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1337. intel_ring_emit(ring, cs_offset);
  1338. intel_ring_emit(ring, 0xdeadbeef);
  1339. intel_ring_emit(ring, MI_NOOP);
  1340. intel_ring_advance(ring);
  1341. if ((flags & I915_DISPATCH_PINNED) == 0) {
  1342. if (len > I830_BATCH_LIMIT)
  1343. return -ENOSPC;
  1344. ret = intel_ring_begin(ring, 6 + 2);
  1345. if (ret)
  1346. return ret;
  1347. /* Blit the batch (which has now all relocs applied) to the
  1348. * stable batch scratch bo area (so that the CS never
  1349. * stumbles over its tlb invalidation bug) ...
  1350. */
  1351. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1352. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1353. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1354. intel_ring_emit(ring, cs_offset);
  1355. intel_ring_emit(ring, 4096);
  1356. intel_ring_emit(ring, offset);
  1357. intel_ring_emit(ring, MI_FLUSH);
  1358. intel_ring_emit(ring, MI_NOOP);
  1359. intel_ring_advance(ring);
  1360. /* ... and execute it. */
  1361. offset = cs_offset;
  1362. }
  1363. ret = intel_ring_begin(ring, 4);
  1364. if (ret)
  1365. return ret;
  1366. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1367. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1368. intel_ring_emit(ring, offset + len - 8);
  1369. intel_ring_emit(ring, MI_NOOP);
  1370. intel_ring_advance(ring);
  1371. return 0;
  1372. }
  1373. static int
  1374. i915_dispatch_execbuffer(struct intel_engine_cs *ring,
  1375. u64 offset, u32 len,
  1376. unsigned flags)
  1377. {
  1378. int ret;
  1379. ret = intel_ring_begin(ring, 2);
  1380. if (ret)
  1381. return ret;
  1382. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1383. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1384. intel_ring_advance(ring);
  1385. return 0;
  1386. }
  1387. static void cleanup_status_page(struct intel_engine_cs *ring)
  1388. {
  1389. struct drm_i915_gem_object *obj;
  1390. obj = ring->status_page.obj;
  1391. if (obj == NULL)
  1392. return;
  1393. kunmap(sg_page(obj->pages->sgl));
  1394. i915_gem_object_ggtt_unpin(obj);
  1395. drm_gem_object_unreference(&obj->base);
  1396. ring->status_page.obj = NULL;
  1397. }
  1398. static int init_status_page(struct intel_engine_cs *ring)
  1399. {
  1400. struct drm_i915_gem_object *obj;
  1401. if ((obj = ring->status_page.obj) == NULL) {
  1402. unsigned flags;
  1403. int ret;
  1404. obj = i915_gem_alloc_object(ring->dev, 4096);
  1405. if (obj == NULL) {
  1406. DRM_ERROR("Failed to allocate status page\n");
  1407. return -ENOMEM;
  1408. }
  1409. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1410. if (ret)
  1411. goto err_unref;
  1412. flags = 0;
  1413. if (!HAS_LLC(ring->dev))
  1414. /* On g33, we cannot place HWS above 256MiB, so
  1415. * restrict its pinning to the low mappable arena.
  1416. * Though this restriction is not documented for
  1417. * gen4, gen5, or byt, they also behave similarly
  1418. * and hang if the HWS is placed at the top of the
  1419. * GTT. To generalise, it appears that all !llc
  1420. * platforms have issues with us placing the HWS
  1421. * above the mappable region (even though we never
  1422. * actualy map it).
