intel_ringbuffer.c 79 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. /* Rough estimate of the typical request size, performing a flush,
  36. * set-context and then emitting the batch.
  37. */
  38. #define LEGACY_REQUEST_SIZE 200
  39. int __intel_ring_space(int head, int tail, int size)
  40. {
  41. int space = head - tail;
  42. if (space <= 0)
  43. space += size;
  44. return space - I915_RING_FREE_SPACE;
  45. }
  46. void intel_ring_update_space(struct intel_ring *ring)
  47. {
  48. if (ring->last_retired_head != -1) {
  49. ring->head = ring->last_retired_head;
  50. ring->last_retired_head = -1;
  51. }
  52. ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
  53. ring->tail, ring->size);
  54. }
  55. static int
  56. gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  57. {
  58. struct intel_ring *ring = req->ring;
  59. u32 cmd;
  60. int ret;
  61. cmd = MI_FLUSH;
  62. if (mode & EMIT_INVALIDATE)
  63. cmd |= MI_READ_FLUSH;
  64. ret = intel_ring_begin(req, 2);
  65. if (ret)
  66. return ret;
  67. intel_ring_emit(ring, cmd);
  68. intel_ring_emit(ring, MI_NOOP);
  69. intel_ring_advance(ring);
  70. return 0;
  71. }
  72. static int
  73. gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  74. {
  75. struct intel_ring *ring = req->ring;
  76. u32 cmd;
  77. int ret;
  78. /*
  79. * read/write caches:
  80. *
  81. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  82. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  83. * also flushed at 2d versus 3d pipeline switches.
  84. *
  85. * read-only caches:
  86. *
  87. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  88. * MI_READ_FLUSH is set, and is always flushed on 965.
  89. *
  90. * I915_GEM_DOMAIN_COMMAND may not exist?
  91. *
  92. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  93. * invalidated when MI_EXE_FLUSH is set.
  94. *
  95. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  96. * invalidated with every MI_FLUSH.
  97. *
  98. * TLBs:
  99. *
  100. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  101. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  102. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  103. * are flushed at any MI_FLUSH.
  104. */
  105. cmd = MI_FLUSH;
  106. if (mode & EMIT_INVALIDATE) {
  107. cmd |= MI_EXE_FLUSH;
  108. if (IS_G4X(req->i915) || IS_GEN5(req->i915))
  109. cmd |= MI_INVALIDATE_ISP;
  110. }
  111. ret = intel_ring_begin(req, 2);
  112. if (ret)
  113. return ret;
  114. intel_ring_emit(ring, cmd);
  115. intel_ring_emit(ring, MI_NOOP);
  116. intel_ring_advance(ring);
  117. return 0;
  118. }
  119. /**
  120. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  121. * implementing two workarounds on gen6. From section 1.4.7.1
  122. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  123. *
  124. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  125. * produced by non-pipelined state commands), software needs to first
  126. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  127. * 0.
  128. *
  129. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  130. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  131. *
  132. * And the workaround for these two requires this workaround first:
  133. *
  134. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  135. * BEFORE the pipe-control with a post-sync op and no write-cache
  136. * flushes.
  137. *
  138. * And this last workaround is tricky because of the requirements on
  139. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  140. * volume 2 part 1:
  141. *
  142. * "1 of the following must also be set:
  143. * - Render Target Cache Flush Enable ([12] of DW1)
  144. * - Depth Cache Flush Enable ([0] of DW1)
  145. * - Stall at Pixel Scoreboard ([1] of DW1)
  146. * - Depth Stall ([13] of DW1)
  147. * - Post-Sync Operation ([13] of DW1)
  148. * - Notify Enable ([8] of DW1)"
  149. *
  150. * The cache flushes require the workaround flush that triggered this
  151. * one, so we can't use it. Depth stall would trigger the same.
  152. * Post-sync nonzero is what triggered this second workaround, so we
  153. * can't use that one either. Notify enable is IRQs, which aren't
  154. * really our business. That leaves only stall at scoreboard.
  155. */
  156. static int
  157. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  158. {
  159. struct intel_ring *ring = req->ring;
  160. u32 scratch_addr =
  161. req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  162. int ret;
  163. ret = intel_ring_begin(req, 6);
  164. if (ret)
  165. return ret;
  166. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  167. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  168. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  169. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  170. intel_ring_emit(ring, 0); /* low dword */
  171. intel_ring_emit(ring, 0); /* high dword */
  172. intel_ring_emit(ring, MI_NOOP);
  173. intel_ring_advance(ring);
  174. ret = intel_ring_begin(req, 6);
  175. if (ret)
  176. return ret;
  177. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  178. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  179. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  180. intel_ring_emit(ring, 0);
  181. intel_ring_emit(ring, 0);
  182. intel_ring_emit(ring, MI_NOOP);
  183. intel_ring_advance(ring);
  184. return 0;
  185. }
  186. static int
  187. gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  188. {
  189. struct intel_ring *ring = req->ring;
  190. u32 scratch_addr =
  191. req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  192. u32 flags = 0;
  193. int ret;
  194. /* Force SNB workarounds for PIPE_CONTROL flushes */
  195. ret = intel_emit_post_sync_nonzero_flush(req);
  196. if (ret)
  197. return ret;
  198. /* Just flush everything. Experiments have shown that reducing the
  199. * number of bits based on the write domains has little performance
  200. * impact.
  201. */
  202. if (mode & EMIT_FLUSH) {
  203. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  204. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  205. /*
  206. * Ensure that any following seqno writes only happen
  207. * when the render cache is indeed flushed.
  208. */
  209. flags |= PIPE_CONTROL_CS_STALL;
  210. }
  211. if (mode & EMIT_INVALIDATE) {
  212. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  213. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  214. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  215. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  216. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  217. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  218. /*
  219. * TLB invalidate requires a post-sync write.
  220. */
  221. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  222. }
  223. ret = intel_ring_begin(req, 4);
  224. if (ret)
  225. return ret;
  226. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  227. intel_ring_emit(ring, flags);
  228. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  229. intel_ring_emit(ring, 0);
  230. intel_ring_advance(ring);
  231. return 0;
  232. }
  233. static int
  234. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  235. {
  236. struct intel_ring *ring = req->ring;
  237. int ret;
  238. ret = intel_ring_begin(req, 4);
  239. if (ret)
  240. return ret;
  241. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  242. intel_ring_emit(ring,
  243. PIPE_CONTROL_CS_STALL |
  244. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  245. intel_ring_emit(ring, 0);
  246. intel_ring_emit(ring, 0);
  247. intel_ring_advance(ring);
  248. return 0;
  249. }
  250. static int
  251. gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  252. {
  253. struct intel_ring *ring = req->ring;
  254. u32 scratch_addr =
  255. req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  256. u32 flags = 0;
  257. int ret;
  258. /*
  259. * Ensure that any following seqno writes only happen when the render
  260. * cache is indeed flushed.
  261. *
  262. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  263. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  264. * don't try to be clever and just set it unconditionally.
  265. */
  266. flags |= PIPE_CONTROL_CS_STALL;
  267. /* Just flush everything. Experiments have shown that reducing the
  268. * number of bits based on the write domains has little performance
  269. * impact.
  270. */
  271. if (mode & EMIT_FLUSH) {
  272. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  273. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  274. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  275. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  276. }
  277. if (mode & EMIT_INVALIDATE) {
  278. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  279. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  280. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  281. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  282. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  283. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  284. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  285. /*
  286. * TLB invalidate requires a post-sync write.
  287. */
  288. flags |= PIPE_CONTROL_QW_WRITE;
  289. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  290. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  291. /* Workaround: we must issue a pipe_control with CS-stall bit
  292. * set before a pipe_control command that has the state cache
  293. * invalidate bit set. */
  294. gen7_render_ring_cs_stall_wa(req);
  295. }
  296. ret = intel_ring_begin(req, 4);
  297. if (ret)
  298. return ret;
  299. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  300. intel_ring_emit(ring, flags);
  301. intel_ring_emit(ring, scratch_addr);
  302. intel_ring_emit(ring, 0);
  303. intel_ring_advance(ring);
  304. return 0;
  305. }
  306. static int
  307. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  308. u32 flags, u32 scratch_addr)
  309. {
  310. struct intel_ring *ring = req->ring;
  311. int ret;
  312. ret = intel_ring_begin(req, 6);
  313. if (ret)
  314. return ret;
  315. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  316. intel_ring_emit(ring, flags);
  317. intel_ring_emit(ring, scratch_addr);
  318. intel_ring_emit(ring, 0);
  319. intel_ring_emit(ring, 0);
  320. intel_ring_emit(ring, 0);
  321. intel_ring_advance(ring);
  322. return 0;
  323. }
  324. static int
  325. gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  326. {
  327. u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  328. u32 flags = 0;
  329. int ret;
  330. flags |= PIPE_CONTROL_CS_STALL;
  331. if (mode & EMIT_FLUSH) {
  332. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  333. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  334. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  335. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  336. }
  337. if (mode & EMIT_INVALIDATE) {
  338. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  339. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  340. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  341. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  342. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  343. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  344. flags |= PIPE_CONTROL_QW_WRITE;
  345. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  346. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  347. ret = gen8_emit_pipe_control(req,
  348. PIPE_CONTROL_CS_STALL |
  349. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  350. 0);
  351. if (ret)
  352. return ret;
  353. }
  354. return gen8_emit_pipe_control(req, flags, scratch_addr);
  355. }
  356. u64 intel_engine_get_active_head(struct intel_engine_cs *engine)
  357. {
  358. struct drm_i915_private *dev_priv = engine->i915;
  359. u64 acthd;
  360. if (INTEL_GEN(dev_priv) >= 8)
  361. acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
  362. RING_ACTHD_UDW(engine->mmio_base));
  363. else if (INTEL_GEN(dev_priv) >= 4)
  364. acthd = I915_READ(RING_ACTHD(engine->mmio_base));
  365. else
  366. acthd = I915_READ(ACTHD);
  367. return acthd;
  368. }
  369. static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
  370. {
  371. struct drm_i915_private *dev_priv = engine->i915;
  372. u32 addr;
  373. addr = dev_priv->status_page_dmah->busaddr;
  374. if (INTEL_GEN(dev_priv) >= 4)
  375. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  376. I915_WRITE(HWS_PGA, addr);
  377. }
  378. static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
  379. {
  380. struct drm_i915_private *dev_priv = engine->i915;
  381. i915_reg_t mmio;
  382. /* The ring status page addresses are no longer next to the rest of
  383. * the ring registers as of gen7.
