workqueue.c 142 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124
  1. /*
  2. * kernel/workqueue.c - generic async execution with shared worker pool
  3. *
  4. * Copyright (C) 2002 Ingo Molnar
  5. *
  6. * Derived from the taskqueue/keventd code by:
  7. * David Woodhouse <dwmw2@infradead.org>
  8. * Andrew Morton
  9. * Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10. * Theodore Ts'o <tytso@mit.edu>
  11. *
  12. * Made to use alloc_percpu by Christoph Lameter.
  13. *
  14. * Copyright (C) 2010 SUSE Linux Products GmbH
  15. * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
  16. *
  17. * This is the generic async execution mechanism. Work items as are
  18. * executed in process context. The worker pool is shared and
  19. * automatically managed. There are two worker pools for each CPU (one for
  20. * normal work items and the other for high priority ones) and some extra
  21. * pools for workqueues which are not bound to any specific CPU - the
  22. * number of these backing pools is dynamic.
  23. *
  24. * Please read Documentation/workqueue.txt for details.
  25. */
  26. #include <linux/export.h>
  27. #include <linux/kernel.h>
  28. #include <linux/sched.h>
  29. #include <linux/init.h>
  30. #include <linux/signal.h>
  31. #include <linux/completion.h>
  32. #include <linux/workqueue.h>
  33. #include <linux/slab.h>
  34. #include <linux/cpu.h>
  35. #include <linux/notifier.h>
  36. #include <linux/kthread.h>
  37. #include <linux/hardirq.h>
  38. #include <linux/mempolicy.h>
  39. #include <linux/freezer.h>
  40. #include <linux/kallsyms.h>
  41. #include <linux/debug_locks.h>
  42. #include <linux/lockdep.h>
  43. #include <linux/idr.h>
  44. #include <linux/jhash.h>
  45. #include <linux/hashtable.h>
  46. #include <linux/rculist.h>
  47. #include <linux/nodemask.h>
  48. #include <linux/moduleparam.h>
  49. #include <linux/uaccess.h>
  50. #include "workqueue_internal.h"
  51. enum {
  52. /*
  53. * worker_pool flags
  54. *
  55. * A bound pool is either associated or disassociated with its CPU.
  56. * While associated (!DISASSOCIATED), all workers are bound to the
  57. * CPU and none has %WORKER_UNBOUND set and concurrency management
  58. * is in effect.
  59. *
  60. * While DISASSOCIATED, the cpu may be offline and all workers have
  61. * %WORKER_UNBOUND set and concurrency management disabled, and may
  62. * be executing on any CPU. The pool behaves as an unbound one.
  63. *
  64. * Note that DISASSOCIATED should be flipped only while holding
  65. * manager_mutex to avoid changing binding state while
  66. * create_worker() is in progress.
  67. */
  68. POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
  69. POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
  70. POOL_FREEZING = 1 << 3, /* freeze in progress */
  71. /* worker flags */
  72. WORKER_DIE = 1 << 1, /* die die die */
  73. WORKER_IDLE = 1 << 2, /* is idle */
  74. WORKER_PREP = 1 << 3, /* preparing to run works */
  75. WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
  76. WORKER_UNBOUND = 1 << 7, /* worker is unbound */
  77. WORKER_REBOUND = 1 << 8, /* worker was rebound */
  78. WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
  79. WORKER_UNBOUND | WORKER_REBOUND,
  80. NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
  81. UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
  82. BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
  83. MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
  84. IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
  85. MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
  86. /* call for help after 10ms
  87. (min two ticks) */
  88. MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
  89. CREATE_COOLDOWN = HZ, /* time to breath after fail */
  90. /*
  91. * Rescue workers are used only on emergencies and shared by
  92. * all cpus. Give -20.
  93. */
  94. RESCUER_NICE_LEVEL = -20,
  95. HIGHPRI_NICE_LEVEL = -20,
  96. WQ_NAME_LEN = 24,
  97. };
  98. /*
  99. * Structure fields follow one of the following exclusion rules.
  100. *
  101. * I: Modifiable by initialization/destruction paths and read-only for
  102. * everyone else.
  103. *
  104. * P: Preemption protected. Disabling preemption is enough and should
  105. * only be modified and accessed from the local cpu.
  106. *
  107. * L: pool->lock protected. Access with pool->lock held.
  108. *
  109. * X: During normal operation, modification requires pool->lock and should
  110. * be done only from local cpu. Either disabling preemption on local
  111. * cpu or grabbing pool->lock is enough for read access. If
  112. * POOL_DISASSOCIATED is set, it's identical to L.
  113. *
  114. * M: pool->manager_mutex protected.
  115. *
  116. * PL: wq_pool_mutex protected.
  117. *
  118. * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
  119. *
  120. * WQ: wq->mutex protected.
  121. *
  122. * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
  123. *
  124. * MD: wq_mayday_lock protected.
  125. */
  126. /* struct worker is defined in workqueue_internal.h */
  127. struct worker_pool {
  128. spinlock_t lock; /* the pool lock */
  129. int cpu; /* I: the associated cpu */
  130. int node; /* I: the associated node ID */
  131. int id; /* I: pool ID */
  132. unsigned int flags; /* X: flags */
  133. struct list_head worklist; /* L: list of pending works */
  134. int nr_workers; /* L: total number of workers */
  135. /* nr_idle includes the ones off idle_list for rebinding */
  136. int nr_idle; /* L: currently idle ones */
  137. struct list_head idle_list; /* X: list of idle workers */
  138. struct timer_list idle_timer; /* L: worker idle timeout */
  139. struct timer_list mayday_timer; /* L: SOS timer for workers */
  140. /* a workers is either on busy_hash or idle_list, or the manager */
  141. DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
  142. /* L: hash of busy workers */
  143. /* see manage_workers() for details on the two manager mutexes */
  144. struct mutex manager_arb; /* manager arbitration */
  145. struct mutex manager_mutex; /* manager exclusion */
  146. struct idr worker_idr; /* M: worker IDs and iteration */
  147. struct completion *detach_completion; /* all workers detached */
  148. struct workqueue_attrs *attrs; /* I: worker attributes */
  149. struct hlist_node hash_node; /* PL: unbound_pool_hash node */
  150. int refcnt; /* PL: refcnt for unbound pools */
  151. /*
  152. * The current concurrency level. As it's likely to be accessed
  153. * from other CPUs during try_to_wake_up(), put it in a separate
  154. * cacheline.
  155. */
  156. atomic_t nr_running ____cacheline_aligned_in_smp;
  157. /*
  158. * Destruction of pool is sched-RCU protected to allow dereferences
  159. * from get_work_pool().
  160. */
  161. struct rcu_head rcu;
  162. } ____cacheline_aligned_in_smp;
  163. /*
  164. * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
  165. * of work_struct->data are used for flags and the remaining high bits
  166. * point to the pwq; thus, pwqs need to be aligned at two's power of the
  167. * number of flag bits.
  168. */
  169. struct pool_workqueue {
  170. struct worker_pool *pool; /* I: the associated pool */
  171. struct workqueue_struct *wq; /* I: the owning workqueue */
  172. int work_color; /* L: current color */
  173. int flush_color; /* L: flushing color */
  174. int refcnt; /* L: reference count */
  175. int nr_in_flight[WORK_NR_COLORS];
  176. /* L: nr of in_flight works */
  177. int nr_active; /* L: nr of active works */
  178. int max_active; /* L: max active works */
  179. struct list_head delayed_works; /* L: delayed works */
  180. struct list_head pwqs_node; /* WR: node on wq->pwqs */
  181. struct list_head mayday_node; /* MD: node on wq->maydays */
  182. /*
  183. * Release of unbound pwq is punted to system_wq. See put_pwq()
  184. * and pwq_unbound_release_workfn() for details. pool_workqueue
  185. * itself is also sched-RCU protected so that the first pwq can be
  186. * determined without grabbing wq->mutex.
  187. */
  188. struct work_struct unbound_release_work;
  189. struct rcu_head rcu;
  190. } __aligned(1 << WORK_STRUCT_FLAG_BITS);
  191. /*
  192. * Structure used to wait for workqueue flush.
  193. */
  194. struct wq_flusher {
  195. struct list_head list; /* WQ: list of flushers */
  196. int flush_color; /* WQ: flush color waiting for */
  197. struct completion done; /* flush completion */
  198. };
  199. struct wq_device;
  200. /*
  201. * The externally visible workqueue. It relays the issued work items to
  202. * the appropriate worker_pool through its pool_workqueues.
  203. */
  204. struct workqueue_struct {
  205. struct list_head pwqs; /* WR: all pwqs of this wq */
  206. struct list_head list; /* PL: list of all workqueues */
  207. struct mutex mutex; /* protects this wq */
  208. int work_color; /* WQ: current work color */
  209. int flush_color; /* WQ: current flush color */
  210. atomic_t nr_pwqs_to_flush; /* flush in progress */
  211. struct wq_flusher *first_flusher; /* WQ: first flusher */
  212. struct list_head flusher_queue; /* WQ: flush waiters */
  213. struct list_head flusher_overflow; /* WQ: flush overflow list */
  214. struct list_head maydays; /* MD: pwqs requesting rescue */
  215. struct worker *rescuer; /* I: rescue worker */
  216. int nr_drainers; /* WQ: drain in progress */
  217. int saved_max_active; /* WQ: saved pwq max_active */
  218. struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
  219. struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
  220. #ifdef CONFIG_SYSFS
  221. struct wq_device *wq_dev; /* I: for sysfs interface */
  222. #endif
  223. #ifdef CONFIG_LOCKDEP
  224. struct lockdep_map lockdep_map;
  225. #endif
  226. char name[WQ_NAME_LEN]; /* I: workqueue name */
  227. /* hot fields used during command issue, aligned to cacheline */
  228. unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
  229. struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
  230. struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
  231. };
  232. static struct kmem_cache *pwq_cache;
  233. static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
  234. static cpumask_var_t *wq_numa_possible_cpumask;
  235. /* possible CPUs of each node */
  236. static bool wq_disable_numa;
  237. module_param_named(disable_numa, wq_disable_numa, bool, 0444);
  238. /* see the comment above the definition of WQ_POWER_EFFICIENT */
  239. #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
  240. static bool wq_power_efficient = true;
  241. #else
  242. static bool wq_power_efficient;
  243. #endif
  244. module_param_named(power_efficient, wq_power_efficient, bool, 0444);
  245. static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
  246. /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
  247. static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
  248. static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
  249. static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
  250. static LIST_HEAD(workqueues); /* PL: list of all workqueues */
  251. static bool workqueue_freezing; /* PL: have wqs started freezing? */
  252. /* the per-cpu worker pools */
  253. static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
  254. cpu_worker_pools);
  255. static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
  256. /* PL: hash of all unbound pools keyed by pool->attrs */
  257. static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
  258. /* I: attributes used when instantiating standard unbound pools on demand */
  259. static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
  260. /* I: attributes used when instantiating ordered pools on demand */
  261. static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
  262. struct workqueue_struct *system_wq __read_mostly;
  263. EXPORT_SYMBOL(system_wq);
  264. struct workqueue_struct *system_highpri_wq __read_mostly;
  265. EXPORT_SYMBOL_GPL(system_highpri_wq);
  266. struct workqueue_struct *system_long_wq __read_mostly;
  267. EXPORT_SYMBOL_GPL(system_long_wq);
  268. struct workqueue_struct *system_unbound_wq __read_mostly;
  269. EXPORT_SYMBOL_GPL(system_unbound_wq);
  270. struct workqueue_struct *system_freezable_wq __read_mostly;
  271. EXPORT_SYMBOL_GPL(system_freezable_wq);
  272. struct workqueue_struct *system_power_efficient_wq __read_mostly;
  273. EXPORT_SYMBOL_GPL(system_power_efficient_wq);
  274. struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
  275. EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
  276. static int worker_thread(void *__worker);
  277. static void copy_workqueue_attrs(struct workqueue_attrs *to,
  278. const struct workqueue_attrs *from);
  279. #define CREATE_TRACE_POINTS
  280. #include <trace/events/workqueue.h>
  281. #define assert_rcu_or_pool_mutex() \
  282. rcu_lockdep_assert(rcu_read_lock_sched_held() || \
  283. lockdep_is_held(&wq_pool_mutex), \
  284. "sched RCU or wq_pool_mutex should be held")
  285. #define assert_rcu_or_wq_mutex(wq) \
  286. rcu_lockdep_assert(rcu_read_lock_sched_held() || \
  287. lockdep_is_held(&wq->mutex), \
  288. "sched RCU or wq->mutex should be held")
  289. #define for_each_cpu_worker_pool(pool, cpu) \
  290. for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
  291. (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
  292. (pool)++)
  293. /**
  294. * for_each_pool - iterate through all worker_pools in the system
  295. * @pool: iteration cursor
  296. * @pi: integer used for iteration
  297. *
  298. * This must be called either with wq_pool_mutex held or sched RCU read
  299. * locked. If the pool needs to be used beyond the locking in effect, the
  300. * caller is responsible for guaranteeing that the pool stays online.
  301. *
  302. * The if/else clause exists only for the lockdep assertion and can be
  303. * ignored.
  304. */
  305. #define for_each_pool(pool, pi) \
  306. idr_for_each_entry(&worker_pool_idr, pool, pi) \
  307. if (({ assert_rcu_or_pool_mutex(); false; })) { } \
  308. else
  309. /**
  310. * for_each_pool_worker - iterate through all workers of a worker_pool
  311. * @worker: iteration cursor
  312. * @wi: integer used for iteration
  313. * @pool: worker_pool to iterate workers of
  314. *
  315. * This must be called with @pool->manager_mutex.
  316. *
  317. * The if/else clause exists only for the lockdep assertion and can be
  318. * ignored.
  319. */
  320. #define for_each_pool_worker(worker, wi, pool) \
  321. idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
  322. if (({ lockdep_assert_held(&pool->manager_mutex); false; })) { } \
  323. else
  324. /**
  325. * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
  326. * @pwq: iteration cursor
  327. * @wq: the target workqueue
  328. *
  329. * This must be called either with wq->mutex held or sched RCU read locked.
  330. * If the pwq needs to be used beyond the locking in effect, the caller is
  331. * responsible for guaranteeing that the pwq stays online.
  332. *
  333. * The if/else clause exists only for the lockdep assertion and can be
  334. * ignored.
  335. */
  336. #define for_each_pwq(pwq, wq) \
  337. list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
  338. if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
  339. else
  340. #ifdef CONFIG_DEBUG_OBJECTS_WORK
  341. static struct debug_obj_descr work_debug_descr;
  342. static void *work_debug_hint(void *addr)
  343. {
  344. return ((struct work_struct *) addr)->func;
  345. }
  346. /*
  347. * fixup_init is called when:
  348. * - an active object is initialized
  349. */
  350. static int work_fixup_init(void *addr, enum debug_obj_state state)
  351. {
  352. struct work_struct *work = addr;
  353. switch (state) {
  354. case ODEBUG_STATE_ACTIVE:
  355. cancel_work_sync(work);
  356. debug_object_init(work, &work_debug_descr);
  357. return 1;
  358. default:
  359. return 0;
  360. }
  361. }
  362. /*
  363. * fixup_activate is called when:
  364. * - an active object is activated
  365. * - an unknown object is activated (might be a statically initialized object)
  366. */
  367. static int work_fixup_activate(void *addr, enum debug_obj_state state)
  368. {
  369. struct work_struct *work = addr;
  370. switch (state) {
  371. case ODEBUG_STATE_NOTAVAILABLE:
  372. /*
  373. * This is not really a fixup. The work struct was
  374. * statically initialized. We just make sure that it
  375. * is tracked in the object tracker.
  376. */
  377. if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
  378. debug_object_init(work, &work_debug_descr);
  379. debug_object_activate(work, &work_debug_descr);
  380. return 0;
  381. }
  382. WARN_ON_ONCE(1);
  383. return 0;
  384. case ODEBUG_STATE_ACTIVE:
  385. WARN_ON(1);
  386. default:
  387. return 0;
  388. }
  389. }
  390. /*
  391. * fixup_free is called when:
  392. * - an active object is freed
  393. */
  394. static int work_fixup_free(void *addr, enum debug_obj_state state)
  395. {
  396. struct work_struct *work = addr;
  397. switch (state) {
  398. case ODEBUG_STATE_ACTIVE:
  399. cancel_work_sync(work);
  400. debug_object_free(work, &work_debug_descr);
  401. return 1;
  402. default:
  403. return 0;
  404. }
  405. }
  406. static struct debug_obj_descr work_debug_descr = {
  407. .name = "work_struct",
  408. .debug_hint = work_debug_hint,
  409. .fixup_init = work_fixup_init,
  410. .fixup_activate = work_fixup_activate,
  411. .fixup_free = work_fixup_free,
  412. };
  413. static inline void debug_work_activate(struct work_struct *work)
  414. {
  415. debug_object_activate(work, &work_debug_descr);
  416. }
  417. static inline void debug_work_deactivate(struct work_struct *work)
  418. {
  419. debug_object_deactivate(work, &work_debug_descr);
  420. }
  421. void __init_work(struct work_struct *work, int onstack)
  422. {
  423. if (onstack)
  424. debug_object_init_on_stack(work, &work_debug_descr);
  425. else
  426. debug_object_init(work, &work_debug_descr);
  427. }
  428. EXPORT_SYMBOL_GPL(__init_work);
  429. void destroy_work_on_stack(struct work_struct *work)
  430. {
  431. debug_object_free(work, &work_debug_descr);
  432. }
  433. EXPORT_SYMBOL_GPL(destroy_work_on_stack);
  434. void destroy_delayed_work_on_stack(struct delayed_work *work)
  435. {
  436. destroy_timer_on_stack(&work->timer);
  437. debug_object_free(&work->work, &work_debug_descr);
  438. }
  439. EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
  440. #else
  441. static inline void debug_work_activate(struct work_struct *work) { }
  442. static inline void debug_work_deactivate(struct work_struct *work) { }
  443. #endif
  444. /**
  445. * worker_pool_assign_id - allocate ID and assing it to @pool
  446. * @pool: the pool pointer of interest
  447. *
  448. * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
  449. * successfully, -errno on failure.
  450. */
  451. static int worker_pool_assign_id(struct worker_pool *pool)
  452. {
  453. int ret;
  454. lockdep_assert_held(&wq_pool_mutex);
  455. ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
  456. GFP_KERNEL);
  457. if (ret >= 0) {
  458. pool->id = ret;
  459. return 0;
  460. }
  461. return ret;
  462. }
  463. /**
  464. * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
  465. * @wq: the target workqueue
  466. * @node: the node ID
  467. *
  468. * This must be called either with pwq_lock held or sched RCU read locked.
  469. * If the pwq needs to be used beyond the locking in effect, the caller is
  470. * responsible for guaranteeing that the pwq stays online.
  471. *
  472. * Return: The unbound pool_workqueue for @node.
  473. */
  474. static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
  475. int node)
  476. {
  477. assert_rcu_or_wq_mutex(wq);
  478. return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
  479. }
  480. static unsigned int work_color_to_flags(int color)
  481. {
  482. return color << WORK_STRUCT_COLOR_SHIFT;
  483. }
  484. static int get_work_color(struct work_struct *work)
  485. {
  486. return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
  487. ((1 << WORK_STRUCT_COLOR_BITS) - 1);
  488. }
  489. static int work_next_color(int color)
  490. {
  491. return (color + 1) % WORK_NR_COLORS;
  492. }
  493. /*
  494. * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
  495. * contain the pointer to the queued pwq. Once execution starts, the flag
  496. * is cleared and the high bits contain OFFQ flags and pool ID.
  497. *
  498. * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
  499. * and clear_work_data() can be used to set the pwq, pool or clear
  500. * work->data. These functions should only be called while the work is
  501. * owned - ie. while the PENDING bit is set.
  502. *
  503. * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
  504. * corresponding to a work. Pool is available once the work has been
  505. * queued anywhere after initialization until it is sync canceled. pwq is
  506. * available only while the work item is queued.
  507. *
  508. * %WORK_OFFQ_CANCELING is used to mark a work item which is being
  509. * canceled. While being canceled, a work item may have its PENDING set
  510. * but stay off timer and worklist for arbitrarily long and nobody should
  511. * try to steal the PENDING bit.
  512. */
  513. static inline void set_work_data(struct work_struct *work, unsigned long data,
  514. unsigned long flags)
  515. {
  516. WARN_ON_ONCE(!work_pending(work));
  517. atomic_long_set(&work->data, data | flags | work_static(work));
  518. }
  519. static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
  520. unsigned long extra_flags)
  521. {
  522. set_work_data(work, (unsigned long)pwq,
  523. WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
  524. }
  525. static void set_work_pool_and_keep_pending(struct work_struct *work,
  526. int pool_id)
  527. {
  528. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
  529. WORK_STRUCT_PENDING);
  530. }
  531. static void set_work_pool_and_clear_pending(struct work_struct *work,
  532. int pool_id)
  533. {
  534. /*
  535. * The following wmb is paired with the implied mb in
  536. * test_and_set_bit(PENDING) and ensures all updates to @work made
  537. * here are visible to and precede any updates by the next PENDING
  538. * owner.