  1423. */
  1424. flags |= PIN_MAPPABLE;
  1425. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1426. if (ret) {
  1427. err_unref:
  1428. drm_gem_object_unreference(&obj->base);
  1429. return ret;
  1430. }
  1431. ring->status_page.obj = obj;
  1432. }
  1433. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1434. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1435. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1436. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1437. ring->name, ring->status_page.gfx_addr);
  1438. return 0;
  1439. }
  1440. static int init_phys_status_page(struct intel_engine_cs *ring)
  1441. {
  1442. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1443. if (!dev_priv->status_page_dmah) {
  1444. dev_priv->status_page_dmah =
  1445. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1446. if (!dev_priv->status_page_dmah)
  1447. return -ENOMEM;
  1448. }
  1449. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1450. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1451. return 0;
  1452. }
  1453. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1454. {
  1455. iounmap(ringbuf->virtual_start);
  1456. ringbuf->virtual_start = NULL;
  1457. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1458. }
  1459. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1460. struct intel_ringbuffer *ringbuf)
  1461. {
  1462. struct drm_i915_private *dev_priv = to_i915(dev);
  1463. struct drm_i915_gem_object *obj = ringbuf->obj;
  1464. int ret;
  1465. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1466. if (ret)
  1467. return ret;
  1468. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1469. if (ret) {
  1470. i915_gem_object_ggtt_unpin(obj);
  1471. return ret;
  1472. }
  1473. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1474. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1475. if (ringbuf->virtual_start == NULL) {
  1476. i915_gem_object_ggtt_unpin(obj);
  1477. return -EINVAL;
  1478. }
  1479. return 0;
  1480. }
  1481. void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1482. {
  1483. drm_gem_object_unreference(&ringbuf->obj->base);
  1484. ringbuf->obj = NULL;
  1485. }
  1486. int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1487. struct intel_ringbuffer *ringbuf)
  1488. {
  1489. struct drm_i915_gem_object *obj;
  1490. obj = NULL;
  1491. if (!HAS_LLC(dev))
  1492. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1493. if (obj == NULL)
  1494. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1495. if (obj == NULL)
  1496. return -ENOMEM;
  1497. /* mark ring buffers as read-only from GPU side by default */
  1498. obj->gt_ro = 1;
  1499. ringbuf->obj = obj;
  1500. return 0;
  1501. }
  1502. static int intel_init_ring_buffer(struct drm_device *dev,
  1503. struct intel_engine_cs *ring)
  1504. {
  1505. struct intel_ringbuffer *ringbuf = ring->buffer;
  1506. int ret;
  1507. if (ringbuf == NULL) {
  1508. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1509. if (!ringbuf)
  1510. return -ENOMEM;
  1511. ring->buffer = ringbuf;
  1512. }
  1513. ring->dev = dev;
  1514. INIT_LIST_HEAD(&ring->active_list);
  1515. INIT_LIST_HEAD(&ring->request_list);
  1516. INIT_LIST_HEAD(&ring->execlist_queue);
  1517. ringbuf->size = 32 * PAGE_SIZE;
  1518. ringbuf->ring = ring;
  1519. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1520. init_waitqueue_head(&ring->irq_queue);
  1521. if (I915_NEED_GFX_HWS(dev)) {
  1522. ret = init_status_page(ring);
  1523. if (ret)
  1524. goto error;
  1525. } else {
  1526. BUG_ON(ring->id != RCS);
  1527. ret = init_phys_status_page(ring);
  1528. if (ret)
  1529. goto error;
  1530. }
  1531. if (ringbuf->obj == NULL) {
  1532. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1533. if (ret) {
  1534. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
  1535. ring->name, ret);
  1536. goto error;
  1537. }
  1538. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1539. if (ret) {
  1540. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1541. ring->name, ret);
  1542. intel_destroy_ringbuffer_obj(ringbuf);
  1543. goto error;
  1544. }
  1545. }
  1546. /* Workaround an erratum on the i830 which causes a hang if
  1547. * the TAIL pointer points to within the last 2 cachelines
  1548. * of the buffer.
  1549. */
  1550. ringbuf->effective_size = ringbuf->size;
  1551. if (IS_I830(dev) || IS_845G(dev))
  1552. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1553. ret = i915_cmd_parser_init_ring(ring);
  1554. if (ret)
  1555. goto error;
  1556. ret = ring->init(ring);
  1557. if (ret)