  384. */
  385. if (IS_GEN7(dev_priv)) {
  386. switch (engine->id) {
  387. case RCS:
  388. mmio = RENDER_HWS_PGA_GEN7;
  389. break;
  390. case BCS:
  391. mmio = BLT_HWS_PGA_GEN7;
  392. break;
  393. /*
  394. * VCS2 actually doesn't exist on Gen7. Only shut up
  395. * gcc switch check warning
  396. */
  397. case VCS2:
  398. case VCS:
  399. mmio = BSD_HWS_PGA_GEN7;
  400. break;
  401. case VECS:
  402. mmio = VEBOX_HWS_PGA_GEN7;
  403. break;
  404. }
  405. } else if (IS_GEN6(dev_priv)) {
  406. mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
  407. } else {
  408. /* XXX: gen8 returns to sanity */
  409. mmio = RING_HWS_PGA(engine->mmio_base);
  410. }
  411. I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
  412. POSTING_READ(mmio);
  413. /*
  414. * Flush the TLB for this page
  415. *
  416. * FIXME: These two bits have disappeared on gen8, so a question
  417. * arises: do we still need this and if so how should we go about
  418. * invalidating the TLB?
  419. */
  420. if (IS_GEN(dev_priv, 6, 7)) {
  421. i915_reg_t reg = RING_INSTPM(engine->mmio_base);
  422. /* ring should be idle before issuing a sync flush*/
  423. WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
  424. I915_WRITE(reg,
  425. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  426. INSTPM_SYNC_FLUSH));
  427. if (intel_wait_for_register(dev_priv,
  428. reg, INSTPM_SYNC_FLUSH, 0,
  429. 1000))
  430. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  431. engine->name);
  432. }
  433. }
  434. static bool stop_ring(struct intel_engine_cs *engine)
  435. {
  436. struct drm_i915_private *dev_priv = engine->i915;
  437. if (!IS_GEN2(dev_priv)) {
  438. I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
  439. if (intel_wait_for_register(dev_priv,
  440. RING_MI_MODE(engine->mmio_base),
  441. MODE_IDLE,
  442. MODE_IDLE,
  443. 1000)) {
  444. DRM_ERROR("%s : timed out trying to stop ring\n",
  445. engine->name);
  446. /* Sometimes we observe that the idle flag is not
  447. * set even though the ring is empty. So double
  448. * check before giving up.
  449. */
  450. if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
  451. return false;
  452. }
  453. }
  454. I915_WRITE_CTL(engine, 0);
  455. I915_WRITE_HEAD(engine, 0);
  456. I915_WRITE_TAIL(engine, 0);
  457. if (!IS_GEN2(dev_priv)) {
  458. (void)I915_READ_CTL(engine);
  459. I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
  460. }
  461. return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
  462. }
  463. static int init_ring_common(struct intel_engine_cs *engine)
  464. {
  465. struct drm_i915_private *dev_priv = engine->i915;
  466. struct intel_ring *ring = engine->buffer;
  467. struct drm_i915_gem_object *obj = ring->obj;
  468. int ret = 0;
  469. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  470. if (!stop_ring(engine)) {
  471. /* G45 ring initialization often fails to reset head to zero */
  472. DRM_DEBUG_KMS("%s head not reset to zero "
  473. "ctl %08x head %08x tail %08x start %08x\n",
  474. engine->name,
  475. I915_READ_CTL(engine),
  476. I915_READ_HEAD(engine),
  477. I915_READ_TAIL(engine),
  478. I915_READ_START(engine));
  479. if (!stop_ring(engine)) {
  480. DRM_ERROR("failed to set %s head to zero "
  481. "ctl %08x head %08x tail %08x start %08x\n",
  482. engine->name,
  483. I915_READ_CTL(engine),
  484. I915_READ_HEAD(engine),
  485. I915_READ_TAIL(engine),
  486. I915_READ_START(engine));
  487. ret = -EIO;
  488. goto out;
  489. }
  490. }
  491. if (I915_NEED_GFX_HWS(dev_priv))
  492. intel_ring_setup_status_page(engine);
  493. else
  494. ring_setup_phys_status_page(engine);
  495. /* Enforce ordering by reading HEAD register back */
  496. I915_READ_HEAD(engine);
  497. /* Initialize the ring. This must happen _after_ we've cleared the ring
  498. * registers with the above sequence (the readback of the HEAD registers
  499. * also enforces ordering), otherwise the hw might lose the new ring
  500. * register values. */
  501. I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
  502. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  503. if (I915_READ_HEAD(engine))
  504. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  505. engine->name, I915_READ_HEAD(engine));
  506. I915_WRITE_HEAD(engine, 0);
  507. (void)I915_READ_HEAD(engine);
  508. I915_WRITE_CTL(engine,
  509. ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
  510. | RING_VALID);
  511. /* If the head is still not zero, the ring is dead */
  512. if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
  513. I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
  514. (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
  515. DRM_ERROR("%s initialization failed "
  516. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  517. engine->name,
  518. I915_READ_CTL(engine),
  519. I915_READ_CTL(engine) & RING_VALID,
  520. I915_READ_HEAD(engine), I915_READ_TAIL(engine),
  521. I915_READ_START(engine),
  522. (unsigned long)i915_gem_obj_ggtt_offset(obj));
  523. ret = -EIO;
  524. goto out;
  525. }
  526. ring->last_retired_head = -1;
  527. ring->head = I915_READ_HEAD(engine);
  528. ring->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
  529. intel_ring_update_space(ring);
  530. intel_engine_init_hangcheck(engine);
  531. out:
  532. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  533. return ret;
  534. }
  535. void intel_fini_pipe_control(struct intel_engine_cs *engine)
  536. {
  537. if (engine->scratch.obj == NULL)
  538. return;
  539. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  540. i915_gem_object_put(engine->scratch.obj);
  541. engine->scratch.obj = NULL;
  542. }
  543. int intel_init_pipe_control(struct intel_engine_cs *engine, int size)
  544. {
  545. struct drm_i915_gem_object *obj;
  546. int ret;
  547. WARN_ON(engine->scratch.obj);
  548. obj = i915_gem_object_create_stolen(&engine->i915->drm, size);
  549. if (!obj)
  550. obj = i915_gem_object_create(&engine->i915->drm, size);
  551. if (IS_ERR(obj)) {
  552. DRM_ERROR("Failed to allocate scratch page\n");
  553. ret = PTR_ERR(obj);
  554. goto err;
  555. }
  556. ret = i915_gem_obj_ggtt_pin(obj, 4096, PIN_HIGH);
  557. if (ret)
  558. goto err_unref;
  559. engine->scratch.obj = obj;
  560. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  561. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  562. engine->name, engine->scratch.gtt_offset);
  563. return 0;
  564. err_unref:
  565. i915_gem_object_put(engine->scratch.obj);
  566. err:
  567. return ret;
  568. }
  569. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  570. {
  571. struct intel_ring *ring = req->ring;
  572. struct i915_workarounds *w = &req->i915->workarounds;
  573. int ret, i;
  574. if (w->count == 0)
  575. return 0;
  576. ret = req->engine->emit_flush(req, EMIT_BARRIER);
  577. if (ret)
  578. return ret;
  579. ret = intel_ring_begin(req, (w->count * 2 + 2));
  580. if (ret)
  581. return ret;
  582. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  583. for (i = 0; i < w->count; i++) {
  584. intel_ring_emit_reg(ring, w->reg[i].addr);
  585. intel_ring_emit(ring, w->reg[i].value);
  586. }
  587. intel_ring_emit(ring, MI_NOOP);
  588. intel_ring_advance(ring);
  589. ret = req->engine->emit_flush(req, EMIT_BARRIER);
  590. if (ret)
  591. return ret;
  592. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  593. return 0;
  594. }
  595. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  596. {
  597. int ret;
  598. ret = intel_ring_workarounds_emit(req);
  599. if (ret != 0)
  600. return ret;
  601. ret = i915_gem_render_state_init(req);
  602. if (ret)
  603. return ret;
  604. return 0;
  605. }
  606. static int wa_add(struct drm_i915_private *dev_priv,
  607. i915_reg_t addr,
  608. const u32 mask, const u32 val)
  609. {
  610. const u32 idx = dev_priv->workarounds.count;
  611. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  612. return -ENOSPC;
  613. dev_priv->workarounds.reg[idx].addr = addr;
  614. dev_priv->workarounds.reg[idx].value = val;
  615. dev_priv->workarounds.reg[idx].mask = mask;
  616. dev_priv->workarounds.count++;
  617. return 0;
  618. }
  619. #define WA_REG(addr, mask, val) do { \
  620. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  621. if (r) \
  622. return r; \
  623. } while (0)
  624. #define WA_SET_BIT_MASKED(addr, mask) \
  625. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  626. #define WA_CLR_BIT_MASKED(addr, mask) \
  627. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  628. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  629. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  630. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  631. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  632. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  633. static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
  634. i915_reg_t reg)
  635. {
  636. struct drm_i915_private *dev_priv = engine->i915;
  637. struct i915_workarounds *wa = &dev_priv->workarounds;
  638. const uint32_t index = wa->hw_whitelist_count[engine->id];
  639. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  640. return -EINVAL;
  641. WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
  642. i915_mmio_reg_offset(reg));
  643. wa->hw_whitelist_count[engine->id]++;
  644. return 0;
  645. }
  646. static int gen8_init_workarounds(struct intel_engine_cs *engine)
  647. {
  648. struct drm_i915_private *dev_priv = engine->i915;
  649. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  650. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  651. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  652. /* WaDisablePartialInstShootdown:bdw,chv */
  653. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  654. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  655. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  656. * workaround for for a possible hang in the unlikely event a TLB
  657. * invalidation occurs during a PSD flush.
  658. */
  659. /* WaForceEnableNonCoherent:bdw,chv */
  660. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  661. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  662. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  663. HDC_FORCE_NON_COHERENT);
  664. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  665. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  666. * polygons in the same 8x4 pixel/sample area to be processed without
  667. * stalling waiting for the earlier ones to write to Hierarchical Z
  668. * buffer."
  669. *
  670. * This optimization is off by default for BDW and CHV; turn it on.
  671. */
  672. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  673. /* Wa4x4STCOptimizationDisable:bdw,chv */
  674. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  675. /*
  676. * BSpec recommends 8x4 when MSAA is used,
  677. * however in practice 16x4 seems fastest.