  539. */
  540. smp_wmb();
  541. set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
  542. }
  543. static void clear_work_data(struct work_struct *work)
  544. {
  545. smp_wmb(); /* see set_work_pool_and_clear_pending() */
  546. set_work_data(work, WORK_STRUCT_NO_POOL, 0);
  547. }
  548. static struct pool_workqueue *get_work_pwq(struct work_struct *work)
  549. {
  550. unsigned long data = atomic_long_read(&work->data);
  551. if (data & WORK_STRUCT_PWQ)
  552. return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
  553. else
  554. return NULL;
  555. }
  556. /**
  557. * get_work_pool - return the worker_pool a given work was associated with
  558. * @work: the work item of interest
  559. *
  560. * Pools are created and destroyed under wq_pool_mutex, and allows read
  561. * access under sched-RCU read lock. As such, this function should be
  562. * called under wq_pool_mutex or with preemption disabled.
  563. *
  564. * All fields of the returned pool are accessible as long as the above
  565. * mentioned locking is in effect. If the returned pool needs to be used
  566. * beyond the critical section, the caller is responsible for ensuring the
  567. * returned pool is and stays online.
  568. *
  569. * Return: The worker_pool @work was last associated with. %NULL if none.
  570. */
  571. static struct worker_pool *get_work_pool(struct work_struct *work)
  572. {
  573. unsigned long data = atomic_long_read(&work->data);
  574. int pool_id;
  575. assert_rcu_or_pool_mutex();
  576. if (data & WORK_STRUCT_PWQ)
  577. return ((struct pool_workqueue *)
  578. (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
  579. pool_id = data >> WORK_OFFQ_POOL_SHIFT;
  580. if (pool_id == WORK_OFFQ_POOL_NONE)
  581. return NULL;
  582. return idr_find(&worker_pool_idr, pool_id);
  583. }
  584. /**
  585. * get_work_pool_id - return the worker pool ID a given work is associated with
  586. * @work: the work item of interest
  587. *
  588. * Return: The worker_pool ID @work was last associated with.
  589. * %WORK_OFFQ_POOL_NONE if none.
  590. */
  591. static int get_work_pool_id(struct work_struct *work)
  592. {
  593. unsigned long data = atomic_long_read(&work->data);
  594. if (data & WORK_STRUCT_PWQ)
  595. return ((struct pool_workqueue *)
  596. (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
  597. return data >> WORK_OFFQ_POOL_SHIFT;
  598. }
  599. static void mark_work_canceling(struct work_struct *work)
  600. {
  601. unsigned long pool_id = get_work_pool_id(work);
  602. pool_id <<= WORK_OFFQ_POOL_SHIFT;
  603. set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
  604. }
  605. static bool work_is_canceling(struct work_struct *work)
  606. {
  607. unsigned long data = atomic_long_read(&work->data);
  608. return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
  609. }
  610. /*
  611. * Policy functions. These define the policies on how the global worker
  612. * pools are managed. Unless noted otherwise, these functions assume that
  613. * they're being called with pool->lock held.
  614. */
  615. static bool __need_more_worker(struct worker_pool *pool)
  616. {
  617. return !atomic_read(&pool->nr_running);
  618. }
  619. /*
  620. * Need to wake up a worker? Called from anything but currently
  621. * running workers.
  622. *
  623. * Note that, because unbound workers never contribute to nr_running, this
  624. * function will always return %true for unbound pools as long as the
  625. * worklist isn't empty.
  626. */
  627. static bool need_more_worker(struct worker_pool *pool)
  628. {
  629. return !list_empty(&pool->worklist) && __need_more_worker(pool);
  630. }
  631. /* Can I start working? Called from busy but !running workers. */
  632. static bool may_start_working(struct worker_pool *pool)
  633. {
  634. return pool->nr_idle;
  635. }
  636. /* Do I need to keep working? Called from currently running workers. */
  637. static bool keep_working(struct worker_pool *pool)
  638. {
  639. return !list_empty(&pool->worklist) &&
  640. atomic_read(&pool->nr_running) <= 1;
  641. }
  642. /* Do we need a new worker? Called from manager. */
  643. static bool need_to_create_worker(struct worker_pool *pool)
  644. {
  645. return need_more_worker(pool) && !may_start_working(pool);
  646. }
  647. /* Do I need to be the manager? */
  648. static bool need_to_manage_workers(struct worker_pool *pool)
  649. {
  650. return need_to_create_worker(pool) ||
  651. (pool->flags & POOL_MANAGE_WORKERS);
  652. }
  653. /* Do we have too many workers and should some go away? */
  654. static bool too_many_workers(struct worker_pool *pool)
  655. {
  656. bool managing = mutex_is_locked(&pool->manager_arb);
  657. int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
  658. int nr_busy = pool->nr_workers - nr_idle;
  659. /*
  660. * nr_idle and idle_list may disagree if idle rebinding is in
  661. * progress. Never return %true if idle_list is empty.
  662. */
  663. if (list_empty(&pool->idle_list))
  664. return false;
  665. return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
  666. }
  667. /*
  668. * Wake up functions.
  669. */
  670. /* Return the first worker. Safe with preemption disabled */
  671. static struct worker *first_worker(struct worker_pool *pool)
  672. {
  673. if (unlikely(list_empty(&pool->idle_list)))
  674. return NULL;
  675. return list_first_entry(&pool->idle_list, struct worker, entry);
  676. }
  677. /**
  678. * wake_up_worker - wake up an idle worker
  679. * @pool: worker pool to wake worker from
  680. *
  681. * Wake up the first idle worker of @pool.
  682. *
  683. * CONTEXT:
  684. * spin_lock_irq(pool->lock).
  685. */
  686. static void wake_up_worker(struct worker_pool *pool)
  687. {
  688. struct worker *worker = first_worker(pool);
  689. if (likely(worker))
  690. wake_up_process(worker->task);
  691. }
  692. /**
  693. * wq_worker_waking_up - a worker is waking up
  694. * @task: task waking up
  695. * @cpu: CPU @task is waking up to
  696. *
  697. * This function is called during try_to_wake_up() when a worker is
  698. * being awoken.
  699. *
  700. * CONTEXT:
  701. * spin_lock_irq(rq->lock)
  702. */
  703. void wq_worker_waking_up(struct task_struct *task, int cpu)
  704. {
  705. struct worker *worker = kthread_data(task);
  706. if (!(worker->flags & WORKER_NOT_RUNNING)) {
  707. WARN_ON_ONCE(worker->pool->cpu != cpu);
  708. atomic_inc(&worker->pool->nr_running);
  709. }
  710. }
  711. /**
  712. * wq_worker_sleeping - a worker is going to sleep
  713. * @task: task going to sleep
  714. * @cpu: CPU in question, must be the current CPU number
  715. *
  716. * This function is called during schedule() when a busy worker is
  717. * going to sleep. Worker on the same cpu can be woken up by
  718. * returning pointer to its task.
  719. *
  720. * CONTEXT:
  721. * spin_lock_irq(rq->lock)
  722. *
  723. * Return:
  724. * Worker task on @cpu to wake up, %NULL if none.
  725. */
  726. struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
  727. {
  728. struct worker *worker = kthread_data(task), *to_wakeup = NULL;
  729. struct worker_pool *pool;
  730. /*
  731. * Rescuers, which may not have all the fields set up like normal
  732. * workers, also reach here, let's not access anything before
  733. * checking NOT_RUNNING.
  734. */
  735. if (worker->flags & WORKER_NOT_RUNNING)
  736. return NULL;
  737. pool = worker->pool;
  738. /* this can only happen on the local cpu */
  739. if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
  740. return NULL;
  741. /*
  742. * The counterpart of the following dec_and_test, implied mb,
  743. * worklist not empty test sequence is in insert_work().
  744. * Please read comment there.
  745. *
  746. * NOT_RUNNING is clear. This means that we're bound to and
  747. * running on the local cpu w/ rq lock held and preemption
  748. * disabled, which in turn means that none else could be
  749. * manipulating idle_list, so dereferencing idle_list without pool
  750. * lock is safe.
  751. */
  752. if (atomic_dec_and_test(&pool->nr_running) &&
  753. !list_empty(&pool->worklist))
  754. to_wakeup = first_worker(pool);
  755. return to_wakeup ? to_wakeup->task : NULL;
  756. }
  757. /**
  758. * worker_set_flags - set worker flags and adjust nr_running accordingly
  759. * @worker: self
  760. * @flags: flags to set
  761. * @wakeup: wakeup an idle worker if necessary
  762. *
  763. * Set @flags in @worker->flags and adjust nr_running accordingly. If
  764. * nr_running becomes zero and @wakeup is %true, an idle worker is
  765. * woken up.
  766. *
  767. * CONTEXT:
  768. * spin_lock_irq(pool->lock)
  769. */
  770. static inline void worker_set_flags(struct worker *worker, unsigned int flags,
  771. bool wakeup)
  772. {
  773. struct worker_pool *pool = worker->pool;
  774. WARN_ON_ONCE(worker->task != current);
  775. /*
  776. * If transitioning into NOT_RUNNING, adjust nr_running and
  777. * wake up an idle worker as necessary if requested by
  778. * @wakeup.
  779. */
  780. if ((flags & WORKER_NOT_RUNNING) &&
  781. !(worker->flags & WORKER_NOT_RUNNING)) {
  782. if (wakeup) {
  783. if (atomic_dec_and_test(&pool->nr_running) &&
  784. !list_empty(&pool->worklist))
  785. wake_up_worker(pool);
  786. } else
  787. atomic_dec(&pool->nr_running);
  788. }
  789. worker->flags |= flags;
  790. }
  791. /**
  792. * worker_clr_flags - clear worker flags and adjust nr_running accordingly
  793. * @worker: self
  794. * @flags: flags to clear
  795. *
  796. * Clear @flags in @worker->flags and adjust nr_running accordingly.
  797. *
  798. * CONTEXT:
  799. * spin_lock_irq(pool->lock)
  800. */
  801. static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
  802. {
  803. struct worker_pool *pool = worker->pool;
  804. unsigned int oflags = worker->flags;
  805. WARN_ON_ONCE(worker->task != current);
  806. worker->flags &= ~flags;
  807. /*
  808. * If transitioning out of NOT_RUNNING, increment nr_running. Note
  809. * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
  810. * of multiple flags, not a single flag.
  811. */
  812. if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
  813. if (!(worker->flags & WORKER_NOT_RUNNING))
  814. atomic_inc(&pool->nr_running);
  815. }
  816. /**
  817. * find_worker_executing_work - find worker which is executing a work
  818. * @pool: pool of interest
  819. * @work: work to find worker for
  820. *
  821. * Find a worker which is executing @work on @pool by searching
  822. * @pool->busy_hash which is keyed by the address of @work. For a worker
  823. * to match, its current execution should match the address of @work and
  824. * its work function. This is to avoid unwanted dependency between
  825. * unrelated work executions through a work item being recycled while still
  826. * being executed.
  827. *
  828. * This is a bit tricky. A work item may be freed once its execution
  829. * starts and nothing prevents the freed area from being recycled for
  830. * another work item. If the same work item address ends up being reused
  831. * before the original execution finishes, workqueue will identify the
  832. * recycled work item as currently executing and make it wait until the
  833. * current execution finishes, introducing an unwanted dependency.
  834. *
  835. * This function checks the work item address and work function to avoid
  836. * false positives. Note that this isn't complete as one may construct a
  837. * work function which can introduce dependency onto itself through a
  838. * recycled work item. Well, if somebody wants to shoot oneself in the
  839. * foot that badly, there's only so much we can do, and if such deadlock
  840. * actually occurs, it should be easy to locate the culprit work function.
  841. *
  842. * CONTEXT:
  843. * spin_lock_irq(pool->lock).
  844. *
  845. * Return:
  846. * Pointer to worker which is executing @work if found, %NULL
  847. * otherwise.
  848. */
  849. static struct worker *find_worker_executing_work(struct worker_pool *pool,
  850. struct work_struct *work)
  851. {
  852. struct worker *worker;
  853. hash_for_each_possible(pool->busy_hash, worker, hentry,
  854. (unsigned long)work)
  855. if (worker->current_work == work &&
  856. worker->current_func == work->func)
  857. return worker;
  858. return NULL;
  859. }
  860. /**
  861. * move_linked_works - move linked works to a list
  862. * @work: start of series of works to be scheduled
  863. * @head: target list to append @work to
  864. * @nextp: out paramter for nested worklist walking
  865. *
  866. * Schedule linked works starting from @work to @head. Work series to
  867. * be scheduled starts at @work and includes any consecutive work with
  868. * WORK_STRUCT_LINKED set in its predecessor.
  869. *
  870. * If @nextp is not NULL, it's updated to point to the next work of
  871. * the last scheduled work. This allows move_linked_works() to be
  872. * nested inside outer list_for_each_entry_safe().
  873. *
  874. * CONTEXT:
  875. * spin_lock_irq(pool->lock).
  876. */
  877. static void move_linked_works(struct work_struct *work, struct list_head *head,
  878. struct work_struct **nextp)
  879. {
  880. struct work_struct *n;
  881. /*
  882. * Linked worklist will always end before the end of the list,
  883. * use NULL for list head.
  884. */
  885. list_for_each_entry_safe_from(work, n, NULL, entry) {
  886. list_move_tail(&work->entry, head);
  887. if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
  888. break;
  889. }
  890. /*
  891. * If we're already inside safe list traversal and have moved
  892. * multiple works to the scheduled queue, the next position
  893. * needs to be updated.
  894. */
  895. if (nextp)
  896. *nextp = n;
  897. }
  898. /**
  899. * get_pwq - get an extra reference on the specified pool_workqueue
  900. * @pwq: pool_workqueue to get
  901. *
  902. * Obtain an extra reference on @pwq. The caller should guarantee that
  903. * @pwq has positive refcnt and be holding the matching pool->lock.
  904. */
  905. static void get_pwq(struct pool_workqueue *pwq)
  906. {
  907. lockdep_assert_held(&pwq->pool->lock);
  908. WARN_ON_ONCE(pwq->refcnt <= 0);
  909. pwq->refcnt++;
  910. }
  911. /**
  912. * put_pwq - put a pool_workqueue reference
  913. * @pwq: pool_workqueue to put
  914. *
  915. * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
  916. * destruction. The caller should be holding the matching pool->lock.
  917. */
  918. static void put_pwq(struct pool_workqueue *pwq)
  919. {
  920. lockdep_assert_held(&pwq->pool->lock);
  921. if (likely(--pwq->refcnt))
  922. return;
  923. if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
  924. return;
  925. /*
  926. * @pwq can't be released under pool->lock, bounce to
  927. * pwq_unbound_release_workfn(). This never recurses on the same
  928. * pool->lock as this path is taken only for unbound workqueues and
  929. * the release work item is scheduled on a per-cpu workqueue. To
  930. * avoid lockdep warning, unbound pool->locks are given lockdep
  931. * subclass of 1 in get_unbound_pool().
  932. */
  933. schedule_work(&pwq->unbound_release_work);
  934. }
  935. /**
  936. * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
  937. * @pwq: pool_workqueue to put (can be %NULL)
  938. *
  939. * put_pwq() with locking. This function also allows %NULL @pwq.
  940. */
  941. static void put_pwq_unlocked(struct pool_workqueue *pwq)
  942. {
  943. if (pwq) {
  944. /*
  945. * As both pwqs and pools are sched-RCU protected, the
  946. * following lock operations are safe.
  947. */
  948. spin_lock_irq(&pwq->pool->lock);
  949. put_pwq(pwq);
  950. spin_unlock_irq(&pwq->pool->lock);
  951. }
  952. }
  953. static void pwq_activate_delayed_work(struct work_struct *work)
  954. {
  955. struct pool_workqueue *pwq = get_work_pwq(work);
  956. trace_workqueue_activate_work(work);
  957. move_linked_works(work, &pwq->pool->worklist, NULL);
  958. __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
  959. pwq->nr_active++;
  960. }
  961. static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
  962. {
  963. struct work_struct *work = list_first_entry(&pwq->delayed_works,
  964. struct work_struct, entry);
  965. pwq_activate_delayed_work(work);
  966. }
  967. /**
  968. * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
  969. * @pwq: pwq of interest
  970. * @color: color of work which left the queue
  971. *
  972. * A work either has completed or is removed from pending queue,
  973. * decrement nr_in_flight of its pwq and handle workqueue flushing.
  974. *
  975. * CONTEXT:
  976. * spin_lock_irq(pool->lock).
  977. */
  978. static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
  979. {
  980. /* uncolored work items don't participate in flushing or nr_active */
  981. if (color == WORK_NO_COLOR)
  982. goto out_put;
  983. pwq->nr_in_flight[color]--;
  984. pwq->nr_active--;
  985. if (!list_empty(&pwq->delayed_works)) {
  986. /* one down, submit a delayed one */
  987. if (pwq->nr_active < pwq->max_active)
  988. pwq_activate_first_delayed(pwq);
  989. }
  990. /* is flush in progress and are we at the flushing tip? */
  991. if (likely(pwq->flush_color != color))
  992. goto out_put;
  993. /* are there still in-flight works? */
  994. if (pwq->nr_in_flight[color])
  995. goto out_put;
  996. /* this pwq is done, clear flush_color */
  997. pwq->flush_color = -1;
  998. /*
  999. * If this was the last pwq, wake up the first flusher. It
  1000. * will handle the rest.
  1001. */
  1002. if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
  1003. complete(&pwq->wq->first_flusher->done);
  1004. out_put:
  1005. put_pwq(pwq);
  1006. }
  1007. /**
  1008. * try_to_grab_pending - steal work item from worklist and disable irq
  1009. * @work: work item to steal
  1010. * @is_dwork: @work is a delayed_work
  1011. * @flags: place to store irq state
  1012. *
  1013. * Try to grab PENDING bit of @work. This function can handle @work in any
  1014. * stable state - idle, on timer or on worklist.
  1015. *
  1016. * Return:
  1017. * 1 if @work was pending and we successfully stole PENDING
  1018. * 0 if @work was idle and we claimed PENDING
  1019. * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
  1020. * -ENOENT if someone else is canceling @work, this state may persist
  1021. * for arbitrarily long
  1022. *
  1023. * Note:
  1024. * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
  1025. * interrupted while holding PENDING and @work off queue, irq must be
  1026. * disabled on entry. This, combined with delayed_work->timer being
  1027. * irqsafe, ensures that we return -EAGAIN for finite short period of time.
  1028. *
  1029. * On successful return, >= 0, irq is disabled and the caller is
  1030. * responsible for releasing it using local_irq_restore(*@flags).
  1031. *
  1032. * This function is safe to call from any context including IRQ handler.
  1033. */
  1034. static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
  1035. unsigned long *flags)
  1036. {
  1037. struct worker_pool *pool;
  1038. struct pool_workqueue *pwq;
  1039. local_irq_save(*flags);
  1040. /* try to steal the timer if it exists */
  1041. if (is_dwork) {
  1042. struct delayed_work *dwork = to_delayed_work(work);
  1043. /*
  1044. * dwork->timer is irqsafe. If del_timer() fails, it's
  1045. * guaranteed that the timer is not queued anywhere and not
  1046. * running on the local CPU.
  1047. */
  1048. if (likely(del_timer(&dwork->timer)))
  1049. return 1;
  1050. }
  1051. /* try to claim PENDING the normal way */
  1052. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
  1053. return 0;
  1054. /*
  1055. * The queueing is in progress, or it is already queued. Try to
  1056. * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
  1057. */
  1058. pool = get_work_pool(work);
  1059. if (!pool)
  1060. goto fail;
  1061. spin_lock(&pool->lock);
  1062. /*
  1063. * work->data is guaranteed to point to pwq only while the work
  1064. * item is queued on pwq->wq, and both updating work->data to point
  1065. * to pwq on queueing and to pool on dequeueing are done under
  1066. * pwq->pool->lock. This in turn guarantees that, if work->data
  1067. * points to pwq which is associated with a locked pool, the work
  1068. * item is currently queued on that pool.
  1069. */
  1070. pwq = get_work_pwq(work);
  1071. if (pwq && pwq->pool == pool) {
  1072. debug_work_deactivate(work);
  1073. /*
  1074. * A delayed work item cannot be grabbed directly because
  1075. * it might have linked NO_COLOR work items which, if left
  1076. * on the delayed_list, will confuse pwq->nr_active
  1077. * management later on and cause stall. Make sure the work
  1078. * item is activated before grabbing.
  1079. */
  1080. if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
  1081. pwq_activate_delayed_work(work);
  1082. list_del_init(&work->entry);
  1083. pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
  1084. /* work->data points to pwq iff queued, point to pool */
  1085. set_work_pool_and_keep_pending(work, pool->id);
  1086. spin_unlock(&pool->lock);
  1087. return 1;
  1088. }
  1089. spin_unlock(&pool->lock);
  1090. fail:
  1091. local_irq_restore(*flags);
  1092. if (work_is_canceling(work))
  1093. return -ENOENT;
  1094. cpu_relax();
  1095. return -EAGAIN;
  1096. }
  1097. /**
  1098. * insert_work - insert a work into a pool
  1099. * @pwq: pwq @work belongs to
  1100. * @work: work to insert
  1101. * @head: insertion point
  1102. * @extra_flags: extra WORK_STRUCT_* flags to set
  1103. *
  1104. * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
  1105. * work_struct flags.
  1106. *
  1107. * CONTEXT:
  1108. * spin_lock_irq(pool->lock).
  1109. */
  1110. static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
  1111. struct list_head *head, unsigned int extra_flags)
  1112. {
  1113. struct worker_pool *pool = pwq->pool;
  1114. /* we own @work, set data and link */
  1115. set_work_pwq(work, pwq, extra_flags);
  1116. list_add_tail(&work->entry, head);
  1117. get_pwq(pwq);
  1118. /*
  1119. * Ensure either wq_worker_sleeping() sees the above
  1120. * list_add_tail() or we see zero nr_running to avoid workers lying
  1121. * around lazily while there are works to be processed.