  1558. goto error;
  1559. return 0;
  1560. error:
  1561. kfree(ringbuf);
  1562. ring->buffer = NULL;
  1563. return ret;
  1564. }
  1565. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1566. {
  1567. struct drm_i915_private *dev_priv;
  1568. struct intel_ringbuffer *ringbuf;
  1569. if (!intel_ring_initialized(ring))
  1570. return;
  1571. dev_priv = to_i915(ring->dev);
  1572. ringbuf = ring->buffer;
  1573. intel_stop_ring_buffer(ring);
  1574. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1575. intel_unpin_ringbuffer_obj(ringbuf);
  1576. intel_destroy_ringbuffer_obj(ringbuf);
  1577. i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
  1578. if (ring->cleanup)
  1579. ring->cleanup(ring);
  1580. cleanup_status_page(ring);
  1581. i915_cmd_parser_fini_ring(ring);
  1582. kfree(ringbuf);
  1583. ring->buffer = NULL;
  1584. }
  1585. static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
  1586. {
  1587. struct intel_ringbuffer *ringbuf = ring->buffer;
  1588. struct drm_i915_gem_request *request;
  1589. u32 seqno = 0;
  1590. int ret;
  1591. if (ringbuf->last_retired_head != -1) {
  1592. ringbuf->head = ringbuf->last_retired_head;
  1593. ringbuf->last_retired_head = -1;
  1594. ringbuf->space = intel_ring_space(ringbuf);
  1595. if (ringbuf->space >= n)
  1596. return 0;
  1597. }
  1598. list_for_each_entry(request, &ring->request_list, list) {
  1599. if (__intel_ring_space(request->tail, ringbuf->tail,
  1600. ringbuf->size) >= n) {
  1601. seqno = request->seqno;
  1602. break;
  1603. }
  1604. }
  1605. if (seqno == 0)
  1606. return -ENOSPC;
  1607. ret = i915_wait_seqno(ring, seqno);
  1608. if (ret)
  1609. return ret;
  1610. i915_gem_retire_requests_ring(ring);
  1611. ringbuf->head = ringbuf->last_retired_head;
  1612. ringbuf->last_retired_head = -1;
  1613. ringbuf->space = intel_ring_space(ringbuf);
  1614. return 0;
  1615. }
  1616. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1617. {
  1618. struct drm_device *dev = ring->dev;
  1619. struct drm_i915_private *dev_priv = dev->dev_private;
  1620. struct intel_ringbuffer *ringbuf = ring->buffer;
  1621. unsigned long end;
  1622. int ret;
  1623. ret = intel_ring_wait_request(ring, n);
  1624. if (ret != -ENOSPC)
  1625. return ret;
  1626. /* force the tail write in case we have been skipping them */
  1627. __intel_ring_advance(ring);
  1628. /* With GEM the hangcheck timer should kick us out of the loop,
  1629. * leaving it early runs the risk of corrupting GEM state (due
  1630. * to running on almost untested codepaths). But on resume
  1631. * timers don't work yet, so prevent a complete hang in that
  1632. * case by choosing an insanely large timeout. */
  1633. end = jiffies + 60 * HZ;
  1634. trace_i915_ring_wait_begin(ring);
  1635. do {
  1636. ringbuf->head = I915_READ_HEAD(ring);
  1637. ringbuf->space = intel_ring_space(ringbuf);
  1638. if (ringbuf->space >= n) {
  1639. ret = 0;
  1640. break;
  1641. }
  1642. msleep(1);
  1643. if (dev_priv->mm.interruptible && signal_pending(current)) {
  1644. ret = -ERESTARTSYS;
  1645. break;
  1646. }
  1647. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1648. dev_priv->mm.interruptible);
  1649. if (ret)
  1650. break;
  1651. if (time_after(jiffies, end)) {
  1652. ret = -EBUSY;
  1653. break;
  1654. }
  1655. } while (1);
  1656. trace_i915_ring_wait_end(ring);
  1657. return ret;
  1658. }
  1659. static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
  1660. {
  1661. uint32_t __iomem *virt;
  1662. struct intel_ringbuffer *ringbuf = ring->buffer;
  1663. int rem = ringbuf->size - ringbuf->tail;
  1664. if (ringbuf->space < rem) {
  1665. int ret = ring_wait_for_space(ring, rem);
  1666. if (ret)
  1667. return ret;
  1668. }
  1669. virt = ringbuf->virtual_start + ringbuf->tail;
  1670. rem /= 4;
  1671. while (rem--)
  1672. iowrite32(MI_NOOP, virt++);
  1673. ringbuf->tail = 0;
  1674. ringbuf->space = intel_ring_space(ringbuf);
  1675. return 0;
  1676. }
  1677. int intel_ring_idle(struct intel_engine_cs *ring)
  1678. {
  1679. u32 seqno;
  1680. int ret;
  1681. /* We need to add any requests required to flush the objects and ring */
  1682. if (ring->outstanding_lazy_request) {
  1683. ret = i915_add_request(ring, NULL);
  1684. if (ret)
  1685. return ret;
  1686. }
  1687. /* Wait upon the last request to be completed */
  1688. if (list_empty(&ring->request_list))
  1689. return 0;
  1690. seqno = list_entry(ring->request_list.prev,
  1691. struct drm_i915_gem_request,
  1692. list)->seqno;
  1693. return i915_wait_seqno(ring, seqno);
  1694. }
  1695. static int