  678. *
  679. * Note that PS/WM thread counts depend on the WIZ hashing
  680. * disable bit, which we don't touch here, but it's good
  681. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  682. */
  683. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  684. GEN6_WIZ_HASHING_MASK,
  685. GEN6_WIZ_HASHING_16x4);
  686. return 0;
  687. }
  688. static int bdw_init_workarounds(struct intel_engine_cs *engine)
  689. {
  690. struct drm_i915_private *dev_priv = engine->i915;
  691. int ret;
  692. ret = gen8_init_workarounds(engine);
  693. if (ret)
  694. return ret;
  695. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  696. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  697. /* WaDisableDopClockGating:bdw */
  698. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  699. DOP_CLOCK_GATING_DISABLE);
  700. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  701. GEN8_SAMPLER_POWER_BYPASS_DIS);
  702. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  703. /* WaForceContextSaveRestoreNonCoherent:bdw */
  704. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  705. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  706. (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  707. return 0;
  708. }
  709. static int chv_init_workarounds(struct intel_engine_cs *engine)
  710. {
  711. struct drm_i915_private *dev_priv = engine->i915;
  712. int ret;
  713. ret = gen8_init_workarounds(engine);
  714. if (ret)
  715. return ret;
  716. /* WaDisableThreadStallDopClockGating:chv */
  717. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  718. /* Improve HiZ throughput on CHV. */
  719. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  720. return 0;
  721. }
  722. static int gen9_init_workarounds(struct intel_engine_cs *engine)
  723. {
  724. struct drm_i915_private *dev_priv = engine->i915;
  725. int ret;
  726. /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
  727. I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
  728. /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
  729. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  730. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  731. /* WaDisableKillLogic:bxt,skl,kbl */
  732. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  733. ECOCHK_DIS_TLB);
  734. /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
  735. /* WaDisablePartialInstShootdown:skl,bxt,kbl */
  736. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  737. FLOW_CONTROL_ENABLE |
  738. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  739. /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
  740. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  741. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  742. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  743. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  744. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  745. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  746. GEN9_DG_MIRROR_FIX_ENABLE);
  747. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  748. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  749. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  750. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  751. GEN9_RHWO_OPTIMIZATION_DISABLE);
  752. /*
  753. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  754. * but we do that in per ctx batchbuffer as there is an issue
  755. * with this register not getting restored on ctx restore
  756. */
  757. }
  758. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
  759. /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
  760. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  761. GEN9_ENABLE_YV12_BUGFIX |
  762. GEN9_ENABLE_GPGPU_PREEMPTION);
  763. /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
  764. /* WaDisablePartialResolveInVc:skl,bxt,kbl */
  765. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  766. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  767. /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
  768. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  769. GEN9_CCS_TLB_PREFETCH_ENABLE);
  770. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  771. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
  772. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  773. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  774. PIXEL_MASK_CAMMING_DISABLE);
  775. /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
  776. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  777. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  778. HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
  779. /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
  780. * both tied to WaForceContextSaveRestoreNonCoherent
  781. * in some hsds for skl. We keep the tie for all gen9. The
  782. * documentation is a bit hazy and so we want to get common behaviour,
  783. * even though there is no clear evidence we would need both on kbl/bxt.
  784. * This area has been source of system hangs so we play it safe
  785. * and mimic the skl regardless of what bspec says.
  786. *
  787. * Use Force Non-Coherent whenever executing a 3D context. This
  788. * is a workaround for a possible hang in the unlikely event
  789. * a TLB invalidation occurs during a PSD flush.
  790. */
  791. /* WaForceEnableNonCoherent:skl,bxt,kbl */
  792. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  793. HDC_FORCE_NON_COHERENT);
  794. /* WaDisableHDCInvalidation:skl,bxt,kbl */
  795. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  796. BDW_DISABLE_HDC_INVALIDATION);
  797. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
  798. if (IS_SKYLAKE(dev_priv) ||
  799. IS_KABYLAKE(dev_priv) ||
  800. IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  801. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  802. GEN8_SAMPLER_POWER_BYPASS_DIS);
  803. /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
  804. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  805. /* WaOCLCoherentLineFlush:skl,bxt,kbl */
  806. I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
  807. GEN8_LQSC_FLUSH_COHERENT_LINES));
  808. /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
  809. ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
  810. if (ret)
  811. return ret;
  812. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
  813. ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
  814. if (ret)
  815. return ret;
  816. /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
  817. ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
  818. if (ret)
  819. return ret;
  820. return 0;
  821. }
  822. static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
  823. {
  824. struct drm_i915_private *dev_priv = engine->i915;
  825. u8 vals[3] = { 0, 0, 0 };
  826. unsigned int i;
  827. for (i = 0; i < 3; i++) {
  828. u8 ss;
  829. /*
  830. * Only consider slices where one, and only one, subslice has 7
  831. * EUs
  832. */
  833. if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
  834. continue;
  835. /*
  836. * subslice_7eu[i] != 0 (because of the check above) and
  837. * ss_max == 4 (maximum number of subslices possible per slice)
  838. *
  839. * -> 0 <= ss <= 3;
  840. */
  841. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  842. vals[i] = 3 - ss;
  843. }
  844. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  845. return 0;
  846. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  847. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  848. GEN9_IZ_HASHING_MASK(2) |
  849. GEN9_IZ_HASHING_MASK(1) |
  850. GEN9_IZ_HASHING_MASK(0),
  851. GEN9_IZ_HASHING(2, vals[2]) |
  852. GEN9_IZ_HASHING(1, vals[1]) |
  853. GEN9_IZ_HASHING(0, vals[0]));
  854. return 0;
  855. }
  856. static int skl_init_workarounds(struct intel_engine_cs *engine)
  857. {
  858. struct drm_i915_private *dev_priv = engine->i915;
  859. int ret;
  860. ret = gen9_init_workarounds(engine);
  861. if (ret)
  862. return ret;
  863. /*
  864. * Actual WA is to disable percontext preemption granularity control
  865. * until D0 which is the default case so this is equivalent to
  866. * !WaDisablePerCtxtPreemptionGranularityControl:skl
  867. */
  868. if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
  869. I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
  870. _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
  871. }
  872. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
  873. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  874. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  875. _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
  876. }
  877. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  878. * involving this register should also be added to WA batch as required.
  879. */
  880. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
  881. /* WaDisableLSQCROPERFforOCL:skl */
  882. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  883. GEN8_LQSC_RO_PERF_DIS);
  884. /* WaEnableGapsTsvCreditFix:skl */
  885. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
  886. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  887. GEN9_GAPS_TSV_CREDIT_DISABLE));
  888. }
  889. /* WaDisablePowerCompilerClockGating:skl */
  890. if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
  891. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  892. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  893. /* WaBarrierPerformanceFixDisable:skl */
  894. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
  895. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  896. HDC_FENCE_DEST_SLM_DISABLE |
  897. HDC_BARRIER_PERFORMANCE_DISABLE);
  898. /* WaDisableSbeCacheDispatchPortSharing:skl */
  899. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
  900. WA_SET_BIT_MASKED(
  901. GEN7_HALF_SLICE_CHICKEN1,
  902. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  903. /* WaDisableGafsUnitClkGating:skl */
  904. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  905. /* WaInPlaceDecompressionHang:skl */
  906. if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
  907. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  908. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  909. /* WaDisableLSQCROPERFforOCL:skl */
  910. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  911. if (ret)
  912. return ret;
  913. return skl_tune_iz_hashing(engine);
  914. }
  915. static int bxt_init_workarounds(struct intel_engine_cs *engine)
  916. {
  917. struct drm_i915_private *dev_priv = engine->i915;
  918. int ret;
  919. ret = gen9_init_workarounds(engine);
  920. if (ret)
  921. return ret;
  922. /* WaStoreMultiplePTEenable:bxt */
  923. /* This is a requirement according to Hardware specification */
  924. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  925. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  926. /* WaSetClckGatingDisableMedia:bxt */
  927. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  928. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  929. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  930. }
  931. /* WaDisableThreadStallDopClockGating:bxt */
  932. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  933. STALL_DOP_GATING_DISABLE);
  934. /* WaDisablePooledEuLoadBalancingFix:bxt */
  935. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
  936. WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
  937. GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
  938. }
  939. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  940. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
  941. WA_SET_BIT_MASKED(
  942. GEN7_HALF_SLICE_CHICKEN1,
  943. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  944. }
  945. /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
  946. /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
  947. /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
  948. /* WaDisableLSQCROPERFforOCL:bxt */
  949. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  950. ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
  951. if (ret)
  952. return ret;
  953. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  954. if (ret)
  955. return ret;
  956. }
  957. /* WaProgramL3SqcReg1DefaultForPerf:bxt */
  958. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  959. I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
  960. L3_HIGH_PRIO_CREDITS(2));
  961. /* WaInsertDummyPushConstPs:bxt */
  962. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  963. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  964. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  965. /* WaInPlaceDecompressionHang:bxt */
  966. if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
  967. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  968. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  969. return 0;
  970. }
  971. static int kbl_init_workarounds(struct intel_engine_cs *engine)
  972. {
  973. struct drm_i915_private *dev_priv = engine->i915;
  974. int ret;
  975. ret = gen9_init_workarounds(engine);
  976. if (ret)
  977. return ret;
  978. /* WaEnableGapsTsvCreditFix:kbl */
  979. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  980. GEN9_GAPS_TSV_CREDIT_DISABLE));
  981. /* WaDisableDynamicCreditSharing:kbl */
  982. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  983. WA_SET_BIT(GAMT_CHKN_BIT_REG,
  984. GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
  985. /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
  986. if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
  987. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  988. HDC_FENCE_DEST_SLM_DISABLE);
  989. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  990. * involving this register should also be added to WA batch as required.
  991. */
  992. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
  993. /* WaDisableLSQCROPERFforOCL:kbl */
  994. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  995. GEN8_LQSC_RO_PERF_DIS);
  996. /* WaInsertDummyPushConstPs:kbl */
  997. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  998. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  999. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  1000. /* WaDisableGafsUnitClkGating:kbl */
  1001. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  1002. /* WaDisableSbeCacheDispatchPortSharing:kbl */
  1003. WA_SET_BIT_MASKED(
  1004. GEN7_HALF_SLICE_CHICKEN1,
  1005. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  1006. /* WaInPlaceDecompressionHang:kbl */
  1007. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  1008. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  1009. /* WaDisableLSQCROPERFforOCL:kbl */
  1010. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  1011. if (ret)
  1012. return ret;
  1013. return 0;
  1014. }
  1015. int init_workarounds_ring(struct intel_engine_cs *engine)
  1016. {
  1017. struct drm_i915_private *dev_priv = engine->i915;
  1018. WARN_ON(engine->id != RCS);
  1019. dev_priv->workarounds.count = 0;
  1020. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  1021. if (IS_BROADWELL(dev_priv))
  1022. return bdw_init_workarounds(engine);
  1023. if (IS_CHERRYVIEW(dev_priv))
  1024. return chv_init_workarounds(engine);
  1025. if (IS_SKYLAKE(dev_priv))
  1026. return skl_init_workarounds(engine);
  1027. if (IS_BROXTON(dev_priv))
  1028. return bxt_init_workarounds(engine);
  1029. if (IS_KABYLAKE(dev_priv))
  1030. return kbl_init_workarounds(engine);
  1031. return 0;
  1032. }
  1033. static int init_render_ring(struct intel_engine_cs *engine)
  1034. {
  1035. struct drm_i915_private *dev_priv = engine->i915;
  1036. int ret = init_ring_common(engine);
  1037. if (ret)
  1038. return ret;
  1039. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  1040. if (IS_GEN(dev_priv, 4, 6))
  1041. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  1042. /* We need to disable the AsyncFlip performance optimisations in order
  1043. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  1044. * programmed to '1' on all products.