  1122. */
  1123. smp_mb();
  1124. if (__need_more_worker(pool))
  1125. wake_up_worker(pool);
  1126. }
  1127. /*
  1128. * Test whether @work is being queued from another work executing on the
  1129. * same workqueue.
  1130. */
  1131. static bool is_chained_work(struct workqueue_struct *wq)
  1132. {
  1133. struct worker *worker;
  1134. worker = current_wq_worker();
  1135. /*
  1136. * Return %true iff I'm a worker execuing a work item on @wq. If
  1137. * I'm @worker, it's safe to dereference it without locking.
  1138. */
  1139. return worker && worker->current_pwq->wq == wq;
  1140. }
  1141. static void __queue_work(int cpu, struct workqueue_struct *wq,
  1142. struct work_struct *work)
  1143. {
  1144. struct pool_workqueue *pwq;
  1145. struct worker_pool *last_pool;
  1146. struct list_head *worklist;
  1147. unsigned int work_flags;
  1148. unsigned int req_cpu = cpu;
  1149. /*
  1150. * While a work item is PENDING && off queue, a task trying to
  1151. * steal the PENDING will busy-loop waiting for it to either get
  1152. * queued or lose PENDING. Grabbing PENDING and queueing should
  1153. * happen with IRQ disabled.
  1154. */
  1155. WARN_ON_ONCE(!irqs_disabled());
  1156. debug_work_activate(work);
  1157. /* if draining, only works from the same workqueue are allowed */
  1158. if (unlikely(wq->flags & __WQ_DRAINING) &&
  1159. WARN_ON_ONCE(!is_chained_work(wq)))
  1160. return;
  1161. retry:
  1162. if (req_cpu == WORK_CPU_UNBOUND)
  1163. cpu = raw_smp_processor_id();
  1164. /* pwq which will be used unless @work is executing elsewhere */
  1165. if (!(wq->flags & WQ_UNBOUND))
  1166. pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
  1167. else
  1168. pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
  1169. /*
  1170. * If @work was previously on a different pool, it might still be
  1171. * running there, in which case the work needs to be queued on that
  1172. * pool to guarantee non-reentrancy.
  1173. */
  1174. last_pool = get_work_pool(work);
  1175. if (last_pool && last_pool != pwq->pool) {
  1176. struct worker *worker;
  1177. spin_lock(&last_pool->lock);
  1178. worker = find_worker_executing_work(last_pool, work);
  1179. if (worker && worker->current_pwq->wq == wq) {
  1180. pwq = worker->current_pwq;
  1181. } else {
  1182. /* meh... not running there, queue here */
  1183. spin_unlock(&last_pool->lock);
  1184. spin_lock(&pwq->pool->lock);
  1185. }
  1186. } else {
  1187. spin_lock(&pwq->pool->lock);
  1188. }
  1189. /*
  1190. * pwq is determined and locked. For unbound pools, we could have
  1191. * raced with pwq release and it could already be dead. If its
  1192. * refcnt is zero, repeat pwq selection. Note that pwqs never die
  1193. * without another pwq replacing it in the numa_pwq_tbl or while
  1194. * work items are executing on it, so the retrying is guaranteed to
  1195. * make forward-progress.
  1196. */
  1197. if (unlikely(!pwq->refcnt)) {
  1198. if (wq->flags & WQ_UNBOUND) {
  1199. spin_unlock(&pwq->pool->lock);
  1200. cpu_relax();
  1201. goto retry;
  1202. }
  1203. /* oops */
  1204. WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
  1205. wq->name, cpu);
  1206. }
  1207. /* pwq determined, queue */
  1208. trace_workqueue_queue_work(req_cpu, pwq, work);
  1209. if (WARN_ON(!list_empty(&work->entry))) {
  1210. spin_unlock(&pwq->pool->lock);
  1211. return;
  1212. }
  1213. pwq->nr_in_flight[pwq->work_color]++;
  1214. work_flags = work_color_to_flags(pwq->work_color);
  1215. if (likely(pwq->nr_active < pwq->max_active)) {
  1216. trace_workqueue_activate_work(work);
  1217. pwq->nr_active++;
  1218. worklist = &pwq->pool->worklist;
  1219. } else {
  1220. work_flags |= WORK_STRUCT_DELAYED;
  1221. worklist = &pwq->delayed_works;
  1222. }
  1223. insert_work(pwq, work, worklist, work_flags);
  1224. spin_unlock(&pwq->pool->lock);
  1225. }
  1226. /**
  1227. * queue_work_on - queue work on specific cpu
  1228. * @cpu: CPU number to execute work on
  1229. * @wq: workqueue to use
  1230. * @work: work to queue
  1231. *
  1232. * We queue the work to a specific CPU, the caller must ensure it
  1233. * can't go away.
  1234. *
  1235. * Return: %false if @work was already on a queue, %true otherwise.
  1236. */
  1237. bool queue_work_on(int cpu, struct workqueue_struct *wq,
  1238. struct work_struct *work)
  1239. {
  1240. bool ret = false;
  1241. unsigned long flags;
  1242. local_irq_save(flags);
  1243. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1244. __queue_work(cpu, wq, work);
  1245. ret = true;
  1246. }
  1247. local_irq_restore(flags);
  1248. return ret;
  1249. }
  1250. EXPORT_SYMBOL(queue_work_on);
  1251. void delayed_work_timer_fn(unsigned long __data)
  1252. {
  1253. struct delayed_work *dwork = (struct delayed_work *)__data;
  1254. /* should have been called from irqsafe timer with irq already off */
  1255. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  1256. }
  1257. EXPORT_SYMBOL(delayed_work_timer_fn);
  1258. static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
  1259. struct delayed_work *dwork, unsigned long delay)
  1260. {
  1261. struct timer_list *timer = &dwork->timer;
  1262. struct work_struct *work = &dwork->work;
  1263. WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
  1264. timer->data != (unsigned long)dwork);
  1265. WARN_ON_ONCE(timer_pending(timer));
  1266. WARN_ON_ONCE(!list_empty(&work->entry));
  1267. /*
  1268. * If @delay is 0, queue @dwork->work immediately. This is for
  1269. * both optimization and correctness. The earliest @timer can
  1270. * expire is on the closest next tick and delayed_work users depend
  1271. * on that there's no such delay when @delay is 0.
  1272. */
  1273. if (!delay) {
  1274. __queue_work(cpu, wq, &dwork->work);
  1275. return;
  1276. }
  1277. timer_stats_timer_set_start_info(&dwork->timer);
  1278. dwork->wq = wq;
  1279. dwork->cpu = cpu;
  1280. timer->expires = jiffies + delay;
  1281. if (unlikely(cpu != WORK_CPU_UNBOUND))
  1282. add_timer_on(timer, cpu);
  1283. else
  1284. add_timer(timer);
  1285. }
  1286. /**
  1287. * queue_delayed_work_on - queue work on specific CPU after delay
  1288. * @cpu: CPU number to execute work on
  1289. * @wq: workqueue to use
  1290. * @dwork: work to queue
  1291. * @delay: number of jiffies to wait before queueing
  1292. *
  1293. * Return: %false if @work was already on a queue, %true otherwise. If
  1294. * @delay is zero and @dwork is idle, it will be scheduled for immediate
  1295. * execution.
  1296. */
  1297. bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1298. struct delayed_work *dwork, unsigned long delay)
  1299. {
  1300. struct work_struct *work = &dwork->work;
  1301. bool ret = false;
  1302. unsigned long flags;
  1303. /* read the comment in __queue_work() */
  1304. local_irq_save(flags);
  1305. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  1306. __queue_delayed_work(cpu, wq, dwork, delay);
  1307. ret = true;
  1308. }
  1309. local_irq_restore(flags);
  1310. return ret;
  1311. }
  1312. EXPORT_SYMBOL(queue_delayed_work_on);
  1313. /**
  1314. * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
  1315. * @cpu: CPU number to execute work on
  1316. * @wq: workqueue to use
  1317. * @dwork: work to queue
  1318. * @delay: number of jiffies to wait before queueing
  1319. *
  1320. * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
  1321. * modify @dwork's timer so that it expires after @delay. If @delay is
  1322. * zero, @work is guaranteed to be scheduled immediately regardless of its
  1323. * current state.
  1324. *
  1325. * Return: %false if @dwork was idle and queued, %true if @dwork was
  1326. * pending and its timer was modified.
  1327. *
  1328. * This function is safe to call from any context including IRQ handler.
  1329. * See try_to_grab_pending() for details.
  1330. */
  1331. bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
  1332. struct delayed_work *dwork, unsigned long delay)
  1333. {
  1334. unsigned long flags;
  1335. int ret;
  1336. do {
  1337. ret = try_to_grab_pending(&dwork->work, true, &flags);
  1338. } while (unlikely(ret == -EAGAIN));
  1339. if (likely(ret >= 0)) {
  1340. __queue_delayed_work(cpu, wq, dwork, delay);
  1341. local_irq_restore(flags);
  1342. }
  1343. /* -ENOENT from try_to_grab_pending() becomes %true */
  1344. return ret;
  1345. }
  1346. EXPORT_SYMBOL_GPL(mod_delayed_work_on);
  1347. /**
  1348. * worker_enter_idle - enter idle state
  1349. * @worker: worker which is entering idle state
  1350. *
  1351. * @worker is entering idle state. Update stats and idle timer if
  1352. * necessary.
  1353. *
  1354. * LOCKING:
  1355. * spin_lock_irq(pool->lock).
  1356. */
  1357. static void worker_enter_idle(struct worker *worker)
  1358. {
  1359. struct worker_pool *pool = worker->pool;
  1360. if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
  1361. WARN_ON_ONCE(!list_empty(&worker->entry) &&
  1362. (worker->hentry.next || worker->hentry.pprev)))
  1363. return;
  1364. /* can't use worker_set_flags(), also called from start_worker() */
  1365. worker->flags |= WORKER_IDLE;
  1366. pool->nr_idle++;
  1367. worker->last_active = jiffies;
  1368. /* idle_list is LIFO */
  1369. list_add(&worker->entry, &pool->idle_list);
  1370. if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
  1371. mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
  1372. /*
  1373. * Sanity check nr_running. Because wq_unbind_fn() releases
  1374. * pool->lock between setting %WORKER_UNBOUND and zapping
  1375. * nr_running, the warning may trigger spuriously. Check iff
  1376. * unbind is not in progress.
  1377. */
  1378. WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
  1379. pool->nr_workers == pool->nr_idle &&
  1380. atomic_read(&pool->nr_running));
  1381. }
  1382. /**
  1383. * worker_leave_idle - leave idle state
  1384. * @worker: worker which is leaving idle state
  1385. *
  1386. * @worker is leaving idle state. Update stats.
  1387. *
  1388. * LOCKING:
  1389. * spin_lock_irq(pool->lock).
  1390. */
  1391. static void worker_leave_idle(struct worker *worker)
  1392. {
  1393. struct worker_pool *pool = worker->pool;
  1394. if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
  1395. return;
  1396. worker_clr_flags(worker, WORKER_IDLE);
  1397. pool->nr_idle--;
  1398. list_del_init(&worker->entry);
  1399. }
  1400. /**
  1401. * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
  1402. * @pool: target worker_pool
  1403. *
  1404. * Bind %current to the cpu of @pool if it is associated and lock @pool.
  1405. *
  1406. * Works which are scheduled while the cpu is online must at least be
  1407. * scheduled to a worker which is bound to the cpu so that if they are
  1408. * flushed from cpu callbacks while cpu is going down, they are
  1409. * guaranteed to execute on the cpu.
  1410. *
  1411. * This function is to be used by unbound workers and rescuers to bind
  1412. * themselves to the target cpu and may race with cpu going down or
  1413. * coming online. kthread_bind() can't be used because it may put the
  1414. * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
  1415. * verbatim as it's best effort and blocking and pool may be
  1416. * [dis]associated in the meantime.
  1417. *
  1418. * This function tries set_cpus_allowed() and locks pool and verifies the
  1419. * binding against %POOL_DISASSOCIATED which is set during
  1420. * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
  1421. * enters idle state or fetches works without dropping lock, it can
  1422. * guarantee the scheduling requirement described in the first paragraph.
  1423. *
  1424. * CONTEXT:
  1425. * Might sleep. Called without any lock but returns with pool->lock
  1426. * held.
  1427. *
  1428. * Return:
  1429. * %true if the associated pool is online (@worker is successfully
  1430. * bound), %false if offline.
  1431. */
  1432. static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
  1433. __acquires(&pool->lock)
  1434. {
  1435. while (true) {
  1436. /*
  1437. * The following call may fail, succeed or succeed
  1438. * without actually migrating the task to the cpu if
  1439. * it races with cpu hotunplug operation. Verify
  1440. * against POOL_DISASSOCIATED.
  1441. */
  1442. if (!(pool->flags & POOL_DISASSOCIATED))
  1443. set_cpus_allowed_ptr(current, pool->attrs->cpumask);
  1444. spin_lock_irq(&pool->lock);
  1445. if (pool->flags & POOL_DISASSOCIATED)
  1446. return false;
  1447. if (task_cpu(current) == pool->cpu &&
  1448. cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
  1449. return true;
  1450. spin_unlock_irq(&pool->lock);
  1451. /*
  1452. * We've raced with CPU hot[un]plug. Give it a breather
  1453. * and retry migration. cond_resched() is required here;
  1454. * otherwise, we might deadlock against cpu_stop trying to
  1455. * bring down the CPU on non-preemptive kernel.
  1456. */
  1457. cpu_relax();
  1458. cond_resched();
  1459. }
  1460. }
  1461. static struct worker *alloc_worker(void)
  1462. {
  1463. struct worker *worker;
  1464. worker = kzalloc(sizeof(*worker), GFP_KERNEL);
  1465. if (worker) {
  1466. INIT_LIST_HEAD(&worker->entry);
  1467. INIT_LIST_HEAD(&worker->scheduled);
  1468. /* on creation a worker is in !idle && prep state */
  1469. worker->flags = WORKER_PREP;
  1470. }
  1471. return worker;
  1472. }
  1473. /**
  1474. * worker_detach_from_pool() - detach a worker from its pool
  1475. * @worker: worker which is attached to its pool
  1476. * @pool: the pool @worker is attached to
  1477. *
  1478. * Undo the attaching which had been done in create_worker(). The caller
  1479. * worker shouldn't access to the pool after detached except it has other
  1480. * reference to the pool.
  1481. */
  1482. static void worker_detach_from_pool(struct worker *worker,
  1483. struct worker_pool *pool)
  1484. {
  1485. struct completion *detach_completion = NULL;
  1486. mutex_lock(&pool->manager_mutex);
  1487. idr_remove(&pool->worker_idr, worker->id);
  1488. if (idr_is_empty(&pool->worker_idr))
  1489. detach_completion = pool->detach_completion;
  1490. mutex_unlock(&pool->manager_mutex);
  1491. if (detach_completion)
  1492. complete(detach_completion);
  1493. }
  1494. /**
  1495. * create_worker - create a new workqueue worker
  1496. * @pool: pool the new worker will belong to
  1497. *
  1498. * Create a new worker which is attached to @pool. The new worker must be
  1499. * started by start_worker().
  1500. *
  1501. * CONTEXT:
  1502. * Might sleep. Does GFP_KERNEL allocations.
  1503. *
  1504. * Return:
  1505. * Pointer to the newly created worker.
  1506. */
  1507. static struct worker *create_worker(struct worker_pool *pool)
  1508. {
  1509. struct worker *worker = NULL;
  1510. int id = -1;
  1511. char id_buf[16];
  1512. lockdep_assert_held(&pool->manager_mutex);
  1513. /*
  1514. * ID is needed to determine kthread name. Allocate ID first
  1515. * without installing the pointer.
  1516. */
  1517. id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_KERNEL);
  1518. if (id < 0)
  1519. goto fail;
  1520. worker = alloc_worker();
  1521. if (!worker)
  1522. goto fail;
  1523. worker->pool = pool;
  1524. worker->id = id;
  1525. if (pool->cpu >= 0)
  1526. snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
  1527. pool->attrs->nice < 0 ? "H" : "");
  1528. else
  1529. snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
  1530. worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
  1531. "kworker/%s", id_buf);
  1532. if (IS_ERR(worker->task))
  1533. goto fail;
  1534. set_user_nice(worker->task, pool->attrs->nice);
  1535. /* prevent userland from meddling with cpumask of workqueue workers */
  1536. worker->task->flags |= PF_NO_SETAFFINITY;
  1537. /*
  1538. * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
  1539. * online CPUs. It'll be re-applied when any of the CPUs come up.
  1540. */
  1541. set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
  1542. /*
  1543. * The caller is responsible for ensuring %POOL_DISASSOCIATED
  1544. * remains stable across this function. See the comments above the
  1545. * flag definition for details.
  1546. */
  1547. if (pool->flags & POOL_DISASSOCIATED)
  1548. worker->flags |= WORKER_UNBOUND;
  1549. /* successful, commit the pointer to idr */
  1550. idr_replace(&pool->worker_idr, worker, worker->id);
  1551. return worker;
  1552. fail:
  1553. if (id >= 0)
  1554. idr_remove(&pool->worker_idr, id);
  1555. kfree(worker);
  1556. return NULL;
  1557. }
  1558. /**
  1559. * start_worker - start a newly created worker
  1560. * @worker: worker to start
  1561. *
  1562. * Make the pool aware of @worker and start it.
  1563. *
  1564. * CONTEXT:
  1565. * spin_lock_irq(pool->lock).
  1566. */
  1567. static void start_worker(struct worker *worker)
  1568. {
  1569. worker->pool->nr_workers++;
  1570. worker_enter_idle(worker);
  1571. wake_up_process(worker->task);
  1572. }
  1573. /**
  1574. * create_and_start_worker - create and start a worker for a pool
  1575. * @pool: the target pool
  1576. *
  1577. * Grab the managership of @pool and create and start a new worker for it.
  1578. *
  1579. * Return: 0 on success. A negative error code otherwise.
  1580. */
  1581. static int create_and_start_worker(struct worker_pool *pool)
  1582. {
  1583. struct worker *worker;
  1584. mutex_lock(&pool->manager_mutex);
  1585. worker = create_worker(pool);
  1586. if (worker) {
  1587. spin_lock_irq(&pool->lock);
  1588. start_worker(worker);
  1589. spin_unlock_irq(&pool->lock);
  1590. }
  1591. mutex_unlock(&pool->manager_mutex);
  1592. return worker ? 0 : -ENOMEM;
  1593. }
  1594. /**
  1595. * destroy_worker - destroy a workqueue worker
  1596. * @worker: worker to be destroyed
  1597. *
  1598. * Destroy @worker and adjust @pool stats accordingly. The worker should
  1599. * be idle.
  1600. *
  1601. * CONTEXT:
  1602. * spin_lock_irq(pool->lock).
  1603. */
  1604. static void destroy_worker(struct worker *worker)
  1605. {
  1606. struct worker_pool *pool = worker->pool;
  1607. lockdep_assert_held(&pool->lock);
  1608. /* sanity check frenzy */
  1609. if (WARN_ON(worker->current_work) ||
  1610. WARN_ON(!list_empty(&worker->scheduled)) ||
  1611. WARN_ON(!(worker->flags & WORKER_IDLE)))
  1612. return;
  1613. pool->nr_workers--;
  1614. pool->nr_idle--;
  1615. list_del_init(&worker->entry);
  1616. worker->flags |= WORKER_DIE;
  1617. wake_up_process(worker->task);
  1618. }
  1619. static void idle_worker_timeout(unsigned long __pool)
  1620. {
  1621. struct worker_pool *pool = (void *)__pool;
  1622. spin_lock_irq(&pool->lock);
  1623. if (too_many_workers(pool)) {
  1624. struct worker *worker;
  1625. unsigned long expires;
  1626. /* idle_list is kept in LIFO order, check the last one */
  1627. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1628. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1629. if (time_before(jiffies, expires))
  1630. mod_timer(&pool->idle_timer, expires);
  1631. else {
  1632. /* it's been idle for too long, wake up manager */
  1633. pool->flags |= POOL_MANAGE_WORKERS;
  1634. wake_up_worker(pool);
  1635. }
  1636. }
  1637. spin_unlock_irq(&pool->lock);
  1638. }
  1639. static void send_mayday(struct work_struct *work)
  1640. {
  1641. struct pool_workqueue *pwq = get_work_pwq(work);
  1642. struct workqueue_struct *wq = pwq->wq;
  1643. lockdep_assert_held(&wq_mayday_lock);
  1644. if (!wq->rescuer)
  1645. return;
  1646. /* mayday mayday mayday */
  1647. if (list_empty(&pwq->mayday_node)) {
  1648. /*
  1649. * If @pwq is for an unbound wq, its base ref may be put at
  1650. * any time due to an attribute change. Pin @pwq until the
  1651. * rescuer is done with it.
  1652. */
  1653. get_pwq(pwq);
  1654. list_add_tail(&pwq->mayday_node, &wq->maydays);
  1655. wake_up_process(wq->rescuer->task);
  1656. }
  1657. }
  1658. static void pool_mayday_timeout(unsigned long __pool)
  1659. {
  1660. struct worker_pool *pool = (void *)__pool;
  1661. struct work_struct *work;
  1662. spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
  1663. spin_lock(&pool->lock);
  1664. if (need_to_create_worker(pool)) {
  1665. /*
  1666. * We've been trying to create a new worker but
  1667. * haven't been successful. We might be hitting an
  1668. * allocation deadlock. Send distress signals to
  1669. * rescuers.