  1696. intel_ring_alloc_request(struct intel_engine_cs *ring)
  1697. {
  1698. int ret;
  1699. struct drm_i915_gem_request *request;
  1700. if (ring->outstanding_lazy_request)
  1701. return 0;
  1702. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1703. if (request == NULL)
  1704. return -ENOMEM;
  1705. kref_init(&request->ref);
  1706. ret = i915_gem_get_seqno(ring->dev, &request->seqno);
  1707. if (ret) {
  1708. kfree(request);
  1709. return ret;
  1710. }
  1711. ring->outstanding_lazy_request = request;
  1712. return 0;
  1713. }
  1714. static int __intel_ring_prepare(struct intel_engine_cs *ring,
  1715. int bytes)
  1716. {
  1717. struct intel_ringbuffer *ringbuf = ring->buffer;
  1718. int ret;
  1719. if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
  1720. ret = intel_wrap_ring_buffer(ring);
  1721. if (unlikely(ret))
  1722. return ret;
  1723. }
  1724. if (unlikely(ringbuf->space < bytes)) {
  1725. ret = ring_wait_for_space(ring, bytes);
  1726. if (unlikely(ret))
  1727. return ret;
  1728. }
  1729. return 0;
  1730. }
  1731. int intel_ring_begin(struct intel_engine_cs *ring,
  1732. int num_dwords)
  1733. {
  1734. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1735. int ret;
  1736. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1737. dev_priv->mm.interruptible);
  1738. if (ret)
  1739. return ret;
  1740. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1741. if (ret)
  1742. return ret;
  1743. /* Preallocate the olr before touching the ring */
  1744. ret = intel_ring_alloc_request(ring);
  1745. if (ret)
  1746. return ret;
  1747. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1748. return 0;
  1749. }
  1750. /* Align the ring tail to a cacheline boundary */
  1751. int intel_ring_cacheline_align(struct intel_engine_cs *ring)
  1752. {
  1753. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1754. int ret;
  1755. if (num_dwords == 0)
  1756. return 0;
  1757. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1758. ret = intel_ring_begin(ring, num_dwords);
  1759. if (ret)
  1760. return ret;
  1761. while (num_dwords--)
  1762. intel_ring_emit(ring, MI_NOOP);
  1763. intel_ring_advance(ring);
  1764. return 0;
  1765. }
  1766. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1767. {
  1768. struct drm_device *dev = ring->dev;
  1769. struct drm_i915_private *dev_priv = dev->dev_private;
  1770. BUG_ON(ring->outstanding_lazy_request);
  1771. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1772. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1773. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1774. if (HAS_VEBOX(dev))
  1775. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1776. }
  1777. ring->set_seqno(ring, seqno);
  1778. ring->hangcheck.seqno = seqno;
  1779. }
  1780. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1781. u32 value)
  1782. {
  1783. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1784. /* Every tail move must follow the sequence below */
  1785. /* Disable notification that the ring is IDLE. The GT
  1786. * will then assume that it is busy and bring it out of rc6.
  1787. */
  1788. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1789. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1790. /* Clear the context id. Here be magic! */
  1791. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1792. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1793. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1794. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1795. 50))
  1796. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1797. /* Now that the ring is fully powered up, update the tail */
  1798. I915_WRITE_TAIL(ring, value);
  1799. POSTING_READ(RING_TAIL(ring->mmio_base));
  1800. /* Let the ring send IDLE messages to the GT again,
  1801. * and so let it sleep to conserve power when idle.
  1802. */
  1803. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1804. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1805. }
  1806. static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
  1807. u32 invalidate, u32 flush)
  1808. {
  1809. uint32_t cmd;
  1810. int ret;
  1811. ret = intel_ring_begin(ring, 4);
  1812. if (ret)
  1813. return ret;
  1814. cmd = MI_FLUSH_DW;
  1815. if (INTEL_INFO(ring->dev)->gen >= 8)
  1816. cmd += 1;
  1817. /*
  1818. * Bspec vol 1c.5 - video engine command streamer:
  1819. * "If ENABLED, all TLBs will be invalidated once the flush
  1820. * operation is complete. This bit is only valid when the
  1821. * Post-Sync Operation field is a value of 1h or 3h."