  1045. *
  1046. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  1047. */
  1048. if (IS_GEN(dev_priv, 6, 7))
  1049. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  1050. /* Required for the hardware to program scanline values for waiting */
  1051. /* WaEnableFlushTlbInvalidationMode:snb */
  1052. if (IS_GEN6(dev_priv))
  1053. I915_WRITE(GFX_MODE,
  1054. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  1055. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  1056. if (IS_GEN7(dev_priv))
  1057. I915_WRITE(GFX_MODE_GEN7,
  1058. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  1059. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  1060. if (IS_GEN6(dev_priv)) {
  1061. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  1062. * "If this bit is set, STCunit will have LRA as replacement
  1063. * policy. [...] This bit must be reset. LRA replacement
  1064. * policy is not supported."
  1065. */
  1066. I915_WRITE(CACHE_MODE_0,
  1067. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  1068. }
  1069. if (IS_GEN(dev_priv, 6, 7))
  1070. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  1071. if (INTEL_INFO(dev_priv)->gen >= 6)
  1072. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1073. return init_workarounds_ring(engine);
  1074. }
  1075. static void render_ring_cleanup(struct intel_engine_cs *engine)
  1076. {
  1077. struct drm_i915_private *dev_priv = engine->i915;
  1078. if (dev_priv->semaphore_obj) {
  1079. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  1080. i915_gem_object_put(dev_priv->semaphore_obj);
  1081. dev_priv->semaphore_obj = NULL;
  1082. }
  1083. intel_fini_pipe_control(engine);
  1084. }
  1085. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req)
  1086. {
  1087. struct intel_ring *signaller = signaller_req->ring;
  1088. struct drm_i915_private *dev_priv = signaller_req->i915;
  1089. struct intel_engine_cs *waiter;
  1090. enum intel_engine_id id;
  1091. int ret, num_rings;
  1092. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1093. ret = intel_ring_begin(signaller_req, (num_rings-1) * 8);
  1094. if (ret)
  1095. return ret;
  1096. for_each_engine_id(waiter, dev_priv, id) {
  1097. u64 gtt_offset =
  1098. signaller_req->engine->semaphore.signal_ggtt[id];
  1099. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1100. continue;
  1101. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1102. intel_ring_emit(signaller,
  1103. PIPE_CONTROL_GLOBAL_GTT_IVB |
  1104. PIPE_CONTROL_QW_WRITE |
  1105. PIPE_CONTROL_CS_STALL);
  1106. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1107. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1108. intel_ring_emit(signaller, signaller_req->fence.seqno);
  1109. intel_ring_emit(signaller, 0);
  1110. intel_ring_emit(signaller,
  1111. MI_SEMAPHORE_SIGNAL |
  1112. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1113. intel_ring_emit(signaller, 0);
  1114. }
  1115. intel_ring_advance(signaller);
  1116. return 0;
  1117. }
  1118. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req)
  1119. {
  1120. struct intel_ring *signaller = signaller_req->ring;
  1121. struct drm_i915_private *dev_priv = signaller_req->i915;
  1122. struct intel_engine_cs *waiter;
  1123. enum intel_engine_id id;
  1124. int ret, num_rings;
  1125. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1126. ret = intel_ring_begin(signaller_req, (num_rings-1) * 6);
  1127. if (ret)
  1128. return ret;
  1129. for_each_engine_id(waiter, dev_priv, id) {
  1130. u64 gtt_offset =
  1131. signaller_req->engine->semaphore.signal_ggtt[id];
  1132. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1133. continue;
  1134. intel_ring_emit(signaller,
  1135. (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
  1136. intel_ring_emit(signaller,
  1137. lower_32_bits(gtt_offset) |
  1138. MI_FLUSH_DW_USE_GTT);
  1139. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1140. intel_ring_emit(signaller, signaller_req->fence.seqno);
  1141. intel_ring_emit(signaller,
  1142. MI_SEMAPHORE_SIGNAL |
  1143. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1144. intel_ring_emit(signaller, 0);
  1145. }
  1146. intel_ring_advance(signaller);
  1147. return 0;
  1148. }
  1149. static int gen6_signal(struct drm_i915_gem_request *signaller_req)
  1150. {
  1151. struct intel_ring *signaller = signaller_req->ring;
  1152. struct drm_i915_private *dev_priv = signaller_req->i915;
  1153. struct intel_engine_cs *useless;
  1154. enum intel_engine_id id;
  1155. int ret, num_rings;
  1156. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1157. ret = intel_ring_begin(signaller_req, round_up((num_rings-1) * 3, 2));
  1158. if (ret)
  1159. return ret;
  1160. for_each_engine_id(useless, dev_priv, id) {
  1161. i915_reg_t mbox_reg =
  1162. signaller_req->engine->semaphore.mbox.signal[id];
  1163. if (i915_mmio_reg_valid(mbox_reg)) {
  1164. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1165. intel_ring_emit_reg(signaller, mbox_reg);
  1166. intel_ring_emit(signaller, signaller_req->fence.seqno);
  1167. }
  1168. }
  1169. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1170. if (num_rings % 2 == 0)
  1171. intel_ring_emit(signaller, MI_NOOP);
  1172. intel_ring_advance(signaller);
  1173. return 0;
  1174. }
  1175. static void i9xx_submit_request(struct drm_i915_gem_request *request)
  1176. {
  1177. struct drm_i915_private *dev_priv = request->i915;
  1178. I915_WRITE_TAIL(request->engine,
  1179. intel_ring_offset(request->ring, request->tail));
  1180. }
  1181. static int i9xx_emit_request(struct drm_i915_gem_request *req)
  1182. {
  1183. struct intel_ring *ring = req->ring;
  1184. int ret;
  1185. ret = intel_ring_begin(req, 4);
  1186. if (ret)
  1187. return ret;
  1188. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1189. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1190. intel_ring_emit(ring, req->fence.seqno);
  1191. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1192. intel_ring_advance(ring);
  1193. req->tail = ring->tail;
  1194. return 0;
  1195. }
  1196. /**
  1197. * gen6_sema_emit_request - Update the semaphore mailbox registers
  1198. *
  1199. * @request - request to write to the ring
  1200. *
  1201. * Update the mailbox registers in the *other* rings with the current seqno.
  1202. * This acts like a signal in the canonical semaphore.
  1203. */
  1204. static int gen6_sema_emit_request(struct drm_i915_gem_request *req)
  1205. {
  1206. int ret;
  1207. ret = req->engine->semaphore.signal(req);
  1208. if (ret)
  1209. return ret;
  1210. return i9xx_emit_request(req);
  1211. }
  1212. static int gen8_render_emit_request(struct drm_i915_gem_request *req)
  1213. {
  1214. struct intel_engine_cs *engine = req->engine;
  1215. struct intel_ring *ring = req->ring;
  1216. int ret;
  1217. if (engine->semaphore.signal) {
  1218. ret = engine->semaphore.signal(req);
  1219. if (ret)
  1220. return ret;
  1221. }
  1222. ret = intel_ring_begin(req, 8);
  1223. if (ret)
  1224. return ret;
  1225. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  1226. intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
  1227. PIPE_CONTROL_CS_STALL |
  1228. PIPE_CONTROL_QW_WRITE));
  1229. intel_ring_emit(ring, intel_hws_seqno_address(engine));
  1230. intel_ring_emit(ring, 0);
  1231. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1232. /* We're thrashing one dword of HWS. */
  1233. intel_ring_emit(ring, 0);
  1234. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1235. intel_ring_emit(ring, MI_NOOP);
  1236. intel_ring_advance(ring);
  1237. req->tail = ring->tail;
  1238. return 0;
  1239. }
  1240. static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
  1241. u32 seqno)
  1242. {
  1243. return dev_priv->last_seqno < seqno;
  1244. }
  1245. /**
  1246. * intel_ring_sync - sync the waiter to the signaller on seqno
  1247. *
  1248. * @waiter - ring that is waiting
  1249. * @signaller - ring which has, or will signal
  1250. * @seqno - seqno which the waiter will block on
  1251. */
  1252. static int
  1253. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1254. struct intel_engine_cs *signaller,
  1255. u32 seqno)
  1256. {
  1257. struct intel_ring *waiter = waiter_req->ring;
  1258. struct drm_i915_private *dev_priv = waiter_req->i915;
  1259. u64 offset = GEN8_WAIT_OFFSET(waiter_req->engine, signaller->id);
  1260. struct i915_hw_ppgtt *ppgtt;
  1261. int ret;
  1262. ret = intel_ring_begin(waiter_req, 4);
  1263. if (ret)
  1264. return ret;
  1265. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1266. MI_SEMAPHORE_GLOBAL_GTT |
  1267. MI_SEMAPHORE_SAD_GTE_SDD);
  1268. intel_ring_emit(waiter, seqno);
  1269. intel_ring_emit(waiter, lower_32_bits(offset));
  1270. intel_ring_emit(waiter, upper_32_bits(offset));
  1271. intel_ring_advance(waiter);
  1272. /* When the !RCS engines idle waiting upon a semaphore, they lose their
  1273. * pagetables and we must reload them before executing the batch.
  1274. * We do this on the i915_switch_context() following the wait and
  1275. * before the dispatch.
  1276. */
  1277. ppgtt = waiter_req->ctx->ppgtt;
  1278. if (ppgtt && waiter_req->engine->id != RCS)
  1279. ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
  1280. return 0;
  1281. }
  1282. static int
  1283. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1284. struct intel_engine_cs *signaller,
  1285. u32 seqno)
  1286. {
  1287. struct intel_ring *waiter = waiter_req->ring;
  1288. u32 dw1 = MI_SEMAPHORE_MBOX |
  1289. MI_SEMAPHORE_COMPARE |
  1290. MI_SEMAPHORE_REGISTER;
  1291. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter_req->engine->id];
  1292. int ret;
  1293. /* Throughout all of the GEM code, seqno passed implies our current
  1294. * seqno is >= the last seqno executed. However for hardware the
  1295. * comparison is strictly greater than.
  1296. */
  1297. seqno -= 1;
  1298. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1299. ret = intel_ring_begin(waiter_req, 4);
  1300. if (ret)
  1301. return ret;
  1302. /* If seqno wrap happened, omit the wait with no-ops */
  1303. if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
  1304. intel_ring_emit(waiter, dw1 | wait_mbox);
  1305. intel_ring_emit(waiter, seqno);
  1306. intel_ring_emit(waiter, 0);
  1307. intel_ring_emit(waiter, MI_NOOP);
  1308. } else {
  1309. intel_ring_emit(waiter, MI_NOOP);
  1310. intel_ring_emit(waiter, MI_NOOP);
  1311. intel_ring_emit(waiter, MI_NOOP);
  1312. intel_ring_emit(waiter, MI_NOOP);
  1313. }
  1314. intel_ring_advance(waiter);
  1315. return 0;
  1316. }
  1317. static void
  1318. gen5_seqno_barrier(struct intel_engine_cs *engine)
  1319. {
  1320. /* MI_STORE are internally buffered by the GPU and not flushed
  1321. * either by MI_FLUSH or SyncFlush or any other combination of
  1322. * MI commands.