  1670. */
  1671. list_for_each_entry(work, &pool->worklist, entry)
  1672. send_mayday(work);
  1673. }
  1674. spin_unlock(&pool->lock);
  1675. spin_unlock_irq(&wq_mayday_lock);
  1676. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
  1677. }
  1678. /**
  1679. * maybe_create_worker - create a new worker if necessary
  1680. * @pool: pool to create a new worker for
  1681. *
  1682. * Create a new worker for @pool if necessary. @pool is guaranteed to
  1683. * have at least one idle worker on return from this function. If
  1684. * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
  1685. * sent to all rescuers with works scheduled on @pool to resolve
  1686. * possible allocation deadlock.
  1687. *
  1688. * On return, need_to_create_worker() is guaranteed to be %false and
  1689. * may_start_working() %true.
  1690. *
  1691. * LOCKING:
  1692. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1693. * multiple times. Does GFP_KERNEL allocations. Called only from
  1694. * manager.
  1695. *
  1696. * Return:
  1697. * %false if no action was taken and pool->lock stayed locked, %true
  1698. * otherwise.
  1699. */
  1700. static bool maybe_create_worker(struct worker_pool *pool)
  1701. __releases(&pool->lock)
  1702. __acquires(&pool->lock)
  1703. {
  1704. if (!need_to_create_worker(pool))
  1705. return false;
  1706. restart:
  1707. spin_unlock_irq(&pool->lock);
  1708. /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
  1709. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
  1710. while (true) {
  1711. struct worker *worker;
  1712. worker = create_worker(pool);
  1713. if (worker) {
  1714. del_timer_sync(&pool->mayday_timer);
  1715. spin_lock_irq(&pool->lock);
  1716. start_worker(worker);
  1717. if (WARN_ON_ONCE(need_to_create_worker(pool)))
  1718. goto restart;
  1719. return true;
  1720. }
  1721. if (!need_to_create_worker(pool))
  1722. break;
  1723. __set_current_state(TASK_INTERRUPTIBLE);
  1724. schedule_timeout(CREATE_COOLDOWN);
  1725. if (!need_to_create_worker(pool))
  1726. break;
  1727. }
  1728. del_timer_sync(&pool->mayday_timer);
  1729. spin_lock_irq(&pool->lock);
  1730. if (need_to_create_worker(pool))
  1731. goto restart;
  1732. return true;
  1733. }
  1734. /**
  1735. * maybe_destroy_worker - destroy workers which have been idle for a while
  1736. * @pool: pool to destroy workers for
  1737. *
  1738. * Destroy @pool workers which have been idle for longer than
  1739. * IDLE_WORKER_TIMEOUT.
  1740. *
  1741. * LOCKING:
  1742. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1743. * multiple times. Called only from manager.
  1744. *
  1745. * Return:
  1746. * %false if no action was taken and pool->lock stayed locked, %true
  1747. * otherwise.
  1748. */
  1749. static bool maybe_destroy_workers(struct worker_pool *pool)
  1750. {
  1751. bool ret = false;
  1752. while (too_many_workers(pool)) {
  1753. struct worker *worker;
  1754. unsigned long expires;
  1755. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1756. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1757. if (time_before(jiffies, expires)) {
  1758. mod_timer(&pool->idle_timer, expires);
  1759. break;
  1760. }
  1761. destroy_worker(worker);
  1762. ret = true;
  1763. }
  1764. return ret;
  1765. }
  1766. /**
  1767. * manage_workers - manage worker pool
  1768. * @worker: self
  1769. *
  1770. * Assume the manager role and manage the worker pool @worker belongs
  1771. * to. At any given time, there can be only zero or one manager per
  1772. * pool. The exclusion is handled automatically by this function.
  1773. *
  1774. * The caller can safely start processing works on false return. On
  1775. * true return, it's guaranteed that need_to_create_worker() is false
  1776. * and may_start_working() is true.
  1777. *
  1778. * CONTEXT:
  1779. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1780. * multiple times. Does GFP_KERNEL allocations.
  1781. *
  1782. * Return:
  1783. * %false if the pool don't need management and the caller can safely start
  1784. * processing works, %true indicates that the function released pool->lock
  1785. * and reacquired it to perform some management function and that the
  1786. * conditions that the caller verified while holding the lock before
  1787. * calling the function might no longer be true.
  1788. */
  1789. static bool manage_workers(struct worker *worker)
  1790. {
  1791. struct worker_pool *pool = worker->pool;
  1792. bool ret = false;
  1793. /*
  1794. * Managership is governed by two mutexes - manager_arb and
  1795. * manager_mutex. manager_arb handles arbitration of manager role.
  1796. * Anyone who successfully grabs manager_arb wins the arbitration
  1797. * and becomes the manager. mutex_trylock() on pool->manager_arb
  1798. * failure while holding pool->lock reliably indicates that someone
  1799. * else is managing the pool and the worker which failed trylock
  1800. * can proceed to executing work items. This means that anyone
  1801. * grabbing manager_arb is responsible for actually performing
  1802. * manager duties. If manager_arb is grabbed and released without
  1803. * actual management, the pool may stall indefinitely.
  1804. *
  1805. * manager_mutex is used for exclusion of actual management
  1806. * operations. The holder of manager_mutex can be sure that none
  1807. * of management operations, including creation and destruction of
  1808. * workers, won't take place until the mutex is released. Because
  1809. * manager_mutex doesn't interfere with manager role arbitration,
  1810. * it is guaranteed that the pool's management, while may be
  1811. * delayed, won't be disturbed by someone else grabbing
  1812. * manager_mutex.
  1813. */
  1814. if (!mutex_trylock(&pool->manager_arb))
  1815. return ret;
  1816. /*
  1817. * With manager arbitration won, manager_mutex would be free in
  1818. * most cases. trylock first without dropping @pool->lock.
  1819. */
  1820. if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
  1821. spin_unlock_irq(&pool->lock);
  1822. mutex_lock(&pool->manager_mutex);
  1823. spin_lock_irq(&pool->lock);
  1824. ret = true;
  1825. }
  1826. pool->flags &= ~POOL_MANAGE_WORKERS;
  1827. /*
  1828. * Destroy and then create so that may_start_working() is true
  1829. * on return.
  1830. */
  1831. ret |= maybe_destroy_workers(pool);
  1832. ret |= maybe_create_worker(pool);
  1833. mutex_unlock(&pool->manager_mutex);
  1834. mutex_unlock(&pool->manager_arb);
  1835. return ret;
  1836. }
  1837. /**
  1838. * process_one_work - process single work
  1839. * @worker: self
  1840. * @work: work to process
  1841. *
  1842. * Process @work. This function contains all the logics necessary to
  1843. * process a single work including synchronization against and
  1844. * interaction with other workers on the same cpu, queueing and
  1845. * flushing. As long as context requirement is met, any worker can
  1846. * call this function to process a work.
  1847. *
  1848. * CONTEXT:
  1849. * spin_lock_irq(pool->lock) which is released and regrabbed.
  1850. */
  1851. static void process_one_work(struct worker *worker, struct work_struct *work)
  1852. __releases(&pool->lock)
  1853. __acquires(&pool->lock)
  1854. {
  1855. struct pool_workqueue *pwq = get_work_pwq(work);
  1856. struct worker_pool *pool = worker->pool;
  1857. bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
  1858. int work_color;
  1859. struct worker *collision;
  1860. #ifdef CONFIG_LOCKDEP
  1861. /*
  1862. * It is permissible to free the struct work_struct from
  1863. * inside the function that is called from it, this we need to
  1864. * take into account for lockdep too. To avoid bogus "held
  1865. * lock freed" warnings as well as problems when looking into
  1866. * work->lockdep_map, make a copy and use that here.
  1867. */
  1868. struct lockdep_map lockdep_map;
  1869. lockdep_copy_map(&lockdep_map, &work->lockdep_map);
  1870. #endif
  1871. /*
  1872. * Ensure we're on the correct CPU. DISASSOCIATED test is
  1873. * necessary to avoid spurious warnings from rescuers servicing the
  1874. * unbound or a disassociated pool.
  1875. */
  1876. WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
  1877. !(pool->flags & POOL_DISASSOCIATED) &&
  1878. raw_smp_processor_id() != pool->cpu);
  1879. /*
  1880. * A single work shouldn't be executed concurrently by
  1881. * multiple workers on a single cpu. Check whether anyone is
  1882. * already processing the work. If so, defer the work to the
  1883. * currently executing one.
  1884. */
  1885. collision = find_worker_executing_work(pool, work);
  1886. if (unlikely(collision)) {
  1887. move_linked_works(work, &collision->scheduled, NULL);
  1888. return;
  1889. }
  1890. /* claim and dequeue */
  1891. debug_work_deactivate(work);
  1892. hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
  1893. worker->current_work = work;
  1894. worker->current_func = work->func;
  1895. worker->current_pwq = pwq;
  1896. work_color = get_work_color(work);
  1897. list_del_init(&work->entry);
  1898. /*
  1899. * CPU intensive works don't participate in concurrency
  1900. * management. They're the scheduler's responsibility.
  1901. */
  1902. if (unlikely(cpu_intensive))
  1903. worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
  1904. /*
  1905. * Unbound pool isn't concurrency managed and work items should be
  1906. * executed ASAP. Wake up another worker if necessary.
  1907. */
  1908. if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
  1909. wake_up_worker(pool);
  1910. /*
  1911. * Record the last pool and clear PENDING which should be the last
  1912. * update to @work. Also, do this inside @pool->lock so that
  1913. * PENDING and queued state changes happen together while IRQ is
  1914. * disabled.
  1915. */
  1916. set_work_pool_and_clear_pending(work, pool->id);
  1917. spin_unlock_irq(&pool->lock);
  1918. lock_map_acquire_read(&pwq->wq->lockdep_map);
  1919. lock_map_acquire(&lockdep_map);
  1920. trace_workqueue_execute_start(work);
  1921. worker->current_func(work);
  1922. /*
  1923. * While we must be careful to not use "work" after this, the trace
  1924. * point will only record its address.
  1925. */
  1926. trace_workqueue_execute_end(work);
  1927. lock_map_release(&lockdep_map);
  1928. lock_map_release(&pwq->wq->lockdep_map);
  1929. if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
  1930. pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
  1931. " last function: %pf\n",
  1932. current->comm, preempt_count(), task_pid_nr(current),
  1933. worker->current_func);
  1934. debug_show_held_locks(current);
  1935. dump_stack();
  1936. }
  1937. /*
  1938. * The following prevents a kworker from hogging CPU on !PREEMPT
  1939. * kernels, where a requeueing work item waiting for something to
  1940. * happen could deadlock with stop_machine as such work item could
  1941. * indefinitely requeue itself while all other CPUs are trapped in
  1942. * stop_machine.
  1943. */
  1944. cond_resched();
  1945. spin_lock_irq(&pool->lock);
  1946. /* clear cpu intensive status */
  1947. if (unlikely(cpu_intensive))
  1948. worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
  1949. /* we're done with it, release */
  1950. hash_del(&worker->hentry);
  1951. worker->current_work = NULL;
  1952. worker->current_func = NULL;
  1953. worker->current_pwq = NULL;
  1954. worker->desc_valid = false;
  1955. pwq_dec_nr_in_flight(pwq, work_color);
  1956. }
  1957. /**
  1958. * process_scheduled_works - process scheduled works
  1959. * @worker: self
  1960. *
  1961. * Process all scheduled works. Please note that the scheduled list
  1962. * may change while processing a work, so this function repeatedly
  1963. * fetches a work from the top and executes it.
  1964. *
  1965. * CONTEXT:
  1966. * spin_lock_irq(pool->lock) which may be released and regrabbed
  1967. * multiple times.
  1968. */
  1969. static void process_scheduled_works(struct worker *worker)
  1970. {
  1971. while (!list_empty(&worker->scheduled)) {
  1972. struct work_struct *work = list_first_entry(&worker->scheduled,
  1973. struct work_struct, entry);
  1974. process_one_work(worker, work);
  1975. }
  1976. }
  1977. /**
  1978. * worker_thread - the worker thread function
  1979. * @__worker: self
  1980. *
  1981. * The worker thread function. All workers belong to a worker_pool -
  1982. * either a per-cpu one or dynamic unbound one. These workers process all
  1983. * work items regardless of their specific target workqueue. The only
  1984. * exception is work items which belong to workqueues with a rescuer which
  1985. * will be explained in rescuer_thread().
  1986. *
  1987. * Return: 0
  1988. */
  1989. static int worker_thread(void *__worker)
  1990. {
  1991. struct worker *worker = __worker;
  1992. struct worker_pool *pool = worker->pool;
  1993. /* tell the scheduler that this is a workqueue worker */
  1994. worker->task->flags |= PF_WQ_WORKER;
  1995. woke_up:
  1996. spin_lock_irq(&pool->lock);
  1997. /* am I supposed to die? */
  1998. if (unlikely(worker->flags & WORKER_DIE)) {
  1999. spin_unlock_irq(&pool->lock);
  2000. WARN_ON_ONCE(!list_empty(&worker->entry));
  2001. worker->task->flags &= ~PF_WQ_WORKER;
  2002. set_task_comm(worker->task, "kworker/dying");
  2003. worker_detach_from_pool(worker, pool);
  2004. kfree(worker);
  2005. return 0;
  2006. }
  2007. worker_leave_idle(worker);
  2008. recheck:
  2009. /* no more worker necessary? */
  2010. if (!need_more_worker(pool))
  2011. goto sleep;
  2012. /* do we need to manage? */
  2013. if (unlikely(!may_start_working(pool)) && manage_workers(worker))
  2014. goto recheck;
  2015. /*
  2016. * ->scheduled list can only be filled while a worker is
  2017. * preparing to process a work or actually processing it.
  2018. * Make sure nobody diddled with it while I was sleeping.
  2019. */
  2020. WARN_ON_ONCE(!list_empty(&worker->scheduled));
  2021. /*
  2022. * Finish PREP stage. We're guaranteed to have at least one idle
  2023. * worker or that someone else has already assumed the manager
  2024. * role. This is where @worker starts participating in concurrency
  2025. * management if applicable and concurrency management is restored
  2026. * after being rebound. See rebind_workers() for details.
  2027. */
  2028. worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
  2029. do {
  2030. struct work_struct *work =
  2031. list_first_entry(&pool->worklist,
  2032. struct work_struct, entry);
  2033. if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
  2034. /* optimization path, not strictly necessary */
  2035. process_one_work(worker, work);
  2036. if (unlikely(!list_empty(&worker->scheduled)))
  2037. process_scheduled_works(worker);
  2038. } else {
  2039. move_linked_works(work, &worker->scheduled, NULL);
  2040. process_scheduled_works(worker);
  2041. }
  2042. } while (keep_working(pool));
  2043. worker_set_flags(worker, WORKER_PREP, false);
  2044. sleep:
  2045. if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
  2046. goto recheck;
  2047. /*
  2048. * pool->lock is held and there's no work to process and no need to
  2049. * manage, sleep. Workers are woken up only while holding
  2050. * pool->lock or from local cpu, so setting the current state
  2051. * before releasing pool->lock is enough to prevent losing any
  2052. * event.
  2053. */
  2054. worker_enter_idle(worker);
  2055. __set_current_state(TASK_INTERRUPTIBLE);
  2056. spin_unlock_irq(&pool->lock);
  2057. schedule();
  2058. goto woke_up;
  2059. }
  2060. /**
  2061. * rescuer_thread - the rescuer thread function
  2062. * @__rescuer: self
  2063. *
  2064. * Workqueue rescuer thread function. There's one rescuer for each
  2065. * workqueue which has WQ_MEM_RECLAIM set.
  2066. *
  2067. * Regular work processing on a pool may block trying to create a new
  2068. * worker which uses GFP_KERNEL allocation which has slight chance of
  2069. * developing into deadlock if some works currently on the same queue
  2070. * need to be processed to satisfy the GFP_KERNEL allocation. This is
  2071. * the problem rescuer solves.
  2072. *
  2073. * When such condition is possible, the pool summons rescuers of all
  2074. * workqueues which have works queued on the pool and let them process
  2075. * those works so that forward progress can be guaranteed.
  2076. *
  2077. * This should happen rarely.
  2078. *
  2079. * Return: 0
  2080. */
  2081. static int rescuer_thread(void *__rescuer)
  2082. {
  2083. struct worker *rescuer = __rescuer;
  2084. struct workqueue_struct *wq = rescuer->rescue_wq;
  2085. struct list_head *scheduled = &rescuer->scheduled;
  2086. bool should_stop;
  2087. set_user_nice(current, RESCUER_NICE_LEVEL);
  2088. /*
  2089. * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
  2090. * doesn't participate in concurrency management.
  2091. */
  2092. rescuer->task->flags |= PF_WQ_WORKER;
  2093. repeat:
  2094. set_current_state(TASK_INTERRUPTIBLE);
  2095. /*
  2096. * By the time the rescuer is requested to stop, the workqueue
  2097. * shouldn't have any work pending, but @wq->maydays may still have
  2098. * pwq(s) queued. This can happen by non-rescuer workers consuming
  2099. * all the work items before the rescuer got to them. Go through
  2100. * @wq->maydays processing before acting on should_stop so that the
  2101. * list is always empty on exit.
  2102. */
  2103. should_stop = kthread_should_stop();
  2104. /* see whether any pwq is asking for help */
  2105. spin_lock_irq(&wq_mayday_lock);
  2106. while (!list_empty(&wq->maydays)) {
  2107. struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
  2108. struct pool_workqueue, mayday_node);
  2109. struct worker_pool *pool = pwq->pool;
  2110. struct work_struct *work, *n;
  2111. __set_current_state(TASK_RUNNING);
  2112. list_del_init(&pwq->mayday_node);
  2113. spin_unlock_irq(&wq_mayday_lock);
  2114. /* migrate to the target cpu if possible */
  2115. worker_maybe_bind_and_lock(pool);
  2116. rescuer->pool = pool;
  2117. /*
  2118. * Slurp in all works issued via this workqueue and
  2119. * process'em.
  2120. */
  2121. WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
  2122. list_for_each_entry_safe(work, n, &pool->worklist, entry)
  2123. if (get_work_pwq(work) == pwq)
  2124. move_linked_works(work, scheduled, &n);
  2125. process_scheduled_works(rescuer);
  2126. /*
  2127. * Put the reference grabbed by send_mayday(). @pool won't
  2128. * go away while we're holding its lock.
  2129. */
  2130. put_pwq(pwq);
  2131. /*
  2132. * Leave this pool. If keep_working() is %true, notify a
  2133. * regular worker; otherwise, we end up with 0 concurrency
  2134. * and stalling the execution.
  2135. */
  2136. if (keep_working(pool))
  2137. wake_up_worker(pool);
  2138. rescuer->pool = NULL;
  2139. spin_unlock(&pool->lock);
  2140. spin_lock(&wq_mayday_lock);
  2141. }
  2142. spin_unlock_irq(&wq_mayday_lock);
  2143. if (should_stop) {
  2144. __set_current_state(TASK_RUNNING);
  2145. rescuer->task->flags &= ~PF_WQ_WORKER;
  2146. return 0;
  2147. }
  2148. /* rescuers should never participate in concurrency management */
  2149. WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
  2150. schedule();
  2151. goto repeat;
  2152. }
  2153. struct wq_barrier {
  2154. struct work_struct work;
  2155. struct completion done;
  2156. };
  2157. static void wq_barrier_func(struct work_struct *work)
  2158. {
  2159. struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
  2160. complete(&barr->done);
  2161. }
  2162. /**
  2163. * insert_wq_barrier - insert a barrier work
  2164. * @pwq: pwq to insert barrier into
  2165. * @barr: wq_barrier to insert
  2166. * @target: target work to attach @barr to
  2167. * @worker: worker currently executing @target, NULL if @target is not executing
  2168. *
  2169. * @barr is linked to @target such that @barr is completed only after
  2170. * @target finishes execution. Please note that the ordering
  2171. * guarantee is observed only with respect to @target and on the local
  2172. * cpu.
  2173. *
  2174. * Currently, a queued barrier can't be canceled. This is because
  2175. * try_to_grab_pending() can't determine whether the work to be
  2176. * grabbed is at the head of the queue and thus can't clear LINKED
  2177. * flag of the previous work while there must be a valid next work
  2178. * after a work with LINKED flag set.
  2179. *
  2180. * Note that when @worker is non-NULL, @target may be modified
  2181. * underneath us, so we can't reliably determine pwq from @target.
  2182. *
  2183. * CONTEXT:
  2184. * spin_lock_irq(pool->lock).
  2185. */
  2186. static void insert_wq_barrier(struct pool_workqueue *pwq,
  2187. struct wq_barrier *barr,
  2188. struct work_struct *target, struct worker *worker)
  2189. {
  2190. struct list_head *head;
  2191. unsigned int linked = 0;
  2192. /*
  2193. * debugobject calls are safe here even with pool->lock locked
  2194. * as we know for sure that this will not trigger any of the
  2195. * checks and call back into the fixup functions where we
  2196. * might deadlock.
  2197. */
  2198. INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
  2199. __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
  2200. init_completion(&barr->done);
  2201. /*
  2202. * If @target is currently being executed, schedule the
  2203. * barrier to the worker; otherwise, put it after @target.
  2204. */
  2205. if (worker)
  2206. head = worker->scheduled.next;
  2207. else {
  2208. unsigned long *bits = work_data_bits(target);
  2209. head = target->entry.next;
  2210. /* there can already be other linked works, inherit and set */
  2211. linked = *bits & WORK_STRUCT_LINKED;
  2212. __set_bit(WORK_STRUCT_LINKED_BIT, bits);
  2213. }
  2214. debug_work_activate(&barr->work);
  2215. insert_work(pwq, &barr->work, head,
  2216. work_color_to_flags(WORK_NO_COLOR) | linked);
  2217. }
  2218. /**
  2219. * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
  2220. * @wq: workqueue being flushed
  2221. * @flush_color: new flush color, < 0 for no-op
  2222. * @work_color: new work color, < 0 for no-op
  2223. *
  2224. * Prepare pwqs for workqueue flushing.