  1822. */
  1823. if (invalidate & I915_GEM_GPU_DOMAINS)
  1824. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1825. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1826. intel_ring_emit(ring, cmd);
  1827. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1828. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1829. intel_ring_emit(ring, 0); /* upper addr */
  1830. intel_ring_emit(ring, 0); /* value */
  1831. } else {
  1832. intel_ring_emit(ring, 0);
  1833. intel_ring_emit(ring, MI_NOOP);
  1834. }
  1835. intel_ring_advance(ring);
  1836. return 0;
  1837. }
  1838. static int
  1839. gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1840. u64 offset, u32 len,
  1841. unsigned flags)
  1842. {
  1843. bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
  1844. int ret;
  1845. ret = intel_ring_begin(ring, 4);
  1846. if (ret)
  1847. return ret;
  1848. /* FIXME(BDW): Address space and security selectors. */
  1849. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1850. intel_ring_emit(ring, lower_32_bits(offset));
  1851. intel_ring_emit(ring, upper_32_bits(offset));
  1852. intel_ring_emit(ring, MI_NOOP);
  1853. intel_ring_advance(ring);
  1854. return 0;
  1855. }
  1856. static int
  1857. hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1858. u64 offset, u32 len,
  1859. unsigned flags)
  1860. {
  1861. int ret;
  1862. ret = intel_ring_begin(ring, 2);
  1863. if (ret)
  1864. return ret;
  1865. intel_ring_emit(ring,
  1866. MI_BATCH_BUFFER_START |
  1867. (flags & I915_DISPATCH_SECURE ?
  1868. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
  1869. /* bit0-7 is the length on GEN6+ */
  1870. intel_ring_emit(ring, offset);
  1871. intel_ring_advance(ring);
  1872. return 0;
  1873. }
  1874. static int
  1875. gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1876. u64 offset, u32 len,
  1877. unsigned flags)
  1878. {
  1879. int ret;
  1880. ret = intel_ring_begin(ring, 2);
  1881. if (ret)
  1882. return ret;
  1883. intel_ring_emit(ring,
  1884. MI_BATCH_BUFFER_START |
  1885. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1886. /* bit0-7 is the length on GEN6+ */
  1887. intel_ring_emit(ring, offset);
  1888. intel_ring_advance(ring);
  1889. return 0;
  1890. }
  1891. /* Blitter support (SandyBridge+) */
  1892. static int gen6_ring_flush(struct intel_engine_cs *ring,
  1893. u32 invalidate, u32 flush)
  1894. {
  1895. struct drm_device *dev = ring->dev;
  1896. struct drm_i915_private *dev_priv = dev->dev_private;
  1897. uint32_t cmd;
  1898. int ret;
  1899. ret = intel_ring_begin(ring, 4);
  1900. if (ret)
  1901. return ret;
  1902. cmd = MI_FLUSH_DW;
  1903. if (INTEL_INFO(ring->dev)->gen >= 8)
  1904. cmd += 1;
  1905. /*
  1906. * Bspec vol 1c.3 - blitter engine command streamer:
  1907. * "If ENABLED, all TLBs will be invalidated once the flush
  1908. * operation is complete. This bit is only valid when the
  1909. * Post-Sync Operation field is a value of 1h or 3h."
  1910. */
  1911. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1912. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1913. MI_FLUSH_DW_OP_STOREDW;
  1914. intel_ring_emit(ring, cmd);
  1915. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1916. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1917. intel_ring_emit(ring, 0); /* upper addr */
  1918. intel_ring_emit(ring, 0); /* value */
  1919. } else {
  1920. intel_ring_emit(ring, 0);
  1921. intel_ring_emit(ring, MI_NOOP);
  1922. }
  1923. intel_ring_advance(ring);
  1924. if (!invalidate && flush) {
  1925. if (IS_GEN7(dev))
  1926. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1927. else if (IS_BROADWELL(dev))
  1928. dev_priv->fbc.need_sw_cache_clean = true;
  1929. }
  1930. return 0;
  1931. }
  1932. int intel_init_render_ring_buffer(struct drm_device *dev)
  1933. {
  1934. struct drm_i915_private *dev_priv = dev->dev_private;
  1935. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  1936. struct drm_i915_gem_object *obj;
  1937. int ret;
  1938. ring->name = "render ring";
  1939. ring->id = RCS;
  1940. ring->mmio_base = RENDER_RING_BASE;
  1941. if (INTEL_INFO(dev)->gen >= 8) {
  1942. if (i915_semaphore_is_enabled(dev)) {
  1943. obj = i915_gem_alloc_object(dev, 4096);
  1944. if (obj == NULL) {
  1945. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  1946. i915.semaphores = 0;
  1947. } else {
  1948. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1949. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  1950. if (ret != 0) {
  1951. drm_gem_object_unreference(&obj->base);
  1952. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  1953. i915.semaphores = 0;
  1954. } else
  1955. dev_priv->semaphore_obj = obj;
  1956. }
  1957. }