  1323. *
  1324. * "Only the submission of the store operation is guaranteed.
  1325. * The write result will be complete (coherent) some time later
  1326. * (this is practically a finite period but there is no guaranteed
  1327. * latency)."
  1328. *
  1329. * Empirically, we observe that we need a delay of at least 75us to
  1330. * be sure that the seqno write is visible by the CPU.
  1331. */
  1332. usleep_range(125, 250);
  1333. }
  1334. static void
  1335. gen6_seqno_barrier(struct intel_engine_cs *engine)
  1336. {
  1337. struct drm_i915_private *dev_priv = engine->i915;
  1338. /* Workaround to force correct ordering between irq and seqno writes on
  1339. * ivb (and maybe also on snb) by reading from a CS register (like
  1340. * ACTHD) before reading the status page.
  1341. *
  1342. * Note that this effectively stalls the read by the time it takes to
  1343. * do a memory transaction, which more or less ensures that the write
  1344. * from the GPU has sufficient time to invalidate the CPU cacheline.
  1345. * Alternatively we could delay the interrupt from the CS ring to give
  1346. * the write time to land, but that would incur a delay after every
  1347. * batch i.e. much more frequent than a delay when waiting for the
  1348. * interrupt (with the same net latency).
  1349. *
  1350. * Also note that to prevent whole machine hangs on gen7, we have to
  1351. * take the spinlock to guard against concurrent cacheline access.
  1352. */
  1353. spin_lock_irq(&dev_priv->uncore.lock);
  1354. POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
  1355. spin_unlock_irq(&dev_priv->uncore.lock);
  1356. }
  1357. static void
  1358. gen5_irq_enable(struct intel_engine_cs *engine)
  1359. {
  1360. gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
  1361. }
  1362. static void
  1363. gen5_irq_disable(struct intel_engine_cs *engine)
  1364. {
  1365. gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
  1366. }
  1367. static void
  1368. i9xx_irq_enable(struct intel_engine_cs *engine)
  1369. {
  1370. struct drm_i915_private *dev_priv = engine->i915;
  1371. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1372. I915_WRITE(IMR, dev_priv->irq_mask);
  1373. POSTING_READ_FW(RING_IMR(engine->mmio_base));
  1374. }
  1375. static void
  1376. i9xx_irq_disable(struct intel_engine_cs *engine)
  1377. {
  1378. struct drm_i915_private *dev_priv = engine->i915;
  1379. dev_priv->irq_mask |= engine->irq_enable_mask;
  1380. I915_WRITE(IMR, dev_priv->irq_mask);
  1381. }
  1382. static void
  1383. i8xx_irq_enable(struct intel_engine_cs *engine)
  1384. {
  1385. struct drm_i915_private *dev_priv = engine->i915;
  1386. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1387. I915_WRITE16(IMR, dev_priv->irq_mask);
  1388. POSTING_READ16(RING_IMR(engine->mmio_base));
  1389. }
  1390. static void
  1391. i8xx_irq_disable(struct intel_engine_cs *engine)
  1392. {
  1393. struct drm_i915_private *dev_priv = engine->i915;
  1394. dev_priv->irq_mask |= engine->irq_enable_mask;
  1395. I915_WRITE16(IMR, dev_priv->irq_mask);
  1396. }
  1397. static int
  1398. bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  1399. {
  1400. struct intel_ring *ring = req->ring;
  1401. int ret;
  1402. ret = intel_ring_begin(req, 2);
  1403. if (ret)
  1404. return ret;
  1405. intel_ring_emit(ring, MI_FLUSH);
  1406. intel_ring_emit(ring, MI_NOOP);
  1407. intel_ring_advance(ring);
  1408. return 0;
  1409. }
  1410. static void
  1411. gen6_irq_enable(struct intel_engine_cs *engine)
  1412. {
  1413. struct drm_i915_private *dev_priv = engine->i915;
  1414. I915_WRITE_IMR(engine,
  1415. ~(engine->irq_enable_mask |
  1416. engine->irq_keep_mask));
  1417. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1418. }
  1419. static void
  1420. gen6_irq_disable(struct intel_engine_cs *engine)
  1421. {
  1422. struct drm_i915_private *dev_priv = engine->i915;
  1423. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1424. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1425. }
  1426. static void
  1427. hsw_vebox_irq_enable(struct intel_engine_cs *engine)
  1428. {
  1429. struct drm_i915_private *dev_priv = engine->i915;
  1430. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1431. gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
  1432. }
  1433. static void
  1434. hsw_vebox_irq_disable(struct intel_engine_cs *engine)
  1435. {
  1436. struct drm_i915_private *dev_priv = engine->i915;
  1437. I915_WRITE_IMR(engine, ~0);
  1438. gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
  1439. }
  1440. static void
  1441. gen8_irq_enable(struct intel_engine_cs *engine)
  1442. {
  1443. struct drm_i915_private *dev_priv = engine->i915;
  1444. I915_WRITE_IMR(engine,
  1445. ~(engine->irq_enable_mask |
  1446. engine->irq_keep_mask));
  1447. POSTING_READ_FW(RING_IMR(engine->mmio_base));
  1448. }
  1449. static void
  1450. gen8_irq_disable(struct intel_engine_cs *engine)
  1451. {
  1452. struct drm_i915_private *dev_priv = engine->i915;
  1453. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1454. }
  1455. static int
  1456. i965_emit_bb_start(struct drm_i915_gem_request *req,
  1457. u64 offset, u32 length,
  1458. unsigned int dispatch_flags)
  1459. {
  1460. struct intel_ring *ring = req->ring;
  1461. int ret;
  1462. ret = intel_ring_begin(req, 2);
  1463. if (ret)
  1464. return ret;
  1465. intel_ring_emit(ring,
  1466. MI_BATCH_BUFFER_START |
  1467. MI_BATCH_GTT |
  1468. (dispatch_flags & I915_DISPATCH_SECURE ?
  1469. 0 : MI_BATCH_NON_SECURE_I965));
  1470. intel_ring_emit(ring, offset);
  1471. intel_ring_advance(ring);
  1472. return 0;
  1473. }
  1474. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1475. #define I830_BATCH_LIMIT (256*1024)
  1476. #define I830_TLB_ENTRIES (2)
  1477. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1478. static int
  1479. i830_emit_bb_start(struct drm_i915_gem_request *req,
  1480. u64 offset, u32 len,
  1481. unsigned int dispatch_flags)
  1482. {
  1483. struct intel_ring *ring = req->ring;
  1484. u32 cs_offset = req->engine->scratch.gtt_offset;
  1485. int ret;
  1486. ret = intel_ring_begin(req, 6);
  1487. if (ret)
  1488. return ret;
  1489. /* Evict the invalid PTE TLBs */
  1490. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1491. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1492. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1493. intel_ring_emit(ring, cs_offset);
  1494. intel_ring_emit(ring, 0xdeadbeef);
  1495. intel_ring_emit(ring, MI_NOOP);
  1496. intel_ring_advance(ring);
  1497. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1498. if (len > I830_BATCH_LIMIT)
  1499. return -ENOSPC;
  1500. ret = intel_ring_begin(req, 6 + 2);
  1501. if (ret)
  1502. return ret;
  1503. /* Blit the batch (which has now all relocs applied) to the
  1504. * stable batch scratch bo area (so that the CS never
  1505. * stumbles over its tlb invalidation bug) ...
  1506. */
  1507. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1508. intel_ring_emit(ring,
  1509. BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1510. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1511. intel_ring_emit(ring, cs_offset);
  1512. intel_ring_emit(ring, 4096);
  1513. intel_ring_emit(ring, offset);
  1514. intel_ring_emit(ring, MI_FLUSH);
  1515. intel_ring_emit(ring, MI_NOOP);
  1516. intel_ring_advance(ring);
  1517. /* ... and execute it. */
  1518. offset = cs_offset;
  1519. }
  1520. ret = intel_ring_begin(req, 2);
  1521. if (ret)
  1522. return ret;
  1523. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1524. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1525. 0 : MI_BATCH_NON_SECURE));
  1526. intel_ring_advance(ring);
  1527. return 0;
  1528. }
  1529. static int
  1530. i915_emit_bb_start(struct drm_i915_gem_request *req,
  1531. u64 offset, u32 len,
  1532. unsigned int dispatch_flags)
  1533. {
  1534. struct intel_ring *ring = req->ring;
  1535. int ret;
  1536. ret = intel_ring_begin(req, 2);
  1537. if (ret)
  1538. return ret;
  1539. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1540. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1541. 0 : MI_BATCH_NON_SECURE));
  1542. intel_ring_advance(ring);
  1543. return 0;
  1544. }
  1545. static void cleanup_phys_status_page(struct intel_engine_cs *engine)
  1546. {
  1547. struct drm_i915_private *dev_priv = engine->i915;
  1548. if (!dev_priv->status_page_dmah)
  1549. return;
  1550. drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
  1551. engine->status_page.page_addr = NULL;
  1552. }
  1553. static void cleanup_status_page(struct intel_engine_cs *engine)
  1554. {
  1555. struct drm_i915_gem_object *obj;
  1556. obj = engine->status_page.obj;
  1557. if (obj == NULL)
  1558. return;
  1559. kunmap(sg_page(obj->pages->sgl));
  1560. i915_gem_object_ggtt_unpin(obj);
  1561. i915_gem_object_put(obj);
  1562. engine->status_page.obj = NULL;
  1563. }
  1564. static int init_status_page(struct intel_engine_cs *engine)
  1565. {
  1566. struct drm_i915_gem_object *obj = engine->status_page.obj;
  1567. if (obj == NULL) {
  1568. unsigned flags;
  1569. int ret;
  1570. obj = i915_gem_object_create(&engine->i915->drm, 4096);
  1571. if (IS_ERR(obj)) {
  1572. DRM_ERROR("Failed to allocate status page\n");
  1573. return PTR_ERR(obj);
  1574. }
  1575. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1576. if (ret)
  1577. goto err_unref;
  1578. flags = 0;
  1579. if (!HAS_LLC(engine->i915))
  1580. /* On g33, we cannot place HWS above 256MiB, so
  1581. * restrict its pinning to the low mappable arena.
  1582. * Though this restriction is not documented for
  1583. * gen4, gen5, or byt, they also behave similarly
  1584. * and hang if the HWS is placed at the top of the
  1585. * GTT. To generalise, it appears that all !llc
  1586. * platforms have issues with us placing the HWS
  1587. * above the mappable region (even though we never
  1588. * actualy map it).