  2225. *
  2226. * If @flush_color is non-negative, flush_color on all pwqs should be
  2227. * -1. If no pwq has in-flight commands at the specified color, all
  2228. * pwq->flush_color's stay at -1 and %false is returned. If any pwq
  2229. * has in flight commands, its pwq->flush_color is set to
  2230. * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
  2231. * wakeup logic is armed and %true is returned.
  2232. *
  2233. * The caller should have initialized @wq->first_flusher prior to
  2234. * calling this function with non-negative @flush_color. If
  2235. * @flush_color is negative, no flush color update is done and %false
  2236. * is returned.
  2237. *
  2238. * If @work_color is non-negative, all pwqs should have the same
  2239. * work_color which is previous to @work_color and all will be
  2240. * advanced to @work_color.
  2241. *
  2242. * CONTEXT:
  2243. * mutex_lock(wq->mutex).
  2244. *
  2245. * Return:
  2246. * %true if @flush_color >= 0 and there's something to flush. %false
  2247. * otherwise.
  2248. */
  2249. static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
  2250. int flush_color, int work_color)
  2251. {
  2252. bool wait = false;
  2253. struct pool_workqueue *pwq;
  2254. if (flush_color >= 0) {
  2255. WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
  2256. atomic_set(&wq->nr_pwqs_to_flush, 1);
  2257. }
  2258. for_each_pwq(pwq, wq) {
  2259. struct worker_pool *pool = pwq->pool;
  2260. spin_lock_irq(&pool->lock);
  2261. if (flush_color >= 0) {
  2262. WARN_ON_ONCE(pwq->flush_color != -1);
  2263. if (pwq->nr_in_flight[flush_color]) {
  2264. pwq->flush_color = flush_color;
  2265. atomic_inc(&wq->nr_pwqs_to_flush);
  2266. wait = true;
  2267. }
  2268. }
  2269. if (work_color >= 0) {
  2270. WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
  2271. pwq->work_color = work_color;
  2272. }
  2273. spin_unlock_irq(&pool->lock);
  2274. }
  2275. if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
  2276. complete(&wq->first_flusher->done);
  2277. return wait;
  2278. }
  2279. /**
  2280. * flush_workqueue - ensure that any scheduled work has run to completion.
  2281. * @wq: workqueue to flush
  2282. *
  2283. * This function sleeps until all work items which were queued on entry
  2284. * have finished execution, but it is not livelocked by new incoming ones.
  2285. */
  2286. void flush_workqueue(struct workqueue_struct *wq)
  2287. {
  2288. struct wq_flusher this_flusher = {
  2289. .list = LIST_HEAD_INIT(this_flusher.list),
  2290. .flush_color = -1,
  2291. .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
  2292. };
  2293. int next_color;
  2294. lock_map_acquire(&wq->lockdep_map);
  2295. lock_map_release(&wq->lockdep_map);
  2296. mutex_lock(&wq->mutex);
  2297. /*
  2298. * Start-to-wait phase
  2299. */
  2300. next_color = work_next_color(wq->work_color);
  2301. if (next_color != wq->flush_color) {
  2302. /*
  2303. * Color space is not full. The current work_color
  2304. * becomes our flush_color and work_color is advanced
  2305. * by one.
  2306. */
  2307. WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
  2308. this_flusher.flush_color = wq->work_color;
  2309. wq->work_color = next_color;
  2310. if (!wq->first_flusher) {
  2311. /* no flush in progress, become the first flusher */
  2312. WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
  2313. wq->first_flusher = &this_flusher;
  2314. if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
  2315. wq->work_color)) {
  2316. /* nothing to flush, done */
  2317. wq->flush_color = next_color;
  2318. wq->first_flusher = NULL;
  2319. goto out_unlock;
  2320. }
  2321. } else {
  2322. /* wait in queue */
  2323. WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
  2324. list_add_tail(&this_flusher.list, &wq->flusher_queue);
  2325. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2326. }
  2327. } else {
  2328. /*
  2329. * Oops, color space is full, wait on overflow queue.
  2330. * The next flush completion will assign us
  2331. * flush_color and transfer to flusher_queue.
  2332. */
  2333. list_add_tail(&this_flusher.list, &wq->flusher_overflow);
  2334. }
  2335. mutex_unlock(&wq->mutex);
  2336. wait_for_completion(&this_flusher.done);
  2337. /*
  2338. * Wake-up-and-cascade phase
  2339. *
  2340. * First flushers are responsible for cascading flushes and
  2341. * handling overflow. Non-first flushers can simply return.
  2342. */
  2343. if (wq->first_flusher != &this_flusher)
  2344. return;
  2345. mutex_lock(&wq->mutex);
  2346. /* we might have raced, check again with mutex held */
  2347. if (wq->first_flusher != &this_flusher)
  2348. goto out_unlock;
  2349. wq->first_flusher = NULL;
  2350. WARN_ON_ONCE(!list_empty(&this_flusher.list));
  2351. WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
  2352. while (true) {
  2353. struct wq_flusher *next, *tmp;
  2354. /* complete all the flushers sharing the current flush color */
  2355. list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
  2356. if (next->flush_color != wq->flush_color)
  2357. break;
  2358. list_del_init(&next->list);
  2359. complete(&next->done);
  2360. }
  2361. WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
  2362. wq->flush_color != work_next_color(wq->work_color));
  2363. /* this flush_color is finished, advance by one */
  2364. wq->flush_color = work_next_color(wq->flush_color);
  2365. /* one color has been freed, handle overflow queue */
  2366. if (!list_empty(&wq->flusher_overflow)) {
  2367. /*
  2368. * Assign the same color to all overflowed
  2369. * flushers, advance work_color and append to
  2370. * flusher_queue. This is the start-to-wait
  2371. * phase for these overflowed flushers.
  2372. */
  2373. list_for_each_entry(tmp, &wq->flusher_overflow, list)
  2374. tmp->flush_color = wq->work_color;
  2375. wq->work_color = work_next_color(wq->work_color);
  2376. list_splice_tail_init(&wq->flusher_overflow,
  2377. &wq->flusher_queue);
  2378. flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
  2379. }
  2380. if (list_empty(&wq->flusher_queue)) {
  2381. WARN_ON_ONCE(wq->flush_color != wq->work_color);
  2382. break;
  2383. }
  2384. /*
  2385. * Need to flush more colors. Make the next flusher
  2386. * the new first flusher and arm pwqs.
  2387. */
  2388. WARN_ON_ONCE(wq->flush_color == wq->work_color);
  2389. WARN_ON_ONCE(wq->flush_color != next->flush_color);
  2390. list_del_init(&next->list);
  2391. wq->first_flusher = next;
  2392. if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
  2393. break;
  2394. /*
  2395. * Meh... this color is already done, clear first
  2396. * flusher and repeat cascading.
  2397. */
  2398. wq->first_flusher = NULL;
  2399. }
  2400. out_unlock:
  2401. mutex_unlock(&wq->mutex);
  2402. }
  2403. EXPORT_SYMBOL_GPL(flush_workqueue);
  2404. /**
  2405. * drain_workqueue - drain a workqueue
  2406. * @wq: workqueue to drain
  2407. *
  2408. * Wait until the workqueue becomes empty. While draining is in progress,
  2409. * only chain queueing is allowed. IOW, only currently pending or running
  2410. * work items on @wq can queue further work items on it. @wq is flushed
  2411. * repeatedly until it becomes empty. The number of flushing is detemined
  2412. * by the depth of chaining and should be relatively short. Whine if it
  2413. * takes too long.
  2414. */
  2415. void drain_workqueue(struct workqueue_struct *wq)
  2416. {
  2417. unsigned int flush_cnt = 0;
  2418. struct pool_workqueue *pwq;
  2419. /*
  2420. * __queue_work() needs to test whether there are drainers, is much
  2421. * hotter than drain_workqueue() and already looks at @wq->flags.
  2422. * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
  2423. */
  2424. mutex_lock(&wq->mutex);
  2425. if (!wq->nr_drainers++)
  2426. wq->flags |= __WQ_DRAINING;
  2427. mutex_unlock(&wq->mutex);
  2428. reflush:
  2429. flush_workqueue(wq);
  2430. mutex_lock(&wq->mutex);
  2431. for_each_pwq(pwq, wq) {
  2432. bool drained;
  2433. spin_lock_irq(&pwq->pool->lock);
  2434. drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
  2435. spin_unlock_irq(&pwq->pool->lock);
  2436. if (drained)
  2437. continue;
  2438. if (++flush_cnt == 10 ||
  2439. (flush_cnt % 100 == 0 && flush_cnt <= 1000))
  2440. pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
  2441. wq->name, flush_cnt);
  2442. mutex_unlock(&wq->mutex);
  2443. goto reflush;
  2444. }
  2445. if (!--wq->nr_drainers)
  2446. wq->flags &= ~__WQ_DRAINING;
  2447. mutex_unlock(&wq->mutex);
  2448. }
  2449. EXPORT_SYMBOL_GPL(drain_workqueue);
  2450. static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
  2451. {
  2452. struct worker *worker = NULL;
  2453. struct worker_pool *pool;
  2454. struct pool_workqueue *pwq;
  2455. might_sleep();
  2456. local_irq_disable();
  2457. pool = get_work_pool(work);
  2458. if (!pool) {
  2459. local_irq_enable();
  2460. return false;
  2461. }
  2462. spin_lock(&pool->lock);
  2463. /* see the comment in try_to_grab_pending() with the same code */
  2464. pwq = get_work_pwq(work);
  2465. if (pwq) {
  2466. if (unlikely(pwq->pool != pool))
  2467. goto already_gone;
  2468. } else {
  2469. worker = find_worker_executing_work(pool, work);
  2470. if (!worker)
  2471. goto already_gone;
  2472. pwq = worker->current_pwq;
  2473. }
  2474. insert_wq_barrier(pwq, barr, work, worker);
  2475. spin_unlock_irq(&pool->lock);
  2476. /*
  2477. * If @max_active is 1 or rescuer is in use, flushing another work
  2478. * item on the same workqueue may lead to deadlock. Make sure the
  2479. * flusher is not running on the same workqueue by verifying write
  2480. * access.
  2481. */
  2482. if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
  2483. lock_map_acquire(&pwq->wq->lockdep_map);
  2484. else
  2485. lock_map_acquire_read(&pwq->wq->lockdep_map);
  2486. lock_map_release(&pwq->wq->lockdep_map);
  2487. return true;
  2488. already_gone:
  2489. spin_unlock_irq(&pool->lock);
  2490. return false;
  2491. }
  2492. /**
  2493. * flush_work - wait for a work to finish executing the last queueing instance
  2494. * @work: the work to flush
  2495. *
  2496. * Wait until @work has finished execution. @work is guaranteed to be idle
  2497. * on return if it hasn't been requeued since flush started.
  2498. *
  2499. * Return:
  2500. * %true if flush_work() waited for the work to finish execution,
  2501. * %false if it was already idle.
  2502. */
  2503. bool flush_work(struct work_struct *work)
  2504. {
  2505. struct wq_barrier barr;
  2506. lock_map_acquire(&work->lockdep_map);
  2507. lock_map_release(&work->lockdep_map);
  2508. if (start_flush_work(work, &barr)) {
  2509. wait_for_completion(&barr.done);
  2510. destroy_work_on_stack(&barr.work);
  2511. return true;
  2512. } else {
  2513. return false;
  2514. }
  2515. }
  2516. EXPORT_SYMBOL_GPL(flush_work);
  2517. static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
  2518. {
  2519. unsigned long flags;
  2520. int ret;
  2521. do {
  2522. ret = try_to_grab_pending(work, is_dwork, &flags);
  2523. /*
  2524. * If someone else is canceling, wait for the same event it
  2525. * would be waiting for before retrying.
  2526. */
  2527. if (unlikely(ret == -ENOENT))
  2528. flush_work(work);
  2529. } while (unlikely(ret < 0));
  2530. /* tell other tasks trying to grab @work to back off */
  2531. mark_work_canceling(work);
  2532. local_irq_restore(flags);
  2533. flush_work(work);
  2534. clear_work_data(work);
  2535. return ret;
  2536. }
  2537. /**
  2538. * cancel_work_sync - cancel a work and wait for it to finish
  2539. * @work: the work to cancel
  2540. *
  2541. * Cancel @work and wait for its execution to finish. This function
  2542. * can be used even if the work re-queues itself or migrates to
  2543. * another workqueue. On return from this function, @work is
  2544. * guaranteed to be not pending or executing on any CPU.
  2545. *
  2546. * cancel_work_sync(&delayed_work->work) must not be used for
  2547. * delayed_work's. Use cancel_delayed_work_sync() instead.
  2548. *
  2549. * The caller must ensure that the workqueue on which @work was last
  2550. * queued can't be destroyed before this function returns.
  2551. *
  2552. * Return:
  2553. * %true if @work was pending, %false otherwise.
  2554. */
  2555. bool cancel_work_sync(struct work_struct *work)
  2556. {
  2557. return __cancel_work_timer(work, false);
  2558. }
  2559. EXPORT_SYMBOL_GPL(cancel_work_sync);
  2560. /**
  2561. * flush_delayed_work - wait for a dwork to finish executing the last queueing
  2562. * @dwork: the delayed work to flush
  2563. *
  2564. * Delayed timer is cancelled and the pending work is queued for
  2565. * immediate execution. Like flush_work(), this function only
  2566. * considers the last queueing instance of @dwork.
  2567. *
  2568. * Return:
  2569. * %true if flush_work() waited for the work to finish execution,
  2570. * %false if it was already idle.
  2571. */
  2572. bool flush_delayed_work(struct delayed_work *dwork)
  2573. {
  2574. local_irq_disable();
  2575. if (del_timer_sync(&dwork->timer))
  2576. __queue_work(dwork->cpu, dwork->wq, &dwork->work);
  2577. local_irq_enable();
  2578. return flush_work(&dwork->work);
  2579. }
  2580. EXPORT_SYMBOL(flush_delayed_work);
  2581. /**
  2582. * cancel_delayed_work - cancel a delayed work
  2583. * @dwork: delayed_work to cancel
  2584. *
  2585. * Kill off a pending delayed_work.
  2586. *
  2587. * Return: %true if @dwork was pending and canceled; %false if it wasn't
  2588. * pending.
  2589. *
  2590. * Note:
  2591. * The work callback function may still be running on return, unless
  2592. * it returns %true and the work doesn't re-arm itself. Explicitly flush or
  2593. * use cancel_delayed_work_sync() to wait on it.
  2594. *
  2595. * This function is safe to call from any context including IRQ handler.
  2596. */
  2597. bool cancel_delayed_work(struct delayed_work *dwork)
  2598. {
  2599. unsigned long flags;
  2600. int ret;
  2601. do {
  2602. ret = try_to_grab_pending(&dwork->work, true, &flags);
  2603. } while (unlikely(ret == -EAGAIN));
  2604. if (unlikely(ret < 0))
  2605. return false;
  2606. set_work_pool_and_clear_pending(&dwork->work,
  2607. get_work_pool_id(&dwork->work));
  2608. local_irq_restore(flags);
  2609. return ret;
  2610. }
  2611. EXPORT_SYMBOL(cancel_delayed_work);
  2612. /**
  2613. * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
  2614. * @dwork: the delayed work cancel
  2615. *
  2616. * This is cancel_work_sync() for delayed works.
  2617. *
  2618. * Return:
  2619. * %true if @dwork was pending, %false otherwise.
  2620. */
  2621. bool cancel_delayed_work_sync(struct delayed_work *dwork)
  2622. {
  2623. return __cancel_work_timer(&dwork->work, true);
  2624. }
  2625. EXPORT_SYMBOL(cancel_delayed_work_sync);
  2626. /**
  2627. * schedule_on_each_cpu - execute a function synchronously on each online CPU
  2628. * @func: the function to call
  2629. *
  2630. * schedule_on_each_cpu() executes @func on each online CPU using the
  2631. * system workqueue and blocks until all CPUs have completed.
  2632. * schedule_on_each_cpu() is very slow.
  2633. *
  2634. * Return:
  2635. * 0 on success, -errno on failure.
  2636. */
  2637. int schedule_on_each_cpu(work_func_t func)
  2638. {
  2639. int cpu;
  2640. struct work_struct __percpu *works;
  2641. works = alloc_percpu(struct work_struct);
  2642. if (!works)
  2643. return -ENOMEM;
  2644. get_online_cpus();
  2645. for_each_online_cpu(cpu) {
  2646. struct work_struct *work = per_cpu_ptr(works, cpu);
  2647. INIT_WORK(work, func);
  2648. schedule_work_on(cpu, work);
  2649. }
  2650. for_each_online_cpu(cpu)
  2651. flush_work(per_cpu_ptr(works, cpu));
  2652. put_online_cpus();
  2653. free_percpu(works);
  2654. return 0;
  2655. }
  2656. /**
  2657. * flush_scheduled_work - ensure that any scheduled work has run to completion.
  2658. *
  2659. * Forces execution of the kernel-global workqueue and blocks until its
  2660. * completion.
  2661. *
  2662. * Think twice before calling this function! It's very easy to get into
  2663. * trouble if you don't take great care. Either of the following situations
  2664. * will lead to deadlock:
  2665. *
  2666. * One of the work items currently on the workqueue needs to acquire
  2667. * a lock held by your code or its caller.
  2668. *
  2669. * Your code is running in the context of a work routine.
  2670. *
  2671. * They will be detected by lockdep when they occur, but the first might not
  2672. * occur very often. It depends on what work items are on the workqueue and
  2673. * what locks they need, which you have no control over.
  2674. *
  2675. * In most situations flushing the entire workqueue is overkill; you merely
  2676. * need to know that a particular work item isn't queued and isn't running.
  2677. * In such cases you should use cancel_delayed_work_sync() or
  2678. * cancel_work_sync() instead.
  2679. */
  2680. void flush_scheduled_work(void)
  2681. {
  2682. flush_workqueue(system_wq);
  2683. }
  2684. EXPORT_SYMBOL(flush_scheduled_work);
  2685. /**
  2686. * execute_in_process_context - reliably execute the routine with user context
  2687. * @fn: the function to execute
  2688. * @ew: guaranteed storage for the execute work structure (must
  2689. * be available when the work executes)
  2690. *
  2691. * Executes the function immediately if process context is available,
  2692. * otherwise schedules the function for delayed execution.
  2693. *
  2694. * Return: 0 - function was executed
  2695. * 1 - function was scheduled for execution
  2696. */
  2697. int execute_in_process_context(work_func_t fn, struct execute_work *ew)
  2698. {
  2699. if (!in_interrupt()) {
  2700. fn(&ew->work);
  2701. return 0;
  2702. }
  2703. INIT_WORK(&ew->work, fn);
  2704. schedule_work(&ew->work);
  2705. return 1;
  2706. }
  2707. EXPORT_SYMBOL_GPL(execute_in_process_context);
  2708. #ifdef CONFIG_SYSFS
  2709. /*
  2710. * Workqueues with WQ_SYSFS flag set is visible to userland via
  2711. * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
  2712. * following attributes.
  2713. *
  2714. * per_cpu RO bool : whether the workqueue is per-cpu or unbound
  2715. * max_active RW int : maximum number of in-flight work items
  2716. *
  2717. * Unbound workqueues have the following extra attributes.