  1958. ring->init_context = intel_ring_workarounds_emit;
  1959. ring->add_request = gen6_add_request;
  1960. ring->flush = gen8_render_ring_flush;
  1961. ring->irq_get = gen8_ring_get_irq;
  1962. ring->irq_put = gen8_ring_put_irq;
  1963. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1964. ring->get_seqno = gen6_ring_get_seqno;
  1965. ring->set_seqno = ring_set_seqno;
  1966. if (i915_semaphore_is_enabled(dev)) {
  1967. WARN_ON(!dev_priv->semaphore_obj);
  1968. ring->semaphore.sync_to = gen8_ring_sync;
  1969. ring->semaphore.signal = gen8_rcs_signal;
  1970. GEN8_RING_SEMAPHORE_INIT;
  1971. }
  1972. } else if (INTEL_INFO(dev)->gen >= 6) {
  1973. ring->add_request = gen6_add_request;
  1974. ring->flush = gen7_render_ring_flush;
  1975. if (INTEL_INFO(dev)->gen == 6)
  1976. ring->flush = gen6_render_ring_flush;
  1977. ring->irq_get = gen6_ring_get_irq;
  1978. ring->irq_put = gen6_ring_put_irq;
  1979. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1980. ring->get_seqno = gen6_ring_get_seqno;
  1981. ring->set_seqno = ring_set_seqno;
  1982. if (i915_semaphore_is_enabled(dev)) {
  1983. ring->semaphore.sync_to = gen6_ring_sync;
  1984. ring->semaphore.signal = gen6_signal;
  1985. /*
  1986. * The current semaphore is only applied on pre-gen8
  1987. * platform. And there is no VCS2 ring on the pre-gen8
  1988. * platform. So the semaphore between RCS and VCS2 is
  1989. * initialized as INVALID. Gen8 will initialize the
  1990. * sema between VCS2 and RCS later.
  1991. */
  1992. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1993. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  1994. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  1995. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  1996. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1997. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  1998. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  1999. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2000. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2001. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2002. }
  2003. } else if (IS_GEN5(dev)) {
  2004. ring->add_request = pc_render_add_request;
  2005. ring->flush = gen4_render_ring_flush;
  2006. ring->get_seqno = pc_render_get_seqno;
  2007. ring->set_seqno = pc_render_set_seqno;
  2008. ring->irq_get = gen5_ring_get_irq;
  2009. ring->irq_put = gen5_ring_put_irq;
  2010. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2011. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2012. } else {
  2013. ring->add_request = i9xx_add_request;
  2014. if (INTEL_INFO(dev)->gen < 4)
  2015. ring->flush = gen2_render_ring_flush;
  2016. else
  2017. ring->flush = gen4_render_ring_flush;
  2018. ring->get_seqno = ring_get_seqno;
  2019. ring->set_seqno = ring_set_seqno;
  2020. if (IS_GEN2(dev)) {
  2021. ring->irq_get = i8xx_ring_get_irq;
  2022. ring->irq_put = i8xx_ring_put_irq;
  2023. } else {
  2024. ring->irq_get = i9xx_ring_get_irq;
  2025. ring->irq_put = i9xx_ring_put_irq;
  2026. }
  2027. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2028. }
  2029. ring->write_tail = ring_write_tail;
  2030. if (IS_HASWELL(dev))
  2031. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2032. else if (IS_GEN8(dev))
  2033. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2034. else if (INTEL_INFO(dev)->gen >= 6)
  2035. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2036. else if (INTEL_INFO(dev)->gen >= 4)
  2037. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2038. else if (IS_I830(dev) || IS_845G(dev))
  2039. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2040. else
  2041. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2042. ring->init = init_render_ring;
  2043. ring->cleanup = render_ring_cleanup;
  2044. /* Workaround batchbuffer to combat CS tlb bug. */
  2045. if (HAS_BROKEN_CS_TLB(dev)) {
  2046. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2047. if (obj == NULL) {
  2048. DRM_ERROR("Failed to allocate batch bo\n");
  2049. return -ENOMEM;
  2050. }
  2051. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2052. if (ret != 0) {
  2053. drm_gem_object_unreference(&obj->base);
  2054. DRM_ERROR("Failed to ping batch bo\n");
  2055. return ret;
  2056. }
  2057. ring->scratch.obj = obj;
  2058. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2059. }
  2060. return intel_init_ring_buffer(dev, ring);
  2061. }
  2062. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2063. {
  2064. struct drm_i915_private *dev_priv = dev->dev_private;
  2065. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2066. ring->name = "bsd ring";
  2067. ring->id = VCS;
  2068. ring->write_tail = ring_write_tail;
  2069. if (INTEL_INFO(dev)->gen >= 6) {