  1589. */
  1590. flags |= PIN_MAPPABLE;
  1591. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1592. if (ret) {
  1593. err_unref:
  1594. i915_gem_object_put(obj);
  1595. return ret;
  1596. }
  1597. engine->status_page.obj = obj;
  1598. }
  1599. engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1600. engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1601. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1602. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1603. engine->name, engine->status_page.gfx_addr);
  1604. return 0;
  1605. }
  1606. static int init_phys_status_page(struct intel_engine_cs *engine)
  1607. {
  1608. struct drm_i915_private *dev_priv = engine->i915;
  1609. if (!dev_priv->status_page_dmah) {
  1610. dev_priv->status_page_dmah =
  1611. drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
  1612. if (!dev_priv->status_page_dmah)
  1613. return -ENOMEM;
  1614. }
  1615. engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1616. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1617. return 0;
  1618. }
  1619. int intel_ring_pin(struct intel_ring *ring)
  1620. {
  1621. struct drm_i915_private *dev_priv = ring->engine->i915;
  1622. struct drm_i915_gem_object *obj = ring->obj;
  1623. /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
  1624. unsigned flags = PIN_OFFSET_BIAS | 4096;
  1625. void *addr;
  1626. int ret;
  1627. if (HAS_LLC(dev_priv) && !obj->stolen) {
  1628. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
  1629. if (ret)
  1630. return ret;
  1631. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1632. if (ret)
  1633. goto err_unpin;
  1634. addr = i915_gem_object_pin_map(obj);
  1635. if (IS_ERR(addr)) {
  1636. ret = PTR_ERR(addr);
  1637. goto err_unpin;
  1638. }
  1639. } else {
  1640. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
  1641. flags | PIN_MAPPABLE);
  1642. if (ret)
  1643. return ret;
  1644. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1645. if (ret)
  1646. goto err_unpin;
  1647. /* Access through the GTT requires the device to be awake. */
  1648. assert_rpm_wakelock_held(dev_priv);
  1649. addr = (void __force *)
  1650. i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
  1651. if (IS_ERR(addr)) {
  1652. ret = PTR_ERR(addr);
  1653. goto err_unpin;
  1654. }
  1655. }
  1656. ring->vaddr = addr;
  1657. ring->vma = i915_gem_obj_to_ggtt(obj);
  1658. return 0;
  1659. err_unpin:
  1660. i915_gem_object_ggtt_unpin(obj);
  1661. return ret;
  1662. }
  1663. void intel_ring_unpin(struct intel_ring *ring)
  1664. {
  1665. GEM_BUG_ON(!ring->vma);
  1666. GEM_BUG_ON(!ring->vaddr);
  1667. if (HAS_LLC(ring->engine->i915) && !ring->obj->stolen)
  1668. i915_gem_object_unpin_map(ring->obj);
  1669. else
  1670. i915_vma_unpin_iomap(ring->vma);
  1671. ring->vaddr = NULL;
  1672. i915_gem_object_ggtt_unpin(ring->obj);
  1673. ring->vma = NULL;
  1674. }
  1675. static void intel_destroy_ringbuffer_obj(struct intel_ring *ring)
  1676. {
  1677. i915_gem_object_put(ring->obj);
  1678. ring->obj = NULL;
  1679. }
  1680. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1681. struct intel_ring *ring)
  1682. {
  1683. struct drm_i915_gem_object *obj;
  1684. obj = NULL;
  1685. if (!HAS_LLC(dev))
  1686. obj = i915_gem_object_create_stolen(dev, ring->size);
  1687. if (obj == NULL)
  1688. obj = i915_gem_object_create(dev, ring->size);
  1689. if (IS_ERR(obj))
  1690. return PTR_ERR(obj);
  1691. /* mark ring buffers as read-only from GPU side by default */
  1692. obj->gt_ro = 1;
  1693. ring->obj = obj;
  1694. return 0;
  1695. }
  1696. struct intel_ring *
  1697. intel_engine_create_ring(struct intel_engine_cs *engine, int size)
  1698. {
  1699. struct intel_ring *ring;
  1700. int ret;
  1701. GEM_BUG_ON(!is_power_of_2(size));
  1702. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1703. if (ring == NULL) {
  1704. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1705. engine->name);
  1706. return ERR_PTR(-ENOMEM);
  1707. }
  1708. ring->engine = engine;
  1709. list_add(&ring->link, &engine->buffers);
  1710. ring->size = size;
  1711. /* Workaround an erratum on the i830 which causes a hang if
  1712. * the TAIL pointer points to within the last 2 cachelines
  1713. * of the buffer.
  1714. */
  1715. ring->effective_size = size;
  1716. if (IS_I830(engine->i915) || IS_845G(engine->i915))
  1717. ring->effective_size -= 2 * CACHELINE_BYTES;
  1718. ring->last_retired_head = -1;
  1719. intel_ring_update_space(ring);
  1720. ret = intel_alloc_ringbuffer_obj(&engine->i915->drm, ring);
  1721. if (ret) {
  1722. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
  1723. engine->name, ret);
  1724. list_del(&ring->link);
  1725. kfree(ring);
  1726. return ERR_PTR(ret);
  1727. }
  1728. return ring;
  1729. }
  1730. void
  1731. intel_ring_free(struct intel_ring *ring)
  1732. {
  1733. intel_destroy_ringbuffer_obj(ring);
  1734. list_del(&ring->link);
  1735. kfree(ring);
  1736. }
  1737. static int intel_ring_context_pin(struct i915_gem_context *ctx,
  1738. struct intel_engine_cs *engine)
  1739. {
  1740. struct intel_context *ce = &ctx->engine[engine->id];
  1741. int ret;
  1742. lockdep_assert_held(&ctx->i915->drm.struct_mutex);
  1743. if (ce->pin_count++)
  1744. return 0;
  1745. if (ce->state) {
  1746. ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
  1747. if (ret)
  1748. goto error;
  1749. }
  1750. /* The kernel context is only used as a placeholder for flushing the
  1751. * active context. It is never used for submitting user rendering and
  1752. * as such never requires the golden render context, and so we can skip
  1753. * emitting it when we switch to the kernel context. This is required
  1754. * as during eviction we cannot allocate and pin the renderstate in
  1755. * order to initialise the context.
  1756. */
  1757. if (ctx == ctx->i915->kernel_context)
  1758. ce->initialised = true;
  1759. i915_gem_context_get(ctx);
  1760. return 0;
  1761. error:
  1762. ce->pin_count = 0;
  1763. return ret;
  1764. }
  1765. static void intel_ring_context_unpin(struct i915_gem_context *ctx,
  1766. struct intel_engine_cs *engine)
  1767. {
  1768. struct intel_context *ce = &ctx->engine[engine->id];
  1769. lockdep_assert_held(&ctx->i915->drm.struct_mutex);
  1770. if (--ce->pin_count)
  1771. return;
  1772. if (ce->state)
  1773. i915_gem_object_ggtt_unpin(ce->state);
  1774. i915_gem_context_put(ctx);
  1775. }
  1776. static int intel_init_ring_buffer(struct intel_engine_cs *engine)
  1777. {
  1778. struct drm_i915_private *dev_priv = engine->i915;
  1779. struct intel_ring *ring;
  1780. int ret;
  1781. WARN_ON(engine->buffer);
  1782. intel_engine_setup_common(engine);
  1783. memset(engine->semaphore.sync_seqno, 0,
  1784. sizeof(engine->semaphore.sync_seqno));
  1785. ret = intel_engine_init_common(engine);
  1786. if (ret)
  1787. goto error;
  1788. /* We may need to do things with the shrinker which
  1789. * require us to immediately switch back to the default
  1790. * context. This can cause a problem as pinning the
  1791. * default context also requires GTT space which may not
  1792. * be available. To avoid this we always pin the default
  1793. * context.
  1794. */
  1795. ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
  1796. if (ret)
  1797. goto error;
  1798. ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
  1799. if (IS_ERR(ring)) {
  1800. ret = PTR_ERR(ring);
  1801. goto error;
  1802. }
  1803. engine->buffer = ring;
  1804. if (I915_NEED_GFX_HWS(dev_priv)) {
  1805. ret = init_status_page(engine);
  1806. if (ret)
  1807. goto error;
  1808. } else {
  1809. WARN_ON(engine->id != RCS);
  1810. ret = init_phys_status_page(engine);
  1811. if (ret)
  1812. goto error;
  1813. }
  1814. ret = intel_ring_pin(ring);
  1815. if (ret) {
  1816. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1817. engine->name, ret);
  1818. intel_destroy_ringbuffer_obj(ring);
  1819. goto error;
  1820. }
  1821. return 0;
  1822. error:
  1823. intel_engine_cleanup(engine);
  1824. return ret;
  1825. }
  1826. void intel_engine_cleanup(struct intel_engine_cs *engine)
  1827. {
  1828. struct drm_i915_private *dev_priv;
  1829. if (!intel_engine_initialized(engine))
  1830. return;
  1831. dev_priv = engine->i915;
  1832. if (engine->buffer) {
  1833. intel_engine_stop(engine);
  1834. WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
  1835. intel_ring_unpin(engine->buffer);
  1836. intel_ring_free(engine->buffer);
  1837. engine->buffer = NULL;
  1838. }
  1839. if (engine->cleanup)
  1840. engine->cleanup(engine);
  1841. if (I915_NEED_GFX_HWS(dev_priv)) {
  1842. cleanup_status_page(engine);
  1843. } else {
  1844. WARN_ON(engine->id != RCS);
  1845. cleanup_phys_status_page(engine);
  1846. }
  1847. intel_engine_cleanup_cmd_parser(engine);
  1848. i915_gem_batch_pool_fini(&engine->batch_pool);
  1849. intel_engine_fini_breadcrumbs(engine);
  1850. intel_ring_context_unpin(dev_priv->kernel_context, engine);
  1851. engine->i915 = NULL;
  1852. }
  1853. int intel_engine_idle(struct intel_engine_cs *engine)
  1854. {
  1855. struct drm_i915_gem_request *req;
  1856. /* Wait upon the last request to be completed */
  1857. if (list_empty(&engine->request_list))
  1858. return 0;
  1859. req = list_entry(engine->request_list.prev,
  1860. struct drm_i915_gem_request,
  1861. list);
  1862. /* Make sure we do not trigger any retires */
  1863. return __i915_wait_request(req,
  1864. req->i915->mm.interruptible,
  1865. NULL, NULL);
  1866. }
  1867. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1868. {
  1869. int ret;
  1870. /* Flush enough space to reduce the likelihood of waiting after
  1871. * we start building the request - in which case we will just
  1872. * have to repeat work.
  1873. */
  1874. request->reserved_space += LEGACY_REQUEST_SIZE;
  1875. request->ring = request->engine->buffer;
  1876. ret = intel_ring_begin(request, 0);
  1877. if (ret)
  1878. return ret;
  1879. request->reserved_space -= LEGACY_REQUEST_SIZE;
  1880. return 0;
  1881. }
  1882. static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
  1883. {
  1884. struct intel_ring *ring = req->ring;
  1885. struct intel_engine_cs *engine = req->engine;
  1886. struct drm_i915_gem_request *target;
  1887. intel_ring_update_space(ring);
  1888. if (ring->space >= bytes)
  1889. return 0;
  1890. /*
  1891. * Space is reserved in the ringbuffer for finalising the request,
  1892. * as that cannot be allowed to fail. During request finalisation,
  1893. * reserved_space is set to 0 to stop the overallocation and the
  1894. * assumption is that then we never need to wait (which has the
  1895. * risk of failing with EINTR).