  2718. *
  2719. * id RO int : the associated pool ID
  2720. * nice RW int : nice value of the workers
  2721. * cpumask RW mask : bitmask of allowed CPUs for the workers
  2722. */
  2723. struct wq_device {
  2724. struct workqueue_struct *wq;
  2725. struct device dev;
  2726. };
  2727. static struct workqueue_struct *dev_to_wq(struct device *dev)
  2728. {
  2729. struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
  2730. return wq_dev->wq;
  2731. }
  2732. static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
  2733. char *buf)
  2734. {
  2735. struct workqueue_struct *wq = dev_to_wq(dev);
  2736. return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
  2737. }
  2738. static DEVICE_ATTR_RO(per_cpu);
  2739. static ssize_t max_active_show(struct device *dev,
  2740. struct device_attribute *attr, char *buf)
  2741. {
  2742. struct workqueue_struct *wq = dev_to_wq(dev);
  2743. return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
  2744. }
  2745. static ssize_t max_active_store(struct device *dev,
  2746. struct device_attribute *attr, const char *buf,
  2747. size_t count)
  2748. {
  2749. struct workqueue_struct *wq = dev_to_wq(dev);
  2750. int val;
  2751. if (sscanf(buf, "%d", &val) != 1 || val <= 0)
  2752. return -EINVAL;
  2753. workqueue_set_max_active(wq, val);
  2754. return count;
  2755. }
  2756. static DEVICE_ATTR_RW(max_active);
  2757. static struct attribute *wq_sysfs_attrs[] = {
  2758. &dev_attr_per_cpu.attr,
  2759. &dev_attr_max_active.attr,
  2760. NULL,
  2761. };
  2762. ATTRIBUTE_GROUPS(wq_sysfs);
  2763. static ssize_t wq_pool_ids_show(struct device *dev,
  2764. struct device_attribute *attr, char *buf)
  2765. {
  2766. struct workqueue_struct *wq = dev_to_wq(dev);
  2767. const char *delim = "";
  2768. int node, written = 0;
  2769. rcu_read_lock_sched();
  2770. for_each_node(node) {
  2771. written += scnprintf(buf + written, PAGE_SIZE - written,
  2772. "%s%d:%d", delim, node,
  2773. unbound_pwq_by_node(wq, node)->pool->id);
  2774. delim = " ";
  2775. }
  2776. written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
  2777. rcu_read_unlock_sched();
  2778. return written;
  2779. }
  2780. static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
  2781. char *buf)
  2782. {
  2783. struct workqueue_struct *wq = dev_to_wq(dev);
  2784. int written;
  2785. mutex_lock(&wq->mutex);
  2786. written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
  2787. mutex_unlock(&wq->mutex);
  2788. return written;
  2789. }
  2790. /* prepare workqueue_attrs for sysfs store operations */
  2791. static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
  2792. {
  2793. struct workqueue_attrs *attrs;
  2794. attrs = alloc_workqueue_attrs(GFP_KERNEL);
  2795. if (!attrs)
  2796. return NULL;
  2797. mutex_lock(&wq->mutex);
  2798. copy_workqueue_attrs(attrs, wq->unbound_attrs);
  2799. mutex_unlock(&wq->mutex);
  2800. return attrs;
  2801. }
  2802. static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
  2803. const char *buf, size_t count)
  2804. {
  2805. struct workqueue_struct *wq = dev_to_wq(dev);
  2806. struct workqueue_attrs *attrs;
  2807. int ret;
  2808. attrs = wq_sysfs_prep_attrs(wq);
  2809. if (!attrs)
  2810. return -ENOMEM;
  2811. if (sscanf(buf, "%d", &attrs->nice) == 1 &&
  2812. attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
  2813. ret = apply_workqueue_attrs(wq, attrs);
  2814. else
  2815. ret = -EINVAL;
  2816. free_workqueue_attrs(attrs);
  2817. return ret ?: count;
  2818. }
  2819. static ssize_t wq_cpumask_show(struct device *dev,
  2820. struct device_attribute *attr, char *buf)
  2821. {
  2822. struct workqueue_struct *wq = dev_to_wq(dev);
  2823. int written;
  2824. mutex_lock(&wq->mutex);
  2825. written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
  2826. mutex_unlock(&wq->mutex);
  2827. written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
  2828. return written;
  2829. }
  2830. static ssize_t wq_cpumask_store(struct device *dev,
  2831. struct device_attribute *attr,
  2832. const char *buf, size_t count)
  2833. {
  2834. struct workqueue_struct *wq = dev_to_wq(dev);
  2835. struct workqueue_attrs *attrs;
  2836. int ret;
  2837. attrs = wq_sysfs_prep_attrs(wq);
  2838. if (!attrs)
  2839. return -ENOMEM;
  2840. ret = cpumask_parse(buf, attrs->cpumask);
  2841. if (!ret)
  2842. ret = apply_workqueue_attrs(wq, attrs);
  2843. free_workqueue_attrs(attrs);
  2844. return ret ?: count;
  2845. }
  2846. static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
  2847. char *buf)
  2848. {
  2849. struct workqueue_struct *wq = dev_to_wq(dev);
  2850. int written;
  2851. mutex_lock(&wq->mutex);
  2852. written = scnprintf(buf, PAGE_SIZE, "%d\n",
  2853. !wq->unbound_attrs->no_numa);
  2854. mutex_unlock(&wq->mutex);
  2855. return written;
  2856. }
  2857. static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
  2858. const char *buf, size_t count)
  2859. {
  2860. struct workqueue_struct *wq = dev_to_wq(dev);
  2861. struct workqueue_attrs *attrs;
  2862. int v, ret;
  2863. attrs = wq_sysfs_prep_attrs(wq);
  2864. if (!attrs)
  2865. return -ENOMEM;
  2866. ret = -EINVAL;
  2867. if (sscanf(buf, "%d", &v) == 1) {
  2868. attrs->no_numa = !v;
  2869. ret = apply_workqueue_attrs(wq, attrs);
  2870. }
  2871. free_workqueue_attrs(attrs);
  2872. return ret ?: count;
  2873. }
  2874. static struct device_attribute wq_sysfs_unbound_attrs[] = {
  2875. __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
  2876. __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
  2877. __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
  2878. __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
  2879. __ATTR_NULL,
  2880. };
  2881. static struct bus_type wq_subsys = {
  2882. .name = "workqueue",
  2883. .dev_groups = wq_sysfs_groups,
  2884. };
  2885. static int __init wq_sysfs_init(void)
  2886. {
  2887. return subsys_virtual_register(&wq_subsys, NULL);
  2888. }
  2889. core_initcall(wq_sysfs_init);
  2890. static void wq_device_release(struct device *dev)
  2891. {
  2892. struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
  2893. kfree(wq_dev);
  2894. }
  2895. /**
  2896. * workqueue_sysfs_register - make a workqueue visible in sysfs
  2897. * @wq: the workqueue to register
  2898. *
  2899. * Expose @wq in sysfs under /sys/bus/workqueue/devices.
  2900. * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
  2901. * which is the preferred method.
  2902. *
  2903. * Workqueue user should use this function directly iff it wants to apply
  2904. * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
  2905. * apply_workqueue_attrs() may race against userland updating the
  2906. * attributes.
  2907. *
  2908. * Return: 0 on success, -errno on failure.
  2909. */
  2910. int workqueue_sysfs_register(struct workqueue_struct *wq)
  2911. {
  2912. struct wq_device *wq_dev;
  2913. int ret;
  2914. /*
  2915. * Adjusting max_active or creating new pwqs by applyting
  2916. * attributes breaks ordering guarantee. Disallow exposing ordered
  2917. * workqueues.
  2918. */
  2919. if (WARN_ON(wq->flags & __WQ_ORDERED))
  2920. return -EINVAL;
  2921. wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
  2922. if (!wq_dev)
  2923. return -ENOMEM;
  2924. wq_dev->wq = wq;
  2925. wq_dev->dev.bus = &wq_subsys;
  2926. wq_dev->dev.init_name = wq->name;
  2927. wq_dev->dev.release = wq_device_release;
  2928. /*
  2929. * unbound_attrs are created separately. Suppress uevent until
  2930. * everything is ready.
  2931. */
  2932. dev_set_uevent_suppress(&wq_dev->dev, true);
  2933. ret = device_register(&wq_dev->dev);
  2934. if (ret) {
  2935. kfree(wq_dev);
  2936. wq->wq_dev = NULL;
  2937. return ret;
  2938. }
  2939. if (wq->flags & WQ_UNBOUND) {
  2940. struct device_attribute *attr;
  2941. for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
  2942. ret = device_create_file(&wq_dev->dev, attr);
  2943. if (ret) {
  2944. device_unregister(&wq_dev->dev);
  2945. wq->wq_dev = NULL;
  2946. return ret;
  2947. }
  2948. }
  2949. }
  2950. kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
  2951. return 0;
  2952. }
  2953. /**
  2954. * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
  2955. * @wq: the workqueue to unregister
  2956. *
  2957. * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
  2958. */
  2959. static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
  2960. {
  2961. struct wq_device *wq_dev = wq->wq_dev;
  2962. if (!wq->wq_dev)
  2963. return;
  2964. wq->wq_dev = NULL;
  2965. device_unregister(&wq_dev->dev);
  2966. }
  2967. #else /* CONFIG_SYSFS */
  2968. static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
  2969. #endif /* CONFIG_SYSFS */
  2970. /**
  2971. * free_workqueue_attrs - free a workqueue_attrs
  2972. * @attrs: workqueue_attrs to free
  2973. *
  2974. * Undo alloc_workqueue_attrs().
  2975. */
  2976. void free_workqueue_attrs(struct workqueue_attrs *attrs)
  2977. {
  2978. if (attrs) {
  2979. free_cpumask_var(attrs->cpumask);
  2980. kfree(attrs);
  2981. }
  2982. }
  2983. /**
  2984. * alloc_workqueue_attrs - allocate a workqueue_attrs
  2985. * @gfp_mask: allocation mask to use
  2986. *
  2987. * Allocate a new workqueue_attrs, initialize with default settings and
  2988. * return it.
  2989. *
  2990. * Return: The allocated new workqueue_attr on success. %NULL on failure.
  2991. */
  2992. struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
  2993. {
  2994. struct workqueue_attrs *attrs;
  2995. attrs = kzalloc(sizeof(*attrs), gfp_mask);
  2996. if (!attrs)
  2997. goto fail;
  2998. if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
  2999. goto fail;
  3000. cpumask_copy(attrs->cpumask, cpu_possible_mask);
  3001. return attrs;
  3002. fail:
  3003. free_workqueue_attrs(attrs);
  3004. return NULL;
  3005. }
  3006. static void copy_workqueue_attrs(struct workqueue_attrs *to,
  3007. const struct workqueue_attrs *from)
  3008. {
  3009. to->nice = from->nice;
  3010. cpumask_copy(to->cpumask, from->cpumask);
  3011. /*
  3012. * Unlike hash and equality test, this function doesn't ignore
  3013. * ->no_numa as it is used for both pool and wq attrs. Instead,
  3014. * get_unbound_pool() explicitly clears ->no_numa after copying.
  3015. */
  3016. to->no_numa = from->no_numa;
  3017. }
  3018. /* hash value of the content of @attr */
  3019. static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
  3020. {
  3021. u32 hash = 0;
  3022. hash = jhash_1word(attrs->nice, hash);
  3023. hash = jhash(cpumask_bits(attrs->cpumask),
  3024. BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
  3025. return hash;
  3026. }
  3027. /* content equality test */
  3028. static bool wqattrs_equal(const struct workqueue_attrs *a,
  3029. const struct workqueue_attrs *b)
  3030. {
  3031. if (a->nice != b->nice)
  3032. return false;
  3033. if (!cpumask_equal(a->cpumask, b->cpumask))
  3034. return false;
  3035. return true;
  3036. }
  3037. /**
  3038. * init_worker_pool - initialize a newly zalloc'd worker_pool
  3039. * @pool: worker_pool to initialize
  3040. *
  3041. * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
  3042. *
  3043. * Return: 0 on success, -errno on failure. Even on failure, all fields
  3044. * inside @pool proper are initialized and put_unbound_pool() can be called
  3045. * on @pool safely to release it.
  3046. */
  3047. static int init_worker_pool(struct worker_pool *pool)
  3048. {
  3049. spin_lock_init(&pool->lock);
  3050. pool->id = -1;
  3051. pool->cpu = -1;
  3052. pool->node = NUMA_NO_NODE;
  3053. pool->flags |= POOL_DISASSOCIATED;
  3054. INIT_LIST_HEAD(&pool->worklist);
  3055. INIT_LIST_HEAD(&pool->idle_list);
  3056. hash_init(pool->busy_hash);
  3057. init_timer_deferrable(&pool->idle_timer);
  3058. pool->idle_timer.function = idle_worker_timeout;
  3059. pool->idle_timer.data = (unsigned long)pool;
  3060. setup_timer(&pool->mayday_timer, pool_mayday_timeout,
  3061. (unsigned long)pool);
  3062. mutex_init(&pool->manager_arb);
  3063. mutex_init(&pool->manager_mutex);
  3064. idr_init(&pool->worker_idr);
  3065. INIT_HLIST_NODE(&pool->hash_node);
  3066. pool->refcnt = 1;
  3067. /* shouldn't fail above this point */
  3068. pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3069. if (!pool->attrs)
  3070. return -ENOMEM;
  3071. return 0;
  3072. }
  3073. static void rcu_free_pool(struct rcu_head *rcu)
  3074. {
  3075. struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
  3076. idr_destroy(&pool->worker_idr);
  3077. free_workqueue_attrs(pool->attrs);
  3078. kfree(pool);
  3079. }
  3080. /**
  3081. * put_unbound_pool - put a worker_pool
  3082. * @pool: worker_pool to put
  3083. *
  3084. * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
  3085. * safe manner. get_unbound_pool() calls this function on its failure path
  3086. * and this function should be able to release pools which went through,
  3087. * successfully or not, init_worker_pool().
  3088. *
  3089. * Should be called with wq_pool_mutex held.
  3090. */
  3091. static void put_unbound_pool(struct worker_pool *pool)
  3092. {
  3093. DECLARE_COMPLETION_ONSTACK(detach_completion);
  3094. struct worker *worker;
  3095. lockdep_assert_held(&wq_pool_mutex);
  3096. if (--pool->refcnt)
  3097. return;
  3098. /* sanity checks */
  3099. if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
  3100. WARN_ON(!list_empty(&pool->worklist)))
  3101. return;
  3102. /* release id and unhash */
  3103. if (pool->id >= 0)
  3104. idr_remove(&worker_pool_idr, pool->id);
  3105. hash_del(&pool->hash_node);
  3106. /*
  3107. * Become the manager and destroy all workers. Grabbing
  3108. * manager_arb prevents @pool's workers from blocking on
  3109. * manager_mutex.
  3110. */
  3111. mutex_lock(&pool->manager_arb);
  3112. spin_lock_irq(&pool->lock);
  3113. while ((worker = first_worker(pool)))
  3114. destroy_worker(worker);
  3115. WARN_ON(pool->nr_workers || pool->nr_idle);
  3116. spin_unlock_irq(&pool->lock);
  3117. mutex_lock(&pool->manager_mutex);
  3118. if (!idr_is_empty(&pool->worker_idr))
  3119. pool->detach_completion = &detach_completion;
  3120. mutex_unlock(&pool->manager_mutex);
  3121. if (pool->detach_completion)
  3122. wait_for_completion(pool->detach_completion);
  3123. mutex_unlock(&pool->manager_arb);
  3124. /* shut down the timers */
  3125. del_timer_sync(&pool->idle_timer);
  3126. del_timer_sync(&pool->mayday_timer);
  3127. /* sched-RCU protected to allow dereferences from get_work_pool() */
  3128. call_rcu_sched(&pool->rcu, rcu_free_pool);
  3129. }
  3130. /**
  3131. * get_unbound_pool - get a worker_pool with the specified attributes
  3132. * @attrs: the attributes of the worker_pool to get
  3133. *
  3134. * Obtain a worker_pool which has the same attributes as @attrs, bump the
  3135. * reference count and return it. If there already is a matching
  3136. * worker_pool, it will be used; otherwise, this function attempts to
  3137. * create a new one.
  3138. *
  3139. * Should be called with wq_pool_mutex held.
  3140. *
  3141. * Return: On success, a worker_pool with the same attributes as @attrs.
  3142. * On failure, %NULL.
  3143. */
  3144. static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
  3145. {
  3146. u32 hash = wqattrs_hash(attrs);
  3147. struct worker_pool *pool;
  3148. int node;
  3149. lockdep_assert_held(&wq_pool_mutex);
  3150. /* do we already have a matching pool? */
  3151. hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
  3152. if (wqattrs_equal(pool->attrs, attrs)) {
  3153. pool->refcnt++;
  3154. goto out_unlock;
  3155. }
  3156. }
  3157. /* nope, create a new one */
  3158. pool = kzalloc(sizeof(*pool), GFP_KERNEL);
  3159. if (!pool || init_worker_pool(pool) < 0)
  3160. goto fail;
  3161. if (workqueue_freezing)
  3162. pool->flags |= POOL_FREEZING;
  3163. lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
  3164. copy_workqueue_attrs(pool->attrs, attrs);
  3165. /*
  3166. * no_numa isn't a worker_pool attribute, always clear it. See
  3167. * 'struct workqueue_attrs' comments for detail.
  3168. */
  3169. pool->attrs->no_numa = false;
  3170. /* if cpumask is contained inside a NUMA node, we belong to that node */
  3171. if (wq_numa_enabled) {
  3172. for_each_node(node) {
  3173. if (cpumask_subset(pool->attrs->cpumask,
  3174. wq_numa_possible_cpumask[node])) {
  3175. pool->node = node;
  3176. break;
  3177. }
  3178. }
  3179. }
  3180. if (worker_pool_assign_id(pool) < 0)
  3181. goto fail;
  3182. /* create and start the initial worker */
  3183. if (create_and_start_worker(pool) < 0)
  3184. goto fail;
  3185. /* install */
  3186. hash_add(unbound_pool_hash, &pool->hash_node, hash);
  3187. out_unlock:
  3188. return pool;
  3189. fail:
  3190. if (pool)
  3191. put_unbound_pool(pool);
  3192. return NULL;
  3193. }
  3194. static void rcu_free_pwq(struct rcu_head *rcu)
  3195. {
  3196. kmem_cache_free(pwq_cache,
  3197. container_of(rcu, struct pool_workqueue, rcu));
  3198. }
  3199. /*
  3200. * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
  3201. * and needs to be destroyed.
  3202. */
  3203. static void pwq_unbound_release_workfn(struct work_struct *work)
  3204. {
  3205. struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
  3206. unbound_release_work);
  3207. struct workqueue_struct *wq = pwq->wq;
  3208. struct worker_pool *pool = pwq->pool;
  3209. bool is_last;
  3210. if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
  3211. return;
  3212. /*
  3213. * Unlink @pwq. Synchronization against wq->mutex isn't strictly
  3214. * necessary on release but do it anyway. It's easier to verify
  3215. * and consistent with the linking path.
  3216. */
  3217. mutex_lock(&wq->mutex);
  3218. list_del_rcu(&pwq->pwqs_node);
  3219. is_last = list_empty(&wq->pwqs);
  3220. mutex_unlock(&wq->mutex);
  3221. mutex_lock(&wq_pool_mutex);
  3222. put_unbound_pool(pool);
  3223. mutex_unlock(&wq_pool_mutex);
  3224. call_rcu_sched(&pwq->rcu, rcu_free_pwq);
  3225. /*
  3226. * If we're the last pwq going away, @wq is already dead and no one
  3227. * is gonna access it anymore. Free it.
  3228. */
  3229. if (is_last) {
  3230. free_workqueue_attrs(wq->unbound_attrs);
  3231. kfree(wq);
  3232. }
  3233. }
  3234. /**
  3235. * pwq_adjust_max_active - update a pwq's max_active to the current setting
  3236. * @pwq: target pool_workqueue
  3237. *
  3238. * If @pwq isn't freezing, set @pwq->max_active to the associated
  3239. * workqueue's saved_max_active and activate delayed work items
  3240. * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
  3241. */
  3242. static void pwq_adjust_max_active(struct pool_workqueue *pwq)
  3243. {
  3244. struct workqueue_struct *wq = pwq->wq;
  3245. bool freezable = wq->flags & WQ_FREEZABLE;
  3246. /* for @wq->saved_max_active */
  3247. lockdep_assert_held(&wq->mutex);
  3248. /* fast exit for non-freezable wqs */
  3249. if (!freezable && pwq->max_active == wq->saved_max_active)
  3250. return;
  3251. spin_lock_irq(&pwq->pool->lock);
  3252. if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
  3253. pwq->max_active = wq->saved_max_active;
  3254. while (!list_empty(&pwq->delayed_works) &&
  3255. pwq->nr_active < pwq->max_active)
  3256. pwq_activate_first_delayed(pwq);
  3257. /*
  3258. * Need to kick a worker after thawed or an unbound wq's
  3259. * max_active is bumped. It's a slow path. Do it always.
  3260. */
  3261. wake_up_worker(pwq->pool);
  3262. } else {
  3263. pwq->max_active = 0;
  3264. }
  3265. spin_unlock_irq(&pwq->pool->lock);
  3266. }
  3267. /* initialize newly alloced @pwq which is associated with @wq and @pool */
  3268. static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
  3269. struct worker_pool *pool)
  3270. {
  3271. BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
  3272. memset(pwq, 0, sizeof(*pwq));
  3273. pwq->pool = pool;
  3274. pwq->wq = wq;
  3275. pwq->flush_color = -1;
  3276. pwq->refcnt = 1;
  3277. INIT_LIST_HEAD(&pwq->delayed_works);
  3278. INIT_LIST_HEAD(&pwq->pwqs_node);
  3279. INIT_LIST_HEAD(&pwq->mayday_node);
  3280. INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
  3281. }
  3282. /* sync @pwq with the current state of its associated wq and link it */
  3283. static void link_pwq(struct pool_workqueue *pwq)
  3284. {
  3285. struct workqueue_struct *wq = pwq->wq;
  3286. lockdep_assert_held(&wq->mutex);
  3287. /* may be called multiple times, ignore if already linked */
  3288. if (!list_empty(&pwq->pwqs_node))
  3289. return;
  3290. /*
  3291. * Set the matching work_color. This is synchronized with
  3292. * wq->mutex to avoid confusing flush_workqueue().
  3293. */
  3294. pwq->work_color = wq->work_color;
  3295. /* sync max_active to the current setting */
  3296. pwq_adjust_max_active(pwq);
  3297. /* link in @pwq */
  3298. list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
  3299. }
  3300. /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
  3301. static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
  3302. const struct workqueue_attrs *attrs)
  3303. {
  3304. struct worker_pool *pool;
  3305. struct pool_workqueue *pwq;
  3306. lockdep_assert_held(&wq_pool_mutex);
  3307. pool = get_unbound_pool(attrs);
  3308. if (!pool)
  3309. return NULL;
  3310. pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
  3311. if (!pwq) {
  3312. put_unbound_pool(pool);
  3313. return NULL;
  3314. }
  3315. init_pwq(pwq, wq, pool);
  3316. return pwq;
  3317. }
  3318. /* undo alloc_unbound_pwq(), used only in the error path */
  3319. static void free_unbound_pwq(struct pool_workqueue *pwq)
  3320. {
  3321. lockdep_assert_held(&wq_pool_mutex);
  3322. if (pwq) {
  3323. put_unbound_pool(pwq->pool);
  3324. kmem_cache_free(pwq_cache, pwq);
  3325. }
  3326. }
  3327. /**
  3328. * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
  3329. * @attrs: the wq_attrs of interest
  3330. * @node: the target NUMA node
  3331. * @cpu_going_down: if >= 0, the CPU to consider as offline
  3332. * @cpumask: outarg, the resulting cpumask
  3333. *
  3334. * Calculate the cpumask a workqueue with @attrs should use on @node. If
  3335. * @cpu_going_down is >= 0, that cpu is considered offline during
  3336. * calculation. The result is stored in @cpumask.