  2070. ring->mmio_base = GEN6_BSD_RING_BASE;
  2071. /* gen6 bsd needs a special wa for tail updates */
  2072. if (IS_GEN6(dev))
  2073. ring->write_tail = gen6_bsd_ring_write_tail;
  2074. ring->flush = gen6_bsd_ring_flush;
  2075. ring->add_request = gen6_add_request;
  2076. ring->get_seqno = gen6_ring_get_seqno;
  2077. ring->set_seqno = ring_set_seqno;
  2078. if (INTEL_INFO(dev)->gen >= 8) {
  2079. ring->irq_enable_mask =
  2080. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2081. ring->irq_get = gen8_ring_get_irq;
  2082. ring->irq_put = gen8_ring_put_irq;
  2083. ring->dispatch_execbuffer =
  2084. gen8_ring_dispatch_execbuffer;
  2085. if (i915_semaphore_is_enabled(dev)) {
  2086. ring->semaphore.sync_to = gen8_ring_sync;
  2087. ring->semaphore.signal = gen8_xcs_signal;
  2088. GEN8_RING_SEMAPHORE_INIT;
  2089. }
  2090. } else {
  2091. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2092. ring->irq_get = gen6_ring_get_irq;
  2093. ring->irq_put = gen6_ring_put_irq;
  2094. ring->dispatch_execbuffer =
  2095. gen6_ring_dispatch_execbuffer;
  2096. if (i915_semaphore_is_enabled(dev)) {
  2097. ring->semaphore.sync_to = gen6_ring_sync;
  2098. ring->semaphore.signal = gen6_signal;
  2099. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2100. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2101. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2102. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2103. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2104. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2105. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2106. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2107. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2108. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2109. }
  2110. }
  2111. } else {
  2112. ring->mmio_base = BSD_RING_BASE;
  2113. ring->flush = bsd_ring_flush;
  2114. ring->add_request = i9xx_add_request;
  2115. ring->get_seqno = ring_get_seqno;
  2116. ring->set_seqno = ring_set_seqno;
  2117. if (IS_GEN5(dev)) {
  2118. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2119. ring->irq_get = gen5_ring_get_irq;
  2120. ring->irq_put = gen5_ring_put_irq;
  2121. } else {
  2122. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2123. ring->irq_get = i9xx_ring_get_irq;
  2124. ring->irq_put = i9xx_ring_put_irq;
  2125. }
  2126. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2127. }
  2128. ring->init = init_ring_common;
  2129. return intel_init_ring_buffer(dev, ring);
  2130. }
  2131. /**
  2132. * Initialize the second BSD ring for Broadwell GT3.
  2133. * It is noted that this only exists on Broadwell GT3.
  2134. */
  2135. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2136. {
  2137. struct drm_i915_private *dev_priv = dev->dev_private;
  2138. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2139. if ((INTEL_INFO(dev)->gen != 8)) {
  2140. DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
  2141. return -EINVAL;
  2142. }
  2143. ring->name = "bsd2 ring";
  2144. ring->id = VCS2;
  2145. ring->write_tail = ring_write_tail;
  2146. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2147. ring->flush = gen6_bsd_ring_flush;
  2148. ring->add_request = gen6_add_request;
  2149. ring->get_seqno = gen6_ring_get_seqno;
  2150. ring->set_seqno = ring_set_seqno;
  2151. ring->irq_enable_mask =
  2152. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2153. ring->irq_get = gen8_ring_get_irq;
  2154. ring->irq_put = gen8_ring_put_irq;
  2155. ring->dispatch_execbuffer =
  2156. gen8_ring_dispatch_execbuffer;
  2157. if (i915_semaphore_is_enabled(dev)) {
  2158. ring->semaphore.sync_to = gen8_ring_sync;
  2159. ring->semaphore.signal = gen8_xcs_signal;
  2160. GEN8_RING_SEMAPHORE_INIT;
  2161. }
  2162. ring->init = init_ring_common;
  2163. return intel_init_ring_buffer(dev, ring);
  2164. }
  2165. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2166. {
  2167. struct drm_i915_private *dev_priv = dev->dev_private;
  2168. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2169. ring->name = "blitter ring";
  2170. ring->id = BCS;
  2171. ring->mmio_base = BLT_RING_BASE;
  2172. ring->write_tail = ring_write_tail;
  2173. ring->flush = gen6_ring_flush;
  2174. ring->add_request = gen6_add_request;
  2175. ring->get_seqno = gen6_ring_get_seqno;
  2176. ring->set_seqno = ring_set_seqno;
  2177. if (INTEL_INFO(dev)->gen >= 8) {
  2178. ring->irq_enable_mask =
  2179. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2180. ring->irq_get = gen8_ring_get_irq;
  2181. ring->irq_put = gen8_ring_put_irq;
  2182. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2183. if (i915_semaphore_is_enabled(dev)) {