  1896. *
  1897. * See also i915_gem_request_alloc() and i915_add_request().
  1898. */
  1899. GEM_BUG_ON(!req->reserved_space);
  1900. list_for_each_entry(target, &engine->request_list, list) {
  1901. unsigned space;
  1902. /*
  1903. * The request queue is per-engine, so can contain requests
  1904. * from multiple ringbuffers. Here, we must ignore any that
  1905. * aren't from the ringbuffer we're considering.
  1906. */
  1907. if (target->ring != ring)
  1908. continue;
  1909. /* Would completion of this request free enough space? */
  1910. space = __intel_ring_space(target->postfix, ring->tail,
  1911. ring->size);
  1912. if (space >= bytes)
  1913. break;
  1914. }
  1915. if (WARN_ON(&target->list == &engine->request_list))
  1916. return -ENOSPC;
  1917. return i915_wait_request(target);
  1918. }
  1919. int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
  1920. {
  1921. struct intel_ring *ring = req->ring;
  1922. int remain_actual = ring->size - ring->tail;
  1923. int remain_usable = ring->effective_size - ring->tail;
  1924. int bytes = num_dwords * sizeof(u32);
  1925. int total_bytes, wait_bytes;
  1926. bool need_wrap = false;
  1927. total_bytes = bytes + req->reserved_space;
  1928. if (unlikely(bytes > remain_usable)) {
  1929. /*
  1930. * Not enough space for the basic request. So need to flush
  1931. * out the remainder and then wait for base + reserved.
  1932. */
  1933. wait_bytes = remain_actual + total_bytes;
  1934. need_wrap = true;
  1935. } else if (unlikely(total_bytes > remain_usable)) {
  1936. /*
  1937. * The base request will fit but the reserved space
  1938. * falls off the end. So we don't need an immediate wrap
  1939. * and only need to effectively wait for the reserved
  1940. * size space from the start of ringbuffer.
  1941. */
  1942. wait_bytes = remain_actual + req->reserved_space;
  1943. } else {
  1944. /* No wrapping required, just waiting. */
  1945. wait_bytes = total_bytes;
  1946. }
  1947. if (wait_bytes > ring->space) {
  1948. int ret = wait_for_space(req, wait_bytes);
  1949. if (unlikely(ret))
  1950. return ret;
  1951. intel_ring_update_space(ring);
  1952. if (unlikely(ring->space < wait_bytes))
  1953. return -EAGAIN;
  1954. }
  1955. if (unlikely(need_wrap)) {
  1956. GEM_BUG_ON(remain_actual > ring->space);
  1957. GEM_BUG_ON(ring->tail + remain_actual > ring->size);
  1958. /* Fill the tail with MI_NOOP */
  1959. memset(ring->vaddr + ring->tail, 0, remain_actual);
  1960. ring->tail = 0;
  1961. ring->space -= remain_actual;
  1962. }
  1963. ring->space -= bytes;
  1964. GEM_BUG_ON(ring->space < 0);
  1965. return 0;
  1966. }
  1967. /* Align the ring tail to a cacheline boundary */
  1968. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  1969. {
  1970. struct intel_ring *ring = req->ring;
  1971. int num_dwords =
  1972. (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1973. int ret;
  1974. if (num_dwords == 0)
  1975. return 0;
  1976. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1977. ret = intel_ring_begin(req, num_dwords);
  1978. if (ret)
  1979. return ret;
  1980. while (num_dwords--)
  1981. intel_ring_emit(ring, MI_NOOP);
  1982. intel_ring_advance(ring);
  1983. return 0;
  1984. }
  1985. void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno)
  1986. {
  1987. struct drm_i915_private *dev_priv = engine->i915;
  1988. /* Our semaphore implementation is strictly monotonic (i.e. we proceed
  1989. * so long as the semaphore value in the register/page is greater
  1990. * than the sync value), so whenever we reset the seqno,
  1991. * so long as we reset the tracking semaphore value to 0, it will
  1992. * always be before the next request's seqno. If we don't reset
  1993. * the semaphore value, then when the seqno moves backwards all
  1994. * future waits will complete instantly (causing rendering corruption).
  1995. */
  1996. if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
  1997. I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
  1998. I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
  1999. if (HAS_VEBOX(dev_priv))
  2000. I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
  2001. }
  2002. if (dev_priv->semaphore_obj) {
  2003. struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
  2004. struct page *page = i915_gem_object_get_dirty_page(obj, 0);
  2005. void *semaphores = kmap(page);
  2006. memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
  2007. 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
  2008. kunmap(page);
  2009. }
  2010. memset(engine->semaphore.sync_seqno, 0,
  2011. sizeof(engine->semaphore.sync_seqno));
  2012. intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
  2013. if (engine->irq_seqno_barrier)
  2014. engine->irq_seqno_barrier(engine);
  2015. engine->last_submitted_seqno = seqno;
  2016. engine->hangcheck.seqno = seqno;
  2017. /* After manually advancing the seqno, fake the interrupt in case
  2018. * there are any waiters for that seqno.
  2019. */
  2020. rcu_read_lock();
  2021. intel_engine_wakeup(engine);
  2022. rcu_read_unlock();
  2023. }
  2024. static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
  2025. {
  2026. struct drm_i915_private *dev_priv = request->i915;
  2027. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  2028. /* Every tail move must follow the sequence below */
  2029. /* Disable notification that the ring is IDLE. The GT
  2030. * will then assume that it is busy and bring it out of rc6.
  2031. */
  2032. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2033. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2034. /* Clear the context id. Here be magic! */
  2035. I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
  2036. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2037. if (intel_wait_for_register_fw(dev_priv,
  2038. GEN6_BSD_SLEEP_PSMI_CONTROL,
  2039. GEN6_BSD_SLEEP_INDICATOR,
  2040. 0,
  2041. 50))
  2042. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2043. /* Now that the ring is fully powered up, update the tail */
  2044. i9xx_submit_request(request);
  2045. /* Let the ring send IDLE messages to the GT again,
  2046. * and so let it sleep to conserve power when idle.
  2047. */
  2048. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2049. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2050. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  2051. }
  2052. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  2053. {
  2054. struct intel_ring *ring = req->ring;
  2055. uint32_t cmd;
  2056. int ret;
  2057. ret = intel_ring_begin(req, 4);
  2058. if (ret)
  2059. return ret;
  2060. cmd = MI_FLUSH_DW;
  2061. if (INTEL_GEN(req->i915) >= 8)
  2062. cmd += 1;
  2063. /* We always require a command barrier so that subsequent
  2064. * commands, such as breadcrumb interrupts, are strictly ordered
  2065. * wrt the contents of the write cache being flushed to memory
  2066. * (and thus being coherent from the CPU).
  2067. */
  2068. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2069. /*
  2070. * Bspec vol 1c.5 - video engine command streamer:
  2071. * "If ENABLED, all TLBs will be invalidated once the flush
  2072. * operation is complete. This bit is only valid when the
  2073. * Post-Sync Operation field is a value of 1h or 3h."
  2074. */
  2075. if (mode & EMIT_INVALIDATE)
  2076. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2077. intel_ring_emit(ring, cmd);
  2078. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2079. if (INTEL_GEN(req->i915) >= 8) {
  2080. intel_ring_emit(ring, 0); /* upper addr */
  2081. intel_ring_emit(ring, 0); /* value */
  2082. } else {
  2083. intel_ring_emit(ring, 0);
  2084. intel_ring_emit(ring, MI_NOOP);
  2085. }
  2086. intel_ring_advance(ring);
  2087. return 0;
  2088. }
  2089. static int
  2090. gen8_emit_bb_start(struct drm_i915_gem_request *req,
  2091. u64 offset, u32 len,
  2092. unsigned int dispatch_flags)
  2093. {
  2094. struct intel_ring *ring = req->ring;
  2095. bool ppgtt = USES_PPGTT(req->i915) &&
  2096. !(dispatch_flags & I915_DISPATCH_SECURE);
  2097. int ret;
  2098. ret = intel_ring_begin(req, 4);
  2099. if (ret)
  2100. return ret;
  2101. /* FIXME(BDW): Address space and security selectors. */
  2102. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2103. (dispatch_flags & I915_DISPATCH_RS ?
  2104. MI_BATCH_RESOURCE_STREAMER : 0));
  2105. intel_ring_emit(ring, lower_32_bits(offset));
  2106. intel_ring_emit(ring, upper_32_bits(offset));
  2107. intel_ring_emit(ring, MI_NOOP);
  2108. intel_ring_advance(ring);
  2109. return 0;
  2110. }
  2111. static int
  2112. hsw_emit_bb_start(struct drm_i915_gem_request *req,
  2113. u64 offset, u32 len,
  2114. unsigned int dispatch_flags)
  2115. {
  2116. struct intel_ring *ring = req->ring;
  2117. int ret;
  2118. ret = intel_ring_begin(req, 2);
  2119. if (ret)
  2120. return ret;
  2121. intel_ring_emit(ring,
  2122. MI_BATCH_BUFFER_START |
  2123. (dispatch_flags & I915_DISPATCH_SECURE ?
  2124. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2125. (dispatch_flags & I915_DISPATCH_RS ?
  2126. MI_BATCH_RESOURCE_STREAMER : 0));
  2127. /* bit0-7 is the length on GEN6+ */
  2128. intel_ring_emit(ring, offset);
  2129. intel_ring_advance(ring);
  2130. return 0;
  2131. }
  2132. static int
  2133. gen6_emit_bb_start(struct drm_i915_gem_request *req,
  2134. u64 offset, u32 len,
  2135. unsigned int dispatch_flags)
  2136. {
  2137. struct intel_ring *ring = req->ring;
  2138. int ret;
  2139. ret = intel_ring_begin(req, 2);
  2140. if (ret)
  2141. return ret;
  2142. intel_ring_emit(ring,
  2143. MI_BATCH_BUFFER_START |
  2144. (dispatch_flags & I915_DISPATCH_SECURE ?
  2145. 0 : MI_BATCH_NON_SECURE_I965));
  2146. /* bit0-7 is the length on GEN6+ */
  2147. intel_ring_emit(ring, offset);
  2148. intel_ring_advance(ring);
  2149. return 0;
  2150. }
  2151. /* Blitter support (SandyBridge+) */
  2152. static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  2153. {
  2154. struct intel_ring *ring = req->ring;
  2155. uint32_t cmd;
  2156. int ret;
  2157. ret = intel_ring_begin(req, 4);
  2158. if (ret)
  2159. return ret;
  2160. cmd = MI_FLUSH_DW;
  2161. if (INTEL_GEN(req->i915) >= 8)
  2162. cmd += 1;
  2163. /* We always require a command barrier so that subsequent
  2164. * commands, such as breadcrumb interrupts, are strictly ordered
  2165. * wrt the contents of the write cache being flushed to memory
  2166. * (and thus being coherent from the CPU).