  3337. *
  3338. * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
  3339. * enabled and @node has online CPUs requested by @attrs, the returned
  3340. * cpumask is the intersection of the possible CPUs of @node and
  3341. * @attrs->cpumask.
  3342. *
  3343. * The caller is responsible for ensuring that the cpumask of @node stays
  3344. * stable.
  3345. *
  3346. * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
  3347. * %false if equal.
  3348. */
  3349. static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
  3350. int cpu_going_down, cpumask_t *cpumask)
  3351. {
  3352. if (!wq_numa_enabled || attrs->no_numa)
  3353. goto use_dfl;
  3354. /* does @node have any online CPUs @attrs wants? */
  3355. cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
  3356. if (cpu_going_down >= 0)
  3357. cpumask_clear_cpu(cpu_going_down, cpumask);
  3358. if (cpumask_empty(cpumask))
  3359. goto use_dfl;
  3360. /* yeap, return possible CPUs in @node that @attrs wants */
  3361. cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
  3362. return !cpumask_equal(cpumask, attrs->cpumask);
  3363. use_dfl:
  3364. cpumask_copy(cpumask, attrs->cpumask);
  3365. return false;
  3366. }
  3367. /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
  3368. static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
  3369. int node,
  3370. struct pool_workqueue *pwq)
  3371. {
  3372. struct pool_workqueue *old_pwq;
  3373. lockdep_assert_held(&wq->mutex);
  3374. /* link_pwq() can handle duplicate calls */
  3375. link_pwq(pwq);
  3376. old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
  3377. rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
  3378. return old_pwq;
  3379. }
  3380. /**
  3381. * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
  3382. * @wq: the target workqueue
  3383. * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
  3384. *
  3385. * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
  3386. * machines, this function maps a separate pwq to each NUMA node with
  3387. * possibles CPUs in @attrs->cpumask so that work items are affine to the
  3388. * NUMA node it was issued on. Older pwqs are released as in-flight work
  3389. * items finish. Note that a work item which repeatedly requeues itself
  3390. * back-to-back will stay on its current pwq.
  3391. *
  3392. * Performs GFP_KERNEL allocations.
  3393. *
  3394. * Return: 0 on success and -errno on failure.
  3395. */
  3396. int apply_workqueue_attrs(struct workqueue_struct *wq,
  3397. const struct workqueue_attrs *attrs)
  3398. {
  3399. struct workqueue_attrs *new_attrs, *tmp_attrs;
  3400. struct pool_workqueue **pwq_tbl, *dfl_pwq;
  3401. int node, ret;
  3402. /* only unbound workqueues can change attributes */
  3403. if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
  3404. return -EINVAL;
  3405. /* creating multiple pwqs breaks ordering guarantee */
  3406. if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
  3407. return -EINVAL;
  3408. pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
  3409. new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3410. tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3411. if (!pwq_tbl || !new_attrs || !tmp_attrs)
  3412. goto enomem;
  3413. /* make a copy of @attrs and sanitize it */
  3414. copy_workqueue_attrs(new_attrs, attrs);
  3415. cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
  3416. /*
  3417. * We may create multiple pwqs with differing cpumasks. Make a
  3418. * copy of @new_attrs which will be modified and used to obtain
  3419. * pools.
  3420. */
  3421. copy_workqueue_attrs(tmp_attrs, new_attrs);
  3422. /*
  3423. * CPUs should stay stable across pwq creations and installations.
  3424. * Pin CPUs, determine the target cpumask for each node and create
  3425. * pwqs accordingly.
  3426. */
  3427. get_online_cpus();
  3428. mutex_lock(&wq_pool_mutex);
  3429. /*
  3430. * If something goes wrong during CPU up/down, we'll fall back to
  3431. * the default pwq covering whole @attrs->cpumask. Always create
  3432. * it even if we don't use it immediately.
  3433. */
  3434. dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
  3435. if (!dfl_pwq)
  3436. goto enomem_pwq;
  3437. for_each_node(node) {
  3438. if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
  3439. pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
  3440. if (!pwq_tbl[node])
  3441. goto enomem_pwq;
  3442. } else {
  3443. dfl_pwq->refcnt++;
  3444. pwq_tbl[node] = dfl_pwq;
  3445. }
  3446. }
  3447. mutex_unlock(&wq_pool_mutex);
  3448. /* all pwqs have been created successfully, let's install'em */
  3449. mutex_lock(&wq->mutex);
  3450. copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
  3451. /* save the previous pwq and install the new one */
  3452. for_each_node(node)
  3453. pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
  3454. /* @dfl_pwq might not have been used, ensure it's linked */
  3455. link_pwq(dfl_pwq);
  3456. swap(wq->dfl_pwq, dfl_pwq);
  3457. mutex_unlock(&wq->mutex);
  3458. /* put the old pwqs */
  3459. for_each_node(node)
  3460. put_pwq_unlocked(pwq_tbl[node]);
  3461. put_pwq_unlocked(dfl_pwq);
  3462. put_online_cpus();
  3463. ret = 0;
  3464. /* fall through */
  3465. out_free:
  3466. free_workqueue_attrs(tmp_attrs);
  3467. free_workqueue_attrs(new_attrs);
  3468. kfree(pwq_tbl);
  3469. return ret;
  3470. enomem_pwq:
  3471. free_unbound_pwq(dfl_pwq);
  3472. for_each_node(node)
  3473. if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
  3474. free_unbound_pwq(pwq_tbl[node]);
  3475. mutex_unlock(&wq_pool_mutex);
  3476. put_online_cpus();
  3477. enomem:
  3478. ret = -ENOMEM;
  3479. goto out_free;
  3480. }
  3481. /**
  3482. * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
  3483. * @wq: the target workqueue
  3484. * @cpu: the CPU coming up or going down
  3485. * @online: whether @cpu is coming up or going down
  3486. *
  3487. * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
  3488. * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
  3489. * @wq accordingly.
  3490. *
  3491. * If NUMA affinity can't be adjusted due to memory allocation failure, it
  3492. * falls back to @wq->dfl_pwq which may not be optimal but is always
  3493. * correct.
  3494. *
  3495. * Note that when the last allowed CPU of a NUMA node goes offline for a
  3496. * workqueue with a cpumask spanning multiple nodes, the workers which were
  3497. * already executing the work items for the workqueue will lose their CPU
  3498. * affinity and may execute on any CPU. This is similar to how per-cpu
  3499. * workqueues behave on CPU_DOWN. If a workqueue user wants strict
  3500. * affinity, it's the user's responsibility to flush the work item from
  3501. * CPU_DOWN_PREPARE.
  3502. */
  3503. static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
  3504. bool online)
  3505. {
  3506. int node = cpu_to_node(cpu);
  3507. int cpu_off = online ? -1 : cpu;
  3508. struct pool_workqueue *old_pwq = NULL, *pwq;
  3509. struct workqueue_attrs *target_attrs;
  3510. cpumask_t *cpumask;
  3511. lockdep_assert_held(&wq_pool_mutex);
  3512. if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
  3513. return;
  3514. /*
  3515. * We don't wanna alloc/free wq_attrs for each wq for each CPU.
  3516. * Let's use a preallocated one. The following buf is protected by
  3517. * CPU hotplug exclusion.
  3518. */
  3519. target_attrs = wq_update_unbound_numa_attrs_buf;
  3520. cpumask = target_attrs->cpumask;
  3521. mutex_lock(&wq->mutex);
  3522. if (wq->unbound_attrs->no_numa)
  3523. goto out_unlock;
  3524. copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
  3525. pwq = unbound_pwq_by_node(wq, node);
  3526. /*
  3527. * Let's determine what needs to be done. If the target cpumask is
  3528. * different from wq's, we need to compare it to @pwq's and create
  3529. * a new one if they don't match. If the target cpumask equals
  3530. * wq's, the default pwq should be used.
  3531. */
  3532. if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
  3533. if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
  3534. goto out_unlock;
  3535. } else {
  3536. goto use_dfl_pwq;
  3537. }
  3538. mutex_unlock(&wq->mutex);
  3539. /* create a new pwq */
  3540. pwq = alloc_unbound_pwq(wq, target_attrs);
  3541. if (!pwq) {
  3542. pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
  3543. wq->name);
  3544. mutex_lock(&wq->mutex);
  3545. goto use_dfl_pwq;
  3546. }
  3547. /*
  3548. * Install the new pwq. As this function is called only from CPU
  3549. * hotplug callbacks and applying a new attrs is wrapped with
  3550. * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
  3551. * inbetween.
  3552. */
  3553. mutex_lock(&wq->mutex);
  3554. old_pwq = numa_pwq_tbl_install(wq, node, pwq);
  3555. goto out_unlock;
  3556. use_dfl_pwq:
  3557. spin_lock_irq(&wq->dfl_pwq->pool->lock);
  3558. get_pwq(wq->dfl_pwq);
  3559. spin_unlock_irq(&wq->dfl_pwq->pool->lock);
  3560. old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
  3561. out_unlock:
  3562. mutex_unlock(&wq->mutex);
  3563. put_pwq_unlocked(old_pwq);
  3564. }
  3565. static int alloc_and_link_pwqs(struct workqueue_struct *wq)
  3566. {
  3567. bool highpri = wq->flags & WQ_HIGHPRI;
  3568. int cpu, ret;
  3569. if (!(wq->flags & WQ_UNBOUND)) {
  3570. wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
  3571. if (!wq->cpu_pwqs)
  3572. return -ENOMEM;
  3573. for_each_possible_cpu(cpu) {
  3574. struct pool_workqueue *pwq =
  3575. per_cpu_ptr(wq->cpu_pwqs, cpu);
  3576. struct worker_pool *cpu_pools =
  3577. per_cpu(cpu_worker_pools, cpu);
  3578. init_pwq(pwq, wq, &cpu_pools[highpri]);
  3579. mutex_lock(&wq->mutex);
  3580. link_pwq(pwq);
  3581. mutex_unlock(&wq->mutex);
  3582. }
  3583. return 0;
  3584. } else if (wq->flags & __WQ_ORDERED) {
  3585. ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
  3586. /* there should only be single pwq for ordering guarantee */
  3587. WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
  3588. wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
  3589. "ordering guarantee broken for workqueue %s\n", wq->name);
  3590. return ret;
  3591. } else {
  3592. return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
  3593. }
  3594. }
  3595. static int wq_clamp_max_active(int max_active, unsigned int flags,
  3596. const char *name)
  3597. {
  3598. int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
  3599. if (max_active < 1 || max_active > lim)
  3600. pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
  3601. max_active, name, 1, lim);
  3602. return clamp_val(max_active, 1, lim);
  3603. }
  3604. struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
  3605. unsigned int flags,
  3606. int max_active,
  3607. struct lock_class_key *key,
  3608. const char *lock_name, ...)
  3609. {
  3610. size_t tbl_size = 0;
  3611. va_list args;
  3612. struct workqueue_struct *wq;
  3613. struct pool_workqueue *pwq;
  3614. /* see the comment above the definition of WQ_POWER_EFFICIENT */
  3615. if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
  3616. flags |= WQ_UNBOUND;
  3617. /* allocate wq and format name */
  3618. if (flags & WQ_UNBOUND)
  3619. tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
  3620. wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
  3621. if (!wq)
  3622. return NULL;
  3623. if (flags & WQ_UNBOUND) {
  3624. wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
  3625. if (!wq->unbound_attrs)
  3626. goto err_free_wq;
  3627. }
  3628. va_start(args, lock_name);
  3629. vsnprintf(wq->name, sizeof(wq->name), fmt, args);
  3630. va_end(args);
  3631. max_active = max_active ?: WQ_DFL_ACTIVE;
  3632. max_active = wq_clamp_max_active(max_active, flags, wq->name);
  3633. /* init wq */
  3634. wq->flags = flags;
  3635. wq->saved_max_active = max_active;
  3636. mutex_init(&wq->mutex);
  3637. atomic_set(&wq->nr_pwqs_to_flush, 0);
  3638. INIT_LIST_HEAD(&wq->pwqs);
  3639. INIT_LIST_HEAD(&wq->flusher_queue);
  3640. INIT_LIST_HEAD(&wq->flusher_overflow);
  3641. INIT_LIST_HEAD(&wq->maydays);
  3642. lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
  3643. INIT_LIST_HEAD(&wq->list);
  3644. if (alloc_and_link_pwqs(wq) < 0)
  3645. goto err_free_wq;
  3646. /*
  3647. * Workqueues which may be used during memory reclaim should
  3648. * have a rescuer to guarantee forward progress.
  3649. */
  3650. if (flags & WQ_MEM_RECLAIM) {
  3651. struct worker *rescuer;
  3652. rescuer = alloc_worker();
  3653. if (!rescuer)
  3654. goto err_destroy;
  3655. rescuer->rescue_wq = wq;
  3656. rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
  3657. wq->name);
  3658. if (IS_ERR(rescuer->task)) {
  3659. kfree(rescuer);
  3660. goto err_destroy;
  3661. }
  3662. wq->rescuer = rescuer;
  3663. rescuer->task->flags |= PF_NO_SETAFFINITY;
  3664. wake_up_process(rescuer->task);
  3665. }
  3666. if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
  3667. goto err_destroy;
  3668. /*
  3669. * wq_pool_mutex protects global freeze state and workqueues list.
  3670. * Grab it, adjust max_active and add the new @wq to workqueues
  3671. * list.
  3672. */
  3673. mutex_lock(&wq_pool_mutex);
  3674. mutex_lock(&wq->mutex);
  3675. for_each_pwq(pwq, wq)
  3676. pwq_adjust_max_active(pwq);
  3677. mutex_unlock(&wq->mutex);
  3678. list_add(&wq->list, &workqueues);
  3679. mutex_unlock(&wq_pool_mutex);
  3680. return wq;
  3681. err_free_wq:
  3682. free_workqueue_attrs(wq->unbound_attrs);
  3683. kfree(wq);
  3684. return NULL;
  3685. err_destroy:
  3686. destroy_workqueue(wq);
  3687. return NULL;
  3688. }
  3689. EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
  3690. /**
  3691. * destroy_workqueue - safely terminate a workqueue
  3692. * @wq: target workqueue
  3693. *
  3694. * Safely destroy a workqueue. All work currently pending will be done first.
  3695. */
  3696. void destroy_workqueue(struct workqueue_struct *wq)
  3697. {
  3698. struct pool_workqueue *pwq;
  3699. int node;
  3700. /* drain it before proceeding with destruction */
  3701. drain_workqueue(wq);
  3702. /* sanity checks */
  3703. mutex_lock(&wq->mutex);
  3704. for_each_pwq(pwq, wq) {
  3705. int i;
  3706. for (i = 0; i < WORK_NR_COLORS; i++) {
  3707. if (WARN_ON(pwq->nr_in_flight[i])) {
  3708. mutex_unlock(&wq->mutex);
  3709. return;
  3710. }
  3711. }
  3712. if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
  3713. WARN_ON(pwq->nr_active) ||
  3714. WARN_ON(!list_empty(&pwq->delayed_works))) {
  3715. mutex_unlock(&wq->mutex);
  3716. return;
  3717. }
  3718. }
  3719. mutex_unlock(&wq->mutex);
  3720. /*
  3721. * wq list is used to freeze wq, remove from list after
  3722. * flushing is complete in case freeze races us.
  3723. */
  3724. mutex_lock(&wq_pool_mutex);
  3725. list_del_init(&wq->list);
  3726. mutex_unlock(&wq_pool_mutex);
  3727. workqueue_sysfs_unregister(wq);
  3728. if (wq->rescuer) {
  3729. kthread_stop(wq->rescuer->task);
  3730. kfree(wq->rescuer);
  3731. wq->rescuer = NULL;
  3732. }
  3733. if (!(wq->flags & WQ_UNBOUND)) {
  3734. /*
  3735. * The base ref is never dropped on per-cpu pwqs. Directly
  3736. * free the pwqs and wq.
  3737. */
  3738. free_percpu(wq->cpu_pwqs);
  3739. kfree(wq);
  3740. } else {
  3741. /*
  3742. * We're the sole accessor of @wq at this point. Directly
  3743. * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
  3744. * @wq will be freed when the last pwq is released.
  3745. */
  3746. for_each_node(node) {
  3747. pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
  3748. RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
  3749. put_pwq_unlocked(pwq);
  3750. }
  3751. /*
  3752. * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
  3753. * put. Don't access it afterwards.
  3754. */
  3755. pwq = wq->dfl_pwq;
  3756. wq->dfl_pwq = NULL;
  3757. put_pwq_unlocked(pwq);
  3758. }
  3759. }
  3760. EXPORT_SYMBOL_GPL(destroy_workqueue);
  3761. /**
  3762. * workqueue_set_max_active - adjust max_active of a workqueue
  3763. * @wq: target workqueue
  3764. * @max_active: new max_active value.
  3765. *
  3766. * Set max_active of @wq to @max_active.
  3767. *
  3768. * CONTEXT:
  3769. * Don't call from IRQ context.
  3770. */
  3771. void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
  3772. {
  3773. struct pool_workqueue *pwq;
  3774. /* disallow meddling with max_active for ordered workqueues */
  3775. if (WARN_ON(wq->flags & __WQ_ORDERED))
  3776. return;
  3777. max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
  3778. mutex_lock(&wq->mutex);
  3779. wq->saved_max_active = max_active;
  3780. for_each_pwq(pwq, wq)
  3781. pwq_adjust_max_active(pwq);
  3782. mutex_unlock(&wq->mutex);
  3783. }
  3784. EXPORT_SYMBOL_GPL(workqueue_set_max_active);
  3785. /**
  3786. * current_is_workqueue_rescuer - is %current workqueue rescuer?
  3787. *
  3788. * Determine whether %current is a workqueue rescuer. Can be used from
  3789. * work functions to determine whether it's being run off the rescuer task.
  3790. *
  3791. * Return: %true if %current is a workqueue rescuer. %false otherwise.
  3792. */
  3793. bool current_is_workqueue_rescuer(void)
  3794. {
  3795. struct worker *worker = current_wq_worker();
  3796. return worker && worker->rescue_wq;
  3797. }
  3798. /**
  3799. * workqueue_congested - test whether a workqueue is congested
  3800. * @cpu: CPU in question
  3801. * @wq: target workqueue
  3802. *
  3803. * Test whether @wq's cpu workqueue for @cpu is congested. There is
  3804. * no synchronization around this function and the test result is
  3805. * unreliable and only useful as advisory hints or for debugging.
  3806. *
  3807. * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
  3808. * Note that both per-cpu and unbound workqueues may be associated with
  3809. * multiple pool_workqueues which have separate congested states. A
  3810. * workqueue being congested on one CPU doesn't mean the workqueue is also
  3811. * contested on other CPUs / NUMA nodes.
  3812. *
  3813. * Return:
  3814. * %true if congested, %false otherwise.
  3815. */
  3816. bool workqueue_congested(int cpu, struct workqueue_struct *wq)
  3817. {
  3818. struct pool_workqueue *pwq;
  3819. bool ret;
  3820. rcu_read_lock_sched();
  3821. if (cpu == WORK_CPU_UNBOUND)
  3822. cpu = smp_processor_id();
  3823. if (!(wq->flags & WQ_UNBOUND))
  3824. pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
  3825. else
  3826. pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
  3827. ret = !list_empty(&pwq->delayed_works);
  3828. rcu_read_unlock_sched();
  3829. return ret;
  3830. }
  3831. EXPORT_SYMBOL_GPL(workqueue_congested);
  3832. /**
  3833. * work_busy - test whether a work is currently pending or running
  3834. * @work: the work to be tested
  3835. *
  3836. * Test whether @work is currently pending or running. There is no
  3837. * synchronization around this function and the test result is
  3838. * unreliable and only useful as advisory hints or for debugging.
  3839. *
  3840. * Return:
  3841. * OR'd bitmask of WORK_BUSY_* bits.
  3842. */
  3843. unsigned int work_busy(struct work_struct *work)
  3844. {
  3845. struct worker_pool *pool;
  3846. unsigned long flags;
  3847. unsigned int ret = 0;
  3848. if (work_pending(work))
  3849. ret |= WORK_BUSY_PENDING;
  3850. local_irq_save(flags);
  3851. pool = get_work_pool(work);
  3852. if (pool) {
  3853. spin_lock(&pool->lock);
  3854. if (find_worker_executing_work(pool, work))
  3855. ret |= WORK_BUSY_RUNNING;
  3856. spin_unlock(&pool->lock);
  3857. }
  3858. local_irq_restore(flags);
  3859. return ret;
  3860. }
  3861. EXPORT_SYMBOL_GPL(work_busy);
  3862. /**
  3863. * set_worker_desc - set description for the current work item
  3864. * @fmt: printf-style format string
  3865. * @...: arguments for the format string
  3866. *
  3867. * This function can be called by a running work function to describe what
  3868. * the work item is about. If the worker task gets dumped, this
  3869. * information will be printed out together to help debugging. The
  3870. * description can be at most WORKER_DESC_LEN including the trailing '\0'.
  3871. */
  3872. void set_worker_desc(const char *fmt, ...)