  2184. ring->semaphore.sync_to = gen8_ring_sync;
  2185. ring->semaphore.signal = gen8_xcs_signal;
  2186. GEN8_RING_SEMAPHORE_INIT;
  2187. }
  2188. } else {
  2189. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2190. ring->irq_get = gen6_ring_get_irq;
  2191. ring->irq_put = gen6_ring_put_irq;
  2192. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2193. if (i915_semaphore_is_enabled(dev)) {
  2194. ring->semaphore.signal = gen6_signal;
  2195. ring->semaphore.sync_to = gen6_ring_sync;
  2196. /*
  2197. * The current semaphore is only applied on pre-gen8
  2198. * platform. And there is no VCS2 ring on the pre-gen8
  2199. * platform. So the semaphore between BCS and VCS2 is
  2200. * initialized as INVALID. Gen8 will initialize the
  2201. * sema between BCS and VCS2 later.
  2202. */
  2203. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2204. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2205. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2206. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2207. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2208. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2209. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2210. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2211. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2212. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2213. }
  2214. }
  2215. ring->init = init_ring_common;
  2216. return intel_init_ring_buffer(dev, ring);
  2217. }
  2218. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2219. {
  2220. struct drm_i915_private *dev_priv = dev->dev_private;
  2221. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2222. ring->name = "video enhancement ring";
  2223. ring->id = VECS;
  2224. ring->mmio_base = VEBOX_RING_BASE;
  2225. ring->write_tail = ring_write_tail;
  2226. ring->flush = gen6_ring_flush;
  2227. ring->add_request = gen6_add_request;
  2228. ring->get_seqno = gen6_ring_get_seqno;
  2229. ring->set_seqno = ring_set_seqno;
  2230. if (INTEL_INFO(dev)->gen >= 8) {
  2231. ring->irq_enable_mask =
  2232. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2233. ring->irq_get = gen8_ring_get_irq;
  2234. ring->irq_put = gen8_ring_put_irq;
  2235. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2236. if (i915_semaphore_is_enabled(dev)) {
  2237. ring->semaphore.sync_to = gen8_ring_sync;
  2238. ring->semaphore.signal = gen8_xcs_signal;
  2239. GEN8_RING_SEMAPHORE_INIT;
  2240. }
  2241. } else {
  2242. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2243. ring->irq_get = hsw_vebox_get_irq;
  2244. ring->irq_put = hsw_vebox_put_irq;
  2245. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2246. if (i915_semaphore_is_enabled(dev)) {
  2247. ring->semaphore.sync_to = gen6_ring_sync;
  2248. ring->semaphore.signal = gen6_signal;
  2249. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2250. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2251. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2252. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2253. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2254. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2255. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2256. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2257. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2258. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2259. }
  2260. }
  2261. ring->init = init_ring_common;
  2262. return intel_init_ring_buffer(dev, ring);
  2263. }
  2264. int
  2265. intel_ring_flush_all_caches(struct intel_engine_cs *ring)
  2266. {
  2267. int ret;
  2268. if (!ring->gpu_caches_dirty)
  2269. return 0;
  2270. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2271. if (ret)
  2272. return ret;
  2273. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2274. ring->gpu_caches_dirty = false;
  2275. return 0;
  2276. }
  2277. int
  2278. intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
  2279. {
  2280. uint32_t flush_domains;
  2281. int ret;
  2282. flush_domains = 0;
  2283. if (ring->gpu_caches_dirty)
  2284. flush_domains = I915_GEM_GPU_DOMAINS;
  2285. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2286. if (ret)
  2287. return ret;
  2288. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2289. ring->gpu_caches_dirty = false;
  2290. return 0;
  2291. }
  2292. void
  2293. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2294. {
  2295. int ret;
  2296. if (!intel_ring_initialized(ring))
  2297. return;
  2298. ret = intel_ring_idle(ring);
  2299. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2300. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2301. ring->name, ret);
  2302. stop_ring(ring);
  2303. }