  2167. */
  2168. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2169. /*
  2170. * Bspec vol 1c.3 - blitter engine command streamer:
  2171. * "If ENABLED, all TLBs will be invalidated once the flush
  2172. * operation is complete. This bit is only valid when the
  2173. * Post-Sync Operation field is a value of 1h or 3h."
  2174. */
  2175. if (mode & EMIT_INVALIDATE)
  2176. cmd |= MI_INVALIDATE_TLB;
  2177. intel_ring_emit(ring, cmd);
  2178. intel_ring_emit(ring,
  2179. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2180. if (INTEL_GEN(req->i915) >= 8) {
  2181. intel_ring_emit(ring, 0); /* upper addr */
  2182. intel_ring_emit(ring, 0); /* value */
  2183. } else {
  2184. intel_ring_emit(ring, 0);
  2185. intel_ring_emit(ring, MI_NOOP);
  2186. }
  2187. intel_ring_advance(ring);
  2188. return 0;
  2189. }
  2190. static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
  2191. struct intel_engine_cs *engine)
  2192. {
  2193. struct drm_i915_gem_object *obj;
  2194. int ret, i;
  2195. if (!i915.semaphores)
  2196. return;
  2197. if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
  2198. obj = i915_gem_object_create(&dev_priv->drm, 4096);
  2199. if (IS_ERR(obj)) {
  2200. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2201. i915.semaphores = 0;
  2202. } else {
  2203. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2204. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2205. if (ret != 0) {
  2206. i915_gem_object_put(obj);
  2207. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2208. i915.semaphores = 0;
  2209. } else {
  2210. dev_priv->semaphore_obj = obj;
  2211. }
  2212. }
  2213. }
  2214. if (!i915.semaphores)
  2215. return;
  2216. if (INTEL_GEN(dev_priv) >= 8) {
  2217. u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);
  2218. engine->semaphore.sync_to = gen8_ring_sync;
  2219. engine->semaphore.signal = gen8_xcs_signal;
  2220. for (i = 0; i < I915_NUM_ENGINES; i++) {
  2221. u64 ring_offset;
  2222. if (i != engine->id)
  2223. ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
  2224. else
  2225. ring_offset = MI_SEMAPHORE_SYNC_INVALID;
  2226. engine->semaphore.signal_ggtt[i] = ring_offset;
  2227. }
  2228. } else if (INTEL_GEN(dev_priv) >= 6) {
  2229. engine->semaphore.sync_to = gen6_ring_sync;
  2230. engine->semaphore.signal = gen6_signal;
  2231. /*
  2232. * The current semaphore is only applied on pre-gen8
  2233. * platform. And there is no VCS2 ring on the pre-gen8
  2234. * platform. So the semaphore between RCS and VCS2 is
  2235. * initialized as INVALID. Gen8 will initialize the
  2236. * sema between VCS2 and RCS later.
  2237. */
  2238. for (i = 0; i < I915_NUM_ENGINES; i++) {
  2239. static const struct {
  2240. u32 wait_mbox;
  2241. i915_reg_t mbox_reg;
  2242. } sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
  2243. [RCS] = {
  2244. [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
  2245. [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
  2246. [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
  2247. },
  2248. [VCS] = {
  2249. [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
  2250. [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
  2251. [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
  2252. },
  2253. [BCS] = {
  2254. [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
  2255. [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
  2256. [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
  2257. },
  2258. [VECS] = {
  2259. [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
  2260. [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
  2261. [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
  2262. },
  2263. };
  2264. u32 wait_mbox;
  2265. i915_reg_t mbox_reg;
  2266. if (i == engine->id || i == VCS2) {
  2267. wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
  2268. mbox_reg = GEN6_NOSYNC;
  2269. } else {
  2270. wait_mbox = sem_data[engine->id][i].wait_mbox;
  2271. mbox_reg = sem_data[engine->id][i].mbox_reg;
  2272. }
  2273. engine->semaphore.mbox.wait[i] = wait_mbox;
  2274. engine->semaphore.mbox.signal[i] = mbox_reg;
  2275. }
  2276. }
  2277. }
  2278. static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
  2279. struct intel_engine_cs *engine)
  2280. {
  2281. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
  2282. if (INTEL_GEN(dev_priv) >= 8) {
  2283. engine->irq_enable = gen8_irq_enable;
  2284. engine->irq_disable = gen8_irq_disable;
  2285. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2286. } else if (INTEL_GEN(dev_priv) >= 6) {
  2287. engine->irq_enable = gen6_irq_enable;
  2288. engine->irq_disable = gen6_irq_disable;
  2289. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2290. } else if (INTEL_GEN(dev_priv) >= 5) {
  2291. engine->irq_enable = gen5_irq_enable;
  2292. engine->irq_disable = gen5_irq_disable;
  2293. engine->irq_seqno_barrier = gen5_seqno_barrier;
  2294. } else if (INTEL_GEN(dev_priv) >= 3) {
  2295. engine->irq_enable = i9xx_irq_enable;
  2296. engine->irq_disable = i9xx_irq_disable;
  2297. } else {
  2298. engine->irq_enable = i8xx_irq_enable;
  2299. engine->irq_disable = i8xx_irq_disable;
  2300. }
  2301. }
  2302. static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
  2303. struct intel_engine_cs *engine)
  2304. {
  2305. intel_ring_init_irq(dev_priv, engine);
  2306. intel_ring_init_semaphores(dev_priv, engine);
  2307. engine->init_hw = init_ring_common;
  2308. engine->emit_request = i9xx_emit_request;
  2309. if (i915.semaphores)
  2310. engine->emit_request = gen6_sema_emit_request;
  2311. engine->submit_request = i9xx_submit_request;
  2312. if (INTEL_GEN(dev_priv) >= 8)
  2313. engine->emit_bb_start = gen8_emit_bb_start;
  2314. else if (INTEL_GEN(dev_priv) >= 6)
  2315. engine->emit_bb_start = gen6_emit_bb_start;
  2316. else if (INTEL_GEN(dev_priv) >= 4)
  2317. engine->emit_bb_start = i965_emit_bb_start;
  2318. else if (IS_I830(dev_priv) || IS_845G(dev_priv))
  2319. engine->emit_bb_start = i830_emit_bb_start;
  2320. else
  2321. engine->emit_bb_start = i915_emit_bb_start;
  2322. }
  2323. int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
  2324. {
  2325. struct drm_i915_private *dev_priv = engine->i915;
  2326. int ret;
  2327. intel_ring_default_vfuncs(dev_priv, engine);
  2328. if (HAS_L3_DPF(dev_priv))
  2329. engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
  2330. if (INTEL_GEN(dev_priv) >= 8) {
  2331. engine->init_context = intel_rcs_ctx_init;
  2332. engine->emit_request = gen8_render_emit_request;
  2333. engine->emit_flush = gen8_render_ring_flush;
  2334. if (i915.semaphores)
  2335. engine->semaphore.signal = gen8_rcs_signal;
  2336. } else if (INTEL_GEN(dev_priv) >= 6) {
  2337. engine->init_context = intel_rcs_ctx_init;
  2338. engine->emit_flush = gen7_render_ring_flush;
  2339. if (IS_GEN6(dev_priv))
  2340. engine->emit_flush = gen6_render_ring_flush;
  2341. } else if (IS_GEN5(dev_priv)) {
  2342. engine->emit_flush = gen4_render_ring_flush;
  2343. } else {
  2344. if (INTEL_GEN(dev_priv) < 4)
  2345. engine->emit_flush = gen2_render_ring_flush;
  2346. else
  2347. engine->emit_flush = gen4_render_ring_flush;
  2348. engine->irq_enable_mask = I915_USER_INTERRUPT;
  2349. }
  2350. if (IS_HASWELL(dev_priv))
  2351. engine->emit_bb_start = hsw_emit_bb_start;
  2352. engine->init_hw = init_render_ring;
  2353. engine->cleanup = render_ring_cleanup;
  2354. ret = intel_init_ring_buffer(engine);
  2355. if (ret)
  2356. return ret;
  2357. if (INTEL_GEN(dev_priv) >= 6) {
  2358. ret = intel_init_pipe_control(engine, 4096);
  2359. if (ret)
  2360. return ret;
  2361. } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
  2362. ret = intel_init_pipe_control(engine, I830_WA_SIZE);
  2363. if (ret)
  2364. return ret;
  2365. }
  2366. return 0;
  2367. }
  2368. int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
  2369. {
  2370. struct drm_i915_private *dev_priv = engine->i915;
  2371. intel_ring_default_vfuncs(dev_priv, engine);
  2372. if (INTEL_GEN(dev_priv) >= 6) {
  2373. /* gen6 bsd needs a special wa for tail updates */
  2374. if (IS_GEN6(dev_priv))
  2375. engine->submit_request = gen6_bsd_submit_request;
  2376. engine->emit_flush = gen6_bsd_ring_flush;
  2377. if (INTEL_GEN(dev_priv) < 8)
  2378. engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2379. } else {
  2380. engine->mmio_base = BSD_RING_BASE;
  2381. engine->emit_flush = bsd_ring_flush;
  2382. if (IS_GEN5(dev_priv))
  2383. engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2384. else
  2385. engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2386. }
  2387. return intel_init_ring_buffer(engine);
  2388. }
  2389. /**
  2390. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2391. */
  2392. int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
  2393. {
  2394. struct drm_i915_private *dev_priv = engine->i915;
  2395. intel_ring_default_vfuncs(dev_priv, engine);
  2396. engine->emit_flush = gen6_bsd_ring_flush;
  2397. return intel_init_ring_buffer(engine);
  2398. }
  2399. int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
  2400. {
  2401. struct drm_i915_private *dev_priv = engine->i915;
  2402. intel_ring_default_vfuncs(dev_priv, engine);
  2403. engine->emit_flush = gen6_ring_flush;
  2404. if (INTEL_GEN(dev_priv) < 8)
  2405. engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2406. return intel_init_ring_buffer(engine);
  2407. }
  2408. int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
  2409. {
  2410. struct drm_i915_private *dev_priv = engine->i915;
  2411. intel_ring_default_vfuncs(dev_priv, engine);
  2412. engine->emit_flush = gen6_ring_flush;
  2413. if (INTEL_GEN(dev_priv) < 8) {
  2414. engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2415. engine->irq_enable = hsw_vebox_irq_enable;
  2416. engine->irq_disable = hsw_vebox_irq_disable;
  2417. }
  2418. return intel_init_ring_buffer(engine);
  2419. }
  2420. void intel_engine_stop(struct intel_engine_cs *engine)
  2421. {
  2422. int ret;
  2423. if (!intel_engine_initialized(engine))
  2424. return;
  2425. ret = intel_engine_idle(engine);
  2426. if (ret)
  2427. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2428. engine->name, ret);
  2429. stop_ring(engine);
  2430. }