  3873. {
  3874. struct worker *worker = current_wq_worker();
  3875. va_list args;
  3876. if (worker) {
  3877. va_start(args, fmt);
  3878. vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
  3879. va_end(args);
  3880. worker->desc_valid = true;
  3881. }
  3882. }
  3883. /**
  3884. * print_worker_info - print out worker information and description
  3885. * @log_lvl: the log level to use when printing
  3886. * @task: target task
  3887. *
  3888. * If @task is a worker and currently executing a work item, print out the
  3889. * name of the workqueue being serviced and worker description set with
  3890. * set_worker_desc() by the currently executing work item.
  3891. *
  3892. * This function can be safely called on any task as long as the
  3893. * task_struct itself is accessible. While safe, this function isn't
  3894. * synchronized and may print out mixups or garbages of limited length.
  3895. */
  3896. void print_worker_info(const char *log_lvl, struct task_struct *task)
  3897. {
  3898. work_func_t *fn = NULL;
  3899. char name[WQ_NAME_LEN] = { };
  3900. char desc[WORKER_DESC_LEN] = { };
  3901. struct pool_workqueue *pwq = NULL;
  3902. struct workqueue_struct *wq = NULL;
  3903. bool desc_valid = false;
  3904. struct worker *worker;
  3905. if (!(task->flags & PF_WQ_WORKER))
  3906. return;
  3907. /*
  3908. * This function is called without any synchronization and @task
  3909. * could be in any state. Be careful with dereferences.
  3910. */
  3911. worker = probe_kthread_data(task);
  3912. /*
  3913. * Carefully copy the associated workqueue's workfn and name. Keep
  3914. * the original last '\0' in case the original contains garbage.
  3915. */
  3916. probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
  3917. probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
  3918. probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
  3919. probe_kernel_read(name, wq->name, sizeof(name) - 1);
  3920. /* copy worker description */
  3921. probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
  3922. if (desc_valid)
  3923. probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
  3924. if (fn || name[0] || desc[0]) {
  3925. pr_info("%sWorkqueue: %s %pf", log_lvl, name, fn);
  3926. if (desc[0])
  3927. pr_cont(" (%s)", desc);
  3928. pr_cont("\n");
  3929. }
  3930. }
  3931. /*
  3932. * CPU hotplug.
  3933. *
  3934. * There are two challenges in supporting CPU hotplug. Firstly, there
  3935. * are a lot of assumptions on strong associations among work, pwq and
  3936. * pool which make migrating pending and scheduled works very
  3937. * difficult to implement without impacting hot paths. Secondly,
  3938. * worker pools serve mix of short, long and very long running works making
  3939. * blocked draining impractical.
  3940. *
  3941. * This is solved by allowing the pools to be disassociated from the CPU
  3942. * running as an unbound one and allowing it to be reattached later if the
  3943. * cpu comes back online.
  3944. */
  3945. static void wq_unbind_fn(struct work_struct *work)
  3946. {
  3947. int cpu = smp_processor_id();
  3948. struct worker_pool *pool;
  3949. struct worker *worker;
  3950. int wi;
  3951. for_each_cpu_worker_pool(pool, cpu) {
  3952. WARN_ON_ONCE(cpu != smp_processor_id());
  3953. mutex_lock(&pool->manager_mutex);
  3954. spin_lock_irq(&pool->lock);
  3955. /*
  3956. * We've blocked all manager operations. Make all workers
  3957. * unbound and set DISASSOCIATED. Before this, all workers
  3958. * except for the ones which are still executing works from
  3959. * before the last CPU down must be on the cpu. After
  3960. * this, they may become diasporas.
  3961. */
  3962. for_each_pool_worker(worker, wi, pool)
  3963. worker->flags |= WORKER_UNBOUND;
  3964. pool->flags |= POOL_DISASSOCIATED;
  3965. spin_unlock_irq(&pool->lock);
  3966. mutex_unlock(&pool->manager_mutex);
  3967. /*
  3968. * Call schedule() so that we cross rq->lock and thus can
  3969. * guarantee sched callbacks see the %WORKER_UNBOUND flag.
  3970. * This is necessary as scheduler callbacks may be invoked
  3971. * from other cpus.
  3972. */
  3973. schedule();
  3974. /*
  3975. * Sched callbacks are disabled now. Zap nr_running.
  3976. * After this, nr_running stays zero and need_more_worker()
  3977. * and keep_working() are always true as long as the
  3978. * worklist is not empty. This pool now behaves as an
  3979. * unbound (in terms of concurrency management) pool which
  3980. * are served by workers tied to the pool.
  3981. */
  3982. atomic_set(&pool->nr_running, 0);
  3983. /*
  3984. * With concurrency management just turned off, a busy
  3985. * worker blocking could lead to lengthy stalls. Kick off
  3986. * unbound chain execution of currently pending work items.
  3987. */
  3988. spin_lock_irq(&pool->lock);
  3989. wake_up_worker(pool);
  3990. spin_unlock_irq(&pool->lock);
  3991. }
  3992. }
  3993. /**
  3994. * rebind_workers - rebind all workers of a pool to the associated CPU
  3995. * @pool: pool of interest
  3996. *
  3997. * @pool->cpu is coming online. Rebind all workers to the CPU.
  3998. */
  3999. static void rebind_workers(struct worker_pool *pool)
  4000. {
  4001. struct worker *worker;
  4002. int wi;
  4003. lockdep_assert_held(&pool->manager_mutex);
  4004. /*
  4005. * Restore CPU affinity of all workers. As all idle workers should
  4006. * be on the run-queue of the associated CPU before any local
  4007. * wake-ups for concurrency management happen, restore CPU affinty
  4008. * of all workers first and then clear UNBOUND. As we're called
  4009. * from CPU_ONLINE, the following shouldn't fail.
  4010. */
  4011. for_each_pool_worker(worker, wi, pool)
  4012. WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
  4013. pool->attrs->cpumask) < 0);
  4014. spin_lock_irq(&pool->lock);
  4015. for_each_pool_worker(worker, wi, pool) {
  4016. unsigned int worker_flags = worker->flags;
  4017. /*
  4018. * A bound idle worker should actually be on the runqueue
  4019. * of the associated CPU for local wake-ups targeting it to
  4020. * work. Kick all idle workers so that they migrate to the
  4021. * associated CPU. Doing this in the same loop as
  4022. * replacing UNBOUND with REBOUND is safe as no worker will
  4023. * be bound before @pool->lock is released.
  4024. */
  4025. if (worker_flags & WORKER_IDLE)
  4026. wake_up_process(worker->task);
  4027. /*
  4028. * We want to clear UNBOUND but can't directly call
  4029. * worker_clr_flags() or adjust nr_running. Atomically
  4030. * replace UNBOUND with another NOT_RUNNING flag REBOUND.
  4031. * @worker will clear REBOUND using worker_clr_flags() when
  4032. * it initiates the next execution cycle thus restoring
  4033. * concurrency management. Note that when or whether
  4034. * @worker clears REBOUND doesn't affect correctness.
  4035. *
  4036. * ACCESS_ONCE() is necessary because @worker->flags may be
  4037. * tested without holding any lock in
  4038. * wq_worker_waking_up(). Without it, NOT_RUNNING test may
  4039. * fail incorrectly leading to premature concurrency
  4040. * management operations.
  4041. */
  4042. WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
  4043. worker_flags |= WORKER_REBOUND;
  4044. worker_flags &= ~WORKER_UNBOUND;
  4045. ACCESS_ONCE(worker->flags) = worker_flags;
  4046. }
  4047. spin_unlock_irq(&pool->lock);
  4048. }
  4049. /**
  4050. * restore_unbound_workers_cpumask - restore cpumask of unbound workers
  4051. * @pool: unbound pool of interest
  4052. * @cpu: the CPU which is coming up
  4053. *
  4054. * An unbound pool may end up with a cpumask which doesn't have any online
  4055. * CPUs. When a worker of such pool get scheduled, the scheduler resets
  4056. * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
  4057. * online CPU before, cpus_allowed of all its workers should be restored.
  4058. */
  4059. static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
  4060. {
  4061. static cpumask_t cpumask;
  4062. struct worker *worker;
  4063. int wi;
  4064. lockdep_assert_held(&pool->manager_mutex);
  4065. /* is @cpu allowed for @pool? */
  4066. if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
  4067. return;
  4068. /* is @cpu the only online CPU? */
  4069. cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
  4070. if (cpumask_weight(&cpumask) != 1)
  4071. return;
  4072. /* as we're called from CPU_ONLINE, the following shouldn't fail */
  4073. for_each_pool_worker(worker, wi, pool)
  4074. WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
  4075. pool->attrs->cpumask) < 0);
  4076. }
  4077. /*
  4078. * Workqueues should be brought up before normal priority CPU notifiers.
  4079. * This will be registered high priority CPU notifier.
  4080. */
  4081. static int workqueue_cpu_up_callback(struct notifier_block *nfb,
  4082. unsigned long action,
  4083. void *hcpu)
  4084. {
  4085. int cpu = (unsigned long)hcpu;
  4086. struct worker_pool *pool;
  4087. struct workqueue_struct *wq;
  4088. int pi;
  4089. switch (action & ~CPU_TASKS_FROZEN) {
  4090. case CPU_UP_PREPARE:
  4091. for_each_cpu_worker_pool(pool, cpu) {
  4092. if (pool->nr_workers)
  4093. continue;
  4094. if (create_and_start_worker(pool) < 0)
  4095. return NOTIFY_BAD;
  4096. }
  4097. break;
  4098. case CPU_DOWN_FAILED:
  4099. case CPU_ONLINE:
  4100. mutex_lock(&wq_pool_mutex);
  4101. for_each_pool(pool, pi) {
  4102. mutex_lock(&pool->manager_mutex);
  4103. if (pool->cpu == cpu) {
  4104. spin_lock_irq(&pool->lock);
  4105. pool->flags &= ~POOL_DISASSOCIATED;
  4106. spin_unlock_irq(&pool->lock);
  4107. rebind_workers(pool);
  4108. } else if (pool->cpu < 0) {
  4109. restore_unbound_workers_cpumask(pool, cpu);
  4110. }
  4111. mutex_unlock(&pool->manager_mutex);
  4112. }
  4113. /* update NUMA affinity of unbound workqueues */
  4114. list_for_each_entry(wq, &workqueues, list)
  4115. wq_update_unbound_numa(wq, cpu, true);
  4116. mutex_unlock(&wq_pool_mutex);
  4117. break;
  4118. }
  4119. return NOTIFY_OK;
  4120. }
  4121. /*
  4122. * Workqueues should be brought down after normal priority CPU notifiers.
  4123. * This will be registered as low priority CPU notifier.
  4124. */
  4125. static int workqueue_cpu_down_callback(struct notifier_block *nfb,
  4126. unsigned long action,
  4127. void *hcpu)
  4128. {
  4129. int cpu = (unsigned long)hcpu;
  4130. struct work_struct unbind_work;
  4131. struct workqueue_struct *wq;
  4132. switch (action & ~CPU_TASKS_FROZEN) {
  4133. case CPU_DOWN_PREPARE:
  4134. /* unbinding per-cpu workers should happen on the local CPU */
  4135. INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
  4136. queue_work_on(cpu, system_highpri_wq, &unbind_work);
  4137. /* update NUMA affinity of unbound workqueues */
  4138. mutex_lock(&wq_pool_mutex);
  4139. list_for_each_entry(wq, &workqueues, list)
  4140. wq_update_unbound_numa(wq, cpu, false);
  4141. mutex_unlock(&wq_pool_mutex);
  4142. /* wait for per-cpu unbinding to finish */
  4143. flush_work(&unbind_work);
  4144. destroy_work_on_stack(&unbind_work);
  4145. break;
  4146. }
  4147. return NOTIFY_OK;
  4148. }
  4149. #ifdef CONFIG_SMP
  4150. struct work_for_cpu {
  4151. struct work_struct work;
  4152. long (*fn)(void *);
  4153. void *arg;
  4154. long ret;
  4155. };
  4156. static void work_for_cpu_fn(struct work_struct *work)
  4157. {
  4158. struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
  4159. wfc->ret = wfc->fn(wfc->arg);
  4160. }
  4161. /**
  4162. * work_on_cpu - run a function in user context on a particular cpu
  4163. * @cpu: the cpu to run on
  4164. * @fn: the function to run
  4165. * @arg: the function arg
  4166. *
  4167. * It is up to the caller to ensure that the cpu doesn't go offline.
  4168. * The caller must not hold any locks which would prevent @fn from completing.
  4169. *
  4170. * Return: The value @fn returns.
  4171. */
  4172. long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
  4173. {
  4174. struct work_for_cpu wfc = { .fn = fn, .arg = arg };
  4175. INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
  4176. schedule_work_on(cpu, &wfc.work);
  4177. flush_work(&wfc.work);
  4178. destroy_work_on_stack(&wfc.work);
  4179. return wfc.ret;
  4180. }
  4181. EXPORT_SYMBOL_GPL(work_on_cpu);
  4182. #endif /* CONFIG_SMP */
  4183. #ifdef CONFIG_FREEZER
  4184. /**
  4185. * freeze_workqueues_begin - begin freezing workqueues
  4186. *
  4187. * Start freezing workqueues. After this function returns, all freezable
  4188. * workqueues will queue new works to their delayed_works list instead of
  4189. * pool->worklist.
  4190. *
  4191. * CONTEXT:
  4192. * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
  4193. */
  4194. void freeze_workqueues_begin(void)
  4195. {
  4196. struct worker_pool *pool;
  4197. struct workqueue_struct *wq;
  4198. struct pool_workqueue *pwq;
  4199. int pi;
  4200. mutex_lock(&wq_pool_mutex);
  4201. WARN_ON_ONCE(workqueue_freezing);
  4202. workqueue_freezing = true;
  4203. /* set FREEZING */
  4204. for_each_pool(pool, pi) {
  4205. spin_lock_irq(&pool->lock);
  4206. WARN_ON_ONCE(pool->flags & POOL_FREEZING);
  4207. pool->flags |= POOL_FREEZING;
  4208. spin_unlock_irq(&pool->lock);
  4209. }
  4210. list_for_each_entry(wq, &workqueues, list) {
  4211. mutex_lock(&wq->mutex);
  4212. for_each_pwq(pwq, wq)
  4213. pwq_adjust_max_active(pwq);
  4214. mutex_unlock(&wq->mutex);
  4215. }
  4216. mutex_unlock(&wq_pool_mutex);
  4217. }
  4218. /**
  4219. * freeze_workqueues_busy - are freezable workqueues still busy?
  4220. *
  4221. * Check whether freezing is complete. This function must be called
  4222. * between freeze_workqueues_begin() and thaw_workqueues().
  4223. *
  4224. * CONTEXT:
  4225. * Grabs and releases wq_pool_mutex.
  4226. *
  4227. * Return:
  4228. * %true if some freezable workqueues are still busy. %false if freezing
  4229. * is complete.
  4230. */
  4231. bool freeze_workqueues_busy(void)
  4232. {
  4233. bool busy = false;
  4234. struct workqueue_struct *wq;
  4235. struct pool_workqueue *pwq;
  4236. mutex_lock(&wq_pool_mutex);
  4237. WARN_ON_ONCE(!workqueue_freezing);
  4238. list_for_each_entry(wq, &workqueues, list) {
  4239. if (!(wq->flags & WQ_FREEZABLE))
  4240. continue;
  4241. /*
  4242. * nr_active is monotonically decreasing. It's safe
  4243. * to peek without lock.
  4244. */
  4245. rcu_read_lock_sched();
  4246. for_each_pwq(pwq, wq) {
  4247. WARN_ON_ONCE(pwq->nr_active < 0);
  4248. if (pwq->nr_active) {
  4249. busy = true;
  4250. rcu_read_unlock_sched();
  4251. goto out_unlock;
  4252. }
  4253. }
  4254. rcu_read_unlock_sched();
  4255. }
  4256. out_unlock:
  4257. mutex_unlock(&wq_pool_mutex);
  4258. return busy;
  4259. }
  4260. /**
  4261. * thaw_workqueues - thaw workqueues
  4262. *
  4263. * Thaw workqueues. Normal queueing is restored and all collected
  4264. * frozen works are transferred to their respective pool worklists.
  4265. *
  4266. * CONTEXT:
  4267. * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
  4268. */
  4269. void thaw_workqueues(void)
  4270. {
  4271. struct workqueue_struct *wq;
  4272. struct pool_workqueue *pwq;
  4273. struct worker_pool *pool;
  4274. int pi;
  4275. mutex_lock(&wq_pool_mutex);
  4276. if (!workqueue_freezing)
  4277. goto out_unlock;
  4278. /* clear FREEZING */
  4279. for_each_pool(pool, pi) {
  4280. spin_lock_irq(&pool->lock);
  4281. WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
  4282. pool->flags &= ~POOL_FREEZING;
  4283. spin_unlock_irq(&pool->lock);
  4284. }
  4285. /* restore max_active and repopulate worklist */
  4286. list_for_each_entry(wq, &workqueues, list) {
  4287. mutex_lock(&wq->mutex);
  4288. for_each_pwq(pwq, wq)
  4289. pwq_adjust_max_active(pwq);
  4290. mutex_unlock(&wq->mutex);
  4291. }
  4292. workqueue_freezing = false;
  4293. out_unlock:
  4294. mutex_unlock(&wq_pool_mutex);
  4295. }
  4296. #endif /* CONFIG_FREEZER */
  4297. static void __init wq_numa_init(void)
  4298. {
  4299. cpumask_var_t *tbl;
  4300. int node, cpu;
  4301. /* determine NUMA pwq table len - highest node id + 1 */
  4302. for_each_node(node)
  4303. wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
  4304. if (num_possible_nodes() <= 1)
  4305. return;
  4306. if (wq_disable_numa) {
  4307. pr_info("workqueue: NUMA affinity support disabled\n");
  4308. return;
  4309. }
  4310. wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
  4311. BUG_ON(!wq_update_unbound_numa_attrs_buf);
  4312. /*
  4313. * We want masks of possible CPUs of each node which isn't readily
  4314. * available. Build one from cpu_to_node() which should have been
  4315. * fully initialized by now.
  4316. */
  4317. tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
  4318. BUG_ON(!tbl);
  4319. for_each_node(node)
  4320. BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
  4321. node_online(node) ? node : NUMA_NO_NODE));
  4322. for_each_possible_cpu(cpu) {
  4323. node = cpu_to_node(cpu);
  4324. if (WARN_ON(node == NUMA_NO_NODE)) {
  4325. pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
  4326. /* happens iff arch is bonkers, let's just proceed */
  4327. return;
  4328. }
  4329. cpumask_set_cpu(cpu, tbl[node]);
  4330. }
  4331. wq_numa_possible_cpumask = tbl;
  4332. wq_numa_enabled = true;
  4333. }
  4334. static int __init init_workqueues(void)
  4335. {
  4336. int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
  4337. int i, cpu;
  4338. WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
  4339. pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
  4340. cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
  4341. hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
  4342. wq_numa_init();
  4343. /* initialize CPU pools */
  4344. for_each_possible_cpu(cpu) {
  4345. struct worker_pool *pool;
  4346. i = 0;
  4347. for_each_cpu_worker_pool(pool, cpu) {
  4348. BUG_ON(init_worker_pool(pool));
  4349. pool->cpu = cpu;
  4350. cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
  4351. pool->attrs->nice = std_nice[i++];
  4352. pool->node = cpu_to_node(cpu);
  4353. /* alloc pool ID */
  4354. mutex_lock(&wq_pool_mutex);
  4355. BUG_ON(worker_pool_assign_id(pool));
  4356. mutex_unlock(&wq_pool_mutex);
  4357. }
  4358. }
  4359. /* create the initial worker */
  4360. for_each_online_cpu(cpu) {
  4361. struct worker_pool *pool;
  4362. for_each_cpu_worker_pool(pool, cpu) {
  4363. pool->flags &= ~POOL_DISASSOCIATED;
  4364. BUG_ON(create_and_start_worker(pool) < 0);
  4365. }
  4366. }
  4367. /* create default unbound and ordered wq attrs */
  4368. for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
  4369. struct workqueue_attrs *attrs;
  4370. BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
  4371. attrs->nice = std_nice[i];
  4372. unbound_std_wq_attrs[i] = attrs;
  4373. /*
  4374. * An ordered wq should have only one pwq as ordering is
  4375. * guaranteed by max_active which is enforced by pwqs.
  4376. * Turn off NUMA so that dfl_pwq is used for all nodes.
  4377. */
  4378. BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
  4379. attrs->nice = std_nice[i];
  4380. attrs->no_numa = true;
  4381. ordered_wq_attrs[i] = attrs;
  4382. }
  4383. system_wq = alloc_workqueue("events", 0, 0);
  4384. system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
  4385. system_long_wq = alloc_workqueue("events_long", 0, 0);
  4386. system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
  4387. WQ_UNBOUND_MAX_ACTIVE);
  4388. system_freezable_wq = alloc_workqueue("events_freezable",
  4389. WQ_FREEZABLE, 0);
  4390. system_power_efficient_wq = alloc_workqueue("events_power_efficient",
  4391. WQ_POWER_EFFICIENT, 0);
  4392. system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
  4393. WQ_FREEZABLE | WQ_POWER_EFFICIENT,
  4394. 0);
  4395. BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
  4396. !system_unbound_wq || !system_freezable_wq ||
  4397. !system_power_efficient_wq ||
  4398. !system_freezable_power_efficient_wq);
  4399. return 0;
  4400. }
  4401. early_initcall(init_workqueues);